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Individualized prediction of three- and six-year outcomes of
psychosis in a longitudinal multicenter study: a machine
learning approach
Jessica de Nijs1,16,17, Thijs J. Burger2,3,16, Ronald J. Janssen 1, Seyed Mostafa Kia 1, Daniël P. J. van Opstal 1, Mariken B. de Koning2,3,
Lieuwe de Haan2,3, GROUP investigators*, Wiepke Cahn 1,4,17 and Hugo G. Schnack 1,17✉

Schizophrenia and related disorders have heterogeneous outcomes. Individualized prediction of long-term outcomes may be
helpful in improving treatment decisions. Utilizing extensive baseline data of 523 patients with a psychotic disorder and variable
illness duration, we predicted symptomatic and global outcomes at 3-year and 6-year follow-ups. We classified outcomes as (1)
symptomatic: in remission or not in remission, and (2) global outcome, using the Global Assessment of Functioning (GAF) scale,
divided into good (GAF ≥ 65) and poor (GAF < 65). Aiming for a robust and interpretable prediction model, we employed a linear
support vector machine and recursive feature elimination within a nested cross-validation design to obtain a lean set of predictors.
Generalization to out-of-study samples was estimated using leave-one-site-out cross-validation. Prediction accuracies were above
chance and ranged from 62.2% to 64.7% (symptomatic outcome), and 63.5–67.6% (global outcome). Leave-one-site-out cross-
validation demonstrated the robustness of our models, with a minor drop in predictive accuracies of 2.3% on average. Important
predictors included GAF scores, psychotic symptoms, quality of life, antipsychotics use, psychosocial needs, and depressive
symptoms. These robust, albeit modestly accurate, long-term prognostic predictions based on lean predictor sets indicate the
potential of machine learning models complementing clinical judgment and decision-making. Future model development may
benefit from studies scoping patient’s and clinicians' needs in prognostication.
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INTRODUCTION
Schizophrenia is a heterogeneous illness and its long-term
outcomes are highly variable1–3. Attempts to provide prognostic
markers for long-term outcomes, such as Rumke’s “praecox
feeling”, have appeared throughout medical history4, but despite
an abundance of outcome predictors at group-level, such as
sociodemographic characteristics, clinical markers, and neurocog-
nitive markers5,6, at a patient-level, no valid prediction model for
long-term outcome of schizophrenia is available to clinicians at
present7. An additional challenge is that “outcome” entails
symptomatic, social, functional, and personal dimensions, which
are only partly interrelated8,9, and may have differing significance
for individual patients10,11. These matters complicate clinical
decision-making, for example when considering an early switch
to clozapine12, antipsychotic dose reduction or discontinuation
strategies13, allocations of sheltered housing14, or occupational
support15. From a public health perspective, reliable long-term
outcome prediction and the resulting treatment stratification are
important, as demands usually outweigh the capacity of mental
health institutions, even in countries with high mental healthcare
expenses16.
Machine learning potentially presents a way to develop

models reliably predicting individual outcomes for multifactorial
and heterogeneous illnesses such as schizophrenia17–21. In
clinical research, machine learning, or pattern recognition, refers
to an algorithm that is able to learn from a large multivariate
dataset to make an adequate prediction for a patient, for

example concerning the future clinical outcome. Modern
prospective multicenter studies facilitate the development of
prediction models based on machine learning. They provide
well-established outcome measures and large numbers of
potential predictors (i.e. “features”), in study samples large
enough to cover the heterogeneity of the target population19.
A landmark study by Koutsouleris et al. recently demonstrated
the potential of machine learning for individual outcome
prediction in psychosis18. Pre-treatment data from a multicenter
clinical trial were used to predict global outcomes after 4 and
52 weeks of treatment in first-episode psychosis. Predictive
accuracy was found significantly above chance, at 73.8–75.0%.
With an average drop of 2.8%, accuracy was retained when the
models were tested on geographic sites left out of the model
training procedure, suggestive of its validity in other samples.
Unemployment, lower education, functional deficits, and unmet
psychosocial needs were found most valuable in predicting
4- and 52-week outcomes.
Here, we extend the use of data-driven model development

based on patient reportable data, to long-term (3 and 6 years)
symptomatic and global outcomes of patients with schizophrenia-
spectrum disorders. To this end, we include a heterogeneous
population of schizophrenia-spectrum patients, with variable
illness duration and baseline clinical status from the Genetic Risk
and Outcome in Psychosis (GROUP) cohort study22. We explore
the use of a wide range of baseline markers of genetic and
environmental risk and measures of past and baseline clinical
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state, to predict 3- and 6-year symptomatic and global outcomes.
We use data-driven selection to arrive at a model containing
predictors from a limited number of measures, aiming at clinical
applicability. We assess its generalizability by using leave-one-site-
out (LOSO) cross-validation, testing our models on geographic
study-sites left out of model development. Additionally, we
investigate the use of the features that have been found to
predict 4- and 52-week outcomes of first-episode psychosis18, for
3- and 6-year outcomes in the GROUP sample.

RESULTS
Sample characteristics
We included 523 patients with a schizophrenia spectrum disorder
who had outcome assessments three (T3) and six (T6) years after
baseline. Demographic and clinical baseline characteristics of the
study sample and comparisons to patients excluded because of
missing follow-up assessments are listed in Table 1. Patients with
unfavorable baseline characteristics were more likely to be lost to
follow-up. At baseline, T3 and T6, 49%, 37%, and 41% of patients
were in symptomatic remission (according to the consensus
definition by Andreasen et al. (2005)) respectively; 31%, 44%, and
36% had good global functioning status (Global Assessment of
Functioning (GAF) scale ≥ 65) at respective measurements. For
symptomatic outcome, 65% and 64% of patients were stable at T3
and T6 relative to baseline, and 68% and 68% for global outcome
(Supplementary Fig. 2).

Selection of modalities based on unimodal models
We included demographic information, illness-related variables,
Positive and Negative Syndrome Scale (PANSS; present state
clinician-rated symptomatology), and either Camberwell Assess-
ment scale of Need Short Appraisal Schedule (CANSAS; clinician-
rated and self-reported need of care) or Community Assessment
of Psychic Experiences (CAPE; self-reported lifetime psychotic
experiences) data for multimodal modeling. Notably, this set is
especially rich on indicators of clinical course until inclusion in
GROUP (i.e. includes GAF, features from PANSS, and CAPE where
applicable). The choice of these modalities was based on
unimodal modeling performance for the following modalities:
(1) demographic variables; (2) illness-related variables; (3) PANSS;
(4) substance use characteristics; (5) neurocognitive task scores; (6)
social cognitive task scores; (7) Premorbid Adjustment Scale items;
(8) CANSAS; (9) CAPE; (10) extrapyramidal symptoms; (11) genetic
features, and familial loading of psychotic disorder, bipolar
disorder, and drug abuse; (12) environmental variables of
urbanicity and living situation (see the “Methods” section;
Supplementary Tables 2 and 4). As mentioned earlier, we
additionally trained models using a prespecified set of features
that had performed best in predicting 4- and 52-week outcome of
first-episode psychosis in the EUFEST study (22 and 24 features,
respectively, see part C in Table 2, see the “Methods” section;
Supplementary Table 1)18. A summary of the number of features
and sample size for unimodal and multimodal models per
outcome, and good versus poor outcome distributions is provided
Supplementary (Supplementary Tables 2 and 3).

Table 1. Baseline demographic and clinical characteristics of patients who completed baseline and follow-ups and of those who were not included
in the study.

Included patients (n= 523) Excluded patients (n= 577) P value

Age in years, mean (SD) 27.6 (7.4) 26.6 (7.0) 0.018

No. (%) male sex 402 (76.9) 426 (77.6) 0.775

No. (%) white ethnicity 449 (85.9) 363 (72.6) <0.001

WAIS IQ, mean (SD) 97.4 (16.1) 92.1 (15.6) <0.001

Education patient, mean (SD) 4.3 (2.0) 3.8 (2.1) <0.001

Education father; SES, mean (SD) 5.1 (2.5) 4.7 (2.6) 0.014

Education mother; SES, mean (SD) 4.4 (2.4) 4.1 (2.5) 0.054

No. (%) employed/student 241 (46.1) 184 (41.2) 0.124

Illness duration in years, mean (SD) 4.6 (4.2) 3.9 (3.4) 0.002

No. (%) recent onset of psychosis in the past year 101 (19.3) 168 (30.7) <0.001

No. (%) DSM-IV schizophrenia diagnosis, 295.1,2,3 342 (65.4) 341 (62.5) 0.317

No. (%) antipsychotic drug use present state 479 (91.6) 434 (99.3) <0.001

No. (%) clozapine use present state 64 (12.2) 81 (14.8) 0.228

No. (%) cannabis abuse/dependency present state 160 (30.6) 179 (32.6) 0.479

No. (%) other illicit drug use in the past 324 (62.9) 365 (69.5) 0.024

PANSS positive symptoms, mean (SD) 12.2 (5.1) 13.3 (5.5) 0.001

PANSS negative symptoms, mean (SD) 13.3 (5.5) 14.7 (6.3) <0.001

PANSS general symptoms, mean (SD) 27.0 (7.8) 29.0 (8.8) <0.001

PANSS total, mean (SD) 52.4 (15.7) 56.9 (17.5) <0.001

Global assessment of functioning; symptoms, mean (SD) 57.9 (16.0) 53.5 (15.3) <0.001

Global assessment of functioning; degree of disabilities, mean (SD) 57.0 (15.6) 51.3 (15.8) <0.001

No. (%) GAF score ≥65 173 (33.1) 94 (21.2) <0.001

CAPE frequency symptoms, mean (SD) 0.9 (0.5) 0.9 (0.5) 0.267

CANSAS number of needs, mean (SD) 6.7 (3.8) 7.8 (3.9) <0.001

WAIS IQ Wechsler Adult Intelligence Scale Intelligence Quotient, SES socioeconomic status, DSM-IV Diagnostic and Statistical Manual of Mental Disorders 4th
edition, PANSS Positive and Negative Syndrome Scale, GAF global assessment of functioning, CAPE community assessment of psychic experiences, CANSAS
Camberwell Assessment scale of Need Short Appraisal Schedule.
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Performance of prediction models: Internal validation
Using a repeated nested cross-validation design (see the
“Methods” section, Creation of models (A)) including recursive
feature elimination, support vector machine models were trained
to predict individual patient’s outcomes based on their baseline
data from four modalities. The outcome could be predicted with
similar cross-validated balanced accuracies (BACs), regardless of
the period, outcome, and the fourth modality included (i.e.
CANSAS or CAPE), ranging from 62.2% to 67.6% (Table 2). Model
performance was well above benchmark models containing a
single feature (GAF) and using threshold values for good/poor
global functioning above and below GAF 65 did not result in
higher model performance (Supplementary Note 4, Supplemen-
tary Table 15).
The 10% most influential features for symptomatic as well as

global outcome based on weight and frequency of selection
included items from all four modalities in the model: PANSS items,
illness-related, demographic features, and either CANSAS or CAPE
items (Supplementary Tables 5–12). As illustrated in Fig. 1,
generally, the more often a feature is selected, the higher its
average weight is (see Supplementary Figs. 3 and 4 for overviews
of selection frequency over weight for all models).
Worse GAF symptoms and GAF disabilities, worse scores on

specific items in the positive and negative subdomains of the
PANSS (i.e. judgment and insight, hallucinatory behavior, flat
affect, unusual thought content, motor retardation), worse score
on (health-related) quality of life and the use of antipsychotics
were associated with multiple poor outcome endpoints. This was
supplemented by a lower number of no needs and met needs,
together with housing needs and unmet psychotic disorder needs
in models including CANSAS items. In models including the CAPE,
items of importance from the CAPE mostly included those from
the depression subscale (i.e. guilty and tense feelings, suicidal
thoughts, and lack of activity) (Table 3).
The following features were predictive of at least one-fourth of

poor outcome endpoints, albeit selected in fewer models than

those summed in the previous paragraph: higher age, schizo-
phrenia diagnosis, and a higher level of various present state
symptoms in PANSS subdomains of positive, negative, disorgani-
zation symptoms and emotional distress (i.e. delusions, suspi-
ciousness/persecution, grandiosity, stereotyped thinking, lack of
spontaneity, difficulty in abstract thinking, emotional withdrawal,
depressive symptoms, and tension) (Table 3).
Comparison of frequently misclassified patients to those

mostly correctly predicted showed the following: patients with
a good outcome, who were incorrectly classified as having poor
outcome (21–37% over the models) showed less favorable
baseline characteristics (e.g. higher PANSS, lower GAF scores,
more chronicity, lower parent education, and more schizophre-
nia diagnoses) when compared to the correctly classified group
of patients. Contrary, patients with poor outcome who were
mostly incorrectly classified as having good outcome (3–14%)
showed favorable baseline characteristics, such as lower PANSS
and higher GAF scores, when compared to the most correctly
classified group of patients (see Supplementary Table 13 for a
detailed overview of significant comparisons).

Generalization of the prediction models: LOSO validation
The generalizability of the models was evaluated by consecutively
leaving out patients from one of the four geographic sites and
testing the model trained on the three remaining sites in these
patients (see the “Methods” section, Creation of models (B)). These
LOSO validated models had slightly (−2.3% on average) lower
accuracies than models trained on the full dataset (Table 2). The
range of the average prediction accuracies for symptomatic
outcome at T3 and T6 was 59.9–63.8% (Table 2); site-specific BACs
ranged from 53.0% to 69.7% (Table 4). For global outcome the
range was 61.2–64.8% (Table 2); BACs of the different sites ranged
from 53.0% to 68.9% (Table 4). The difference between T3 and T6
prediction accuracy was small (mean BACs were 63.4% and 61.9%,
respectively). There was, again, a small difference between
CANSAS-based and CAPE-based models (mean BACs were 62.8%
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Table 3. Important baseline features by model.

Baseline (T0) feature Symptom
outcome T3

1
Symptom
outcome T3

2
Symptom
outcome T6

1
Symptom
outcome T6

2
Global
outcome T3

1
Global
outcome T3

2
Global
outcome T6

1
Global
outcome T6

2

ILL GAF disabilities − − o − − − − −

ILL GAF symptoms o − − − − − − −

PANSS poor judgment
and Insight

+ + + + o + + o

PANSS hallucinatory
behavior

+ + × + + o + +

PANSS flat affect o o + + + + × +

PANSS motor retardation o o o + + + o +

PANSS unusual thought
content

o o o + + + o +

ILL (health related)
quality of Life

− o o o o − − −

ILL status antipsychotics o o + + o o + o

ILL diagnosis
schizophrenia/psychosis
related disorders

− − − o o o o o

PANSS passive/apathetic
Social withdrawal

o o o o + + o +

DEMO age + + o o o o o o

CANSAS number of
met need

− o − −

CANSAS housing need o o + +

CANSAS food need o − + o

CANSAS number of
no need

o o − o

CANSAS psychotic
disorder unmet need

o + o o

CAPE feeling guilty − o o o

CAPE feeling tense o o + o

CAPE suicidal + o o o

CAPE lack of activity o + o o

CAPE hallucinations o + o o

CAPE telepathy o o o +

PANSS delusions o o + + o o o o

PANSS Suspiciousness/
persecution

+ + o o o o o o

PANSS grandiosity o o o o o + o +

PANSS depression o + o o o o o +

PANSS lack of
spontaneity

o + o + o o o o

PANSS stereotyped
thinking

o o o o + + o o

PANSS difficulty abstract
thinking

o o o + o + o o

PANSS emotional
withdrawal

o o o + o + o o

PANSS tension o o o o o o + +

Important baseline features: selected in at least one-fourth of the models’ top 10% most frequently selected features. 1Models contained PANSS, demographic,
illness, and CANSAS features; 2Models contained PANSS, demographic, illness, and CAPE features. +: positive weight; −: negative weight; o: not selected in the
top 10% most frequently selected features; empty cell: not included in the model. Note that low weights (or beta’s): ≤0.10 were not considered in this Table
(see Supplementary Tables 5–12 for specific weights). Weights (−/+) are relative to poor outcomes (i.e. “positive” outcome).
Symptom symptomatic, T3 follow-up at 3-year interval after the baseline, T6 is follow-up at 6-year interval after the baseline, PANSS Positive and Negative
Syndrome Scale, CANSAS Camberwell assessment of need short appraisal, CAPE Community Assessment of Psychic Experiences.
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and 62.4%, respectively). LOSO models validated on the Utrecht
site and single-site models trained on the Utrecht site tended to
perform below average, in line with the differential patient profile
(higher baseline symptom severity, lower GAF scores, and higher
needs) found at this site relative to the other geographic sites and
its smaller sample size (Supplementary Note 4.4; Supplementary
Table 14).

External validation of EUFEST predictors
Predicting long-term outcome based on the top 10% most
predictive features for the short-term outcome (EUFEST study (see
the “Methods” section, Creation of models (C))), resulted in
accuracies of 59.0–62.7% for symptomatic outcome. For global
outcomes, we obtained accuracies of 56.5–66.4% (Table 2).

DISCUSSION
Using a rigorous machine learning approach, we developed
individualized models to predict 3- and 6-year symptomatic and
global outcomes of patients with schizophrenia-spectrum dis-
orders based on patient-reportable data. The multicenter sample
included 523 schizophrenia-spectrum patients with variable illness
duration, mainly with established illness. Notably, baseline clinical
status was variable, and outcome status remained poor at follow-
up in a large share of patients. The data-driven nature of this study
allowed us to explore the predictive value of a wide range of
measures for the long-term outcome of psychosis. In keeping with
clinical applicability, our aim was to arrive at lean models. We
report nested-cross-validated balanced accuracies ranging from
62.2% to 67.6%. Suggestive of generalization of model perfor-
mance to out-of-study samples, leave-site-out cross-validation
showed minor drops in accuracy, with balanced accuracies
ranging from 59.9% to 64.8%. Models trained in our sample for
long-term outcome prediction, utilizing short-term outcome
predictors for first-episode psychosis18, yielded comparable
balanced accuracies up to 66.4%.
To the best of our knowledge, no prognostic models for the

long-term global and symptomatic outcomes of psychosis are
presently available23. Our results indicate that while state-of-the-
art methods may result in robust (generalizable) performance
estimates, predictions are modestly accurate, similar to recent
experimental prognostic models for depression based on machine
learning predicting long-term clinical outcomes based on patient
reportable data17,24. The models did not reach the LOSO cross-
validated accuracy of 71% in the study on the one-year outcome

of first-episode psychosis18, presumably due to the uncertainty
introduced by time, care-as-usual setting, and the heterogeneity
of baseline clinical status and illness duration within our target
population.
Through a modality-wise learning strategy, a combination of

baseline sociodemographic features and clinician-rated symp-
toms, complemented by self-rated lifetime psychotic experiences
(CAPE items) or psychosocial needs (CANSAS items) was selected
in the models. Interestingly, in unimodal models, these state-
based and context-based modalities outperformed trait-based
modalities, including genetic and cognitive task scores. This
finding may be partly explained by the relatively large share of
patients with a stable clinical state at inclusion and follow-up. We
further argue that the performance of trait-based measures may
improve if the interaction between genetics and environmental
exposures in psychosis outcomes is taken into account25.
Features offering a clinician’s integration of the clinical picture

and those with a broad underlying construct (e.g. GAF; insight;
schizophrenia diagnosis; quality of life; summed no need/met
need items; depression) show to be the most important
predictors. These resemble features found to be predictive of
one-year outcome in first-episode psychosis: psychosocial needs,
global functioning deficits, and affective symptoms (specific
quality of life, CAPE, and PANSS items)18.
In comparison to the aforementioned study, and our work, we

also note differences, suggesting differential ways to short-term
and long-term clinical management of psychosis. We found
higher, and not lower symptom severity to predict poor long-term
outcome18. In particular, lack of insight appears predictive of poor
long-term outcomes across all the models. This may be mediated
through poor adherence and eventual service disengagement26.
Furthermore, we note that the most important social need in our
models (i.e. housing) is different from those (company, daytime
activities) predicting short-term outcomes. This could be
explained by the lower level of social functioning found in our
study cohort, compared to first-episode patients27, suggesting
that in a model suited for a functionally heterogeneous
population, the entire range of social needs within the CANSAS
instrument may have its relevance. In interpreting the influence of
features on the predictions, it should be noted that some,
frequently selected, features show large variation in weight. This
variation could have its origin in the heterogeneity of the disorder
and should be the subject of future research.
Within our models, misclassification especially occurs in

patients with unfavorable clinical baseline status combined
with good outcomes. This may reflect variation in baseline

Table 4. Leave-one-site-out cross-validation site performance by model.

N BAC Symptomatic
outcome T3

1
N BAC Symptomatic

outcome T3
2

N BAC Symptomatic
outcome T6

1
N BAC Symptomatic

outcome T6
2

Amsterdam 81 60.8 104 69.5 81 69.3 104 60.1

Groningen 73 62.4 132 63.1 73 62.3 132 57.2

Maastricht 124 56.4 139 53.0 124 63.8 139 61.5

Utrecht 54 65.5 70 69.7 54 54.4 70 60.6

N BAC Global outcome T3
1 N BAC Global outcome T3

2 N BAC Global outcome T6
1 N BAC Global outcome T6

2

Amsterdam 80 66.4 100 68.1 77 63.9 98 65.4

Groningen 65 61.5 118 64.4 58 62.5 107 64.2

Maastricht 81 68.0 93 68.9 124 66.3 139 62.1

Utrecht 48 58.0 66 57.9 54 63.1 70 53.0

Rows mention the geographic site left out of model training. Columns mention models organized per timepoint and included modalities. 1Models contained
PANSS, demographic, illness-related, and CANSAS features; 2Models contained PANSS, demographic, illness-related, and CAPE features.
BAC balanced accuracy, T3 follow-up at 3-year interval after the baseline, T6 is follow-up at 6-year interval after the baseline, PANSS Positive, and Negative
Syndrome Scale, CANSAS Camberwell assessment of need short appraisal, CAPE community assessment of psychic experiences.
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clinical context and acute state at the time of inclusion (i.e.
admission due to relapse vs. outpatient treatment) of these
patients and/or availability of therapeutic or supportive
resources. We note that the higher baseline symptom severity,
lower GAF, and higher psychosocial needs found in one
geographic site that underperformed in the LOSO validation
relative to the others, may support his possibility. To enhance
model performance, these contextual factors may be taken into
account in future models.
Our models on long-term outcomes of psychosis perform

with reasonable accuracies, but at present are not suitable as a
stand-alone tool to stratify treatment. Regardless, the machine
learning model trained here and a clinician would represent
rather different takes on reality. The model sees the patient
through the lens of a number of constructs, such as “insight”,
whereas a clinician’s judgment is more globally constructed and
starts from the moment the clinician meets his patient in the
waiting room28,29. Models with modest accuracy may be of use,
depending on the level of uncertainty parties involved in clinical
decision-making are willing to accept from a model30,31, a level
which to our knowledge is unknown for long-term outcomes of
psychosis. In addition, the preferable way of interaction
between model and clinician remains to be addressed32. We
suggest clinicians may inform their decision making, both by
the prediction itself and important features in it, for example,
high core social needs, affective symptoms, or low quality of life.
Apart from clinical practice, modestly accurate model predic-
tions may serve intervention research by offering stratified
randomization.
Future prediction tool development should be informed by

end-user (i.e. patients and clinicians) needs concerning scope,
predictive capacities, and potential clinical consequences. We
need to learn how they weigh benefit and harm due to treatment
choices against a given outcome probability30. Furthermore, the
significance of any predicted outcome might differ per patient,
per stage of illness, and per intervention10. Hence, presenting an
array of outcome dimensions with accessible features might best
fuel the clinician–patient dialog on intervention33. Moreover,
clinical guidance on when and how to use prognostic tools might
prove essential for future dissemination of prognostic models
based on machine learning in psychiatry.
We note the following limitations. Although we present the

largest machine learning study to date on outcome in psychosis,
based on patient-reportable data, the sample size may not be
sufficient to account for the substantial heterogeneity of the out-
of-study population with a schizophrenia-spectrum disorder34. It
should be noted that the drop in performance was small (on
average 2.3%), when the models were applied to patients from
geographic sites not part of the training sample, suggesting
transportability to samples with a comparable profile. Although
we implemented a comprehensive validation procedure, we
cannot rule out some overfitting not accounted for35, including
that resulting from information leakage because modality selec-
tion, imputation, and scaling were performed outside the nested
cross-validation pipeline. Apart from this, our approach of taking
the four best performing data modalities from unimodal modeling
runs together does not necessarily yield the best performing
combination in a multimodal model. Instead, models may benefit
from a combination of modalities containing a wider range of
information, as has been suggested by studies combining patient
reportable and imaging data36,37. We suggest future research may
address what is a clinically parsimonious set of modalities, that is,
an optimum between accuracy and investment to obtain data.
Furthermore, we believe that imputation and scaling outside the
cross-validation setup has not led to over-optimistic estimates of
generalizability, because of the very low number of imputations
(<0.5%) and the fact that most of our features’ scales are fixed,
thus independent of our dataset.

The GROUP study sample is known to represent a relatively well
functioning subset of a population of schizophrenia-spectrum
patients in need of specialist care. Generalization to other samples
further might be hindered by the exclusion of the most severely
affected patients, either due to study drop-out, exclusion of
patients with extensive missing data, or incompetence or
unwillingness to give study consent38. The nature of the sample
included may also explain the association of antipsychotics use
with worse outcomes, as antipsychotics use at baseline is likely to
be confounded by history or expectation of more severe illness
course. The observational sample obtained may however be more
representative for clinical practice than those stemming from
clinical trials. To improve model reliability, the use of multi-center
samples dedicated to prognostic model development or models
informed by national registry data, as has been done to predict
transition to psychosis from high-risk mental states and suicidal
behavior, may be needed39–41.
Regarding outcomes, prediction of longitudinal patterns, or

adverse events, such as readmission to a psychiatric hospital may
also add clinical relevance, especially for long-term outcome42. We
used baseline data for outcome prediction, whereas in clinical
practice, decisions are typically based on longitudinal, rather than
single, examinations. Longitudinally informed models are
expected to result in better prediction accuracies. Furthermore,
we propose that contextual information, such as baseline clinical
context (e.g. acute inpatient or outpatient status, treatment
status), or supportive resource status (e.g. family support) may
further enhance model performance. The addition of biomarker
modalities, including imaging data and genetic data derived from
genome-wide association studies, possibly in interaction with
environmental exposures, holds the same promise41. However, all
additions come at the expense of time investment, model
interpretability, and the requirement of larger training datasets20.
In conclusion, we demonstrate the feasibility of a machine-

learning approach to long-term outcome prediction in a hetero-
geneous target population of schizophrenia-spectrum patients,
based on a lean set of patient reportable features, overlapping
with those predictive of short-term outcome of first-episode
psychosis. Future models may benefit from considering patient’s
and clinician’s needs, the appropriate nature of the training
sample (i.e. sample similarity to the population of interest as well
as richness on (contextual) features), and implementation of
advancements in machine learning methodology. Individual
outcome prediction based on machine learning may inform the
treatment stratification needed both from a patient and a public
health perspective.

METHODS
Participants and data selection
In the GROUP prospective longitudinal cohort study, in- and out-patients
with a psychotic disorder presenting consecutively at selected representa-
tive mental health services in representative geographical areas in the
Netherlands and Belgium from January 8, 2004 until February 6, 2008 were
recruited. Inclusion criteria were: (1) psychotic disorder diagnosis according
to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
APA43; (2) age 16–50 years (extremes included); (3) Dutch language
proficiency; (4) ability to provide informed consent. Extensive genetic,
cognitive, environmental, and outcome data were collected at baseline
(T0), and 3-year (T3) and 6-year (T6) follow-up. The full GROUP sample at
baseline included 1119 patients with variable illness duration, including
recent-onset psychosis22. Here, we used data of 523 participants for whom
outcome assessments at both T3 and T6 were available, with a
schizophrenia spectrum disorder (i.e. schizophrenia, schizophreniform
disorder, schizoaffective disorder, delusional disorder, brief psychotic
disorder, psychotic disorder: not otherwise specified), assessed with the
Comprehensive Assessment of Symptoms and History or the Schedules for
Clinical Assessment for Neuropsychiatry (see Supplementary Fig. 1 for a
selection process flow-chart)44,45. We assessed selection bias by comparing
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our sample on demographic and clinical characteristics to GROUP patients
not included in this study.
The study protocol was approved by the Medical Ethical Review Board of

the University Medical Centre Utrecht and by local review boards of
participating institutes. Participants provided written informed consent.
Database release 5.0 was used in all analyses.

Long-term outcomes and baseline predictors
We selected two long-term outcome measures in a classification approach
to outcome prediction: symptomatic remission and global functioning,
measured at both T3 and T6. Symptomatic outcome was selected as it
traditionally is a mainstay of clinical care. We followed the consensus
definition of symptomatic remission by Andreasen et al., operationalized as
a mild score (3 or less, implying no functional disturbance related to
symptoms) on selected items of the PANSS (i.e. delusions, conceptual
disorganization, hallucinatory behavior, mannerism and posturing, blunted
effect, social withdrawal, lack of spontaneity and unusual thoughts),
maintained for at least 6 months46,47. For global outcome we followed
Koutsouleris et al. in operationalizing global outcome with a dichotomiza-
tion of the Global Assessment of Functioning (GAF) scale, considering a
score of <65 poor global outcomes and ≥65 good global outcomes18,43, as
GAF scores between 61 and 70 have been proposed as a threshold
between at-risk mental states and illness and widely used as markers of
recovery as part of more complex criteria48,49. GAF was constructed as a
mean composite score of the GAF symptoms and GAF disabilities
subscales assessed in the GROUP project, and normally distributed in
our sample. To investigate the possibility that a threshold other than GAF
65 would better represent a border between “good” and “poor” outcomes,
we tested other cut values in the GAF 50–68 range post-hoc (Supplemen-
tary Note 4.2).
All clinical variables assessed at baseline within the GROUP project

which permitted a sample size >250 patients were considered for inclusion
as a predictor, barring the models which contained a prespecified set of
features based on the best-performing features in the EUFEST study by
Koutsouleris et al. (see Supplementary Table 1)18. We clustered available
candidate baseline predictors in modalities according to information type:
(1) demographic variables, including age, sex, education, socioeconomic
status, living situation, and employment; (2) illness-related variables, of
diagnosis, comorbidities, illness course duration of untreated psychosis,
quality of life and medication use; (3) clinician-rated, present state
symptoms as measured by the PANSS47; (4) substance use characteristics
(i.e. illicit drug use, alcohol use and smoking) indicated by urine analysis
and the Composite International Diagnostic Interview50; (5) neurocognitive
task scores of IQ, memory, processing speed/attention and executive
functioning, assessed with the Wechsler Adult Intelligence Scale-Third
Edition short form, Word Learning Task, Continuous Performance Task-HQ
and Response Set-shifting Task respectively; (6) social cognitive task scores
of theory of mind, affect recognition and facial recognition, assessed with
Hinting Task, Degraded Affect Recognition Task and Benton Facial
Recognition Test respectively. For psychometric instrument references
for cognitive testing, see Supplementary Note 1.5; (7) Premorbid
Adjustment Scale items51, comprising social and cognitive functioning in
childhood and adolescence; (8) need of care items, measured with the
CANSAS52,53; (9) self-rated lifetime psychotic experiences, consisting of
Community Assessment of Psychic Experiences questionnaire (CAPE)
items54; (10) extrapyramidal symptoms, comprising akathisia, dyskinesia,
and Parkinsonian symptoms; (11) genetic features (i.e. polygenic risk score
for schizophrenia55, and familial loading of psychotic disorder, bipolar
disorder and drug abuse, measures that comprise the absence or presence
of affected relatives of the patient56; (12) environmental variables of
urbanicity and living situation. For global content of, and features within
the modalities, see Supplementary Note 1 and Supplementary Table 1).
Within each modality, missing data for every feature and subject with
<20% missing values was imputed and scaled; features and subjects with
≥20% missing values were excluded (also see Supplementary Note 2).

Creation of individual prediction models: machine learning
strategy
We trained a linear support vector machine (SVM)57, to find the optimal
separating hyperplane dividing patients into the two outcome classes
(Fig. 2). For a given training dataset, each patient is represented by a
labeled datapoint in an m-dimensional feature space. The position of the
data point is determined by the score on the m baseline predictors (input

features) and its binary label is the outcome (−1: good outcome; +1: poor
outcome). SVM returns feature weights, reflecting the relative influence of
predictors on outcome prediction. We used weighting by outcome class to
account for unbalance between outcome group sizes and blind the
algorithm to base rate distribution, to avoid model bias towards the largest
outcome group. Internal validation was performed with three-layer, 10-fold
nested cross-validation, where the inner cross-validation layer optimized
the cost parameter, representing a penalty imposed on cases violating the
margin of the decision boundary of the model. The middle layer selected
the smallest predictor set with performance within 10% of the best
performing set by recursive feature elimination (RFE). The outer layer
provided performance estimates, reflecting the accuracy of the ensemble
of k models taken together. This validation procedure was repeated 50
times to reduce dependency on the choice of train-test partitions. We
employed the e1071 library (version 1.6.8) for SVM in R (version 3.4.0); and
the caret package (version 6.0.76) for RFE58,59.
See Supplementary Note 3 for an elaborate description of the machine

learning pipeline, and Supplementary Note 4.3 for a comparison to an
alternative nonlinear learning design (random forests classifier+ IsoMap
dimensionality reduction, implemented in Neuropredict60) which yielded
comparable performance in the study sample (Supplementary Table 16).

Creation of individual prediction models: training and
validation design
We employed a data-driven, modality wise learning strategy with the aim
of automatically identifying a concise set of features from a limited number
of clinical instruments. We entered the best performing modalities from
preliminary uni-modal modeling runs (Fig. 2b; Supplementary Table 2)
together into the SVM to train a multi-modal prediction model (Fig. 2c).
To align with best practice in prognostic model development19, our

study included three components: model development, model validation,
and comparison to existing models. (A) Data-driven model development
including internal validation using repeated 10-fold nested cross-validation
(Fig. 2a–c). Single-feature models containing baseline GAF only as a
predictor were additionally trained to benchmark model performance
(Supplementary Note 4.1). (B) A test of generalization to out of study
samples with leave-one-site-out (LOSO) validation (Fig. 2d). Each of the
four geographical sites (Amsterdam, Utrecht, Groningen, and Maastricht)
of the GROUP study was held out once, and the prediction model was
trained on patients from the remaining three sites. This model was then
tested on the hold-out site, to yield prediction accuracy in a site
geographically distinct from sites the model was trained on. To estimate
predictive power in unseen data, the average prediction accuracy from
four LOSO-runs was calculated. We assessed differences between
geographic sites on the measures included in the models and ran
single-site models post-hoc, to offer possible explanations to performance
differences between LOSO-runs (Supplementary Note 4.4). (C) Applicability
of 4-week and 52-week outcome predictors in first-episode psychosis for 3-
and 6-year outcome prediction in a heterogeneous sample. We selected
GROUP predictors matching the top 10% 4- and 52-week global outcome
predictors from the European First Episode Schizophrenia Trial (EUFEST;
Supplementary Table 1)18, and trained the SVM testing their capability of
predicting long-term outcomes within the GROUP sample.
We assessed model performance by calculating sensitivity, specificity,

balanced accuracy (BAC: the average of sensitivity and specificity), positive
predictive value, and negative predictive value. To give an overview of
important features to predict long-term outcomes, we listed features with
the highest selection chance per model (top 10%), selected in >1 model.
Since the entire cross-validated RFE procedure was repeated 50 times we
were able to calculate the percentage of misclassified and correctly
classified patients within these 50 repeats. To explore ways to enhance
future model performance, we compared the profile of ≥90% misclassified
patients with that of ≥90% correctly classified patients on sociodemo-
graphic and clinical characteristics, separately for the poor and the good
outcome groups. We made use of the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) statement61.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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