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Summary

After initial introduction for B-cell lymphomas as adjuvant therapies to established cancer treatments, 
immune checkpoint inhibitors and other immunotherapies are now integrated in mainstream regimens, 
both in adult and pediatric patients. We here provide an overview of the current status of combination 
therapies for B-cell lymphoma, by in-depth analysis of combination therapy trials registered between 
2015–2020. Our analysis provides new insight into the rapid evolution in lymphoma treatment, as pro-
pelled by new additions to the treatment arsenal. We conclude with prospects on upcoming clinical trials 
which will likely use systematic testing approaches of more combinations of established chemotherapy 
regimens with new agents, as well as new combinations of immunotherapy and targeted therapy. Future 
trials will be set up as basket or umbrella-type trials to facilitate the evaluation of new drugs targeting 
specific genetic changes in the tumor or associated immune microenvironment. As such, lymphoma 
patients will benefit by receiving more tailored treatment that is based on synergistic effects of chemo-
therapy combined with new agents targeting specific aspects of tumor biology and the immune system.
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Abbreviations: ABVD: doxorubicin, bleomycin, vincristine, dacarbazine; ADC: antibody-drug conjugate; AVD: doxorubicin, vincristine, 
dacarbazine; BCL: B-cell lymphoma; BEAM: bendamustine, etoposide, cytarabine, melphalan; BiTE: bispecific T-cell engager; BTK: Bruton’s ty-
rosine kinases; BV: brentuximab-vedotin; CHOP: cyclophosphamide, doxorubicin, vincristine and prednisone; CHP: cyclophosphamide, doxo-
rubicin, prednisone; CLL: chronic lymphocytic leukemia; CNS: central nervous system; CPI: checkpoint inhibitors; CVAD: cyclophosphamide, 
vincristine, doxorubicin, dexamethasone; DHAP: dexamethasone, high-dose cytarabine, cisplatin; DLBCL: diffuse large B-cell lymphoma; 
FDA: United States Food and Drug Association; GCD: gemcitabine, carboplatin, dexamethasone; G-: obinutuzumab; GDP: gemcitabine, 
dexamethasone, cisplatin; GemOx: gemcitabine, oxaliplatin; GVD: gemcitabine, vinorelbine, doxorubicin; HGBCL: high-grade B-cell lym-
phoma; ICE: ifosfamide, carboplatin, etoposide; iNHL: indolent Non-Hodgkin lymphoma; mAb: monoclonal antibody; MCL: mantle cell lym-
phoma; MGZL: mediastinal grey zone lymphoma; MZL: marginal zone lymphoma; NHL: non-Hodgkin lymphoma; PCNSL: primary central 
nervous system lymphoma; PI3K: phosphatidylinositol 3 kinase; PMBCL: primary mediastinal B-cell lymphoma; PV: polatuzumab-vedotin; R-: 
rituximab; SLL: small lymphocytic lymphoma; r/r: relapsed or refractory; ORR: overall response rate.
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Introduction

Immunotherapy has revolutionized the field of hemato-
oncology. Before the recent onset of immunotherapy, the 
classic triad of anticancer therapy consisted of chemo-
therapy, radiotherapy, and surgery. Therapeutic effects of 
these latter approaches were long explained by cancer 
cell destruction or removal, but it is now evident that 
immune cells play an important part in the processes 
of cancer cell identification, killing, and removal [1]. 
With this realization, newer therapies based on the (re)
activation or direction of the immune system have 
emerged, successfully expanding the therapeutic ar-
senal of hemato-oncologists. One such example in which 
anticancer treatment targets tumor cells directly, is the 
antibody rituximab which targets CD20 expressed at 
the surface of malignant B-cells. This drug was approved 
more than 20 years ago and has become a mainstay in 
the treatment of various CD20+ lymphomas. Other more 
recent examples of immunotherapy focus on re-enabling 
the immune system to identify and remove cancer cells, 
for example, checkpoint inhibitory molecules (i.e. PD1, 
PD-L1, CTLA-4). Simultaneous with the immunotherapy 
revolution, promising treatments that are now being in-
vestigated are based on targeting cellular changes that 
are associated with cancer cell biology, such as small 
molecules that target the phosphatidylinositol 3 kinase 
(PI3K) signaling pathway (i.e. copanlisib and idelalisib). 
These targeted therapies are now being discovered at 
increasing speed, helped by new single-cell genomic ap-
proaches providing novel targets [2], and find their way 
into patient care. Both of these newer types of cancer 
therapy, immunotherapy, and targeted therapy, are being 
applied in synergy with established therapeutic regimens 
for B-cell lymphomas to improve clinical results. We here 
review new developments of combination treatments 
for patients with B-cell lymphomas, by studying active 
clinical trials started in 2015–2020, focusing on combin-
ation therapies including immunotherapy. We searched 
clinicaltrials.gov for trials on B-cell lymphoma and com-
bination therapy and included active and completed 
trials that started in this time frame, were updated in 
2018 or later and explicitly described which combination 
therapy was tested. In this review, we provide an over-
view of established immunotherapeutic approaches that 
we encountered in combination therapies and explain 
their mechanism of action, in order to give the reader 
insight into why specific combinations are pursued. For 
those with a specific interest in pediatrics or geratrics, 
we have provided additional supplementary tables with 
trials focusing on these age categories (Supplementary 
Table A and B).

Immune-based approaches

Checkpoint inhibitors (CPI)

Perhaps the most important development in immuno-
therapy is the discovery of CPI. It has solidified the 
potential of mobilizing the immune system as an anti-
cancer approach, both by directly showing antitumor 
effects but also by opening new possibilities for com-
plementary immunotherapeutic approaches. The first 
United States Food and Drug Association (FDA)-
approved checkpoint inhibitor is ipilimumab, a mono-
clonal antibody that targets CTLA-4[3]. CTLA-4 
inhibits T-cell activation, by the outcompeting stimu-
latory signaling molecule CD28 expressed on the cell 
surface of T cells for binding to its ligands CD80 and 
CD86[4]. By binding to CTLA-4, ipilimumab clears 
the way for T-cell activation via CD28. The results 
of targeting CTLA-4 in B-cell lymphomas have been 
discouraging, which is reflected in the amount of on-
going clinical trials focusing on these CPIs. Only 
two trials include anti-CTLA-4 in their combin-
ation therapy regimen and both in combination with 
PD-1/PD-L1 CPIs: anti-CTLA-4 CPI tremelimumab 
is combined with anti-PD-L1 CPI durvalumab 
(NCT02549651). Ipilimumab is combined with 
nivolumab in NCT02681302 (Supplementary Table 1).

T-cell membrane protein PD-1 and its ligands PD-L1 
and PD-L2 are a second major target in checkpoint in-
hibition, with PD-1 being targeted by established CPIs 
nivolumab and pembrolizumab. The binding of PD-1 to 
PD-L1 also prevents T-cell activation through the CD28 
pathway [5], and can thus contribute to the suppression 
of an adequate immune response. PD-L1 can be consti-
tutively overexpressed on tumor cells [6], which subse-
quently limits T-cell activation and could be an obstacle 
to mount an effective antitumor immune response. Other 
checkpoint inhibitors targeting PD-1 or PD-L1 that are 
currently being investigated in combination therapy are 
atezolizumab, durvalumab, spartalizumab, toripalimab, 
camrelizumab, cemiplimab, and tislelizumab (combin-
ations shown in Supplementary Table 1).

Checkpoint inhibitors targeting PD-1/PD-L1 have 
been very successful in B-cell lymphomas. PD-L1 
is overexpressed on a number of lymphoma types, 
including classical Hodgkin lymphoma (cHL) [7, 8], pri-
mary mediastinal large B-cell lymphoma [8, 9], primary 
central nervous system (CNS) lymphoma and primary 
testicular lymphoma [10]. An inspiring example of how 
fundamental research can lead to clinical results, anti-
PD-therapy has become a standard treatment option in 
classical Hodgkin lymphoma. It has booked successes 
in refractory and relapsed cHL [11, 12]. Conversely, 
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PD-1 is only rarely overexpressed in diffuse large B cell 
lymphoma (DLBCL) [13, 14], a type of lymphoma that 
generally shows a poor response to anti-PD-1 therapy 
[14]. A small subset of DLBCL shows gene amplification 
of 9p24.1, which contains the PD-L1 and PD-L2 genes 
[8, 15]. Associated features are young age, a primary 
mediastinal B-cell lymphoma (PMBCL)-like gene ex-
pression and an activated B-cell (ABC) profile [15], sug-
gesting that this may be a distinct subtype of the DLBCL 
family, which could be used in clinical practice to identify 
DLBCL patients that may respond to anti-PD-1 therapy. 
Although better identification of this subgroup is needed 
and their response to anti-PD-1 therapy remains unclear, 
it is an example of how better understanding of the indi-
vidual tumor characteristics may lead to a more targeted 
choice of treatment.

Bispecific antibodies and bispecific T-cell 
engagers (BiTE)

Bispecific antibodies have the advantage of being able to 
bind to two different antigens. BiTEs are bispecific anti-
bodies that recognize T-cells and cancer cells, thereby 
facilitating their interaction and subsequent killing of the 
cancer cell. BiTE blinatumomab recognizes B-cell antigen 
CD19 and T-cell receptor molecule CD3, and binding of 
both antigens leads to T-cell activation, which induces 
apoptosis in the B-cell. It has achieved significant re-
sults in the treatment of relapsed or refractory (r/r) B-cell 
precursor ALL [16], leading to FDA approval in 2018. 
Although blinatumomab monotherapy in r/r DLBCL 
and indolent non-Hodgkin lymphoma (iNHL) has been 
successful [17], it has not yet obtained FDA approval. 
Blinatumomab is currently being investigated in several 
combination therapy trials with CPIs or lenalidomide 
(Supplementary Table 2).

With the success of anti-CD20 therapy, it is not sur-
prising that BiTEs directed at this molecule are being 
developed. Mosunetuzumab/RO7030816, glofitamab/
RO7082859 and REGN1979 are all CD20/CD3 BiTEs. 
They are combined with chemotherapy, CD20 antibodies, 
antibody-drug conjugates, or CPIs (Supplementary Table 
2). No published studies regarding any of these drugs can 
be found as of yet. However, Schuster and colleagues did 
report favorable results in a study with mosunetuzumab 
(ORR (overall response rate) 43.8% and CR 25%) in r/r 
DLBCL and (transformed) FL in an abstract presentation 
[18]. A third CD20/CD3 BiTE, REGN1979 is in a phase 
I trial with r/r B-NHL patients. Preliminary results were 
presented at a conference [19], with an ORR of >90% 
for FL grade 1-3a and limited effects in other B-cell NHL 
(DLBCL; mantle cell lymphoma (MCL); marginal zone 

lymphoma (MZL); other grades of FL). The currently on-
going combination trials are reported in Supplementary 
Table 3. A surprising combination is that of CD20 BiTEs 
and CD20 mAbs: a single dose is frequently given be-
fore initiating therapy with a CD20 BiTE and some trials 
administer CD20 BiTEs and mAbs concurrently. We 
could not identify the rationale behind this approach. 
BiTEs with other targets (RO7227166: targets CD19 
and 4-1BB; AFM13: targets CD30 and CD16A) are also 
emerging (Supplementary Table 4).

Antibody-drug conjugates (ADC)

ADC are a clever combination to improve drug delivery 
to target cells, combining the specific targeting of mono-
clonal antibodies to bring damaging agents in the prox-
imity of the targeted cells. In 2011 brentuximab-vedotin 
(BV) was approved by the FDA for the treatment of 
CD30-positive lymphomas. This conjugate consists of 
an anti-CD30 antibody and monomethyl auristatin E, 
a drug that interferes with cell division, and is used in 
the treatment of Hodgkin lymphoma [20, 21]. Treatment 
with BV induces lasting complete remission in some pa-
tients with relapsed or refractory Hodgkin lymphoma, 
who in earlier days had a poor prognosis [22]. The 16 
trials that included BV mostly combine it with chemo-
therapy or nivolumab (Supplementary Table 5).

Polatuzumab vedotin (PV), targeted at B-cell receptor-
associated protein CD79B, initially showed promising re-
sults in r/r DLBCL and indolent B-cell NHL [23]. The 
combination strategy PV, bendamustine, and rituximab 
in r/r DLBCL [24] was recently shown to be effective and 
this approach has been approved by the FDA. Another 
recent phase 1b/2 trial adding PV to R-CHP or G-CHP 
in untreated DLBCL showed an overall response rate 
of 89% and will be further assessed in a phase 3 trial 
[25]. In contrast to BV, it is combined with more diverse 
drug classes, including CPI and chemotherapy but also 
immunomodulatory drugs (IMiDs), anti-CD20, BiTEs, 
and Bcl-2 inhibitors (Supplementary Table 6).

IMiDs

Lenalidomide and pomalidomide belong to the family of 
IMiDs, a group of drugs with multiple antitumor prop-
erties [26]. Notably, they can enhance the proliferation 
of activated T-cells [27], inhibit proliferation and effects 
of Tregs [28], and stimulate NK cell activity [29, 30]. 
Lenalidomide was able to reverse impaired T-cell acti-
vation as seen in follicular lymphoma [31]. Considering 
their immunomodulatory role, IMiDs may prove to be 
a valuable addition to various combination therapy re-
gimens since combinations of IMiDs may empower 
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T cell-based immunotherapy. When combined with 
rituximab, a synergistic antitumor effect was seen in 
immunodeficient mice [29, 32], in vitro [30], and in a 
phase III trial with indolent NHL [33]. Clinical trials 
with lenalidomide monotherapy in r/r B-cell lymphoma 
(DLBCL, FL grade 3, transformed FL, MCL) also showed 
reasonable response rates [34, 35]. However, results 
in DLBCL have been discrepant when it comes to the 
addition of lenalidomide to standard-of-care R-CHOP, 
possibly because of the heterogeneity of DLBCL. Gene 
expression profiling has allowed DLBCL to be divided 
into two major subgroups, germinal center B-cell (GCB) 
DLBCL, and non-GCB, of which the activated B-cell 
type (ABC) is the largest subgroup in non-GCB. Two 
major trials have explored the benefits of the addition of 
lenalidomide to R-CHOP therapy, known as R2-CHOP. 
The ROBUST trial enrolled patients with untreated ABC 
type DLBCL and did not find a significant difference be-
tween R2-CHOP and R-CHOP [36]. The ECOG-ACRIN 
1412 trial, which included any type of untreated DLBCL, 
did find a significant improvement in progression-free 
survival [37], but not for the ABC subpopulation. This 
discrepancy between GCB and non-GCB malignancies 
can also be found with lenalidomide monotherapy, with 
a better response rate in the non-GCB population [38]. 
Finally, analysis of gene expression in patients who re-
sponded well to R2-CHOP identified a subpopulation 
with increased activity of pro-inflammatory path-
ways [39]. R2-CHOP may also reduce CNS relapses in 
DLBCL, which may be due to the ability of lenalidomide 
to pass through the CNS barrier [40, 41]. In FL, the 
phase III RELEVANCE trial investigating lenalidomide/
rituximab versus R-CHOP in untreated FL showed fa-
vorable results for the lenalidomide/rituximab group 
[42]. R2-CHOP therapy yielded good response rates in 
a phase II trial with untreated FL [43]. In conclusion, a 
wide range of combination regimens with IMiDs are cur-
rently being investigated. The combination of IMiDs and 
anti-CD20 stands out when looking at the combination 
therapy trials that use IMiDs in their regimen, as the ma-
jority combines an IMiD with only anti-CD20 or with 
anti-CD20 and another treatment type (Supplementary 
Table 7). A visual summary of now prevalent strategies 
to mobilize the immune system in hematologic malignan-
cies is presented in Fig. 1.

Tumor-based approaches

As stated, the incomplete elimination of cancer cells leads 
to the selection of intrinsic traits that builds metabolic 
vulnerabilities that are now being explored for targeted 
therapy [44]. In contrast to conventional chemotherapy, 

targeted therapy requires a personalized approach to 
treatment choice since it is often unclear who will benefit 
from a specific therapy, i.e. which tumor contains a target-
able vulnerability. Treatment choice is in principle based 
on predicting treatment response before administering 
the drug or drug combination. For example; tamoxifen, 
one of the oldest hormonal drugs, blocks the effects of 
estrogen in the breast tissue. It is normally used to treat 
breast cancer patients that express the estrogen receptor 
(ER) on malignant cells. However, a recent study shows 
that among patients with ER-positive tumors, only 39% 
percent of patients have an active ER signaling pathway 
and that only these patients benefit from tamoxifen treat-
ment [45]. This example shows that in addition to genetic 
profiling and measuring target protein expression, tests 
that assess the activity of signal transduction pathways 
can be a valuable addition in clinical practice in order to 
determine the best possible treatment strategy.

Bruton’s tyrosine kinase (BTK) inhibitors

In B-cell lymphoma, the B-cell receptor and its 
signaling pathway play an important role in tumor cell 
survival. Mutations in this pathway can be found in 
various B-cell lymphoma types. Several targeted ther-
apies act on key molecules in this cascade, such as BTK 
and PI3K. BTK inhibitors ibrutinib and acalabrutinib 
bind BTK irreversibly, leading to apoptosis [46] and 
egress of lymphoma cells from their protective micro-
environment [47]. Over the last decade, BTKs have 
earned their place in the treatment of hematological 
malignancies: ibrutinib has been approved by the FDA 
for CLL, MCL, WM, MZL, and SLL, and last year 
acalabrutinib was approved for r/r MCL. Furthermore, 
it has a relatively mild safety profile when compared 
to other therapeutic modalities. It is also successful in 
combination with immunotherapeutic approaches. For 
instance, the combination with rituximab has recently 
been approved as first line therapy in CLL and SLL 
after an RCT compared it with rituximab-fludarabine–
cyclophosphamide in untreated CLL [48]. This com-
bination has also achieved successes for r/r MCL [49] 
and Waldenstrom [50]. In primary central nervous 
system lymphoma (PCNSL) patients, the combination 
of ibrutinib with rituximab and high-dose MTX was 
found to be safe in a phase 1b trial [51]. Considering 
these promising results in a wide range of lymphoma 
types and in different combinations, it is not surprising 
that a large number of combination trials including 
BTK inhibitors are underway: over 70 trials are cur-
rently registered in various lymphoma types and in 
a variety of combinations, including combinations 
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with CPIs, rituximab, and rituximab-chemotherapy 
(Supplementary Table 8).

PI3K inhibitors

PI3 kinases, located downstream of the B-cell receptor, 
play a central role in cellular signaling and in key pro-
cesses such as cell proliferation and survival [52]. There 
are several isoforms, with PI3Kδ being specific for B-cells 
and PI3Kγ for T-cells [53]. Idelalisib, specific for PI3Kδ, 
has obtained FDA approval for r/r SLL and r/r FL but 
also in combination with rituximab for r/r CLL. Other 
FDA-approved PI3K inhibitors are copanlisib (PI3Kα 
and –δ; for r/r FL) and duvelisib (PI3Kγ and –δ; for r/r FL 
and r/r CLL/SLL). Considering the key role PI3K plays in 
the B-cell receptor cascade, it is not surprising that com-
bination therapy trials are also investigating applications 
in other lymphoma types, such as DLBCL and PMBCL 
(Supplementary Table 9).

BCL-2 inhibitors

The chromosomal translocation t(14;18) is a frequent 
mutation in follicular lymphoma [54]. This mutation 
leads to the overexpression of the anti-apoptotic pro-
tein BCL-2. An increase in BCL-2 can also be found in 
MCL and CLL as a result of 13q14 deletion [55, 56]. 
These discoveries eventually led to the development of 
BCL-2 inhibitor ABT-199/venetoclax and FDA approval 
for r/r CLL in 2015, but results in other lymphomas were 
discouraging. A  large number of trials have included a 
BCL-2 inhibitor, mostly venetoclax, in their combin-
ation regimen. The most frequently observed approach 
is venetoclax added to rituximab and/or chemotherapy, 
as their primary efficacy may be boosted by the pro-
apoptotic effects of venetoclax. Combinations with other 
therapies targeted at B-cells (BTK inhibitors, PI3K inhibi-
tors) or, in opposition, checkpoint inhibitors or IMiDs 
are also frequently found. These studies are not limited to 

Figure 1 Schematic representation of immunotherapeutic options. Checkpoint inhibitors such as anti-PD-L1 can prevent cancer 
cells from suppressing T cell reactivity, thereby enhancing the immune response. Bispecific T cell engagers can keep T cells close 
to cancer cells to allow them to better exert their function. Immunomodulatory drugs stimulate the immune response through 
various approaches, such a s stimulating NK- and T-cells and inhibiting Tregs, Antibody-drug conjugates can carry toxic agents to 
the proximity of tumor cells. CPI: checkpoint inhibitor; ADC: antibody-drug conjugate; BiTE: bispecific T-cell engagers; TCR: T-cell 
receptor; NK: natural killer; Treg: T regulatory cell.
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MCL and FL, but also test the application of venetoclax 
in other NHLs, including DLBCL (Supplementary Table 
10).

Histone deacetylase (HDAC) inhibitors

Histone acetylation is an important epigenetic control 
system for gene expression: acetylation of DNA al-
lows more gene transcription, deacetylation removes 
the acetyl group and condenses the DNA, decreasing 
gene transcription. Essential processes can be influenced 
through this mechanism, such as the cell cycle, cell pro-
liferation, apoptosis, and MHC expression [57], pos-
sibly leading to immunogenic cell death [58]. Mutations 
in the histone acetylation machinery and deacetylation 
can be frequently found in lymphoma [59, 60]. Hence, 
drugs that influence these processes can be a useful tool 
in lymphoma therapy. The other side of the coin is that 
they can also be toxic for the immune system depending 
on the type of HDAC inhibitor and the time of adminis-
tration [58], which can make the combination of HDAC 
inhibitors and immunotherapeutic interventions a chal-
lenge. Various HDAC inhibitors are FDA-approved for 
cutaneous T-cell lymphoma and multiple myeloma, 
but not yet for B-cell lymphoma. Ongoing studies 
investigating combinations with HDAC inhibitors in 
B-cell lymphoma are mostly focused on the addition of 
an HDAC inhibitor to existing treatment regimens. Of 
the 15 combination trials that we identified, seven used 
the HDAC inhibitor chidamide, which is approved in 
China for peripheral T-cell lymphoma but not by the 
FDA. These trials are mostly a combination of chidamide 
and chemotherapy and focus on DLBCL, including 
a phase 3 trial comparing R-CHOP + chidamide and 
R-CHOP (NCT04231448). The other two chemotherapy 
trials use vorinostat, with the remaining trials assessing a 
combination of immunotherapeutic or targeted therapies 
with HDACi, some of which have not been approved for 
clinical use at all: abexinostat, CXD101, entinostat, and 
mocetinostat (Supplementary Table 11).

Proteasome inhibitors

These drugs inhibit the ubiquitin-proteasome pathway 
which processes the majority of all cellular proteins, 
including those involved with cell cycle regulation such 
as factors that mediate cell proliferation and also pro-
apoptotic proteins. The effect of proteasome inhibitors 
has been well established in multiple myeloma, with 
bortezomib being the first to receive FDA approval, 
followed by carfilzomib and ixazomib. Bortezomib is 
also approved for use in MCL. Over the years, clinical 
trials with bortezomib and other immunotherapeutic or 

targeted therapies in various NHL (DLBCL, FL, MCL, 
indolent NHL) have been published and showing mild 
successes, but have not yet lead to FDA approval [61–
64]. Looking at the currently ongoing trials, the prote-
asome inhibitors of interest in B-NHL are bortezomib, 
carfilzomib, and ixazomib (Supplementary Table 12). 
A visual summary of the pathways in which the discussed 
inhibitors can interfere is presented in Fig. 2.

Beyond the scope of cancer and 
immune cells

Targeted anticancer agents combined with 
immunotherapy

Multiple targeted anticancer agents, in addition to 
inhibiting tumor cell growth directly, have been de-
scribed to modulate immune cell function and activity. 
These agents therefore have the potential to either en-
hance or inhibit immunotherapy of cancer. Many of 
these agents, including EGFR, VEGFR, PDGFR, and 
Bcr-Abl tyrosine kinase inhibitors, are commonly used 
for solid tumors or leukemias, but not for lymphomas 
[65]. However, agents that target the PI3K pathway, as 
discussed previously, have recently been included in the 
treatment of lymphoma. In a solid tumor setting, PI3K 
pathway inhibitors have the capacity to promote T cell 
activation and inhibit immunosuppressive cell subsets, 
such as myeloid-derived suppressor cells (MDSC), Tregs 
and tumor-associated macrophages (TAMs) [66–68], and 
could therefore enhance the effectiveness of immuno-
therapy. This view is strengthened by the observation 
that idelalisib promoted frequent immune-mediated ad-
verse effects in CLL patients [69–71]. Follow-up research 
showed that Tregs were 13 times more sensitive to in-
hibition by idelalisib than effector CD8 T cells, possibly 
explaining the impact of idelalisib on autoimmunity. 
Combining PI3K inhibitors with immunotherapeutic ap-
proaches in lymphoma may therefore be a promising ap-
proach. At the moment five different clinical trials that 
combine PI3K inhibitors with checkpoint inhibition have 
been started for lymphoma (Supplementary Table 9).

Targeting supporting cells

Besides tumor cells and tumor-reactive immune effector 
cells, other relevant cell types can play a major role in 
cancer cell survival, including TAMs and MDSCs [72] as 
discussed in the previous paragraph, and mesenchymal 
stromal cells (MSC), through enforcing an immune-
suppressive microenvironment [73].

TAMs are frequently found in the tumor micro-
environment. While macrophages can express a pro- or 
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anti-inflammatory phenotype [74–76], roughly divided in 
two types respectively known as M1 and M2, TAMs usu-
ally contribute to suppression of the immune response 
[74]. TAMs can bind to PD-1 and CTLA-4 to block inter-
action with checkpoint inhibitors. Several strategies to 
deplete the anti-inflammatory TAMs or reprogram them 
to pro-inflammatory macrophages are under exploration 
[77], with TAM-inhibitor JNJ-40346527 being moder-
ately effective in a phase I/IIb trial in relapsed/refractory 
cHL [78].

MDSCs are a heterogeneous population of hemato-
poietic cells that have a resemblance to immature-type 
granulocytes [79]. They suppress T-cells and thereby also 
contribute to the immunosuppressive microenvironment. 
An extensive review on MDSCs was recently published, 
and for details, we refer to this work [80]. In mouse 
models of pancreatic cancer, immunotherapy combined 
with anti-MDSC therapy showed significantly improved 
results [81]. Also in mice, the depletion of MDSCs en-
hanced the therapeutic effect of checkpoint inhibitors 
in poorly immunogenic tumors [82]. In rhabdomyosar-
coma mouse models, anti-PD-1 therapy was effective 
when administered shortly after inoculation of tumor 
cells, but not when anti-PD-1 therapy was delayed, pos-
sibly due to rapid proliferation of MDSCs. As such, these 

data support that the interference with MDSC localiza-
tion to the tumor site improves the antitumor effects of 
late anti-PD-1 administration [83]. Cyclophosphamide, 
frequently used in the treatment of lymphoma in com-
bination with doxorubicin, vincristine, and prednisolone 
(CHOP) or in other combinations, can inhibit regulatory 
cell subsets such as Tregs and MDSC [84–86]. As many 
as 51 different clinical trials include combinations of im-
munotherapy with cyclophosphamide (Supplementary 
Table 13). However, since cyclophosphamide is al-
most exclusively used in combination with other 
chemotherapeutic agents it will be difficult to untangle 
the specific contribution of cyclophosphamide-mediated 
suppression of MDSC to treatment outcome. Targeted 
anti-cancer drugs sorafenib and sunitinib, that broadly 
target protein kinases or receptor tyrosine kinases, re-
spectively, have also been described to inhibit MDSC 
[87], but are as of yet not included in clinical trials that 
combine it with immunotherapeutic approaches.

Immunogenic cell death (ICD)

ICD holds the promise for generating an immune response 
to dying cells in a stimulatory manner that includes up-
take of cellular remains by antigen-presenting cells and 

Figure 2 Schematic representation of key pathways that may promote cell survival in B-cell lymphoma. Several pathways that 
promote cell survival in B-cell lymphoma have been identified: increased expression of kinases PI3K and BTK, downstream of the 
B-cell receptor and increased BCL-2 expression after chromosomal mutations. HDAC influences gene expression, and dysregulation 
may promote tumor survival. How HDAC inhibitors work exactly has not been fully elucidated. Chromosomal translocations or 
mutation may lead to increased expression of BCL-2, which inhibits apoptosis. The proteasome is responsible for the degradation 
of various proteins, including factors regulating the progression of the cell cycle and pro-apoptotic proteins. Proteasome inhibition 
leads to apoptosis, possibly due to the increased presence of pro-apoptotic proteins or by toxic stress caused by protein accumu-
lation. HDAC: histone deacetylase; BCR: B-cell receptor; BTK: Bruton’s tyrosine kinase; PI3K: phosphoinositide 3-kinase.
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effective triggering of adaptive immune cell activation 
[88]. In the context of immunotherapy, this process offers 
opportunities: tumor cells loaded with potential antigens 
discerning them from healthy cells may lead to a broadly 
carried cancer-specific T-cell response. Additionally, ICD-
based approaches may stimulate inflammation and sub-
sequently recruitment and activation of T-cells. Although 
the role of ICD in anti-cancer responses has been widely 
studied in solid tumors, it has also been described for 
B cell lymphomas [89, 90]. Inducers of ICD include 
radiotherapy and various chemotherapeutics, including 
oxaliplatin and anthracyclins [91–93].

With this in mind, chemotherapy and radiotherapy 
may play a new role in future cancer treatment as an ad-
juvant for immunotherapy [94, 95]. For instance, radio-
therapy can enhance the effect of checkpoint inhibitors in 
melanoma [96–98]. These results may be extrapolated to 
hematological malignancies, but results so far are limited. 
Hammerich and colleagues reported increased CD8+ 
T-cell responses and abscopal effects in iNHL patients 
when subjected to an ‘in situ vaccine’, consisting of Flt3L, 
radiotherapy, and a TLR3 agonist [99]. This combination 
promotes the presence of activated, antigen-presenting 
dendritic cells in the tumor environment. A  follow-up 
trial adding pembrolizumab to the combination regimen 
is currently underway (NCT03789097). At the mo-
ment only a few trials that combine new therapies and 
radiotherapy are registered: eight overall, of which 
five combine checkpoint inhibition with radiotherapy 
(Supplementary Table 14).

In regard to chemotherapy, cisplatin in combination 
with radiotherapy enhanced the effects of anti-PD-1 
therapy [100]. The anthracyclin doxorubicin is a well-
known inducer of ICD and frequently used in the 
treatment of Hodgkin and non-Hodgkin lymphomas. 
Combined treatment using doxorubicin and check-
point inhibitors is described in 19 separate clinical trials 
in lymphoma patients (Supplementary Table 15). The 
combination with the abovementioned ICD-inducer 
oxaliplatin and checkpoint inhibition is less frequent 
in lymphoma and is described in two clinical trials 
(Supplementary Table 16).

Future outlook of combination therapy in 
B-cell lymphoma

The field of cancer therapy is rapidly evolving. New 
classes of drugs that re-enable the immune system and 
target essential tumor mechanisms are gaining ground, 
but their optimal position in therapeutic regimens re-
mains to be determined. Rituximab has made a great 
addition to established therapies. However, can we say 

the same for checkpoint inhibitors and PI3K inhibitors? 
Or will these interventions take the place of the estab-
lished drugs? With so many options, determining the best 
strategy gets harder and harder. On the other hand, estab-
lished treatments that have proven their efficacy will not 
be abandoned without strong evidence that a different 
approach is better. Strategies in testing new combinations 
in humans mostly comprise the addition of a new drug to 
an old regimen, or trying a new combination in patients 
who are ineligible for the standard of care. Neither situ-
ation is ideal when it comes to testing completely new 
combinations, where ex vivo or animal studies may be 
preferable. Therefore the question remains: with all these 
promising new approaches, how can the new ideal com-
bination therapy that will replace the current first-line 
therapy be identified as quickly as possible?

In the near future we anticipate the application of more 
combinations of well-established chemotherapy with new 
targeted agents. Trials will more often be set up as basket 
or umbrella trials to facilitate application, testing, or evalu-
ation of new drugs targeting specific genetic changes in the 
tumor or immune phenomena in the tumor or the patient. 
These trials allow for rapid testing of new agents in small 
patient groups, ultimately increasing the availability of 
new effective treatments for larger patient groups. Since we 
witness a fast increase of new compounds entering clinical 
testing this trial design is essential for the fast evaluation 
of new treatments. In these trials, chemotherapy back-
bones will be combined with new agents targeting specific 
aspects of tumor immunology/biology.

New therapies, either immunotherapy-based or 
a targeted therapy, will steadily increase, added onto 
existing chemotherapy-based protocols for B-cell 
lymphomas. To support this statement, we here calcu-
lated the relative prevalence of clinical trials registered 
between 2015–2020, as shown in Fig. 3, that in-
cludes (A) rituximab, (B) CPI or (C) CAR T cells (de-
tails of all included investigative trials are shown in 
Supplementary Tables 17, 18 and 19). Of note, CAR 
(chimeric antigen receptor) T cells, were included as 
a new therapy that is rapidly emerging; in this thera-
peutic approach patient T cells are genetically engin-
eered to produce an artificial antigen receptor. We 
subdivided the trials into multiple groups based on 
the immunotherapeutic combinations: combinations 
with chemotherapy, combinations with targeted treat-
ment (including BTK-, PI3K-, HDAC-, BCL-2- or 
proteasome-inhibitors), combinations with other types 
of immunotherapy (IMiDs, BITEs, ADCs, CPI, CAR T 
cells, rituximab or other monoclonal antibodies), or a 
mixture of these types of treatment. We found that for 
rituximab, combinations of multiple types of treatment 
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types were prevalent, with a relatively high proportion 
of combinations including targeted therapies (82 out of 
178 combinations; 46%). For newer types of immuno-
therapy; CPI and CAR T cells, combinations with other 
types of immunotherapy were relatively more preva-
lent (55 out of 88 combinations; 63% and 10 out of 14 
trials; 71%, respectively) instead of combinations with 
targeted therapy (21 out of 88 trials; 24% and 4 out of 
14 trials; 29%, respectively).

In the meantime, combinations of newer drugs 
without rituximab or chemotherapeutics are also being 
investigated. We found 129 trials that did not include 
either rituximab or a chemotherapeutic agent. These 
combinations most usually include a CPI, 63 in total. 14 
Include chimeric antigen receptor T-cells, of which five 
combine CAR-T cells with CPI. The remaining 57, 15% 
of all combination trials we encountered, combine the 
newer therapies discussed in the review, leaving out trad-
itional therapies (chemotherapy and rituximab) as well as 
the revolutionary CPIs and CAR-T cells: BTKs (n = 26), 
PI3K inhibitors (11), IMiDs (11), BCL-2 inhibitors (10), 
proteasome inhibitors (7), bispecific antibodies (7), ADCs 

(5), HDAC inhibitors (5), monoclonal antibodies (4) and 
radiotherapy (3). Together these data show that the field 
is experiencing a surge in studies investigating new com-
binations in B-cell lymphoma treatment.

Outlook

We have seen an enormous increase in our knowledge 
on tumor biology and immunology in the past years. 
Doors have been opened. Immunotherapy has become 
an essential part of oncological treatment. To design 
the most efficient treatment for each patient we must 
invest in better understanding and integration of our 
knowledge on tumor immunology, focusing on the dy-
namics of immune interactions and cellular activation. 
Considering the complexity of host-tumor interactions, 
combining immunotherapies to create synergistic effects 
is crucial.

Supplementary material
Supplementary data are available at Immunotherapy Advances 
online.

Figure 3 The frequency of combination therapies from three immunotherapeutic perspectives: (a) rituximab (R), (b) check-
point inhibitors (CPI), (c) chimeric antigen receptor (CAR) T-cells. Frequently encountered therapeutic classes were grouped in 
chemotherapy, immunotherapy (bispecific antibodies (BiTEs), monoclonal antibodies (mAbs), antigen-drug conjugates (ADCs), 
immunomodulatory drugs (IMiDs), rituximab, CAR T cells, and checkpoint inhibitors (CPI)) and targeted therapy (BTK-, PI3K-, 
HDAC-, BCL-2- and proteasome inhibitors). The numbers in the charts represent the number of combinations tested in the included 
clinical trials.
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