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Background.    The majority of hepatitis C virus (HCV) infections are found in low- and middle-income countries, which 
harbor many region-specific HCV subtypes. Nevertheless, direct-acting antiviral (DAA) trials have almost exclusively been con-
ducted in high-income countries, where mainly epidemically spread HCV subtypes are present. Recently, several studies have dem-
onstrated suboptimal DAA efficacy for certain nonepidemic subtypes, which could hamper global HCV elimination. Therefore, we 
aimed to evaluate DAA efficacy in patients treated for a nonepidemic HCV genotype infection in the Netherlands.

Methods.    We performed a nationwide retrospective study including patients treated with interferon-free DAAs for an HCV 
genotype other than 1a/1b/2a/2b/3a/4a/4d. The genotype was determined by NS5B region phylogenetic analysis. The primary end 
point was SVR-12. If stored samples were available, NS5A and NS5B sequences were obtained for resistance-associated substitutions 
(RAS) evaluation.

Results.    We included 160 patients, mainly infected with nonepidemic genotype 2 (41%) and 4 (31%) subtypes. Most patients 
were from Africa (45%) or South America (24%); 51 (32%) were cirrhotic. SVR-12 was achieved in 92% (140/152) of patients with 
available SVR-12 data. Only 73% (8/11) genotype 3–infected patients achieved SVR-12, the majority being genotype 3b patients with 
63% (5/8) SVR. Regardless of SVR, all genotype 3b patients had 30K and 31M RAS.

Conclusions.    The DAA efficacy we observed in most nonepidemic genotypes in the Netherlands seems reassuring. However, 
the low SVR-12 rate in subtype 3b infections is alarming, especially as it is common in several HCV-endemic countries. Alongside 
earlier results, our results indicate that a remaining challenge for global HCV elimination is confirming and monitoring DAA effi-
cacy in nonepidemic genotypes.

Keywords.    Africa; Asia; elimination; global health; unusual subtypes.

Hepatitis C virus (HCV) infection is a global health problem, 
with an estimated worldwide prevalence of 71 million [1]. The 
virus is classified into 8 major genotypes, which are further 
subdivided into >67 subtypes [2]. The highest genetic diversity 

is observed in Sub-Saharan Africa and Asia, due to low trans-
mission rates and centuries-long persistence in the human pop-
ulation [3]. In high-income countries, the majority of HCV 
infections are caused by a limited number of HCV subtypes 
that in recent centuries have rapidly spread via effective modes 
of transmission such as contaminated blood products, intrave-
nous drug use, and unhygienic invasive medical procedures. 
In the Netherlands, these so-called epidemic subtypes, exem-
plified by subtypes 1a/1b/2a/2b/3a/4a/4d, account for ~90% of 
HCV infections, although precise data are lacking [4].

As most direct-acting antiviral (DAA) trials have been ex-
ecuted in high-income countries, only rarely were patients 
with nonepidemic HCV genotypes included [5]. This lack of 
nonepidemic genotypes is also seen in online HCV sequence 
databases, in which genomic data from low- and middle-income 
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countries (LMICs) are virtually absent [6]. Countries where 
these nonepidemic genotypes are endemic are among the 
countries with the highest HCV prevalence in the world [1]. 
Therefore, confirming the effectiveness of currently available 
DAAs in these genotypes is of utmost importance for world-
wide HCV elimination.

Two of the first DAA trials ever executed in LMICs give 
reason to dispute the assumption that DAAs are as effective 
against nonepidemic HCV genotypes as they are against epi-
demic genotypes [7, 8]. A study from Rwanda, including mainly 
endemic genotype 4 infections, showed a relatively low sus-
tained virological response (SVR) rate of 87% with sofosbuvir 
(SOF)/ledipasvir (LDV). This was mainly driven by a remark-
ably low SVR rate of 56% in 48 genotype 4r patients [7]. In a 
study from Asia, patients were treated with SOF/velpatasvir 
(VEL), resulting in a 95% SVR rate for the epidemic genotype 
3a vs only 76% for the nonepidemic genotype 3b, despite similar 
baseline characteristics [8].

Additionally, real-life data suggest a decreased DAA efficacy 
in certain nonepidemic HCV genotypes, as shown for geno-
type 6 in an Asian cohort of 85 patients treated with SOF/LDV 
with an SVR rate of 74% and nonepidemic genotype 1 strains 
in African patients treated in London with a low SVR rate of 
75% [9, 10]. Furthermore, in an analysis from France of 537 
patients who failed DAA treatment, almost 10% harbored a rare 
nonepidemic genotype 1 strain and 5% genotype 4r, despite a 
low prevalence of these subtypes in the French population [11]. 
An explanation for the possible decreased efficacy of DAAs 
could be that wild-type nonepidemic strains frequently contain 
amino acids associated with intrinsic resistance to DAAs, in 
particular in the NS5A region [12–15].

The recently updated European Association for the Study of 
the Liver (EASL) HCV treatment guideline acknowledges the 
lack of DAA treatment data for patients infected with subtypes 
inherently resistant to NS5A inhibitors and mentions an ur-
gent need for further data [16]. A suboptimal DAA efficacy in 
certain HCV subtypes will hamper global elimination of HCV. 
So far, no real-world data have been published including a na-
tionwide cohort consisting solely of patients with nonepidemic 
HCV genotypes. Therefore, the aim of this study was to inves-
tigate the real-world efficacy of DAA treatment in patients with 
HCV genotypes other than 1a, 1b, 2a, 2b, 3a, 4a, and 4d in the 
Netherlands, in relation to baseline NS5A resistance–associated 
substitutions (RAS).

METHODS

Study Design and Population

This nationwide cohort study included patients infected with 
a nonepidemic HCV genotype treated with an interferon-free 
DAA regimen. Nonepidemic HCV genotypes were defined as 
genotypes and subtypes other than 1a/1b/2a/2b/3a/4a/4d. All 

laboratories performing HCV genotyping in the Netherlands 
were approached. All but 1 participated in the study: the 
Amsterdam University Medical Centers; Sanquin Diagnostics, 
Amsterdam; UMC Groningen, Groningen; LUMC, Leiden; 
Erasmus Medical Center, Rotterdam; and Maastricht UMC, 
Maastricht.

HCV Genotyping

HCV genotype was determined by sequencing and phyloge-
netic analysis of the NS5B region using a method and primers 
previously described by Murphy et al. [17]. Patients who were 
diagnosed with a nonepidemic subtype using a commercial 
assay (eg, LIPA) or based on sequencing of the highly con-
servative 5’UTR region were only included if the presence of a 
nonepidemic subtype was confirmed by NS5B sequencing of a 
previously stored sample. Genotype sequences were submitted 
to GenBank (MW205243–MW205375).

Software packages CodonCode Aligner (version 8.0.2; 
CodonCode Corp., Centerville, Massachusetts, USA) and 
ClustalX (version 2.1) [18] were used to edit and subsequently 
align obtained sequences against a reference set retrieved from 
the Los Alamos HCV sequence database [19]. Based on these 
alignments, genotype and subtype were determined by con-
structing a maximum-likelihood phylogenetic tree created in 
MEGA (version 6) [20]. If no subtype could be assigned using 
phylogenetic analysis, we used the HCV Blast tool [19] to find 
related sequences. A  >90% match with a well-typed database 
sequence was considered sufficient to assign a subtype. If not, 
the subtype was labeled as unassigned and the closest related 
BLAST sequence was reported.

Data Collection

Eligible patients were selected using a database search in the labo-
ratory information system by the local medical (molecular) micro-
biologist. Subsequently, the treating physician was approached to 
provide clinical data. Finally, both virological and clinical data were 
supplied anonymized to the research coordinator. Demographic 
variables (age, gender, country of origin), clinical variables 
(comorbidities, pretreatment grade of liver fibrosis as assessed by 
Fibroscan, HCV treatment history, and treatment outcome), and 
virological variables (genotype, baseline, and post-treatment RAS 
data if available) were collected. Patients were labeled cirrhotic if 
reported as such by their treating physician or if a liver stiffness 
measurement >12.5 kPa was reported.

Patient Consent Statement

All data were supplied anonymized to the research coordinator 
by the respective treating physician. According to European pri-
vacy legislations and the Dutch Code of Conduct for the Use of 
Data in Health Research, the need for informed consent was 
therefore waived. The study was approved by the Medical Ethics 
Committee of the Amsterdam Medical Center, the Netherlands.
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RAS Analysis

For RAS analysis, a fragment of the NS5A and NS5B region 
was sequenced if stored plasma or serum was available. The 
sequenced fragment length was dependent on the specific 
primer set used but was minimally stretched from amino acids 
23–129 for NS5A and 150–321 for NS5B sequences. It is debat-
able whether resistance-associated amino acid sequences that 
are wild-type for a specific subtype can be labeled RAS, as they 
are not necessarily substitutions. However, both in literature 
and clinical practice, these are often labeled as such. Therefore, 
we chose to define RAS as an amino acid substitution relative to 
the H77 genotype 1a reference sequence at a position associated 
with resistance, regardless of whether this amino acid was wild-
type for the specific subtype. Positions associated with resist-
ance were extracted from the Geno2pheno HCV database and 
the EASL guideline [21, 22]. RAS sequences were submitted to 
GenBank (MW205376–MW205507).

Outcome

The primary outcome was the SVR-12 rate for the first 
interferon-free DAA treatment in all patients for whom the 
SVR-12 result was available. SVR-12 was defined as an unde-
tectable level of HCV RNA 12 weeks after completion of DAA 
treatment. For subanalyses, we calculated the SVR-12 rate per 
genotype, cirrhotic vs noncirrhotic, per region of origin (ac-
cording to the standard area codes of the United Nations sta-
tistics division), for DAA regimens with and without an NS5A 
inhibitor, and for pangenotypic second-generation DAAs (SOF/
VEL and glecaprevir [GLE]/pibrentasvir [PIB]) vs older NS5A 
inhibitor–containing DAA regimens.

Statistical Analysis

Data were analyzed using IBM SPSS statistics (version 25.0; IBM 
Corp., Armonk, NY, USA). Descriptive data are reported as ei-
ther percentages, mean (SD), or median (interquartile range).

Genotype 1 (19, 12%)

Genotype 3 (11, 6.9%)

Genotype 5 (3, 1.9%) Genotype 6 (11, 6.9%)

Genotype 4 (50, 31%)

Genotype 2 (66, 41%)

c (8)
d (1)
g (10)

c (3)
e (3)
f  (9)
i (9)
k (4)
o (1)
p (2)
Unassigned (35)

Unassigned (3)

b (8)
k (3)

e/q/t (all 1)

c (4) 
f  (2) 
h (6)
k (8)
i (2)
n (9)

r (5)
v (2)

o (6)

a (3)
a (6)
e (3)
f  (1)
Unassigned (1)

Figure 1.    Overview of the included genotypes and subtypes.
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RESULTS

Nonepidemic Genotypes

We included 160 patients treated with an interferon-free DAA 
regime for a nonepidemic HCV genotype. Three patients were 
treated in a trial setting in 2012 or 2013, whereas the remaining 
157 patients were treated between 2015 and 2019. Phylogenetic 
analysis revealed 28 different HCV subtypes in 121 patients, 
predominantly of subtypes 2 and 4 (Figure 1). In the remaining 
39 patients, neither phylogenetic analysis nor BLAST search 
was able to assign a recognized HCV subtype. Twenty-five out 
of these 39 belonged to 1 of 5 previously described but offi-
cially unassigned genotype 2 clades originating from Suriname 
[23]. For the remaining 14 unassigned subtypes, BLAST results 
showing the closest related NS5B sequence with an assigned 
subtype are shown in Supplementary File 2.

Baseline

Fifty-one (32%) of the included patients had liver cirrhosis, 
the vast majority Child-Pugh A (84%) (Table 1). Most patients 
originated in Northern Africa (25%), South America (24%), 
or Sub-Saharan Africa (20%). At country level, most common 
origins were Suriname (23%), Egypt (18%), the Netherlands 
(10%), Democratic Republic Congo (7%), and Morocco (6%). 
Fifty individuals (31%) were treated with a pangenotypic sec-
ond-generation DAA regime, 78 (49%) patients received a 
nonpangenotypic regime containing an NS5A inhibitor, and 
32 (20%) patients were treated without an NS5A inhibitor. The 
latter were either genotype 2 infections treated with SOF + 
ribavirin (n = 14, 9%) or patients treated with SOF/simeprevir 
(SIM; n = 18, 11%).

Treatment Results

SVR-12 data were available for 152 (95%) patients, of whom 140 
(92%) achieved SVR-12. The 8 patients without available SVR-
12 results were either awaiting SVR-12 measurement at the 
time of data collection (n = 5), were lost to follow-up (n = 2), 
or died before SVR-12 measurement (n = 1). Treatment results 
per genotype and subtype are shown in Table 2 (further strati-
fication per DAA regime is available in Supplementary File 3). 
Nonepidemic genotype 3 infections showed the lowest SVR-12 
rate, with 73% (8/11) being cured at the first treatment attempt. 
All 3 failures were genotype 3b infections, of whom 1 was cir-
rhotic. The SVR-12 rate in genotype 3b patients was 63% (5/8). 
Notably, for 3 of the 8 successfully treated genotype 3 infections, 
the intended treatment regime was optimized after baseline 
RAS analysis. One genotype 3b–infected patient was treated 
successfully with GLE/PIB/SOF as first-line treatment, an-
other genotype 3b–infected patient was treated with GLE/PIB 
+ ribavirin instead of the intended SOF/VEL, and a genotype 
3k–infected, noncirrhotic patient had ribavirin added to 12 
weeks of SOF/DAC. The SVR rate of genotype 3b patients with 
ribavirin added to their DAA regimen was 75% (3/4, all cir-
rhotic), compared with 50% without ribavirin (2/4, 1 cirrhotic), 
Besides genotype 3b, genotype 4n infections also showed a low 
SVR rate of 75% (6/8) due to 2 cirrhotic patients failing DAA 
treatment.

SVR-12 was 93% (112/120) for first treatment with an 
NS5A inhibitory–containing regime and 88% (28/32) without 
an NS5A inhibitor–containing regime. For patients treated 
with a pangenotypic second-generation DAA regimen, the 
SVR-12 rate was 98% (44/45), compared with 91% (68/75) for 

Table 1.    Patient and Treatment Characteristics

Patient Characteristics n = 160 Treatment Characteristics n = 160

Female gender 62 (39) PEG-IFN treatment experiencea 32 (20)

Age, median (IQR) 56 (49–64) DAA regimen  

Hiv co-infection 5 (3) Sofosbuvir/ledipasvir 37 (23)

Cirrhosis 51 (32) Sofosbuvir/velpatasvir 31 (19)

  Child-Pugh A/B/C 43 / 7 / 1 Sofosbuvir/daclatasvir 30 (19)

Region of origin  Glecaprevir/pibrentasvir 18 (11)

  Northern Africa 40 (25) Sofosbuvir/simeprevir 18 (11)

  South America 39 (24) Sofosbuvir + ribavirin 14 (9)

  Middle Africa 16 (10) Elbasvir/grazoprevir 6 (4)

  Western Europe 16 (10) Ombitasvir/paritaprevir/ritonavir 4 (3)

  Eastern Africa 11 (7) Ombitasvir/paritaprevir/ritonavir/dasabuvir 1 (1)

  Southeastern Asia 11 (7) Sofosbuvir/glecaprevir/pibrentasvir 1 (1)

  Eastern Asia 6 (4) NS5A inhibitor-containing regimen 128 (80)

  Southern Asia 6 (4) Ribavirin added to DAA regimen 28 (18)

  Western Africa 5 (3)   

  Western Asia 4 (3)   

  Southern Europe 3 (2)   

  Unknown 3 (2)   

Data are number (%) unless otherwise noted. 

Abbreviations: DAA, direct-acting antiviral; IQR, interquartile range; NS5A, nonstructural protein 5a; PEG-IFN, pegylated interferon. 
aThree patients were treated unsuccessfully with PEG-IFN + DAA.
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patients treated with another NS5A inhibitor–containing reg-
imen. SVR-12 was 89% (42/47) in cirrhotic and 93% (98/105) 
in noncirrhotic patients. SVR-12 in cirrhotic patients treated 
with SOF/VEL or GLE/PIB was 100% (16/16). SVR-12 after 
treatment with SOF + ribavirin for nonepidemic genotype 2 

infections was 79% (11/14) of cases, vs 98% (47/48) after NS5A 
inhibitor–containing DAAs for genotype 2. Patient characteris-
tics of the 12 patients who failed treatment are shown in Table 3.

Figure 2 shows the SVR-12 percentage per region of origin. 
The lowest SVR-12 rate was seen in patients originating in 
Southern Asia, with a 50% SVR-12 rate (3/6) due to 2 geno-
type 3b failures from Pakistan and 1 genotype 6f patient from 
India failing DAA treatment. In patients originating from Sub-
Saharan Africa, the SVR-12 rate was 90% (27/30); however, 93% 
(28/30) were cured with the first DAA regimen, as 1 patient 
with a detectable viral load at SVR-12 achieved SVR-24. All 
5 patients with subtype 4r achieved SVR-12. Patients infected 
with 1 of the unassigned genotype 2 clades from Suriname had 
an SVR-12 rate of 96% (24/25).

Resistance-Associated Substitutions

Baseline NS5A and NS5B RAS sequences were obtained for 69 
and 28 patients, respectively (Tables 4 and 5). Prevalent NS5A 
RAS in the sequenced nonepidemic genotypes were 24S for 
genotype 2, 30K and 31M for genotype 3, and 30R and 58P for 
genotype 4. Only 1 sample contained RAS at position 93, which 
was a successfully treated subtype 4n infection with Y93C. 
Regarding the NS5B region, none of the samples contained RAS 
at the main resistance-harboring NS5B positions 150, 159, 282, 
and 321.

In all 4 nonepidemic genotype 2 infections that failed DAA 
therapy, the 24S NS5A RAS were present, although from the 
genotype 2f sample only a post-treatment sequence was avail-
able. The 24S NS5A RAS were also present in all but 1 of the 
17 successfully treated patients with a nonepidemic genotype 2 
subtype and available baseline NS5A sequences. The 3 genotype 
3b infections that did not reach SVR-12 had post-treatment 
30K and 31M RAS, which are known to be dominant amino 
acids at these positions for genotype 3b and were also present 
in the 5 successfully treated genotype 3b infections. In 1 of the 
genotype 3b infections that failed treatment, NS5B 159F RAS 
developed during treatment. In all 7 genotype 4n infections, the 
30R RAS was present at baseline. In 1 of the 2 non-SVR 4n pa-
tients, the 28M RAS was also demonstrated at baseline, which 
was found in 2 of the 5 successfully treated genotype 4n infec-
tions with available RAS data. 58T was present in 7 genotype 4 
NS5A sequences, all subtype 4n, of whom only 5 were success-
fully treated.

DISCUSSION

In this study, we report DAA treatment outcomes of 152 patients 
infected with a nonepidemic HCV genotype in the Netherlands. 
Overall, the SVR-12 rate was 92%, which is reassuring, as the 
majority of patients were treated with older DAA regimens with 
lower efficacy. However, only 73% (8/11) of patients with a gen-
otype 3 infection achieved SVR-12, due to a 63% (5/8) SVR rate 

Table 2.    Treatment Results Stratified for Included Subtypes (n = 160)

Genotype (No., %) Subtype (No.) SVR-12 Result, % (No./No.)a

1 (19, 12)  100 (18/18)

 c (8) 100 (7/7)

 d (1) 100 (1/1)

 g (10) 100 (10/10)

2 (66, 41)  93 (57/61)

 c (3) 100 (3/3)

 e (3) 100 (3/3)

 f (9) 83 (5/6)

 i (9) 89 (8/9)

 k (4) 100 (4/4)

 o (1) 100 (1/1)

 p (2) 100 (2/2)

 Clade I (12)b 92 (11/12)

 Clade II (5) 100 (5/5)

 Clade III (5) 100 (5/5)

 Clade IV (1) 100 (1/1)

 Clade V (2) 100 (2/2)

 Unassigned (10) 88 (7/8)

3 (11, 7)  73 (8/11)

 b (8) 63 (5/8)

 k (3) 100 (3/3)

4 (50, 31)  92 (44/48)

 c (4) 100 (4/4)

 e (1) 100 (1/1)

 f (2) 100 (2/2)

 h (6) 100 (6/6)

 k (8) 88 (7/8)

 l (2) 100 (2/2)

 n (9) 75 (6/8)

 o (6) 100 (6/6)

 q (1) 100 (1/1)

 r (5) 100 (5/5)

 t (1) 100 (1/1)

 v (2) 0 (0/1)c

 Unassigned (3) 100 (3/3)

5 (3, 2)  100 (3/3)

 a (3) 100 (3/3)

6 (11, 7)  91 (10/11)

 a (6) 100 (6/6)

 e (3) 100 (3/3)

 f (1) 0 (0/1)

 Unassigned (1) 100 (1/1)

Total (160)  92 (140/152)

Data in bold represent SVR rates per genotype.

Abbreviation: SVR, sustained virological response. 
aNumber of patients with SVR-12 result can be lower than number of included patients, as 
not all SVR-12 results were known at the moment of data collection. 
bThese unassigned genotype 2 infections belong to previously described clades from 
Suriname [23]. 
cThis patient had a detectable viral load of 38 IU/mL at SVR-12, and an undetectable viral 
load at SVR-24
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in genotype 3b. Of note, in 3 of the successfully treated patients 
with either genotype 3b or 3k, the intended first-line DAA re-
gime was optimized after detection of RAS at baseline and sub-
sequently tailored accordingly. These 3 patients were all treated 
in the same academic center, where baseline genotyping of all 
patients and baseline RAS analysis for nonepidemic genotype 3 
infections are routinely performed.

A decreased DAA efficacy for genotype 3b will have serious 
implications for HCV elimination in Asia, as this subtype is en-
demic in several countries with a high HCV prevalence, such 
as China, India, Myanmar, and Pakistan [24–27]. In China, the 
country with the highest HCV prevalence in the world [1], gen-
otype 3b accounts for 7% of all HCV infections [24]. A possible 
explanation for decreased DAA efficacy in genotype 3b could 
be that wild-type HCV-3b infections contain several resistance-
associated amino acids in the NS5A region, most importantly 
30K and 31M [8, 12]. This combination is associated with de-
creased efficacy against all NS5A inhibitors [12]. In fact, a re-
cently published in vitro study demonstrated that PIB was the 
only NS5A inhibitor with high antiviral activity against subtype 
3b [14].

In a real-world cohort study from Myanmar, genotype 3b pa-
tients were treated with either SOF/DAC or SOF/VEL, showing 
favorable SVR-12 rates of 96% (115/120) and 91% (50/55), re-
spectively [27]. Conversely, in a recent SOF/VEL phase 3 trial 

conducted in multiple Southeastern Asian countries, only 76% 
(32/42) of included genotype 3b patients achieved SVR-12 [8]. 
Likewise, another recent Asian trial reported 70% (14/20) ef-
ficacy of GLE/PIB in genotype 3b patients [28]. In both trials, 
resistance-associated polymorphism 31M was present in all 
genotype 3b NS5A sequences [8, 28]. Furthermore, 4 other 
Asian studies, albeit with only a small number of genotype 3b 
patients, showed low SVR-12 rates of 75% (9/12), 33% (2/6), 
75% (3/4), and 50% (2/4) [29–32]. Notably, in multiple of these 
studies all patients were treated with GLE/PIB, indicating that 
despite PIB having the highest antiviral activity against subtype 
3b, its effectiveness is not indisputable [30–32]. Perhaps some 
of the differences in efficacy could be related to ribavirin use, 
as in contrast to the other studies many of the Myanmar gen-
otype 3b patients had ribavirin added to their therapy [27]. In 
a large Italian genotype 3 cohort, a beneficial effect of ribavirin 
was seen when added to SOF/DAC, or to SOF/VEL in case of 
cirrhosis, although the genotype 3 subtypes and origins of pa-
tients were not reported [33].

So far, most studies reporting decreased DAA efficacy in 
nonepidemic HCV genotypes have focused on subtypes en-
demic in Sub-Saharan Africa [7, 10, 11]. In our study, we 
were not able to confirm these findings. In a London cohort 
with African patients, a suboptimal SVR rate in mainly West 
African non-1a/1b genotype 1 subtypes was seen [10], whereas 

South America 

Achieved SVR-12 

Failed SVR-12 

 6/6 

 10/11 

 3/6 

 4/4 

 18/18 

 36/39 

 27/30 
 34/36 

100% (3/3) 
100% (4/4) 
50% (3/6) 
100% (6/6) 
91% (10/11) 
90% (27/30) 
100% (18/18) 
94% (34/36) 
92% (36/39) 

SVR-12rate Region

Unknown  
Western Asia  
Southern Asia  Southern Asia  
Eastern Asia  
Southeastern Asia 
Sub-Saharan Africa 
Europe 

Northern Africa 

Figure 2.    SVR-12 rate per region. Abbreviation: SVR-12, sustained virological response 12 weeks after cessation of treatment.
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Table 4.    SVR-12 Rate (No./No.) per NS5A RAS and Presence of Baseline RAS Per Genotype

AA at NS5A RAS 
positionsa

Genotype

 1 (n = 4)  2 (n = 21)  3 (n = 6)  4 (n = 30)  6 (n = 7)

SVR-12 No. 100% (4/4) No. 86% (18/21) No. 100% (6/6) No. 93% (28/30) No. 100% (7/7)

K24F   1 1/1       

K24G     1 1/1     

K24K       31 29/31 5 5/5

K24R 2 2/2         

K24Q         2 2/2

K24S 2 2/2 20 17/20 5 5/5     

M28C   1 1/1       

M28F   11 8/11     1 1/1

M28L 4 4/4 6 6/6 1 1/1 18 15/16 2 2/2

M28M     5 5/5 10 9/10 1 1/1

M28S   1 1/1       

M28V       3 3/3 3 3/3

M28F/I   1 1/1       

M28L/R   1 1/1       

Q30C       1 1/1   

Q30K   20 17/20 6 6/6     

Q30Q 1 1/1         

Q30R 2 2/2     24 22/24 3 3/3

Q30S       3 3/3 4 4/4

Q30T       3 3/3   

Q30K/R   1 1/1       

Q30G/R 1 1/1         

L31I   1 1/1       

L31L 4 4/4 4 3/4   12 11/12 7 7/7

L31M   16 14/16 6 6/6 19 18/19   

P32P 4 4/4 21 18/21 6 6/6 31 29/31 7 7/7

S38S 4 4/4 21 18/21 6 6/6 31 29/31 7 7/7

H58A       1 1/1   

H58P 4 4/4 19 17/19 5 5/5 22 22/22 4 4/4

H58S   1 1/1 1 1/1     

H58T   1 0/1   6 4/6 2 2/2

H58A/T       1 1/1 1 1/1

H58P/S       1 1/1   

E62A   1 1/1     1 1/1

E62D     3 3/3 1 1/1   

E62E     1 1/1 19 18/19 1 1/1

E62G 1 1/1         

E62K       3 3/3   

E62L     1 1/1     

E62N   16 13/16   3 3/3   

E62Q 3 3/3     3 2/3   

E62R         1 1/1

E62S   2 2/2   1 1/1   

E62V         4 4/4

E62A/V   1 1/1       

E62D/E     1 1/1     

E62N/S   1 1/1       

E62N/T       1 1/1   

A92A 4 4/4     31 29/31 7 7/7

A92C   17 15/17       

A92E     6 6/6     

A92S   4 3/4       

Y93F 4 4/4         

Y93T         7 7/7

Y93Y   21 18/21 6 6/6 30 28/30   

Y93Y/C       1 1/1   

Abbreviations: AA, amino acids; RAS, resistance-associated substitution. 
aReference amino acid originates from the H77 genotype 1a sequence. Analyzed subtypes (No.): 1g (4), 2 unassigned (5), 2 clade I (3), 2 clade III (2), 2 clade V (1), 2c (1), 2f (2), 2i (4), 2k (1), 
2o (1), 2p (1), 3b (5), 3k (1), 4unassigned (1), 4c (4), 4h (3), 4k (5), 4n (8), 4o (5), 4r (4), 4t (1), 6unassigned (1), 6a (3), 6e (3).
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the mainly Egyptian genotype 1 infections in our cohort were 
all successfully treated. Likewise, all 5 patients in our cohort 
infected with the 4r subtype were successfully treated, despite 
that in 4 out of 5 baseline NS5A RAS were present (28V/M, 
30R, 58P). Besides the low number of included patients, dif-
ferences in used treatment regimens are likely to have contrib-
uted to differences between cohorts, given the fact that VEL 
and PIB have better in vitro antiviral activity against known 
NS5A RAS [12, 14].

Our study has several limitations. In particular, the inclu-
sion of some (sub)types is limited due to the low prevalence 
of these genotypes in the Netherlands. Also, as we report 
real-world data spanning multiple years, a variety of 10 dif-
ferent DAA regimens was used including older regimens 
such as SOF + ribavirin, which had a low SVR-12 rate of 
79% in our cohort. Furthermore, due to limited availability 
of stored samples, we were not able to obtain baseline and 
post-treatment RAS sequences for all patients who failed 
DAA therapy. However, to our knowledge, our study is the 
first study to evaluate DAA efficacy of all nonepidemic HCV 
genotypes in a country or region. Moreover, for the first time 
DAA efficacy in unassigned genotype 2 clades prevalent in 
Suriname has been assessed. As these HCV subtypes reached 
Suriname and the Caribbean area through historic slave trade 
from Western Africa [23], one could argue that these are in 

fact distinct Sub-Saharan African subtypes. Furthermore, an 
important strength of our study is the reliable method of gen-
otype determination, which allows for accurate classification 
of subtypes. By contrast, the widely used commercial assay 
INNO-LiPa frequently fails to report accurate subtypes for 
genotype 2, 4, and 6, with rates of 51%, 5.8%, and 9.3%, re-
spectively [13].

Our results show that despite availability of pangenotypic 
DAA, genotyping remains necessary for patients originating 
from countries where nonepidemic genotypes are present. 
Furthermore, in order to advance global HCV elimination, 
and not only HCV elimination in high-income countries, 
we believe that more studies reliably assessing the unique 
prevalence of HCV subtypes for each region of LMICs are 
needed, preferably including RAS analysis. It is impor-
tant that these studies be conducted at a regional level, as 
genotype distribution can vary greatly between regions in 
a country. For example, a review of 26 genotype distribu-
tion studies from several regions of Pakistan reported a 
wide range of 0.2%–22.3% for genotype 3b prevalence [26]. 
Alongside the local availability of DAAs, these data should 
be used to develop tailored regional HCV treatment guide-
lines taking baseline RAS into account. We believe that, 
given the prevalence of baseline RAS and low SVR-12 rates 
in genotype 3b, SOF/VEL/VOX or SOF/GLE/PIB as first-
line treatment, as well as the standard addition of ribavirin, 
should be investigated. Importantly, this would require ac-
celerated low-price access to the most recent NS5A inhib-
itor DAA regimes in low-income countries.

In conclusion, the DAA treatment results we observed in 
most nonepidemic genotypes in the Netherlands seem re-
assuring. However, the low SVR-12 rate in genotype 3b infec-
tions is alarming, especially as this genotype is common in 
several countries with high HCV prevalence. Alongside earlier 
published results, these results indicate that one of the re-
maining challenges for global HCV elimination is confirmation 
and monitoring of DAA treatment effectiveness in nonepidemic 
genotypes.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the 
corresponding author.
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