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Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative

treatment option for children suffering from hematological malignancies and a variety

of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or

immune deficiencies. Although efficacy and safety of the HCT procedure has increased

significantly over the last decades, the majority of the patients still suffer from severe

acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD)

and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are

numerous and versatile. For example, there is variation in the selected graft sources,

type of infused cell subsets, cell doses, and the protocols used for conditioning,

as well as immune suppression and treatment of adverse events. Moreover, recent

pharmacokinetic studies show that medications used in the conditioning regimen (e.g.,

busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to

achieve optimal exposure in every individual patient. Due to this multitude of variables

and site-specific policies/preferences, harmonization between HCT centers is still difficult

to achieve. Literature shows that adequate immune recovery post-HCT limits both

relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring

immune parameters post-HCT may facilitate a timely prediction of outcome. The use of

standardized assays to measure immune parameters would facilitate a fast comparison

between different strategies tested in different centers or between different clinical trials.

We here discuss immune cell markers that may contribute to clinical decision making

and may be worth to standardize in multicenter collaborations for future trials.

Keywords: immune monitoring, immune reconstitution, hematopoietic (Stem) cell transplantation (HCT), cellular

therapies, harmonization

INTRODUCTION

The probability of long-term survival after hematopoietic cell transplantation (HCT) has steadily
improved in the last decade with advances in treatments (1, 2). However, long term survival after
HCT is still hampered by adverse events, such as graft-versus-host disease (GvHD), infections and
relapse of the underlying disease (3–6). Delayed immune reconstitution plays a central role in most
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of these events (7, 8), suggesting that strategies that increase
immune recovery are of great interest to increase survival chances
post-HCT (9).

Among the graft-related variables that can influence immune
reconstitution are the graft source and composition, degree
of HLA-match and the cell dose (10–12). Transplantation
with matched related bone marrow (BM) or peripheral blood
(PB) (stem) cells is considered the standard for allo-HCT, but
also matched unrelated donors (MUD) (mis)matched unrelated
cord blood (CB), a haplo-identical or a mismatched family
donor can be considered as alternative graft sources. The
HCT-source and its manipulation, such as CD34+ positive
selection (13) or other ex vivo T-cell depletion (14) and in
vivo T cell depletion with serotherapy [e.g., anti-thymocyte
globulin (ATG) or Alemtuzumab] may be important factors
defining the probability of T-cell immune reconstitution (IR).
Moreover, grafts are selected based on HLA-matching criteria,
where the degree of HLA-match is, in general, stricter for
BM/PB than for CB grafts, and may depend on the indication.
Also, the use of grafts from younger donors is preferred by
centers because it associates with better survival chances, due
to lower non-relapse mortality (15–17). The graft’s cell dose is
considered, particularly in CB transplants, because units with low
numbers of CD34+ cells were associated with inferior outcomes
(18). A retrospective European Society for Blood and Marrow
Transplantation (EBMT) analysis by Czerw et al. showed that
T cell numbers in the HCT graft are highly variable (range;
50–885 × 10e6/kg) and positively correlate with an increased
incidence of grade III-IV acute (a) GvHD (19). Others found
that higher numbers of γδT cells (20) in the graft associate with
favorable immune reconstitution and superior clinical outcome
(21). However, whether the combination of graft source, match
grade, cell dose and graft composition will result in optimal
immune recovery post-HCT is impossible to deduce from these
data. To get more insight into the contribution of different
parameters to outcome, we need to identify the best combination
of markers that associate with clinical outcome. A reliable
predictor for outcomes, across the variety of transplant platforms
(e.g., T replete and T deplete), seems to be CD4+ T cell counts
above 50/µL within 100 days after transplant (22–24).

A decisive factor that may even overrule the graft-related
effects, is the type and timing of the conditioning regimen used.
Pharmaco-kinetic and -dynamic studies show strong correlations
between post-transplant recovery of immune cells and the
timing and dose of conditioning agents [e.g., fludarabine (Flu),
busulfan (Bu), and ATG] (25, 26). These data point toward
personalized dosing strategies to achieve an optimal exposure in
every individual patient (27–29).

Due to the multitude of variables described above and the
site-specific policies/preferences, a precise understanding of how
these variables can be influenced to optimize outcomes of HCT is
difficult to achieve. While donor-selection in cell transplantation
has been increasingly standardized over the last decades (30,
31), harmonization of the conditioning regimen is still lacking
and the highly variable pharmacokinetics of drugs used in the
conditioning regimen and their dramatic effects on outcome are
still not widely considered. In the first part of this review, we

will provide an overview of the association between different
conditioning regimens, outcomes and IR post-HCT. Given the
strong relationship between immune recovery and outcome (32,
33), monitoring immune parameters post-HCT may serve as a
relatively fast predictor for outcomes (including survival, relapse,
and non-relapse mortality) and accelerate comparisons between
different strategies in different centers and between different
clinical trials. The use of standardized assays across laboratories
will be imperative for this purpose. In the second part, we discuss
a rationale for selection of a minimal parameter set to monitor
immune recovery that could be considered for standardization.

CONDITIONING REGIMENS, IMMUNE
RECONSTITUTION, AND OUTCOMES:
TOWARD INDIVIDUALIZED DOSING

We recently showed that the pharmacokinetics of rabbit ATG
(rATG) is highly dependent on absolute lymphocyte count (ALC)
as a representation for the receptor-load (26). In adults, the ALC
before rATG-dosing was the only predictor for rATG clearance,
while in pediatric patients a weight of <40 kg also influenced
clearance. In Table 1 the suggested rATG (Thymoglobulin)
exposure targets for pediatric and adult patients are listed. It is
important to realize that the ligands recognized by rATG and
rATLG (anti-T-lymphocyte globulin; Neovii Biotech, Rapperswil,
Switzerland) are not identical, so the target exposures for rATG
do not apply for rATLG (26, 35, 36). A nomogram for ATLG
should still be made, as its effects are likely similar to those
of rATG. Soiffer et al. showed that ATLG was associated with
inferior chronic-GvHD-free, leukemia-free survival in a post-hoc
analysis of a randomized controlled trial with three different
regimens (25). This study nicely illustrates that it is essential to
understand the effects of all agents on immune reconstitution and
the interrelationships between the agents that may significantly
alter the outcomes. In this trial, patients receiving total body
irradiation (TBI) + cyclophosphamide (Cy) had lower “absolute
lymphocyte counts” on the day of rATLG dosing compared to
patients receiving a chemo (Bu-Cy or Bu-Flu)-based regimen
or patients that received Cy first, before receiving TBI (usually
because of practical issues). This resulted in a slower clearance of
rATLG, delayed immune reconstitution and subsequently higher
transplantation related mortality. Other forms of serotherapy,
such as Alemtuzumab, as well as equine-ATG (less frequently
used), can have highly variable PK and a significant influence on
IR and survival chances.

A prospective validation of a new dosing nomogram for
rATG in pediatric patients (PARACHUTE trial) proved to be
effective to expedite immune reconstitution (primary endpoint)
and survival (secondary endpoint) (34). This study confirms our
previous results showing that a timely recovery of CD4T cells
(>50 CD4+ T cells/µL at two consecutive measurements within
100 days post-HCT) is the strongest predictor of leukemia-
free survival, non-relapse mortality, as well as overall survival
(23, 35, 37, 38). We previously showed that adequate CD4
recovery is associated with a lower chance for relapse in
acute myeloid leukemia (AML) (22) and with higher survival
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TABLE 1 | Suggested novel ATG (thymoglobulin) dosing nomograms based on

PKPD modeling for (non-)myelo-ablative settings in pediatrics and adults [For

pediatrics based in PARACHUTE clinical trial; (34)].

Setting Dosing on Target AUC after

HCT (AU*d/mL) and

donor source

Starting

day

References

Pediatrics;

myelo-ablative

Weight

ALC

Cell source

<20 for cord blood

<50 for bone

marrow (T-Replete)

−9 (26, 34)

Adults: non-

myelo-ablative

ALC 60–90 for peripherally

mobilized stem cells

(T-Replete)

−9 (35)

Absolute lymphocyte count (ALC). Area under the curve (AUC).

chances for patients with adenoviral reactivation (24). Recently
this association was also found to be a significant predictor
in a predominantly T cell depleted cohort of pediatric and
adult patients (23, 26, 39). Moreover, a recent multicenter
trial also showed the association of CD4 T cell recovery with
survival chances in patients developing GvHD (23). Interestingly,
the CD4 IR is preceded by increasing cell numbers of the
myeloid lineage and could even be retraced to the proliferative
potential of myeloid cells in BM and CB grafts (38). This makes
CD4+ T >50/µL a reliable biomarker for clinical decision
making, e.g., patients who fail to reconstitute CD4T cells may,
for instance, be eligible for prophylactic therapy or for pre-
emptive treatment upon the first positive virus measurement.
Alternatively, patients with adequate CD4T cell numbers should
be monitored carefully, but would not receive treatment, as there
is a reasonable chance that the reconstituting immune system
will clear the pathogen by itself. Of course, these observations
should be further studied in the context of a clinical trial, and
follow-up studies and validations are needed to confirm whether
predictions can be further improved.

In a recent retrospective cohort analysis (including > 650
pediatric and young adult patients), the cumulative exposure to
Bu significantly influenced clinical outcomes (40). The optimal
Bu-exposure (80–100 mg∗h/L) was associated with the highest
survival chances and lowest toxicity and was independent of
the indication, chemo-combination (Bu + Flu, Cy + Bu, or Bu
+ Cy and Melphalan), age and donor source. The method of
Bu-exposure estimation may differ between centers and could
be responsible for a large variation in the reported estimated
exposures (40). This emphasizes the value of standardizing the
entire process of sample logistics up to data reporting, in order to
be able to compare different treatment strategies.

More recently, Flu-exposure (given prior to transplant) was
also found to influence survival by negatively affecting IR in
patients who were over-exposed (41, 42). This is an interesting
observation, given that the exposure in blood was only before
transplant, and it is important to note that the PK in the
organs in experimental models can be different, as discussed
by the authors. These studies show that the pharmacokinetic
variation between individuals is high and that these differences
in exposure can have significant impact on outcomes, including
survival. It is still daily practice that a variety of conditioning

regimens are used, which can complicate comparisons of HCT
outcomes across different centers and even within trials as
illustrated by Soiffer et al. (25). Also, post-transplant Cy is a
frequently used (and a simple and cheap) transplant platform
to cross the HLA barrier in allogeneic HCT and induce a state
of immunologic tolerance (43, 44). While its simplicity makes
it an attractive approach, there is not much data available about
immune reconstitution in this transplant setting, which would be
of interest to study in more detail to identify predictors for failure
or success.

Together, these data suggest that the recovery of (CD4+)
T cells may be an easy-to-obtain biological marker and a
potential biomarker/predictor to monitor treatment success in
population studies. Additional work is needed to identify further
biomarkers with clinical predictive value. A biological predictor
for clinical outcomes, even before clinical signs will be visible,
may be valuable to anticipate graft-versus host responses. It may
also facilitate stratification of patient subgroups for treatment
interventions after HCT, e.g., prophylactic antiviral therapy, or
the use of checkpoint inhibition, to ensure adequate treatment
for responsive patients, while predicting non-responders or
patients with a high probability of developing life-threatening
side effects who may be directly eligible for other treatments
(45). As different institutions have their own policies on
sample collection and monitoring, it is of crucial importance
to set up multicenter validation trials to establish standardized
protocols for sampling, handling logistics, measurements and
data processing, to reduce result variability and allow for more
accurate data comparison.

MONITORING IMMUNE CELL
RECONSTITUTION

Multicolor flow cytometry is the technology by default in many
accredited transplant laboratories for immune cell reconstitution
monitoring. It enables the analysis of a large number of
parameters simultaneously, in a short time and for a reasonable
cost. Many centers monitor the recovery of the common
leukocyte subsets based on CD45 (leukocytes), CD3, CD4, CD8
(T cells), CD19 (B cells), αβTCR, γδTCR and CD16/CD56 (NK
cells), and may analyze the maturation of T cells from naïve to
effector/memory cells to discriminate lymphopenic proliferation
and the recovery of thymic output. There are, however, no
stringent guidelines for clinical decisions based on quantification
of cell subsets post-HCT.

Many effector and regulatory cell types have been linked to the
anti-cancer immune responses (46). Different subsets of T cells
play crucial roles in controlling disease progression, and effectors
like CD8+ and CD4+ T cells have been associated with direct
anti-tumor activity and a favorable prognosis, particularly when
those T cells expressmemory and activationmarkers (47–50). NK
cells were shown to mediate tumor regression in AML patients,
eliminate graft rejection and protect patients against GvHD
(51, 52). The presence of mature antigen-presenting dendritic
cells (DCs) has been correlated with improved survival (53–
56). T regulatory (Treg) cells down-modulate T-cell activation
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through the production of immunosuppressive cytokines (TGFβ,
IL-10), as well as through surface receptors (CTLA4), and can
drastically impact both the anti-tumor immune response as well
as the control of GvHD (57–59). Myeloid suppressive cells (60–
62) and regulatory B cells (63–65) also play a potential role in
attenuating the immune response and controlling effector cells
and signaling mechanisms. Moreover, the presence of certain
biomarkers may be predictive for the functioning of effector
mechanisms; e.g., sorafenib-related IL-15 production causes
an increase in CD8+CD107a+IFN-γ+ T cells with features
of longevity and eliminates leukemia in secondary recipients,
indicating that sorafenib after HCT might be more effective
through induction of IL-15-mediated metabolic reprogramming
of leukemia-reactive T cells (66). Others showed that the presence
of peripheral blood DCs in high frequencies relates to clinical
response to high-dose IL-2 (67). This data suggests that DCs may
be instrumental for endogenous- and immunotherapy-induced
immunity against cancer.

In summary, data from multiple studies suggest that
monitoring immune cell subsets may hold predictive value
for outcome, development of adverse effects, or may be used
for patient stratification for certain treatment modalities.
Multicenter validation studies are required using standardized
protocols for sampling, handling logistics, measurements
and data processing. Diagnostic laboratories in transplant
centers have standardized protocols to diagnose and measure
minimal residual disease burden in patients with hematological
malignancies. Most centers provide validated assays for
CD34 cells and immune monitoring of leukocyte subsets
post-HCT in a standardized way. It thus seems a small step
to collect and collectively report these data in international
databases (e.g., EBMT), and to relate biological markers, such
as CD4T cell reconstitution, to outcome parameters and to the
treatment procedures.

CYTOKINE PROFILING

Profiling soluble markers in blood may be of value to assess
the status of the immune system before, during and after
immunotherapeutic interventions for infections or GvHD, or to
provide additional insight into the therapeutic mechanisms of
action. Blood markers should be regarded as surrogate markers
andmay not always reflect local responses in affected tissues, such
as skin or gut in GvHD. As this topic has been reviewed recently
(9, 68), we here just describe two scores that may be close to
multicenter validation studies and emphasize the standardization
of techniques. Previous studies characterized biomarkers for
aGvHD-related mortality post-HCT; a biomarker score using
ST2, TNFR1, and Reg3a to guide risk-adapted therapy at aGvHD
onset irrespective of the conditioning regimen intensity (69, 70).
Another formula, including the markers lactate dehydrogenase,
creatinine and thrombocytes, termed the Endothelial Activation
and Stress Index (EASIX), was also reported useful for prognosis
of survival chances in patients suffering from aGvHD after HCT
with reduced intensity conditioning (71). These scores should
still be prospectively validated in the different HCT settings,

preferentially in coordinated multicenter trials before they can be
implemented in patient care.

The technology to acquire the parameters for EASIX may
be more standardized in and between different centers than
those for analyzing proteins, such as ST-2. Many technologies
are available e.g., antibody-based ELISA’s or multiplex platforms,
liquid chromatography—mass spectrometry (LC-MS), electro-
chemiluminescence (72), but concentrations may differ
depending on the methods used. The latter is problematic for
implementation of mathematical scores. Standardization is
needed for the procedures of sample processing and isolation,
selection of tubes and duration of storage/cryopreservation.
Protein levels can differ considerably between serum and plasma
samples (due to release of platelet-associated molecules into
serum), even between the type of anticoagulant used, and are
prone to changes due to variations in time (from sampling to
processing and time of storage) and/or temperature (73).

IN SUMMARY

Survival after HCT depends on many factors, including a
balanced and timely immune reconstitution in the first 3
months post-HCT. Delayed immune reconstitution is associated
with a lack of disease control, viral infections, and seems
to increase the chances of immune dysregulation, resulting

TABLE 2 | Suggested harmonized panels.

Cell type Standard panels Advanced

monitoring

suggestions

Cell

Phenotyping

of Graft

Composition

and IR

αβT

γδT

Treg

B

NK/NKT

DC/mono

αβTCR, CD45RO/RA, CD3,

CD4, CD8, CD27

γδTCR, CD45RO/RA, CD3,

CD27

CD45, CD3, CD4, CD25,

CD127, FoxP3

CD45, CD19, CD38, CD27,

IgM/G/D, CD21

CD45, CD3, CD56, CD16

CD11c, HLA-DR, CD14,

CD16, CD1c, CD141, CD303

• Intracellular cytokines

after PMA/ionomycin

stimulation

• Specific TCR by

multimer approach.

• TCRγδ

Secretome - MultiPlex panel (e.g.,

IL-7, IL-15, ST2,

TNF-a, IL-6, HGF,

IL-2R, IL-8, GM-CSF,

etc.)

Cell function -

• NK cell lysis

• T cell proliferation

after stimulation

with antigens and

mitogens

• B cell maturation

General parameters that could be included in harmonized immune monitoring protocols

across most studies/centers, and advanced parameters that may be of great value in

specific studies that can only be performed in specialized immunology labs or analyzed in

a central laboratory.
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in higher non-relapse mortality rates. Currently, only a few
HCT programs consider therapeutic drug monitoring of agents
used in the conditioning (a main factor influencing immune
recovery) or apply frequent systematic monitoring of immune
cell reconstitution to predict unwanted events.

Based on current knowledge, recommendations can be made
with regards to personalized drug dosing and application
of a standardized minimal panel for immune monitoring
to generate fast responsive surrogate markers for efficacy or
the development of unwanted effects. It may be valuable
to register the details of the treatment modality, i.e., drug
doses and if possible, drug exposure, graft composition, and
standardized immune reconstitution parameters to the Center
for International Blood and Marrow Transplant Research
(CIBMTR) and EBMT databases. This could also initiate the

establishment of consensus guidelines in clinical trials on

monitoring and reporting a minimal set of parameters, which
can be extended to add-on trial-specific parameters (Table 2).
Efforts to harmonize HCT protocols/platforms aiming to create
the optimal “immune milieu” to exert the most optimal
effector mechanism may have more impact on survival chances
than many novel maintenance therapies (35, 74). Moreover,
it will provide a more straightforward comparison between
different treatment modalities, due to better prediction of the
immune milieu.
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