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Abstract
Cutaneous intermediate melanocytic neoplasms with ambiguous histopathological features are diagnostically challenging.
Ancillary cytogenetic techniques to detect genome-wide copy number variations (CNVs) might provide a valuable tool to allow
accurate classification as benign (nevus) or malignant (melanoma). However, the CNV cut-off value to distinguish intermediate
lesions from melanoma is not well defined. We performed a systematic review and individual patient data meta-analysis to
evaluate the use of CNVs to classify intermediate melanocytic lesions. A total of 31 studies and 431 individual lesions were
included. The CNV number in intermediate lesions (median 1, interquartile range [IQR] 0–2) was significantly higher (p<0.001)
compared to that in benign lesions (median 0, IQR 0–1) and lower (p<0.001) compared to that in malignant lesions (median 6,
IQR 4–11). The CNV number displayed excellent ability to differentiate between intermediate and malignant lesions (0.90, 95%
CI 0.86–0.94, p<0.001). Two CNV cut-off points demonstrated a sensitivity and specificity higher than 80%. A cut-off of ≥3
CNVs corresponded to 85% sensitivity and 84% specificity, and a cut-off of ≥4 CNVs corresponded to 81% sensitivity and 91%
specificity, respectively. This individual patient data meta-analysis provides a comprehensive overview of CNVs in cutaneous
intermediate melanocytic lesions, based on the largest pooled cohort of ambiguous melanocytic neoplasms to date. Our meta-
analysis suggests that a cut-off of ≥3 CNVs might represent the optimal trade-off between sensitivity and specificity in clinical
practice to differentiate intermediate lesions from melanoma.
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Introduction

Cutaneous melanocytic neoplasms include various tumor types
with clinical behavior ranging from indolent to invasive [1].
Histopathologic evaluation is usually sufficient for classification
as either benign (nevus) or malignant (melanoma). However, a
minority displays ambiguous histopathological features, not
allowing definite classification. Studies of preneoplastic
melanocytic lesions have shown that intermediate stages exist

in the progression from nevus to melanoma, associated with the
acquisition of pathogenic genomic aberrations [2, 3]. These
observations challenge the notion that melanocytic neoplasms
can only be benign or malignant. Therefore, one of the signifi-
cant changes in the recently updatedWorldHealth Organization
(WHO) classification of skin tumors is the classification of
melanocytic tumors in nine pathways with four-step progres-
sion models [4]. As such, the group of intermediate tumors has
expanded, for which the term “melanocytoma” has been pro-
posed with two different grades. These lesions present a diag-
nostic challenge even for expert dermatopathologists [5, 6].
Importantly, incorrect classification might result in either pre-
ventable disease progression or substantial unnecessary costs,
psychological stress, and additional surgery. Therefore, various
ancillary cytogenetic techniques are employed to help distin-
guish nevi from melanomas, based on the fact that melanomas
usually harbor copy number variations (CNVs) whereas nevi do
not (or show specific isolated abnormalities) [7]. Cytogenetic
techniques such as comparative genomic hybridization (CGH)
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array and single-nucleotide polymorphism (SNP) array can de-
tect CNVs genome-wide, resulting in improved diagnostic ac-
curacy in ambiguous melanocytic lesions compared to FISH [8,
9]. Thus, CNVs might provide a valuable tool to allow accurate
classification. However, to what extent intermediate lesions car-
ry CNVs has not been well established yet, and a CNV cut-off
value to distinguish them from melanoma is not well defined.
Therefore, we performed a systematic review and individual
patient data meta-analysis to evaluate the use of CNVs to clas-
sify intermediate melanocytic lesions.

Method

Search and study selection

Embase and PubMed were systematically searched for prima-
ry research articles published in English until September
2020, using the terms “ambiguous,” “atypical,” “borderline,”
“dysplastic,” “intermediate,” “spitzoid,” “uncertain,” or “un-
classified,” paired with major keywords for melanocytic le-
sions (including melanocytic “lesion,” “tumor,” “prolifera-
tion,” “neoplasm,” “nevus,” “nevi,” “melanoma,”
“melanocytoma,” “MELTUMP,” “spitz*,” “STUMP”).
These results were then overlapped with the MeSH/Emtree
terms for DNA copy number variations: “copy number”;
“CNA”; “CNV”; “chromosomal aberration, duplication, am-
plification, deletion, alteration”; “comparative genomic hy-
bridization”; “CGH”; or “SNP array.” After duplicate remov-
al, unique records were screened for eligibility based on title
and abstract first and full-text records thereafter by two au-
thors (CE, WB) using Rayyan for systematic reviews [10].
Differences were discussed until consensus was reached or
through input from a third author (AJ). Last, backward and
forward snowballing of included articles was employed to
identify additional articles of interest.

Eligibility criteria and outcomes of interest

Articles were included when reporting on intermediate cutane-
ous melanocytic lesions using molecular techniques to identify
genome-wide CNVs, such as CGH array and SNP array.
Studies using next-generation sequencing (NGS) were included
when using panels or computational methods allowing
genome-wide copy number calling [11, 12]. Studies using
FISH or multiplex ligation-dependent probe amplification
(MLPA) were excluded since these techniques do not screen
genome-wide for CNVs. Case reports, abstracts, poster presen-
tations, and articles reporting on non-cutaneous melanomas or
melanoma cell lines were excluded. The primary outcomes of
interest were the number of CNVs and the type of chromosomal
aberrations. Secondary outcomes were clinical follow-up, ge-
nomic aberrations, and histopathological characteristics.

Data collection and CNV count

CNVswere identified on individual lesion level. Authors were
contacted to obtain individual patient data or additional infor-
mation if needed. Two authors (CE, AJ) independently per-
formed a CNV count based on the reported chromosomal
aberrations using a predefined ruleset. Segmental gains,
losses, high-level amplifications, aneuploidy, and polyploidy
were each counted as one CNV. Homozygous loss was count-
ed as two CNVs. CNVs considered insignificant in some stud-
ies because of their association with generally benign behav-
ior, such as loss of 3p21 (BAP1 gene) and gain of 11p (HRAS
gene), were included in the CNV count for uniformity.
Chromosomal fusions for which both fusion partners were
known were counted as one CNV since they result from one
translocation event. Copy-neutral loss of heterozygosity (CN-
LOH) was registered separately since it is not accompanied by
actual copy number changes. In contrast, chromothripsis can
comprise many CNVs but constitutes one tumor event.
Therefore, chromothripsis was also registered separately.
CNV counts were crosschecked against the reported number
of CNVs when available. Ambiguities were resolved via
contacting corresponding authors, discussion until consensus,
or input from a third author (WB).

Recategorization and reclassification of lesions

All lesions were reviewed in-depth by two authors (CE, WB)
and were recategorized and reclassified according to the 2018
WHO classification of skin tumors. Ambiguous lesions were
recategorized as either “benign,” “intermediate,” or “malig-
nant” hierarchically based on (1) provided clinical follow-
up, (2)WHO definition, and (3) histopathology and additional
case information. Ambiguous or benign lesions with metasta-
tic disease beyond regional lymph nodes during follow-up
were recategorized as malignant. Positive sentinel lymph node
biopsies were not considered sufficient proof of malignancy
since a minority of benign lesions occasionally display such
behavior [13]. Per WHO definition, BAP1-inactivated nevi
(BIN), deep penetrating nevi (DPN), cellular blue nevi
(CBN), and congenital nevi with proliferative nodules
(CNPN) were recategorized as low-grade intermediate.
BAP1-inactivated melanocytomas (BIM), deep penetrating
melanocytomas (DPM), atypical cellular blue nevi (ACBN),
melanocytic tumors of uncertain malignant potential
(MELTUMP), and pigmented epithelioid melanocytomas
(PEM) were recategorized as high-grade intermediate.
Subsequently, all lesions were reclassified according to the
nine WHO pathways primarily based on provided genomic
data. When distinctive genomic drivers were unavailable, le-
sions were reclassified based on the evaluation of available
histopathology, ancillary tests, and additional case
information.
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Statistical analysis

First, we created box plots to describe the data. Although these
appeared not normally distributed, we also reported means to
allow comparison with previously reported research on CNV
counts. Second, we performed Mann-Whitney U tests to de-
termine differences in CNV number between lesion categories
and within classifications according to WHO pathway. Third,
we created receiver operating characteristic (ROC) curves and
calculated the C-statistic or area under the ROC curve (AUC).
Fourth, sensitivity and specificity were calculated for a range
of CNV cut-offs (0–7). As sensitivity analyses, we performed
these analyses for two alternative categorizations of the le-
sions: (1) initially reported category and (2) considering
low-grade intermediate lesions (BIN, CBN, CN with prolifer-
ative nodules, and DPN) as benign. Furthermore, we evaluat-
ed an alternative CNV count, including chromothripsis and
CN-LOH. Also, we evaluated CNV count based on CGH data
or SNP data only. Last, we evaluated sensitivity and specific-
ity irrespective of CNV count by interpreting microarray data
as positive for malignancy in the presence of CNVs suspect
for melanoma, such as homozygous loss of 9p21 (CDKN2A)
and gain of 11q13 (CCND1), 8q24 (MYC), or 6p25 (RREB1).
All statistical analyses were performed in SPSS version 26.

Results

Study selection

Figure 1 shows the PRISMA flowchart for study selection
[14]. The search yielded 647 hits, of which 432 were unique
records. After assessment for eligibility, 25 studies were in-
cluded in the meta-analysis, and a further six were identified
through snowballing.

Study characteristics

The characteristics of the 31 included studies are listed in
Table 1. All studies were either retrospective (n=25), prospec-
tive (n=4), or mixed (n=2) case series. Twenty-two studies
used CGH array, six studies used SNP array, and three studies
used NGS. In total, data for 431 individual lesions were ex-
tracted, of which 252 (58.5%) had been analyzed with CGH
array, 144 (33.4%) with SNP array, and 35 (8.1%) with NGS.

Recategorization and reclassification of lesions

Initially, 113 lesions (26.2%) were presented as benign, 212
(49.2%) as ambiguous, and 106 (24.6%) as malignant.
Clinical follow-up was available for 297 lesions (68.9%), of
which 140 were ambiguous. Two benign and ten ambiguous
lesions were recategorized as malignant based on follow-up

with distant metastasis or additional case information. Per
WHO-definition, 80 lesions were recategorized as low-grade
intermediate (28 BIN, 22 CBN, 15 CNPN, and 15 DPN) and
83 lesions as high-grade intermediate (30 ACBN, 7 BIM, 13
DPM, 16 MELTUMP, and 17 PEM). A total of 81 interme-
diate lesions could not be specified as either low- or high-
grade (76 AST, three melanocytomas with CRTC1-TRIM11
fusions, and two melanocytomas with NRAS p.Q61R and
IDH1 p.R132C mutations). After recategorization, 69
(16.0%) benign, 244 (56.6%) intermediate, and 118 (27.4%)
malignant lesions were available for meta-analysis.
Distinctive genomic drivers, including ALK, ROS1, NTRK,
BRAF, or MET fusions and mutational status for BAP1,
BRAF, GNA11, GNAQ, HRAS, and NRAS, were available
for 206/431 (47.8%) lesions and 145/244 (59.4%) intermedi-
ate lesions. Accordingly, 61/431 (14.1%) lesions were
reclassified, mostly “Spitz” lesions carrying a BRAF
p.V600E or NRAS p.Q61R mutation and lesions designated
“DPN,” “DPM,” or “MELTUMP” carrying a GNAQ
p.Q209L or GNA11 p.Q209L mutation.

Chromosomal aberrations in intermediate lesions

In our dataset, 18/69 (26.1%) of benign, 134/244 (54.9%) of
intermediate, and 112/118 (94.9%) of malignant lesions
displayed ≥1 CNV. Within intermediate lesions, 43/80
(53.8%) of low-grade, 35/83 (42.2%) of high-grade, and 56/
81 (69.5%) of intermediate lesions not otherwise specified
(NOS) displayed ≥1 CNV. The most frequently encountered
CNVs in intermediate lesions are listed in Table 2. Loss of 3p
spanning the BAP1 gene on 3p21 was most commonly found,
all but one (ACBN) harbored by BAP1-inactivated lesions.
The most common gain involved 7q, carried mainly by
AST. Chromosomal aberrations known to occur in melanoma
[7, 9] frequently were infrequent or absent in intermediate
lesions (marked with an asterisk in Table 2). Two AST
displayed heterozygous loss of 9p21 spanning the CDKN2A
gene. One ACBN showed a gain of 8q24 spanning the MYC
gene. Aneuploidies were mainly found in BIN/BIM carrying a
loss of chromosome 3 and CNPN carrying a loss of chromo-
some 7 and gain of chromosome 8. Chromothripsis was found
in one malignant Spitz tumor (MST) and five intermediate
lesions (two AST, one CBN, one CNPN, and one
MELTUMP). Of these, clinical follow-up was only available
for the CBN and CNPN. The CBN harbored chromothripsis
of chromosomes 3 and 7 and 14 additional CNVs, without
evidence of disease during a follow-up of 3.8 years. The
CNPN harbored chromothripsis of 1p and two additional
CNVs, and the patient was disease-free at 3.5 years after ex-
cision. CN-LOH was found in eight melanomas and three
intermediate lesions (one DPM, one MELTUMP, and one
PEM). The DPM carried CN-LOH of 17q12-qter and did
not harbor additional CNVs. The MELTUMP carried CN-
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LOH of chromosome 7 and had 15 additional CNVs. Clinical
follow-up for these cases was not available. The PEM carried
CN-LOH of the distal part of chromosome 17q and did not
harbor any additional CNVs. Short-term clinical follow-up
(not specified) did not show any sign of disease.

CNV counts after recategorization and reclassification

Figures 2 and 3 show the number of CNVs per lesion category
and WHO class, respectively. The CNV number in interme-
diate lesions (median 1, interquartile range [IQR] 0–2) was
significantly higher (p<0.001) compared to that in benign le-
sions (median 0, IQR 0–1) and significantly lower (p<0.001)

compared to that in malignant lesions (median 6, IQR 4–11)
(Fig. 2). There was no significant difference between low-
grade or high-grade intermediate lesions (p=0.499). In WHO
pathway I, CNV number in BIM (median 1, IQR 1–1.5) was
not significantly higher (p=0.092) compared to that in BIN
(median 1, IQR 1–1) and not significantly higher (p=0.449)
in DPM (median 0, IQR 0–1) compared to that in DPN (me-
dian 0, IQR 0–0). CNV number in PEM (median 0, IQR 0–0)
was significantly lower (p<0.001) compared to melanomas in
PEM (median 4, IQR 4–5). In pathway IV, CNV number in
AST (median 1, IQR 0–2) was significantly higher (p<0.001)
compared to that in Spitz nevi (median 0, IQR 0–1) and sig-
nificantly lower (p=0.001) compared to that in MSTs (median
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Fig. 1 PRISMA flow chart for study selection
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5, IQR 4–8). In pathway VII, CNV number in CNPN (median
2, IQR 1–5) was significantly higher (p<0.001) compared to
that in CN (median 0, IQR 0–0) and significantly lower
(p=0.009) compared to melanomas in CN (median 7.5, IQR
5.5–9.5). Last, in pathway VIII, CNV number in CBN (medi-
an 0, IQR 0–0) was not significantly different (p=0.585) from
blue nevi (median 0, IQR 0–0) but significantly lower
(p=0.015) compared to that in ACBN (median 0, IQR 0–2).
CNV number in ACBN was significantly lower (p<0.001)
compared to melanomas in blue nevi (median 6, IQR 4–8)
(Fig. 3). Relevant outliers in the intermediate category are
shown as yellow dots in Fig. 2. The most extreme outlier
corresponded to a CNPN harboring 22 CNVs, all gains and
losses of whole chromosomes. Clinical follow-up was not

available for the MELTUMP with 15 CNVs, the DPM with
10 CNVs, and the AST with 7 CNVs. The remaining lesions
did not show evidence of disease during the available relative-
ly short follow-up (varying from 14 to 46 months).

CNV cut-off value

The C-statistic to differentiate between nevi and melanoma
was 0.96 (95% CI 0.93–0.99, p<0.001) and between interme-
diate lesions and melanoma 0.90 (95% CI 0.86–0.94,
p<0.001), indicating excellent ability to differentiate using
CNV number [45]. In contrast, the CNV number displayed
poor ability to differentiate between intermediate and benign
lesions (C-statistic 0.67, 95% CI 0.61–0.73, p<0.001).

Table 1 Characteristics of included studies

Study ID Design Method N Ambiguous N Benign N Malignant N Included

Ali 2010 [15] Retrospective case series CGH array 1 8 1 10

Alomari 2020 [16] Mixed case series SNP array 34 21 40 95

Bastian 2002 [7] Retrospective case series CGH array 9 13 6 29

Botton 2013 [17] Retrospective case series CGH array 4 1 4 9

Busam 2014 [18] Retrospective case series CGH array 2 0 0 2

Carter 2019 [19] Retrospective case series SNP array 2 0 1 3

Cellier 2017. [20] Retrospective case series CGH array 3 0 0 3

Chan 2016 [21] Retrospective case series CGH array 12 5 9 26

Cohen 2017 [22] Retrospective case series NGS 13 0 0 13

Cohen 2020 [23] Retrospective case series NGS 2 0 5 7

Costa 2016 [24] Retrospective case series CGH array 0 3 11 14

Fischer 2017 [25] Retrospective case series CGH array 4 0 0 4

Gerami 2020 [26] Retrospective case series NGS* 7 10 0 17

Hedayat 2017 [27] Mixed case series SNP array 5 5 1 11

Held 2013 [28] Retrospective case series CGH array 8 15 0 23

Houlier 2019 [29] Retrospective case series CGH array 3 1 1 5

Hung 2016 [30] Prospective case series CGH array 2 0 1 3

Lezcano 2020 [31] Retrospective case series SNP array 1 0 1 2

Macagno 2020 [32] Retrospective case series CGH array 2 0 0 2

Magro 2014 [33] Prospective case series CGH array 6 0 0 6

Maize 2005 [34] Retrospective case series CGH array 11 11 7 29

Raskin 2011 [35] Prospective case series CGH array 16 8 3 27

Redon 2017 [36] Retrospective case series CGH array 0 5 5 10

Reimann 2018 [37] Prospective case series CGH array 3 0 2 5

Wiesner 2012 [38] Retrospective case series CGH array 4 0 0 4

Yeh 2014 [39] Retrospective case series CGH array 17 0 0 17

Yeh 2015 [40] Prospective case series CGH array 16 0 3 19

Yeh 2016 [41] Retrospective case series CGH array 6 2 0 8

Yeh 2019 [42] Retrospective case series CGH array 11 5 3 19

Yeh-Botton 2015 [43] Retrospective case series CGH array 4 0 2 6

Yelamos 2015 [44] Retrospective case series CGH array 4 0 0 4

TOTAL 212 113 106 431

Study characteristics and number of included ambiguous, benign, andmalignant lesions per study. *SNP array was used in two cases.CGH comparative
genomic hybridization, SNP single nucleotide polymorphism, NGS next-generation sequencing
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Figure 4 shows sensitivity and specificity for differentiating
intermediate from malignant lesions given various CNV cut-
off values. Using a cut-off of ≥3 CNVs, 85% of malignant

lesions would be correctly categorized as malignant (sensitiv-
ity), and 84% of non-malignant lesions would be correctly
classified as non-malignant (specificity).

Table 2 Most frequently found chromosomal aberrations in intermediate melanocytic lesions

Losses Total
(n=244)

Low-grade
(n=83)

High-grade
(n=83)

Intermediate
NOS (n=81)

Gains Total
(n=244)

Low-grade
(n=83)

High-grade
(n=83)

Intermediate
NOS (n=81)

3p 10.2% 20.0% 9.6% 1.2% 7q* 4.1% 2.5% 1.2% 8.6%

1p 5.3% 0.0% 6.0% 9.9% 2p 2.9% 1.3% 0.0% 7.4%

Entire 3 5.3% 13.8% 2.4% 0.0% 1p 2.0% 0.0% 2.4% 3.7%

2p 3.3% 1.3% 2.4% 6.2% Entire 8 2.0% 5.0% 1.2% 0.0%

6q* 3.3% 2.5% 3.6% 3.7% 15q 2.0% 0.0% 6.0% 0.0%

Entire 9 3.3% 2.5% 4.8% 2.5% Entire 20 2.0% 3.8% 1.2% 1.2%

9p* 2.5% 0.0% 1.2% 6.2% Entire 7 1.6% 1.3% 1.2% 2.5%

7q 2.5% 1.3% 3.6% 2.5% 20p 1.6% 0.0% 4.8% 0.0%

15q 2.5% 0.0% 1.2% 6.2% 1q* 1.2% 0.0% 2.4% 1.2%

3q 2.0% 0.0% 4.8% 1.2% 6p* 1.2% 1.3% 2.4% 0.0%

2q 1.6% 1.3% 0.0% 3.7% 9q 1.2% 0.0% 3.6% 0.0%

6p 1.6% 1.3% 0.0% 3.7% 10p 1.2% 0.0% 0.0% 3.7%

Entire 7 1.6% 5.0% 0.0% 0.0% Entire 15 1.2% 2.5% 0.0% 1.2%

Most frequent gains and losses found in intermediate melanocytic lesions. Chromosomal aberrations are divided into gain or loss of entire chromosomes
and segmental chromosomal aberrations (including focal aberrations and gain or loss of chromosomal arms). Chromosomal aberrations marked with an
asterisk represent gains and losses frequently found in melanoma

Fig. 2 Box and whisker plots showing CNV count after recategorization.
Bold vertical black lines show the medians. The blue boxes show the
interquartile range (first to third quartile), and the whiskers indicate the
maximal value within 1.5 times the interquartile range. The vertical blue
lines show the means of all benign, intermediate, and malignant lesions,
and the yellow dots represent outliers. NB. Outliers in the malignant

category with CNV counts >24 are not shown for clarity of the graph.
ACBN, atypical cellular blue nevus; AST, atypical Spitz tumor; CMN-
PN, congenital melanocytic nevus with proliferative nodule; DPN, deep
penetrating nevus; DPM, deep penetrating melanocytoma; MELTUMP,
melanocytic tumor of uncertain malignant potential; SN, Spitz nevus;
Melanoma NOS, not otherwise specified
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Sensitivity analyses

None of the alternative lesion categorizations or alternative
CNV counts substantially changed the results for differentia-
tion between intermediate and malignant lesions. The AUC
based on the initially reported category was 0.88 (95% CI
0.84–0.92, p<0.001). The AUC when considering low-grade
intermediate lesions benign remained 0.90 (95% CI 0.86–
0.94, p<0.001). The AUC, when including chromothripsis
and CN-LOH in the CNV count, also remained 0.90 (95%
CI 0.86–0.94, p<0.001). The AUC based on SNP array or
CGH data only decreased to 0.85 (95% CI 0.78–0.92,
p<0.001) and increased to 0.94 (95% CI 0.91–0.97,
p<0.001), respectively. Including specific CNVs suspect for
melanoma as a positive test marker did not substantially
change these results.

Risk of bias across studies

The risk of bias was generally considered low to unknown
and constituted mainly selection and information bias.
Most studies used archival cases without adequately de-
fining the selection process, creating an unknown selec-
tion bias risk. Three studies reported CNVs for selected
representative cases. Comprising only 10 cases, we con-
sider the impact of potential selection bias very low. In
addition, the detection of CNVs is highly dependent on
the type of microarray, resolution, DNA quality, and sam-
ple purity. Most studies used archival DNA from
formalin-fixed paraffin-embedded (FFPE) tissue and did
not report tumor cell percentages, which introduces an
unknown risk of information bias.

Fig. 3 Box and whisker plots showing CNV count after WHO
reclassification. Bold vertical black lines show the medians. The green
boxes show the interquartile range (first to third quartile), and the
whiskers indicate the maximal value within 1.5 times the interquartile
range. The yellow dots represent outliers. NB. CNV counts >30 are not
shown for clarity of the graph. ACBN, atypical cellular blue nevus; AST,
atypical Spitz tumor; BIN, BAP1-inactivated nevus; BIM, BAP1-

inactivated melanocytoma; BN, blue nevus; CBN, cellular blue nevus;
CMN, congenital melanocytic nevus; CMN-PN, congenital melanocytic
nevus with proliferative nodule; DPN, deep penetrating nevus; DPM,
deep penetrating melanocytoma; MELTUMP, melanocytic tumor of un-
certain malignant potential; PEM, pigmented epithelioid melanocytoma;
MST, malignant Spitz tumor; NOS, not otherwise specified; SN, Spitz
nevus; SSM, superficial spreading melanoma
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Discussion

To the best of our knowledge, this is the first systematic re-
view and individual patient data meta-analysis to assess
genome-wide CNVs as a diagnostic tool for intermediate
melanocytic lesions, using cytogenetic tests such as SNP array
and CGH array.

Chromosomal aberrations were found in 55.1% of interme-
diate lesions. Gains and losses frequently seen in melanoma,
such as gain of 1q, 6p, and 7q and loss of 6q and 9p, were
uncommon in intermediate lesions. CN-LOH and
chromothripsis were only found in intermediate andmalignant
lesions. Our analysis shows that the median number of CNVs
in intermediate lesions is statistically significantly higher com-
pared to that in nevi and lower compared to that in melanoma.
Similarly, the number of CNVs significantly increased in
WHO pathway IV (Spitz), VII (congenital), and VIII (blue)
along the spectrum from nevus to melanoma. In contrast, the
CNV number was not statistically different between BIN and
BIM and between DPN and DPM. Surprisingly, “high-grade”
melanocytomas (ACBN, BIM, DPM, PEM, andMELTUMP)
carr ied CNVs less f requent ly than “ low-grade”
melanocytomas (BIN, CBN, CMNwith proliferative nodules,
and DPN). This observation demonstrates the difficulty of
grading intermediate lesions using a four-tier system as is used
in the WHO classification. Yet, our results suggest CNVs
demonstrate excellent ability to differentiate between interme-
diate melanocytic lesions andmelanoma in clinical practice. A

cut-off of ≥3 CNVs corresponded to 85% sensitivity and 84%
specificity, and a cut-off of ≥4 CNVs corresponded to 81%
sensitivity and 91% specificity, respectively.

Several CNV cut-offs for malignancy have previously been
suggested. Based on their case series, Maize et al. and Chan
et al. suggested a cut-off of ≥3 CNVs and ≥4 CNVs, respec-
tively, and Alomari et al. proposed an algorithm using ≥4
significant CNVs with additional caveats in case of ≤3
CNVs [16, 21, 34]. Our current meta-analysis integrates and
expands their data, providing more robust evidence for vari-
ous cut-offs in the classification of intermediate lesions. Both
a cut-off of ≥3 and ≥4 CNVs can be considered, the first
having a higher sensitivity (fewer false-negative diagnoses)
and the latter having a higher specificity (fewer false-
positive diagnoses). Yet, sensitivity might prevail in clinical
practice given the potentially disastrous consequences of a
false-negative misdiagnosis, even at the cost of a modestly
lower specificity and resulting treatment burden. Therefore,
we propose a cut-off of ≥3 CNVs as indicative of malignancy.

Of note, a minority of melanomas did not harbor CNVs,
and benign lesions might carry CNVs with limited prognostic
value. In contrast, specific CNVs may also be relevant if pres-
ent in isolation, such as homozygous loss of 9p21 (CDKN2A)
[16]. Therefore, CNVs should always be interpreted consider-
ing the clinicopathological context. Yet, the contextual inter-
pretation of specific CNVs is difficult in unclassified lesions.
For example, loss of 3p21 (BAP1) is insignificant in BIN/BIM
but is of major significance in an ACBN or MEBN. It is

Fig. 4 Plot showing the trade-off between sensitivity (x-axis) and speci-
ficity (y-axis) to differentiate between intermediate and malignant lesions
using different CNV cut-offs. Blue and green lines indicate sensitivity and

specificity corresponding to CNV cut-offs of ≥4 and ≥3, respectively.
CNV, copy number variation
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currently mostly unknown which CNVs are most predictive
for malignancy in the various WHO pathways, and this re-
quires additional research.

The main strengths of this study include the following. All
lesions have been vigorously reviewed based on published
and unpublished individual patient data using the 2018
WHO classification of skin tumors. As such, our meta-
analysis integrates the most recent clinicopathological and ge-
nomic insights to establish CNVs in intermediate lesions. Our
analyses provide a better-defined CNV cut-off value for ma-
lignancy to support clinical decision-making, based on the
largest pooled dataset of intermediate lesions to date. The
sensitivity analyses strengthened the robustness of the results.

This study has several limitations. First, genome-wide mi-
croarray data are difficult to pool since the detection of CNVs
is highly dependent on resolution and technical specifications.
Second, the detection of CNVs depends on sample quality.
Most studies used DNA from archival FFPE blocks and did
not report the tumor cell percentages, although the latter
should exceed 30% to detect CNVs reliably. Therefore,
paucicellular lesions such as PEM and large-cell lesions such
as MAP3K8-SVIL fused ASTs with strong lymphocytic infil-
trate render dilution effects and make CNV detection more
difficult. In our dataset, a minority of melanomas (5.1%) did
not carry any CNVs, and it is unclear if this is due to dilution
or truly represents a lack of CNVs. This might have negatively
influenced sensitivity, although our ROC analysis still showed
excellent discriminative ability. Third, rules for CNV counts
are not uniformly defined, and we were only able to count
CNVs that were reported or provided by authors. CNVs re-
ported to be attributable to a chromosomal fusion were count-
ed as one CNV. This may have slightly overestimated the
CNV number, especially in Spitz tumors, where fusions are
a common driver event and probably not relevant for progno-
sis. Also, a minority of melanomas were reported to harbor
extremely high CNV counts (>30), which likely included ab-
errations not included in our CNV count, such as
chromothripsis. However, it is unlikely this substantially af-
fected our results since we performed non-parametric tests.
Fourth, clinical outcomes were not available in 34.0% of am-
biguous cases. Follow-up with distant metastasis remains the
gold standard for proof of malignancy and might still occur
years after diagnosis. Yet, clinical follow-up was available for
most outliers in the intermediate category. Fifth, distinctive
driver mutations were available in 59.4% of intermediate le-
sions. For the remaining lesions, classification was based on
histopathology alone, which is more subjective than genomic
data. Last, we established our ROC analysis on one variable
(CNV number), whereas ideally, diagnostic evaluation is per-
formed via multivariable analysis, including all available di-
agnostic information. Nonetheless, it indicated excellent dis-
criminative ability, which supports further research in a dedi-
cated dataset. Despite these limitations, we believe this meta-

analysis provides robust results applicable to general
dermatopathology practice.

To conclude, this systematic review and individual patient
data meta-analysis provides a comprehensive overview of
CNVs in cutaneous intermediate melanocytic lesions and a
diagnostic interpretation of different CNV cut-offs for malig-
nancy, based on the largest pooled cohort of ambiguous
melanocytic neoplasms to date. Our results suggest that a
cut-off of ≥3 CNVs might represent the optimal trade-off be-
tween sensitivity and specificity in clinical practice to distin-
guish intermediate from malignant lesions. Future research
should externally validate this cut-off in a distinct dataset,
assess the predictive value of specific CNVs in the various
WHO pathways, and correlate genome-wide microarray data
with objective genomic and clinical parameters.
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