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Abstract
Continuous vital signs monitoring in post-surgical ward patients may support early detection of clinical deterioration, but 
novel alarm approaches are required to ensure timely notification of abnormalities and prevent alarm-fatigue. The current 
study explored the performance of classical and various adaptive threshold-based alarm strategies to warn for vital sign 
abnormalities observed during development of an adverse event. A classical threshold-based alarm strategy used for con-
tinuous vital signs monitoring in surgical ward patients was evaluated retrospectively. Next, (combinations of) six methods 
to adapt alarm thresholds to personal or situational factors were simulated in the same dataset. Alarm performance was 
assessed using the overall alarm rate and sensitivity to detect adverse events. Using a wireless patch-based monitoring sys-
tem, 3999 h of vital signs data was obtained in 39 patients. The clinically used classical alarm system produced 0.49 alarms/
patient/day, and alarms were generated for 11 out of 18 observed adverse events. Each of the tested adaptive strategies either 
increased sensitivity to detect adverse events or reduced overall alarm rate. Combining specific strategies improved overall 
performance most and resulted in earlier presentation of alarms in case of adverse events. Strategies that adapt vital sign 
alarm thresholds to personal or situational factors may improve early detection of adverse events or reduce alarm rates as 
compared to classical alarm strategies. Accordingly, further investigation of the potential of adaptive alarms for continuous 
vital signs monitoring in ward patients is warranted.
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1 Introduction

Patients admitted to the hospital for postoperative care are 
at risk of developing adverse events (AEs), which may lead 
to serious harm and life threatening situations [1–3]. Early 
identification and timely treatment of AEs is important to 
reduce secondary injury and improve patient outcomes [4]. 
As serious AEs are often preceded by changes in vital signs, 
routine vital sign measurements are an essential part of early 
warning systems in the hospital. However, various studies 
have reported that clinical deterioration in ward patients may 
be delayed or remain unnoticed due to infrequent or incom-
plete manual measurements of vital signs [5, 6]. As a result, 
there is increasing interest in implementing unobtrusive 
wearable wireless sensors that enable continuous monitor-
ing of vital signs in postoperative patients on the ward and 
may support early identification of clinical deterioration and 
AEs [6–10].
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Although continuous monitoring has been applied in 
high care units for many years, its application in the ward 
is challenged by the lower nurse-to-patient ratio, limited 
critical care training of nurses, and increased mobilization 
of patients [11]. In this setting, active alarm systems that 
support interpretation of signs are crucial for adequate and 
timely response to potential deterioration [12]. Currently, 
most mobile monitoring systems adopt traditional and 
widely used alarm strategies where an alert is sent auto-
matically as soon as measurements of one of the vital signs 
exceed a pre-set upper or lower threshold. Although this 
threshold-based alarm system can be life-saving in critical 
situations [4, 13], it does not consider factors that affect vital 
signs levels such as physical activity, the circadian rhythm 
[14] or age [15]. As a result, many false positive alarms are 
generated in settings where there is continuous (wired) vital 
signs monitoring, such as intensive care units. Such high 
false alarm rates are unacceptable for continuous monitoring 
in a ward setting [9, 16], as alarm overload is a high burden 
for caregivers and may even cause life-threatening situations 
from delayed response or even ignored alarms [17, 18]. On 
the other hand, the use of standard thresholds may result in 
delayed notification of subtle but relevant vital sign abnor-
malities. As such, there is a clear clinical need for improved 
alarm strategies.

Various alternative methods that may improve alarm 
precision or reduce the number of false alarms in continu-
ous vital signs monitoring have been described, with a clear 
trend towards intelligent techniques [18–20]. However, 
the integration of these advanced methods in patient care 
brings various concerns regarding the accuracy, reliability, 
efficiency, and interoperability [21–23]. Furthermore, alarms 
generated by complex or black-box models can be harder to 
interpret, which may hamper adoption by caregivers. We 
hypothesize that relatively simple alterations to classical 
threshold-based strategies may improve identification of 
AEs in post-surgical ward patients and reduce false alarm 
rates, which is investigated in the current study.

2  Methods

2.1  Data collection

The current observational retrospective study collected data 
from adult patients that were admitted to the surgical ward 
for postoperative care after elective major or intermedi-
ate surgery in the Amsterdam University Medical Center 
(Amsterdam, the Netherlands) between December 2018 until 
March 2019. All patients received standard postoperative 
care including intermittent vital signs measurements accord-
ing to local Early Warning Score protocols. In addition, 
patients were monitored using the wireless Sensium Vitals® 

system (Sensium Healthcare, Oxford, UK). For this aim, a 
chest-worn patch sensor with axillary temperature probe was 
applied to measure the patient’s heart rate (HR), respiratory 
rate (RR) and axillary temperature (T) every 2 min.

To support continuous monitoring, the original Sensium 
Vitals® algorithm was used as active alarm system. An 
alarm was generated in case one of the vital signs measure-
ments exceeded the upper or lower threshold of the pre-
defined normal range (HR: 40–120 beats/min, RR: 8–24 
breaths/min, T: ≤ 38 °C respectively) for at least 7 succes-
sive measurements. As such, this alarm strategy includes an 
annunciation delay with interval length of 14 min in case of 
no missing or invalid measurements. For recurrent abnor-
malities, a new alarm of the same type was only generated 
if at least 5 successive measurements (minimal 10 min) 
had been in the normal range since the preceding alarm. 
In case of alarms, nurses were asked per protocol to assess 
the patient. When the nurse judged that an alarm was not 
caused by technical disturbances or movement, vital signs 
were measured manually and the Modified Early Warning 
Score (MEWS) [24] was calculated; further actions were 
taken according to established local protocols.

Patients were only included for analysis when the total 
vital signs recording time was at least 24 h and each of the 
vital signs measurements was available for at least a third 
of the total recording time. Next to the collection of vital 
sign measurements and alarms, the presence of observed 
AEs was assessed retrospectively using the patients clini-
cal record. Adverse events were defined as any postopera-
tive complication, new illness, or deterioration of existing 
disease described in the patient record. The onset of the 
AEs was defined as the timing of diagnostic confirmation 
reported in nursing files, laboratory or radiology results, fol-
lowing the Institute for HealthCare Improvements’ Global 
Trigger tool [25]. The end of the AE was defined by the 
moment that AE treatment was no longer reported in the 
patient record. Only AEs that presented or were treated dur-
ing the period of continuous monitoring were included in 
the analysis.

2.2  Simulation of alarm strategies

The collected wireless vital sign measurements of patients 
and clinically observed alarms were used to retrospectively 
evaluate the performance of the currently used Sensium 
Vitals® alarm algorithm for detection of AEs. Next, simu-
lation was used to investigate the performance of alterna-
tive alarm strategies in the same dataset. For this aim, the 
original Sensium Vitals® algorithm was first reproduced 
retrospectively in MATLAB (version 2019b, The Math-
Works Inc., Natick, MA, US) adopting the alarm princi-
ples described by the manufacturers and default settings. 
Subsequently, six alternative alarm strategies were explored 
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by modifying the original alarm algorithm, as specified 
in Table 1. Two of these strategies were based on previ-
ously described methods for abnormality detection (I) or 
prevention of false alarm rates (III), as explained below. 
The other strategies were introduced based on physiologi-
cal assumptions (II, IV, V, VI). For each alternative alarm 
strategy, three (sets of) parameter settings were subsequently 
tested to investigate and select optimal standard parameter 
settings (Table 1). The tested parameter settings were cho-
sen arbitrarily within in a range that was expected suitable, 
given physiology and default settings of the currently used 
algorithm.

The first alternative alarm strategy (I) implemented 
individual thresholds to correct for differences in nor-
mal vital signs ranges between patients. For this aim, the 
first available 24 h of the recording was used to create 

individual distributions of the vital signs for each patient 
and identify corresponding upper and lower alarm thresh-
olds for the remaining monitoring period, similar to the 
approach described by Poole et al. [26].

The second alarm strategy (II) aimed to prevent false 
alarms, by increasing upper threshold levels in the first 
four postoperative days where levels for HR, RR and T 
are typically higher due to the surgical stress response [27, 
28].

The third strategy (III) focused on optimization of the 
annunciation delay, supported by the beneficial results 
reported in other studies [20, 29, 30]. Accordingly, an 
increase in the interval length of alarms was simulated, 
such that vital signs should exceed a threshold for a longer 
successive period to cause an alarm. With this adaptation, 
it was aimed to reduce the number of false alarms related 

Table 1  Specification and tested parameter settings of alternative alarm strategies

HR heart rate, RR respiratory rate, T axillary temperature, bpm beats per minute, brpm breaths per minute

Alternative alarm strategy Specification Tested (sets of) parameter settings

I. Threshold individualization For each individual patient, alarm thresholds are 
defined using the cumulative density function (CDF), 
which was reproduced for each vital sign separately 
using the first 24 h of available data [25]. Accord-
ingly, the standard lower and upper alarm thresholds 
are replaced by the vital sign level that corresponds to 
the lower (CDFlow) and upper (CDFhigh) percentiles of 
the individual CDF. Default alarm thresholds are used 
for the first 24 h

- CDFlow: 0.1%; 
  CDFhigh: 99.9%
- CDFlow: 0.5%; 
  CDFhigh: 99.5%
- CDFlow: 1%; 
  CDFhigh: 99%

II. Postoperative elevation of upper thresholds The standard upper alarm threshold is increased by a 
fixed percentage (POincrease, i.e. postoperative increase 
factor) for the first four days after surgery

- POincrease: 5% for HR/RR; 
  POincrease: 1% for T
- POincrease: 10% for HR/RR; 
  POincrease: 2.5% for T
- POincrease: 25% for HR/RR; 
  POincrease: 5% for T

III. Increase annunciation delay interval The length of the annunciation delay interval (Linterval) 
i.e. minimum number of successive abnormal meas-
urements needed for generation of an alarm (default: 
7 measurements, i.e. 14 min interval) is increased

- Linterval: 12 measurements
- Linterval: 17 measurements
- Linterval: 22 measurements

IV. Daytime elevation of upper HR/RR thresholds The standard upper HR and RR threshold is increased 
by a fixed percentage (DTincrease i.e. daytime increase 
factor) during daytime (8 a.m. to 10 p.m.)

- DTincrease: 5% for HR; 
  DTincrease: 15% for RR
- DTincrease: 10% for HR; 
  DTincrease: 25% for RR
- DTincrease: 25% for HR; 
  DTincrease: 35% for RR

V. Nighttime reduction of lower HR/RR thresholds The standard lower HR and RR threshold is decreased 
by a fixed percentage (NTincrease i.e. nighttime 
decrease factor) during nighttime (10 p.m. to 8 a.m.)

- NTdecrease: 5% for HR; 
  NTdecrease: 15% for RR
- NTdecrease: 10% for HR; 
  NTdecrease: 25% for RR
- NTdecrease: 25% for HR; 
  NTdecrease: 35% for RR

VI. Slope-based alarms An alarm is generated only in case the slope of the lin-
ear regression line calculated over a past time interval 
(Tslope) exceeds a preset threshold:

HR slope: ± 15 bpm over Tslope
RR slope: ± 10 brpm over Tslope
T slope: ± 1 °C over Tslope

- Tslope: 4 h
- Tslope: 8 h
- Tslope: 12 h
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to short lasting abnormalities caused by normal variations 
or movement artifacts.

The fourth (IV) alarm strategy was designed to com-
pensate for increased physical activity level, which leads to 
increased HR and RR levels as compared to resting state. As 
patients are most active during daytime, the upper HR and 
RR threshold was increased for daytime (8 a.m. to 10 p.m.) 
to prevent false alarms.

Likewise, the fifth alarm strategy (V) corrected for low 
HR and RR levels that are often observed during sleep [31] 
by decreasing the corresponding lower threshold during 
nighttime (10 p.m. to 8 a.m.).

The sixth alarm strategy (VI) assessed vital signs solely 
based on time trends, as patterns of change are crucial in 
the detection of clinical deterioration [32]. Accordingly, 
this alarm strategy generated alarms in case the upward or 
downward slope calculated over a predefined time window 
exceeded a certain threshold, without taking the absolute 
vital sign value into account. Trends were assessed for time 
windows of multiple hours, as the wireless monitoring sys-
tem is currently indicated for detection of clinical deteriora-
tion and not as surveillance system for acute situations.

2.3  Evaluation of alarm strategies

The alarms that were respectively generated in clinical 
practice or during simulation were defined as true positives 
(TP) or false positives (FP) to evaluate the performance to 
detect AEs. Alarms that occurred in the 24 h before diag-
nostic confirmation and during the treatment period of the 
AE were classified as TP in case the vital sign abnormal-
ity could be physiologically explained by development or 
presence of the AE. To enable consequent alarm classifica-
tion, a list of assumed relations between AEs and vital sign 
abnormalities was composed using clinical guidelines and 
literature. In case subsequent AEs with overlapping windows 
of presentation were observed, alarms that could be related 
to both events were not double counted but allocated only 
to the event that developed latest in time. As continuous 

monitoring is aimed to be used as an early warning tool, 
TP alarms that were generated in the 24 h before diagnostic 
confirmation of the AE were also investigated as a separate 
category  (TPearly).

The performance of the original alarm strategy and each 
of the optimized alternative strategies was evaluated using 
two sensitivity rates  (Stotal,  Searly), the total alarm rate, and 
the false discovery rate.  Stotal and  Searly were defined as the 
number of AEs for which TP alarms or  TPearly were observed 
respectively, and represent the sensitivity for detection or 
early detection of AEs. The total alarm rate was calculated 
as the sum of all alarms divided by the total recording time 
of all patients, resulting in an average number of alarms/
day/patient. The false discovery rate was calculated as the 
percentage of alarms classified as FP. In addition to these 
four metrics, we introduced a performance score (P-score) to 
evaluate the relative improvement in overall performance for 
each of the alternative alarm strategies as compared to the 
original alarm strategy, based on the trade-off between early 
AE detection and total alarm rate. For this aim, sub scores 
were assigned to the level of increase or decrease in  Searly 
and total alarm rate, as specified in Table 2. The P-score 
was calculated as the sum of the two sub scores assigned to 
 Searly and total alarm rate respectively. Accordingly, a posi-
tive P-score indicates improvement in overall performance 
as opposed to the original alarm strategy the while a nega-
tive P-score indicates impairment.

For each alternative alarm strategy, the parameter set with 
highest P-score was selected as most optimal and used as 
standard setting applied to each patient record for further 
analysis and evaluation. In case of an equal P-score, the 
setting with lowest false discovery rate or the setting with 
smallest modification (lowest correction factor) as compared 
to the original alarm algorithm was selected subsequently. 
In addition to evaluation of individual alarm strategies, we 
explored whether combining multiple strategies improved 
alarm performance. For this aim, all possible combina-
tions of strategies I to V were implemented cumulatively. 
The trend-based strategy (VI) was not included in these 

Table 2  Scores used to 
calculate the performance score 
(P-score)

Searly: sensitivity for early detection of adverse events,  Searly:ref: sensitivity of original alarm strategy for 
early detection of adverse events (reference). TAR: total alarm rate, TAR ref: total alarm rate of original 
alarm strategy (reference). The performance score (P-score) is calculated as the sum of the two scores that 
correspond to the  Searly and total alarm rate, respectively

Score Sensitivity for early detection  (Searly (%)) Total alarm rate (TAR (alarms/patient/day))

−3 Searly ≤  Searly:ref–10 TAR > TAR ref + 0.5
−2 Searly−10 <  Searly ≤  Searly:ref−5 TAR ref + 0.25 < TAR ≤ TAR ref + 0.5
−1 Searly:ref−5 <  Searly ≤  Searly:ref TAR ref < TAR ≤ TAR ref + 0.25
0 Searly =  Searly:ref TAR = TAR ref

1 Searly:ref <  Searly ≤  Searly:ref + 5 TAR ref–0.25 < TAR ≤ TAR ref

2 Searly:ref + 5 <  Searly ≤  Searly:ref + 10 TAR ref–0.5 < TAR ≤ TAR ref – 0.25
3 Searly >  Searly:ref + 10 TAR ≤ TAR ref–0.5
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combinations due to its incompatibility with strategies that 
adapt thresholds for absolute vital sign values. Last, step-
wise backward elimination was performed. Accordingly, 
the strategies that affected the P-score most were removed 
step-by-step from the combination, starting from the full 
combination of strategies (I–V). This process was repeated 
until all combination sizes were tested.

3  Results

3.1  Patients

Data was collected for a total of 60 patients, of which 21 
patients were excluded due to limited availability of wireless 
vital signs recordings. Table 3 reports the characteristics of 
the 39 remaining patients that were included for analysis.

A total of 20 included patients (51%) developed one or 
more AEs during postoperative ward stay. In 14 patients, 
AEs presented during the continuous monitoring period, 
resulting in a total inclusion of 18 AEs (Clavien Dindo class 
I: N = 6, II: N = 8, III: N = 4). The type of included AEs is 
reported in Table 3.

3.2  Current alarm strategy

In total, 3999 h of vital signs data were available for the 
39 included patients with a median duration of 94 (range: 
28–279) h per patient. The population distribution of the 
vital signs is shown in Supplementary file 1 (Fig. 3). The 
original Sensium Vitals® algorithm generated a total of 83 
alarms in 20 out of 39 patients, which translates to an aver-
age total alarm rate of 0.49 (median: 0.18, IQR: 0.0–0.73) 
alarms per patient per day.

Figure 1 reports the type and classification of original 
alarms observed, indicating clear differences in the total 
amount of HR, RR, and T alarm types and the correspond-
ing ratio of TP and FP alarms. Most alarms (63%) presented 
during daytime (8 a.m–10 p.m). Furthermore, the false dis-
covery rate during daytime (52%) was lower as compared to 
nighttime (68%), which indicates that daytime alarms were 
more often classified as TP alarms. Often, alarms were not 
spread throughout the admission period but presented clus-
tered on a specific day. Days with ≥ 3 alarms were found in 
seven patients.

Figure 2 visualizes the presentation of different alarm 
types for patients with observed AEs. In total, 42% of the 
alarms generated by the original algorithm were classi-
fied as TP, where one or more TP alarms were observed 
in 11 out of 18 AEs  (Stotal: 61%). In seven of these AEs, 
TP alarms were caused by one type of vital sign (HR, RR 

or T) only. However, the type of alarm was not neces-
sarily the same for the few AE types that were observed 
in multiple patients (see Fig. 2). TP alarms were exclu-
sively triggered by high vital signs levels and never for 
low levels. Although most TP alarms were generated dur-
ing the period of AE treatment, alarms were generated 
before diagnostic confirmation in seven AEs  (Searly: 39%). 
TP alarms were observed for all four AEs with Clavien 
Dindo score of III, but only in half of the AEs with Clavien 
Dindo score of I (3 out of 6) or II (4 out of 8). In 15 out of 
25 (60%) of the patients without events, no alarms were 
generated at all.

Table 3  Population characteristics (N=39)

Values represent the number (%) of patients or the median (interquar-
tile range) value. ASA american society of anesthesiologists physical 
status classification

Baseline characteristics N (%)

Male gender 21 (54)
Age (years) 62 (51–72)
Physical status
 ASA I 1 (3)
 ASA II 28 (72)
 ASA III 9 (23)
 Unknown 1 (3)

Type of surgery
 Upper gastrointestinal 8 (21)
 Lower gastrointestinal 12 (31)
 Other abdominal 8 (21)
 Other 1 (3)

Comorbidities
 Gastrointestinal 23 (59)
 Cardiac 9 (23)
 Pulmonary 9 (23)
 Diabetes 5 (13)
 Other 6 (15)
 None 1 (3)

Length of hospital stay (days) 9 (6–12)
Adverse events observed
 Anastomotic leak 3 (8)
 Pneumonia 3 (8)
 Chyle leak 2 (5)
 Wound infection 2 (5)
 Atelectasis 1 (3)
 Atrial fibrillation 1 (3)
 Hydropneumothorax 1 (3)
 Hypocalcemia after thyroid surgery 1 (3)
 Ileus 1 (3)
 Pericarditis 1 (3)
 Pulmonary embolism 1 (3)
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3.3  Alternative alarm strategies

The reproduced original algorithm that was used as start-
ing point to simulate alternative alarm strategies regener-
ated 96% of the original alarms and created two additional 
alarms that were not created by the original algorithm. 
Table 4 summarizes the performance of the six simulated 
alternative alarm strategies, using the parameter settings 
that provided optimal results out of three tested options. The 
performance of all settings can be found in Supplementary 
file 2 (Table 6). As compared to the original alarm strat-
egy, adapted alarm strategy I and VI implemented with the 
optimal settings improved overall detection and early iden-
tification of AEs  (Searly and  Stotal) but also led to multifold 
increase in total alarm rate. In contrast, adapted alarm strat-
egy II, III and IV decreased the total alarm rate at the cost 
of  Searly and  Stotal. Strategy V led to a lower daily alarm rate 
without affecting (early) detection of AEs, constituting the 
only strategy with a positive P-score. This reduction in total 
alarm rate was only related to the modification in the lower 
threshold of RR as no alarms were generated for low HR.

Fig. 1  Classification of the alarms (N = 83) generated by the clini-
cal alarm system in included patient population (N = 39). HR heart 
rate, RR respiratory rate, T axillary temperature, TP True positive 
alarm.  TPearly: true positive alarm presenting before presentation of 
the adverse event. FP False positive alarm. No alarms were observed 
for low HR values (HR < 40)

Fig. 2  Timing and type of alarms observed in patients (N = 14) with 
adverse events during continuous monitoring on the ward. HR heart 
rate, RR respiratory rate, T axillary temperature, TP True positive 

alarm. FP False positive alarm. I–III: Clavien Dindo classification. 
The monitoring period is shown up to 12 days after surgery, since no 
adverse events or alarms were observed in later periods
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The performance of all tested combinations is found 
in Supplementary file 2 (Table 7), and Table 5 reports the 
results of the backward selection process. Various combina-
tions of strategies improved overall performance (P-score ≥ 
1), which was always the result of a larger increase in  Searly 
relative to the growth in total alarm rate. Although  Searly 
increased most in the well-performing alarm strategies, this 
was often accompanied by higher levels of  Stotal as well. The 
combination of strategy II, III and IV performed best and 
increased  Searly to 61% and  Stotal to 72%, but also caused a 
small increase in total alarm rate to 0.59 alarms/patient/day. 
Remarkably, all combinations with high P-score (P-score 
= 2) included strategy II, whilst this strategy impaired per-
formance when implemented solely. Strategy I contributed 
least to improving alarm performance, as this strategy was 
included least frequently in combinations with improved 

performance and dropped out first in the backward elimina-
tion process.

4  Discussion

4.1  Main findings

This study evaluated the performance of classical and adap-
tive threshold-based alarm strategies for continuous vital 
signs monitoring in ward patients. We aimed to explore 
easy-to-implement and transparent methods to support 
identification of clinical deterioration related to postopera-
tive AEs. Our results show that the currently used classi-
cal threshold-based alarm strategy detected abnormalities 
in vital signs before or after onset of treatment in most of 

Table 4  Performance of original and alternative alarm strategies

For definition of alarm strategies (I-VI) and corresponding parameters see Table 1.  Stotal: sensitivity for detection of adverse events,  Searly: sensi-
tivity for early detection of adverse events, P-score: performance score (for specification see Table 2), AE adverse event (N=18), TP true positive 
alarm, TPearly true positive alarm presenting before presentation of the adverse event, NA not applicable

Alarm strategy Optimal parameter set Searly (% of AEs 
preceded by  TPearly 
alarms)

Stotal (% of AEs 
with TP alarms)

Total alarm rate 
(alarms/patient/
day)

False detection rate (% 
of alarms classified as 
false positive)

P-score

Original N.A. 39 61 0.49 59 N.A.
I. Threshold individu-

alization
CDFlow: 1%; CDFhigh: 

99%
56 78 1.81 83 0

II. Postoperative 
elevation of upper 
thresholds

POincrease: 5% for HR/
RR; POincrease: 1% 
for T

33 56 0.42 45 −1

III. Increase annuncia-
tion delay interval

Linterval: 12 measure-
ments

33 50 0.25 50 0

IV. Daytime elevation 
of upper HR/RR 
thresholds

DTincrease: 5% for HR; 
DTincrease: 15% for 
RR

33 50 0.35 66 −1

V. Nighttime reduc-
tion of lower HR/RR 
thresholds

NTdecrease: 10% for 
HR; NTdecrease: 25% 
for RR

39 61 0.45 55 1

VI. Slope-based alarms Tslope: 4 h 50 78 3.47 94 0

Table 5  Performance of combined alternative alarm strategies

I–V: number of alternative alarm strategy (for definition see Table 1) implemented using optimal parameter settings (as mentioned in Table 4). 
The crosses indicate that the considering alternative alarm strategy was included in the combination.  Stotal: sensitivity for detection of adverse 
events,  Searly: sensitivity for early detection of adverse events, P-score: performance score (for specification see Table 2)

I II III IV V Searly (% of AEs preceded 
by  TPearly alarms) (%)

Stotal (% of AEs 
with TP alarms) 
(%)

Total alarm rate 
(alarms/patient/
day)

False detection rate (% of alarms 
classified as false positive) (%)

P-score

× × × × × 56 78 2.33 91 0
× × × × 56 67 0.55 75 2
× × × 61 72 0.59 70 2
× × 61 72 0.62 71 2
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the observed AEs in ward patients. Each of the six adapted 
threshold-based alarm strategies that we simulated retro-
spectively in the same population showed potential to either 
increase the sensitivity for detection of AEs or to reduce 
the total alarm rate as compared to the currently used alarm 
strategy. However, the individual alarm strategies caused 
minimal improvement or even impairment of overall alarm 
performance. Combining specific alternative alarm strate-
gies improved overall performance most, where sensitivity 
rates increased while raising only few extra alarms. In par-
ticular, the number of AEs where alarms were observed in 
the 24 h prior to onset of treatment was increased, which 
suggests that implementation of multiple approaches to 
adaptive alarm thresholds may improve early detection of 
clinical deterioration in ward patients.

4.2  Evaluating alarm strategies

Alarms are seen as an essential element of continuous physi-
ological monitoring, as these support timely identification of 
abnormalities and create awareness of potentially relevant 
deterioration. Yet, the alarm burden is also considered as 
one of the major concerns for successful implementation 
of continuous monitoring in a ward setting [9]. Therefore, 
critical evaluation of optimal alarm strategies for this set-
ting is desired. Although there is general consensus about 
the need for adequate alarm systems, no clear definition of 
acceptable alarm rates and situations that require alarms 
exist. By definition, alarm systems are most effective in case 
the alerts promote actions that directly or indirectly contrib-
ute to patient outcome. Furthermore, it is known that the 
response towards alarms is best in case alarms convey spe-
cific events [16, 33]. Most studies that investigated detection 
methods for ward patients used cardiac arrest, ICU transfer, 
or death as marker for deterioration [19, 34], where the need 
to call for rapid action is obvious. However, we believe that 
alarm strategies for ward patients should also focus on less 
severe events that are more common in this setting, and to 
the early phase of serious AEs where sequelae could still be 
minimized. Accordingly, the current study evaluated alarm 
strategies by their ability to detect any type of postoperative 
adverse event requiring treatment, focusing on actionable 
situations.

Despite the small study cohort, we were able to study 
a relatively high rate [3] and variety of AEs. By using a 
retrospective study set-up and investigation of alarms that 
presented in the 24-h window prior to AE treatment, we 
explored whether alarms could serve as an early warning 
tool. However, one should be aware that most AEs develop 
gradually which hampers sharp limitation of the correspond-
ing onset and duration, challenged even more by variations 
in clinical response times and delays in reporting. Further-
more, it should be kept in mind that vital sign measurements 

do not detect diseases but only signs of deterioration related 
to (progression of) disease. Therefore, vital sign abnormali-
ties that develop in a later phase of AEs may also be of 
clinical importance. For this reason, early alarms as well 
as alarms that presented after onset of AE treatment were 
included in the evaluation of overall TP rate. Still, as the 
causality of vital sign abnormalities and true timing of AEs 
remains uncertain, careful interpretation of sensitivity rates 
is required.

4.3  Relation to previous studies

Even though various methods to improve alarm strategies for 
continuous vital signs monitoring have been described [20], 
most monitoring systems still work with classical thresh-
olds-based alarms and high rates of alarms remain problem-
atic as today [17, 35]. The average alarm rate observed in 
the current study was approximately 0.5 alarms per patient 
per day, which is markedly low as compared to previously 
reported rates of physiological monitoring systems used in 
the ICU (38–350 alarms/patient/day) and ward (96 alarm/
patient/day) [36, 37]. Although this lower alarm rate is par-
tially explained by the fact that currently used monitoring 
system does not assess oxygen saturation, blood pressure 
and electrocardiogram, this also indicates that current alarm 
strategy has relative good performance in terms of mini-
mizing alarm burden. Still, more than half of the observed 
alarms was classified as false positive and no abnormalities 
were detected for a part of the AEs, supporting the search 
for improvement of alarm strategies.

Various studies described that manual or automated per-
sonalization of alarm thresholds improves alarm strategies 
for vital signs monitoring [26, 38]. Besides, its has been sug-
gested that use of trend information contributes to outcome 
prediction [32, 39]. In the current study, the personalized 
and trend-based strategies (I and VI) were indeed able to 
improve sensitivity rates but also resulted in relatively high 
alarm rates. These findings indicate that the isolated assess-
ment of relative or absolute changes in vital sign levels has 
limited specificity for AE detection, and question whether 
normal ranges should solely be based on previous postop-
erative measurements of the individual patient and without 
considering current vital sign levels. As such, further investi-
gation of alternative methods that define and adapt to normal 
patterns representative for an unaffected physiological state 
are warranted.

As expected, adapting the annunciation delay interval 
(strategy III) reduced alarm rates, which was in line with 
previous studies [20, 29, 30]. Likewise, the methods cor-
recting for the postoperative phase (strategy II) or day/night 
differences (strategy IV and V) lowered the number of 
alarms. Still, most of these strategies also reduced sensitiv-
ity rates when applied individually, and resulted in minimal 
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improvement or even impairment of overall alarm perfor-
mance. Combining strategy II–V was more effective and 
led to highest performance scores observed in current study, 
supporting the expectation that integration of different meth-
ods is beneficial [20].

However, remarkably, combining strategy II–V improved 
sensitivity rather than alarm rates, which is the opposite 
effect as observed for individual implementation of strategy 
II, III, IV or V. These reversed results indicate that the over-
all benefits of the modifications strongly depend on the over-
all algorithm design and settings applied, which is possible 
related to the general limitations of static single-parameter 
alarms. This is underlined by studies reporting that classical 
methods for detection of deterioration are outperformed by 
more advanced methods for personalization of alarm thresh-
olds [38] or identification of abnormal trends or patterns in 
vital signs [19, 32]. Furthermore, the integration of vital 
signs and context data can improve prediction of severe out-
come events, which has led to the development of various 
patient assessment tools such as the MEWS [24], electronic 
Cardiac Arrest Risk Triage (eCART) score [40], Rothman 
score [41], and prediction methods based on machine learn-
ing [42–44]. However, most of these methods used more 
complex models or require additional data sources, and their 
clinical benefits still have to be demonstrated for applica-
tions of continuous wireless patient monitoring. Neverthe-
less, their underlying principles may guide further improve-
ment of adaptive systems that trigger clinical response.

4.4  Limitations

To simulate modification to the original algorithm, the cur-
rent clinically used alarm strategy was reconstructed based 
on descriptions of the original source code. Although the 
alarms of the reproduced original algorithm were almost 
identical to those observed in clinical practice, some inac-
curacy may have been induced. Furthermore, even though 
accuracy of the currently used wireless monitoring system 
has been described as acceptable and reliable for HR and RR 
monitoring in ward patients [45], the continuous measure-
ments could have been affected by missing data or inaccura-
cies. As such, the performance of the clinically used alarm 
strategy and adapted alarm methods may not translate to 
other systems and requires external verification.

To evaluate modified alarm strategies and optimize 
parameter settings, we introduced a performance score 
assessing the degree of improvement in sensitivity rate and 
total alarm rate as compared to the original algorithm. How-
ever, the optimal trade-off between sensitivity and alarm 
load in a ward setting is not yet established [20]. Besides, 
the specificity of alarm strategies is also relevant but could 
not be judged, as the number of true and false negative cases 
could not be verified retrospectively. Last, the opportunities 

to improve alarm performance were limited due to the rela-
tively small population size, low clinical alarm rate, and by 
restricting the number of alterations and range of parameter 
settings that was tested. In addition, the methods used in 
the adaptive strategies were based on previously described 
principles or physiological assumptions, and the computa-
tional design or settings were not further trained or adapted 
for individual patients. Furthermore, the trend-based strat-
egy was only tested in isolation, while combined or stepped 
assessment of trends and absolute vital sign values may be 
of interest as well. Therefore, larger prospective studies are 
desired to further optimize and integrate the alternative 
threshold-based alarm strategies and validate current results. 
Moreover, it is recommended to evaluate the effects of the 
adaptive alarm strategies also in other settings where higher 
false alarm rates are currently observed. Last, it is desired 
to verify the performance of the adaptive alarm strategies 
in relation to alternative methods for prediction of patient 
deterioration such as the MEWS score, and to assess their 
overall potential clinical benefits.

5  Conclusions

In conclusion, a classical threshold-based alarm strategy 
is able to identify abnormalities in continuously measured 
vital signs for the majority of AEs observed in surgical ward 
patients without causing excessive alarm rates. Implementa-
tion of transparent methods that adapt thresholds to personal 
or situational factors may increase event detection rates or 
lower alarm rates as compared to the classical strategy, yet 
with no or minimal overall improvement of alarm perfor-
mance. Combining multiple adaptive threshold-based strate-
gies seems more successful in improving alarm performance 
and may contribute to increased or earlier identification of 
clinical deterioration.
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