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Abstract: Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment
option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies.
The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with
the immunological recovery of the T cell subsets, of which the dynamics and relations to complications
are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools
for better prediction and modulation of adverse events. Here, we review the current knowledge
regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory
T cell reconstitution, as well as their relations to outcome, considering different cell sources and
immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways
and are associated with distinct adverse and beneficial events; however, adequate reconstitution of
all the subsets is associated with better overall survival. Although the exact mechanisms involved
in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to
be further elucidated, the data and suggestions presented here point towards the development
of individualized approaches to improve their reconstitution. This includes the modulation of
immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve
overall survival changes.

Keywords: allogeneic hematopoietic cell transplantation; hematological malignancies; immune
reconstitution; T cell subsets; serotherapy; conditioning; immunosuppressive therapies; biomarkers

1. Introduction

Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into the primary and
potentially curative treatment procedure for patients with high-risk hematologic malignancies.
Hematopoietic cells can be derived from bone marrow (BM), cord blood (CB) or peripheral blood (PB),
from either matched unrelated or related donors. The first successful allo-HCT, treating a pediatric
patient with lymphoma, occurred in 1975. Although much improvement has been made since then,
current long-term survival rates are still around 50–65% due to relapsed disease and adverse effects
associated with the procedure that might lead to severe and life-threatening conditions. Risk factors
involve graft rejection, acute and chronic graft-versus-host-disease (GvHD) and viral reactivations
(VR) [1–4]. These complications have been reported to be a consequence of the chemotherapy or
transplant preparative regimens, leading to immune dysregulation and to protracted lymphopenia [5,6].
In addition, the use of T cell-depleting (TCD) serotherapy, such as anti-thymocyte globulin (ATG),
in order to decrease the probability of GvHD may have a major impact on immune reconstitution
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(IR) and therefore affects the risk of VR and relapse [7,8]. IR after allo-HCT of myeloid or natural
killer (NK) cells is more rapid compared to the slow reconstitution of T cell populations [2,9–11].
Furthermore, T cells often show a skewed T cell receptor (TCR) repertoire and remain dysfunctional
even after the recovery to normal lymphocyte numbers [12]. Recent studies provide evidence that
T cell reconstitution is key in the development of transplantation-related complications and the
patient’s ability to defeat these complications [4,13–16]. Therefore, an understanding of the processes
involved in T cell reconstitution is critical for protection against opportunistic infections, a sustained
graft-versus-leukemia (GvL) effect, and survival chances after allo-HCT [2–4,13]. Here, we will review
the current understanding of T cell reconstitution following allo-HCT as treatment for hematological
malignancies. We discuss the post-HCT dynamics of different T cell subsets: CD4+ and CD8+ αβ T
cells, γδ T cells, iNKT cells, regulatory T cells (Tregs), MAIT cells and the reconstitution of both naive
and memory cells.

2. T Cell Reconstitution after allo-HCT

IR of the T cell compartment after HCT is complex and dynamic. T cell reconstitution involves
two phases: homeostatic peripheral expansion (HPE) and thymopoiesis. Initial lymphoid immunity is
provided by passenger mature naive and memory T cells that immediately undergo HPE to replenish
the T cell compartment. HPE is influenced by either positive or negative T cell selections, cell source,
cytokine exposure and TCR stimulation [12,17,18]. This thymus-independent mechanism is mainly
important for early T cell reconstitution, since thymopoiesis takes at least 6 to 12 months to occur.
Thymopoiesis is affected by age-related regeneration capacity, therapy-induced cytotoxic insults,
stem cell source and GvHD [19–22]. This process results in the emergence of novel phenotypically
naive T cells that have maturated in the thymus, simultaneously increasing TCR diversity, which is
related to a better clinical outcome [23–26].

T cell subsets reconstitute in distinct ways post-HCT (Figure 1), which is heavily influenced
by multiple transplantation and patient-related factors, including the conditioning regimen [12],
cell source [27–29], donor type [30], age of recipient and donor [12], HLA mismatches [31,32],
infections [33], graft manipulation [17,34], as well as GvHD type, treatment and prophylaxis [9]. T cell
reconstitution can therefore even be delayed for over 2 years [9,23,35], which is highly related to
morbidity and mortality [2–4,13–16,36,37].
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Figure 1. Schematic overview of the reconstitution of the distinct T cell subsets following allogeneic
hematopoietic cell transplantation (HCT). iNKT, γδ T cells and Treg cells rapidly recover within weeks
to normal levels after the time of Transplant. CD8+, CD4+ and memory T cell recovery can be as early as
one to two months, and these subsets subsequently reconstitute within one to two years. Reconstitution
of the naive T cell pool highly depends on thymopoiesis and can take years, starting around three
months after transplantation. MAIT cell frequencies seem to remain extremely low within the first year
and only reach normal levels after years following allogeneic HCT.
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3. CD4+ T Cells

Naive CD4+ T cells can differentiate into particular lineages based on cytokine stimulation,
cytokine milieu, co-stimulation and antigen concentration [38]. The CD4+ T cell compartment is
commonly divided into regulatory T (Treg) cells and conventional T helper (Th) cells. Higher numbers
of CD4+ T cells after transplantation attenuate GvHD, prevent VR and VR-associated mortality and are
significantly correlated with increased relapse-free and overall survival [3,13,33,39,40]. Both subsets
react differently to homeostatic signals and therefore reconstitute in distinct ways after allo-HCT.

3.1. Th Cells

In many studies, T-helper cells are referred to as total CD4+ T cells. After allo-HCT, a very quick
but stable recovery of CD4+ T cells over time is associated with low incidence of viral reactivations and
relapse [39,41–43], and with increased overall survival [2–4,44]. However, a peak of CD4+ T cell levels
during the first 90 days after BMT and CBT is correlated to higher mortality [2,45], which is probably
due to an underlying event that could potentially affect long term outcome, such as a GvHD or VR.

There are major differences in CD4+ T cell reconstitution between recipients receiving grafts from
different cell sources [2,3]. CD4+ T cells recover within as early as 1–2 months and reach reference levels
about 7–12 months after both CBT and BMT, with a better reconstitution after CBT [17,22,41,42,46,47].
CD4+ T cells reconstitute more rapidly in patients receiving PB grafts compared to BM grafts [3,4,45,48].
In contrast, it takes up to two years for the CD4+ T cells to reconstitute in patients receiving TCD
grafts [17,25,47], which contain on average >100-fold lower CD3+ cells compared with CB grafts [17].
This is consistent with the principle of HPE as a mechanism driving early T cell expansion, while a
better thymic-dependent mediated naive T cell recovery is important for late T cell reconstitution.

Early CD4+ T cell reconstitution is highly affected by components of the conditioning regimen.
Their reconstitution is extremely delayed when TCD, such as ATG, is used in the conditioning
regimen [25,41,44,46,49–51]. ATG is included to decrease the chance of developing GvHD,
but overexposure may result in severely delayed IR. The results from a recent randomized trial
showed that individualized ATG dosing based on weight and total lymphocyte count (TLC) enhanced
the CD4+ T cell reconstitution post-HCT, as well as overall survival (Trial NL4836, unpublished).
The effect of ATG is dramatically influenced by the order of other components in the regimen, as shown
in patients receiving total body irradiation (TBI) and cyclophosphamide (Cy) [50]. TBI followed
by Cy results in a much more reduced TLC, causing ATG overexposure post-HCT and thus slower
IR. Cy followed by TBI on the other hand did not result in ATG overexposure, resulting in a better
outcome. Furthermore, Filgrastim (G-CSF), which is routinely used after CBT and not after BMT,
dramatically enhances killing of ATG-coated cells [42]. The effect of ATG was first thought to be
particularly on naive CD4+ T cells [6,44,52], which are present in a larger number in CB grafts [29].
Patients receiving CB grafts without ATG conditioning show a rapid CD4+ T cell reconstitution
(faster than BM) [40,41,49], which can be associated with the finding that fetal naive CD4+ T cells
proliferate much more upon stimulation compared to adult naive CD4+ T cells [29]. Notably, G-CSF
without ATG might positively influence CD4+ T cell reconstitution by increasing innate IR, as a strong
association between an enhanced innate recovery and CD4+ T cell reconstitution after BMT and CBT is
described [53]. Furthermore, G-CSF-mobilized grafts have a faster CD4+ T cell reconstitution compared
to immobilized grafts [45,54]. However, to what extent G-CSF treatment would affect reconstitution of
CD4+ T cells is unclear. Proliferation of innate immune cells is already higher within CB grafts and
innate IR has been shown to be more rapid after CBT compared to BMT/PBT [2,17,53]. In contrast to
ATG, posttransplant Cy is suggested to induce T helper cell dysfunction rather than elimination and
thymic clonal deletion, thereby reducing both acute and chronic GvHD occurrence [55,56]. Together,
adapting the dosing schemes of drugs used as standard-of-care or simply adjusting the order of
different treatment modalities can be considered “low hanging fruit” for the improvement of survival
chances post-HCT.
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In conclusion, CD4+ T cell reconstitution can be predicted by various covariates, such as the
overlap in timing of residual ATG exposure, innate immune recovery and Filgrastim administration.
Hoare et al. (2017) published a mechanistic mathematical model, including many aspects playing a role
in IR to predict CD4+ T cell reconstitution post-HCT [46]. However, dose and timing of ATG, together
with different CD4+ T cell subsets, are not included. As the CD4+ T cell subsets are responsible for
different types of immune responses, a better understanding of the underlying biological mechanisms
needs to be obtained using more detailed immune monitoring protocols. Furthermore, prospective
cohort studies are needed to increase T cell IR by studying the benefits of personalized conditioning
strategies and post-HCT treatment. It is of note that, in most diagnostic labs and clinical studies,
CD4+ T cells not only include T helper cells but also Tregs. In particular, in the transplantation setting,
discrimination of these subsets might be valuable.

3.2. Tregs

Tregs (CD4+ CD25+ FoxP3+) comprise 4–10% of the circulating CD4+ T cells and maintain
immune homeostasis and self-tolerance by inhibiting cytokine secretion and proliferation of antigen
processing cells (APCs), NK, B and T cells. They are critical in controlling responses from other
immune cell subsets to self and foreign antigens, and play a central role in preventing autoimmune
disease. Tregs can be subdivided into naturally occurring Tregs, derived from the thymus, and induced
Tregs, which are differentiated from nonregulatory CD4+ CD25+ cells [1,57]. Induced Tregs are
more susceptible to apoptosis and have a less stable expression of FoxP3 [57]. Although debate
exists [55,58–60], high numbers of FoxP3+ T cells in the graft and early post-HCT are negatively
correlated with GvHD [18,54,60–64]. However, the literature also suggests that an enhanced Treg
function can suppress the GvL effects and thereby the allo-HCT outcome [58].

Reconstitution of Tregs has been suggested to be primarily achieved by HPE without major
contribution of thymopoiesis, especially compared to reconstitution of effector T cells [18,51,62,65].
The proportion of Tregs among the CD4+ T cell population returns to normal within 6 weeks post-HCT,
as soon as the CD4+ T cells are detectable [57,60]. In the subsequent 2 to 3 months, differences in the
stability of this proportion have been observed [57,60], which might be related to a higher proportion
of activation-induced Tregs, the occurrence of GvHD (and associated treatment) and thymopoiesis.
This can further be explained by differences in prophylaxis, since sirolimus-based prophylaxis
promotes Treg expansion [66] and steroid-treatment as prophylaxis likely enhances Treg prevalence
and activity [67]. ATG as GvHD prophylaxis greatly delays reconstitution of Tregs [41,44,49,51],
while posttransplant Cy seems not to negatively affect their recovery but rather increases the Treg
number and function in murine models, greatly reducing GvHD incidence [55,56,68]. Notably, the exact
mechanisms of Cy prophylaxis in humans still need to be elucidated. Despite differences in stability
after one-month, normal levels of Tregs are achieved by 9 months post-HCT [18,57,60]. In patients
with prolonged CD4+ lymphopenia, however, Treg levels were observed to decline after 9 months and
remain at very low levels from 12–24 months [18,62]. This might be a result of exhaustion of the Treg
pool due to HPE. Together with the reported increase in recent thymic emigrants (RTEs) within the Th
population and not within the Treg population upon recovery of thymic function [65], this suggests
that effector CD4+ T cell recovery plays a role in Treg homeostasis.

Tregs show a more activated phenotype and their reconstitution is more rapid after CBT compared
with BMT/PBCT [57], which might be associated with the observation that fetal naive CD4+ T cells are
more likely to develop into Tregs, unlike adult naive CD4+ T cells [29]. Furthermore, steroid-treatment
as prophylaxis in CBT might tip the balance to more regulatory responses in patients receiving CB
grafts [67]. Together with the lower effector T cell number in CB, this supports the correlation of high
Treg numbers with a low GvHD incidence in CBT [69]. Nevertheless, others show no differences
in Treg reconstitution between CBT and BMT [60]. Early infusion of donor Tregs without GvHD
prophylaxis prevented GvHD [30,70], while others showed correlations between high Treg numbers
and GvHD [58,59]. These discrepancies might be explained by the existence of diverse Treg populations
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and the many parameters affecting associations as covariates, such as conditioning, thymopoiesis, age,
adverse events, etc. [18,30,65,71]. In addition, one must realize that the Treg function in different stages
post-HCT may differ.

Taken together, these studies suggest a link between the number of Tregs and the development of
GvHD. In addition, the exact mechanisms involved in Treg reconstitution, such as the influence of
prophylaxis, and their associations with allo-HCT outcome need to be further elucidated. Therefore,
studies including well-defined cohorts with Treg subset identification by flow cytometry using staining
for CD4+ CD25hi CD127lo FoxP3+ and not only CD4+ CD25hi FoxP3+ or CD4+ CD25hi together with
suppression assays to test the functionality of the Treg cell population are necessary.

4. CD8+ T Cells

CD8+ T cells, often referred to as cytotoxic T cells, provide clearance of virally infected cells and
tumor cells by killing them through the release of cytotoxic molecules and cytokines [72]. CD8+ T cells
are HLA class I-restricted for recognition of antigens and high levels of CD8+ T cell counts post-HCT
are associated with the chance to develop GvHD [16,45,64,73,74]. However, the alloreactivity by CD8+

T cells is also thought to mediate the GvL effect, in particular because a lower CD8+ T cell count is
associated with higher relapse rates [10,33]. Moreover, higher numbers of CD8+ T cells early after
transplantation are correlated with increased overall survival [10,31,33,45]. This again illustrates the
delicate balance of productive immune function post-HCT to prevent infections and relapse while
maintaining functional immune homeostasis and regulation to prevent GvHD.

CD8+ T cells reconstitute faster compared to CD4+ T cells [7,9,47,65,75], which is influenced
by cell source, graft type and cytomegalovirus (CMV) seropositivity [9,31,60,76]. Less studies have
focused on CD8+ T cell reconstitution compared to reconstitution of CD4+ T cells. This might
be because the CD8+ T cell levels are more variable due to instant reactions to microbial events,
decreasing the possibility to find significant correlations [39]. Although thymopoiesis substantially
contributes to CD8+ T cell reconstitution [5,7], the fast CD8+ reconstitution is presumably a result of
the rapid HPE of effector memory CD8+ T cells early post-HCT [33,77], as the infused CD3+ count
and HLA-match are significantly associated with CD3+ CD8+ T cell recovery [31]. Furthermore, the
presence of CMV-specific CD8+ effector memory T cells in CMV-seropositive recipients is associated
with faster CD3+ CD8+ T cell recovery, with a markedly faster reconstitution in recipients of grafts
from CMV-seropositive donors [76–78]. Data on CD8+ T cells show that recovery can be as early as 1
month and reconstitution to normal levels within 10 months after transplantation, regardless of cell
source and potential damage to the thymus [7,9,33,47,65,75]. When comparing different cell sources,
CD8+ recovery is faster after PBT [45] than BMT and CBT, in which reconstitution of this compartment
is similar [22,60]. Others observed a slow reconstitution following CBT compared with BMT and
PBT [2,5,9,17,79], where the proportion reached normal levels 1 year post-HCT. This is comparable
to reconstitution in recipients receiving TCD-PB grafts [17,25,47]. However, this delay might be due
to the effect of ATG together with G-CSF in CBT [42], although the effect of ATG on CD8+ T cells is
less compared to CD4+ T cells [7,41]. The fast reconstitution among recipients of G-CSF-mobilized PB
grafts compared with BM recipients [45] suggests that an increased innate IR due to G-CSF treatment
might also have a positive effect on CD8+ T cell reconstitution, similar to the effect on CD4+ T cell
reconstitution [53]. The effect of posttransplant Cy as prophylaxis on CD8+ T cells is not yet clear,
although this might not directly influence CD8+ T cell recovery but is suggested to induce CD8+

effector cell dysfunction [55,56].
Overall, CD8+ T cell recovery seems to occur more rapid compared to CD4+ T cell reconstitution

and is highly influenced by cell source and graft type. The fact that CD8+ T cell reconstitution
correlates with protection against leukemic relapse and infections, and with improved overall survival,
underscores the importance of adequate reconstitution of this subset. Further knowledge regarding
CD8+ T cell recovery and activation obtained through more in-depth immune monitoring might
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contribute to CD8+ T cell reconstitution as a significant predictive variable to timely identify adverse
events and the need for immunotherapeutic intervention.

5. γδ T Cells

Gamma delta (γδ) T cells normally comprise about 5% of the entire CD3+ T cell population and
express the γδ TCR instead of the conventional αβ TCR [1,80]. Different from αβ T cells, γδ T cells can
rapidly be activated as a response to stress-induced self-ligands that are upregulated on transformed,
infected, or otherwise stressed cells [81]. This population is suggested to facilitate allo-engraftment
and to exhibit strong anti-infectious and antileukemia-effects, without causing GvHD [33,34,82–84].
Although some find correlations with GvHD [33,58,82], high levels post-HCT are correlated with
increased leukemia-free survival and overall survival [33,83–85]. Due to these properties, both the
use of γδ T cells as immunotherapy and post-HCT γδ T cell reconstitution are being more and more
recognized within this research area.

Reconstitution of γδ T cells is faster than αβ T cell reconstitution and takes 1–2 months [86,87].
They immediately expand after BMT and haplo-HCT [33,34], which is inversely associated with CD3+

and αβ T cell numbers transferred with the graft [84]. Together with an extremely slow reconstitution in
patients receiving grafts depleted of both αβ and γδ TCRs [47,83,85], this corroborates the principle of
HPE as the mechanism driving early γδ T cell expansion [84,86,87]. Although the γδ T cell population
is thought to be mainly derived from HPE throughout the first year post-HCT [33], naive γδ T cells
increase in recipients following haplo-HCT between 1 and 3 months [34,87]. This suggests that these
cells differentiate from donor hematopoietic stem cells [34,87]. Furthermore, TCR repertoires of
regenerated γδ T cells display very different clonotypes from the hosts’ repertoire post-transplantation,
supporting de novo development from donor stem cells in the thymus [33]. Although showing a
skewed γδ TCR repertoire, this newly established repertoire remains very stable for at least 6 months
post-HCT [87]. In addition, no long-term qualitative differences in γδ T cells have been observed
between different cell sources [83,85]. Notably, intentionally retaining γδ T cells in the graft, thereby
achieving an efficient and fast γδ T cell reconstitution post-HCT, might have a positive effect on
HCT outcome.

γδ T cell reconstitution is largely influenced by infections and reactivations, in particular
reactivation of CMV [33]. CMV reactivation post-HCT results in rapid and large HPE of specifically
CMV reactive γδ T cells [33,34,80,87]. Paradoxically, CMV reactivation is in some studies associated
with a reduced risk of relapse [88], possibly because γδ T cells are both capable of recognizing
CMV-infected cells and tumor cells of hematopoietic origin. Intentionally reactivating CMV-reactive
γδ T cells might therefore have a favorable effect on leukemia relapse risk [34,80]. γδ T cell recovery is
further thought to be influenced by immunosuppressive therapies—similar to αβ T cells—although no
associations have been found so far [84].

In conclusion, recovery of the γδ T cell compartment is highly influenced by graft type, infections
and reactivations. Unfortunately, there are only a limited number of studies that focused on the
reconstitution of this important T cell population, which is positively associated with various HCT
outcomes. Further prospective cohort studies including a larger number of patients to investigate
the driving mechanisms of HPE, the development of newly derived T cells during thymopoiesis,
their functionality as well as the effect of the cell source and conditioning regimens on γδ T cell
reconstitution and function are needed.

6. MAIT Cells

Mucosal-associated invariant T (MAIT) cells comprise 1–10% of CD3+ cells and are abundant in
both PB and mucosal tissues. They are innate-like T cells that highly express CD161 and a semi-invariant
αβ TCRs that recognize microbial metabolites presented by MR1 [89]. MAIT cells can be activated
in MR1-dependent and MR1-independent ways, although expansion requires circulating B cells and
commensal microbiota [89–92]. In the allo-HCT setting, no associations between high MAIT cell
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numbers and protection from infections have been reported so far [93]. However, low frequencies of
MAIT cells in the graft and post-HCT are associated with severe GvHD [74,92–95], and higher numbers
seem to be associated with improved overall survival [94].

Reconstitution of MAIT cells post-HCT significantly correlates with age [92,94] and cell
source [92,93,96,97]. Early MAIT cell reconstitution is driven by the HPE of the MAIT cells transferred
with the graft [93]. Since CB contains much lower frequencies of MAIT cells compared with adult
graft sources [97], their reconstitution is highly impaired following CBT [93,96]. Extremely low
counts remain up to 12 months [92,96], and normal values after CBT are only reached around 5
years in children [96] and around 10 years in adults [92]. On the contrary, a rapid recovery to a
plateau can be seen from Day 30 to Day 100 post-BMT/PBT [93]. MAIT cell frequencies, however,
seems to remain much lower compared to healthy controls up to 1–2 years post-HCT [93,98]. Notably,
MAIT cells were only monitored within PB and not within mucosal tissues. Furthermore, MAIT
cells in CB proliferate upon CD3 stimulation alone, while MAIT cells in adult PB need both CD3 and
co-stimulation to proliferate [93,97]. Together with the suggested contribution of thymopoiesis to MAIT
cell reconstitution post-CBT [96], this highlights the need for longitudinal studies monitoring MAIT cell
frequency and function in both PB and mucosal tissues along with the contribution of thymopoiesis.

MAIT cell reconstitution is positively and negatively influenced by gut microbiota and
immunosuppressive therapies, respectively [92,93,98]. The abundance of Bifidobacterium longum
and Blautia spp. post-PBT [93] and gut microbiota diversity post-CBT [92] are positively correlated with
a better circulating MAIT cell reconstitution. Their reconstitution seems to be negatively influenced
by ATG, cyclosporine A and sirolimus after BMT/PBT [98], and cyclophosphamide after HCT [93].
No associations with incorporation of TBI [93], glucocorticoids and calcineurin inhibitors [92] with
MAIT cell recovery were found. However, immunosuppressive therapy-induced proinflammatory
signals [89,91], along with an altered gut microbiota composition as a result of conditioning therapy,
as well as altered dietary intake and antibiotic use [99], might further influence MAIT cell reconstitution
and function after allo-HCT.

Together, MAIT cell reconstitution seems to be extremely slow and depends on age, cell source,
gut microbiota and immunosuppression. However, low MAIT cell counts might reflect a migration
towards sites of (GvHD-induced) inflammation, although this has not yet been found clinically in
humans [96]. Since MAIT cell reconstitution has gained attention in recent years, only a few small
studies have focused on circulating MAIT cell recovery. Reproducible methods to detect and quantify
MAIT cells and functionally distinct MAIT cell subsets [100] in mucosal tissues are crucially needed to
determine the migration of MAIT cells into inflamed tissues.

7. iNKT Cells

Invariant NKT (iNKT) cells are rare innate-like T cells with immunomodulatory functions,
which express semi-invariant αβ TCRs that recognize lipid antigens presented by CD1d molecules.
Similar to MAIT cells, they are capable of secreting large amounts of cytokines upon activation in
TCR-dependent and TCR-independent manners [89]. High numbers of iNKT cells in the graft and
early after allo-HCT are associated with protection against GvHD [101–106] and relapse [103,106,107]
and seems to be correlated with improved overall survival [103]. Therefore, using this T cell population
as immunotherapy and increasing the iNKT cell numbers after allo-HCT has gained attention in
recent years.

Reconstitution of iNKT cells occurs independently of T cells [103] and the proportion of iNKT
cells already reaches normal values within 1 month post-HCT [60,108,109]. When comparing distinct
cell sources, PB grafts contain higher numbers of iNKT cells compared with BM grafts, and iNKT cells
reconstitute faster after PBT compared to BMT [101,105]. Recipients from CB grafts show a slower
recovery compared with BM- and PB-transplanted recipients [60,94]. After TCD-HCT, iNKT cells
emerged in as early as 3 months, reaching normal reference values by 18 months [107]. Besides the
relatively small influence of cell source on iNKT reconstitution, the use of immunosuppressive drugs
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might have an impact. However, following BMT/PBT, steroid administration seems not to suppress the
number of iNKT cells [101] and ATG seems not to impair iNKT cell recovery [109]. Although further
studies should investigate whether the slower reconstitution post-CBT is a result of immunosuppressive
treatment, iNKT cells seem to display rapid effector functions within 3–6 months post-CBT [108].
This suggests that immunosuppressive drugs might only transiently affect iNKT reconstitution and
function immediately after allo-HCT, if at all.

In conclusion, iNKT cells reconstitute early and rapidly following allo-HCT, which is slightly
influenced by cell source. The association of iNKT with prevention from GvHD points towards novel
therapeutic options to predict or prevent GvHD post-HCT; for example, the adoptive transfer of iNKT
cells into recipients that fail to reconstitute this population, or the use of early iNKT/T cell ratios as a
new parameter to adapt GvHD prophylaxis. Importantly, iNKT cells comprise distinct subsets with
different dynamics following allo-HCT [105,107]. Future studies should focus on these subset dynamics,
their relations to clinical outcomes and predictive values for adapting GvHD treatment post-HCT.

8. Naive T Cells

The naive T cell (Tn) compartment (CD45RA+ CD45RO− CCR7+) consists of a large number
of cells with unique TCRs, which potentially proliferate and differentiate into all types of effector
and memory progenies upon interacting with newly encountered antigens [110]. This compartment
comprises a heterogenous population, including RTEs and mature Tn cells. T cell receptor excision
circles (TRECs), which decline upon cell division, together with CD31 expression are commonly used
to measure RTEs [110,111]. In the allo-HCT setting, early activation of donor Tn cells is correlated with
chronic GvHD, suggested to be a result of large numbers of alloreactive precursors due to the enormous
diversity of the naive TCR repertoire [45,64,65,112–115]. Overall, adequate Tn cell reconstitution is
crucial for long term immune function and tolerance [25,116] and correlates to improved overall
survival [2,15,45,116].

Early reconstitution of the Tn cell pool highly relies on the number of Tn cells transferred with
the graft [14,22,29,116]. Early after transplantation, Tn cells are maintained at relatively normal
proportions due to HPE and increased survival [10,65,117], probably resulting in a rapid decline in
RTE numbers and reduced TCR diversity [111,118]. Since Tn cells are present in a larger number
in CB grafts [29], an increase in the percentages of Tn cells seems to occur faster early after CBT
compared to BMT/PBT [14,21–23,111]. Notably, recipients of G-CSF-mobilized PB grafts show higher
Tn cell numbers compared with BM-transplanted recipients [45]. The fast reconstitution following
CBT is probably due to the highly proliferating fetal naive CD4+ T cells present in CB grafts [29].
These are poised to become Tregs, decreasing GvHD probability, and seem to mediate a stronger
anti-leukemic effect compared to adult T cells [26,29]. In haplo-HCT, however, Tn cell activation and
numbers might be affected by donor NK cell alloreactivity triggered by HLA mismatches [119,120].
NK cells can become alloreactive when they do not express a certain degree of inhibitory and activating
ligands that recognize the HLA class-I alleles on their target cells [32]. NK sensitivity to class-I
polymorphism seems to be restricted to hematopoietic cells, thereby impacting Tn cell reconstitution
due to cytolytic activity against DCs and Tn cells, decreasing GvHD occurrence [119,120]. The impact
on Tn cell reconstitution might persist longer after transplantation, since donor alloreactive NK cells
have been detected years after haplo-HCT [120]. Nevertheless, NK cells can also secrete a number of
cytokines, which might promote Tn cell reconstitution, thereby contributing to GvHD development [32].
Importantly, Tn cells transferred with the graft survive posttransplant cyclophosphamide [117,121],
while low-dose ATG results in significantly smaller Tn cell numbers post-HCT [113,114]. Around 100
days post-HCT, the Tn cell pool slowly reconstitute within months to years, mainly accomplished by
thymopoiesis [21,22,65,111,118,122].

Thymic differentiation of donor-derived lymphoid progenitors [22,29,122] are thought to be
strongly correlated with TREC values [21,26,64,111,116,118,123]. This indicates that the TREC levels
reflect real thymic de novo production. Thymopoiesis is significantly influenced by extensive GvHD,
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immunosuppressive drugs, VR and age [21,22,64,111,115,116,122,124]. Thymic output might be increased as
a result of lymphopenia [122]; however, this can also be related to clinical events [115]. When comparing cell
sources, TRECs seem to increase faster following CBT compared to BMT/PBT [14,21,23,111]. The presence
of a broader TCR repertoire diversity in recipients of CB grafts up to 3 years post-HCT indicates a
better thymic reconstitution from CB progenitors [23,24]. Clinically, less TCR diversity post-HCT
might indicate the existence of large, dominant donor-derived alloreactive clonotypes, correlating
with the increased occurrence of GvHD after BMT and PBT [16]. TREC levels increase similarly
following BMT and PBT [116], although recipients of G-CSF-mobilized PB grafts show a higher TREC
content compared with BM-transplanted recipients [45]. Depletion of all T cells or only Tn cells
within PB grafts might not influence thymopoiesis, since RTEs and TCR diversity seems not to be
reduced later after transplantation [111,112,118,125]. Notably, others reported a recovery of TRECs to
control values already within 6 months post-PBT [115], at which the Tn cell numbers are still extremely
low [21,112,115]. TREC numbers did not increase after 6 months [26,115], suggesting ongoing cell
division [115]. It is therefore essential analyze both TREC content and naive T cell numbers to get
insight into the kinetics and dynamics of T cell recovery post-HCT.

Immune reconstitution and restoration of the TCR repertoire later after transplantation requires
intact thymic function and usually takes years. Changes in the early Tn cell compartment, in particular
CD4+ naive T cells, presumably predict relapse and other long-term outcomes after allo-HCT. Current
RTE markers are useful; however, their association differs between conditions and between CD4+ and
CD8+ Tn cells [110]. Furthermore, Tn cell reconstitution show distinct dynamics between the T cell
subsets [22,64,65]. Longitudinal studies combining immunophenotyping, TRECs measurements and
TCR sequencing, together with functional assays, are necessary to provide further insights into the role
of the functional heterogeneity of Tn cells and their reconstitution in the allo-HCT setting.

9. Memory T Cells

Memory T cell subsets show notable plasticity but are generally divided into effector memory
(TEM), central memory (TCM) and stem memory (TSCM) T cells [121]. TEM cells mediate stronger effector
functions compared to TCM cells [126]; however, TCM cells are much stronger correlated to long term
persistence [127,128]. TSCM comprise a naive-like, antigen-experienced, self-renewing population,
which is suggested to be positioned upstream from the memory and effector T cell subsets in T cell
ontogeny [35,126]. They are able to survive for decades [126,128,129], have enhanced proliferative
potential and immune reconstitution capacity, and are therefore thought to be the key source for
immunologic memory [126]. The memory T cell compartment is maintained by division of TSCM and
through maturation from naive T cells [117,121,129–131]. This crucial compartment is depleted in HCT
patients, leading to an urgent re-education of immunological memory from the time of Transplant.

Immunological memory transferred with the graft depends on the graft type (with CB containing
almost no memory cells), and reconstitution of the memory T cell compartment highly relies on the
quality and number of infused memory T cells within the graft [10,35,118]. TCM cells are hardly
detectable early after transplantation, probably because they are more sensitive to TCD therapies than
TEM and TSCM cells [52]. TEM infused with the graft proliferate and produce cytokines rapidly upon
stimulation, and high levels are therefore correlated to a lower incidence of opportunistic infections and
a higher incidence of both GvHD and GvL [16,33,64,77,127]. The recovery of a functional TEM subset
can be established within 1–2 months post-HCT [10,52], although their expansion can be dampened
by posttransplant Cy [121]. TEM numbers are higher from 2–6 months in recipients of haplo-HC
grafts compared to both sibling and unrelated matched grafts, while recipients of unrelated matched
grafts show higher total counts of TEM than recipients of sibling matched grafts [10]. This is probably
due to the rapid expansion of alloreactive TEM or rapid proliferation of TEM infused with the graft
upon re-exposure to antigens [16]. On the other hand, as described for Tn cells, HLA mismatches in
haplo-HCT might also impact TEM reconstitution due to donor alloreactive NK cell cytolytic activity
against DCs and TEM cells [119,120]. Additional infusions of lymphocytes of the same donor (DLI)
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selected to deliver the graft may be used to increase the anti-leukemic effect and strengthen the
protection against infections, as most cells possess a memory phenotype. However, DLI treatments
come with the costs of increased GvHD toxicity, again exposing the delicate balance between GvL and
GvHD responses.

The TSCM subset is highly enriched following HCT, despite differences in conditioning regimen,
cell source and GvHD prophylaxis [35,117,121]. However, TSCM reconstitution seems to be influenced by
the occurrence of GvHD [64]. TSCM cell counts are significantly higher following CBT compared to BMT
and PBT [35], which might be related to the higher number of naive T cells in CB grafts [29]. TSCM cells
are mainly derived from differentiation of non-alloreactive naive T cells infused with the graft due to a
lymphopenic environment [117,121]. In addition, administration of posttransplant Cy contributes to
the generation of TSCM cells from naive precursors [117,121]. Differentiation of non-alloreactive naive
T cells into TSCM cells might play a crucial role in HCT outcome, as increased naive T cell counts are
positively correlated with improved overall survival [2,15]. However, donor-derived alloreactive naive
T cells might be able to differentiate into alloreactive TSCM cells, contributing to GvHD [64]. As a high
fraction of naive T cells differentiates into TSCM cells after HCT, it might be valuable to include TSCM

cell markers in future studies to quantify TSCM contribution.
Although our current knowledge on memory T cell reconstitution after HCT is limited, TEM cells

appear to reconstitute rapidly following HCT and may provide early immunological protection.
Nevertheless, TSCM cell reconstitution has been suggested to be most important, as this subset is
able to differentiate into all memory and effector T cell subsets. More studies focusing on long-term
reconstitution in large cohorts following both T-replete and T-depleted grafts are necessary to gain
more insight into the reconstitution of this important T cell subset.

10. Concluding Remarks and Future Perspectives

Reconstitution of the T cell subsets is influenced by multiple transplantation- and patient-related
factors and is highly correlated with HCT outcome (Figure 2). High numbers of Tregs [18,60,61],
MAIT cells [74,94,95] and iNKT cells [102–104] correlate with protection from GvHD, while high Th
and CD8+ T cell counts may be positively correlated with GvHD [2,16,45,73]. On the other hand,
high numbers of donor-derived alloreactive Th and CD8+ T cells are associated with relapse-free
survival [3,10]. Importantly, γδ T cells are not alloreactive and are therefore not associated with
GvHD [34]. Moreover, γδ T cells are correlated with a lower incidence of opportunistic infections and a
higher GvL effect [83,84]. All these different T cell subsets are encompassed within TN, TEM, TCM and
TSCM cells. High concentrations of alloreactive Tn cells [25,45,64,116] and TEM cells [16,35,127] infused
with the graft exhibit strong anti-infectious and antileukemia effects but are also correlated with GvHD.
TN and TSCM cells have been suggested to be most important for HCT outcome, as these subsets are
able to differentiate into all memory and effector T cell subsets [2,15,35,45]. Nevertheless, adequate
reconstitution of all distinct T cell subsets following allo-HCT is associated with increased overall
survival [2,15]. Together, these data suggest that overall survival and event-free survival not only
require a fast immune recovery of the immune cells but also that immune recovery needs to be diverse
(e.g., TCR diversity) and balanced to achieve homeostasis and prevent immune dysregulation.

A major impact on T cell reconstitution is the use of immunosuppressive therapies to prevent
or treat GvHD [7,8]. This results in loss of TCR repertoire diversity by severely depleting the
donor T cells [41,132] and decreasing the thymus-dependent development of phenotypically naive
T cells [8,20,111]. Although patients can recover approximately the same TCR diversity as healthy
individuals [24,133], long-term survival might be influenced by the effect on both hematopoietic
stem and progenitor cells. The remaining cells need to divide more frequently to replenish the
hematological niche, leading to increased mutation accumulation, which could subsequently promote
the development of secondary malignancies. This chance is probably increased after BMT and PBT,
as the majority of mutations in hematopoietic stem cells are acquired after birth and accumulate
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gradually with age [134]. Furthermore, the limited renewing capacity of adult stem and progenitor
cells might result in exhaustion of these cells and eventually result in a slower reconstitution [133].
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Figure 2. Overview of T cell subset related to allogeneic HCT outcomes and factors affecting
T cell reconstitution before and after allo-HCT. Adequate reconstitution of the distinct T cell
subsets is differently correlated to relapse, GvHD, VR and overall survival following allo-HCT.
Adequate reconstitution of the T cell compartment is highly influenced by distinct factors before and
after transplantation.

Adjusting the GvHD prophylaxis or a better prediction and more selective treatment for patients
at risk of developing GvHD determined by monitoring of (intentionally increased) the reconstitution
of the distinct T cell subsets might improve the allo-HCT outcome. The total number of Treg, MAIT,
iNKT and Tn cells in the grafts and/or early after transplantation may be used as predictive values
for later development of GvHD. In addition, predicting MAIT cell reconstitution by monitoring B
cells, diversity of gut microbiota and the amount of ribA and ribB genes in the microbiomes within
the first months after allo-HCT might also serve as predictor of GvHD risk [92]. Novel therapeutic
options to prevent GvHD can be early infusion of donor Tregs [135], promote Treg expansion by
Sirolimus treatment [66,136] or intentionally activating and expanding iNKT cells [105]. Recently,
a Phase 2A clinical trial showed that RGI-2001 administration was associated with reduced GvHD risk
by increasing iNKT-cell induced Treg expansion early after allo-HCT [136]. A Phase 2 clinical trial
evaluating the safety and efficacy of repeat doses of RGI-2001 doses is currently ongoing (Identification
No. NCT04014790). Furthermore, selectively depleting CD45RA+ cells instead of all CD3+ cells in
grafts might serve as a novel method to abolish serotherapy, reduce cGvHD and preserve infection
protection and memory T cell reconstitution [112,125,137]. Together, immunosuppressive therapies to
treat or prevent GvHD might be adjusted based on whether the T cell subsets adequately reconstitute
after allo-HCT, resulting in a better clinical outcome.

Adequate CD4+ T cell reconstitution is strongly associated with increased survival chances in
patients with adenovirus reactivation. One might consider that the use of preemptive antiviral therapies
can be delayed or started from a higher viral load in patients with sufficient CD4+ T cell recovery
at the time of viral reactivation. Especially taking antiviral drug toxicities into account, since timely
CD4+ T cell reconstitution prevents viral reactivations and is correlated with a lower VR-associated
mortality [39]. Furthermore, early monitoring of CD4+ T cell recovery provides the opportunity to
identify patients at risk of viral reactivations and therefore to preemptively intervene with antiviral
therapies. The recovery of CD4+ T cells itself following HCT might be predicted by monitoring
early innate immune recovery, which has been shown to be positively correlated with CD4+ T cell
recovery [53].
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The positive correlation between Tn cell counts and adequate T cell reconstitution together with
the knowledge that a large part of the immunological memory is derived from Tn cells [117,129,130]
highlights the importance of the naive T cell compartment. This suggests a better immunological
memory and long-term protection following CBT, which is additionally supported by the significantly
higher TSCM cell numbers observed in patients receiving CB grafts [35]. Nevertheless, immunological
memory might also be maintained by division of already existing memory T cells, suggesting an
important contribution of donor memory T cells in the life-long protection against pathogens following
BMT and PBT. Furthermore, donor memory T cells are beneficial in protection against opportunistic
infections and exerting GvL effects after transplantation [33,77,127], highlighting the important role of
memory T cells post-HCT. These results, however, suggest a more crucial role for Tn cells compared
with memory T cells in T cell reconstitution and thereby HCT outcome. More detailed knowledge on
the yet undefined relation between Tn cell heterogeneity and later development of complications and
mortality after transplantation is therefore necessary to improve HCT outcome.

The T cell compartment consists of a large variety of subpopulations which are all associated with
distinct effector functions; however, most observational clinical studies focusing on T cell reconstitution
are not able to discriminate between these cell subsets or effector cell functionality. These subsets are
associated with distinct adverse or beneficial events; nevertheless, more detailed immune monitoring,
including standardization of T cell subset identification between centers, is necessary to gain more
insight into the biological mechanisms underlying immune reconstitution of the T cell compartment after
allo-HCT. In conclusion, more in-depth knowledge of T cell reconstitution following transplantation will
contribute to more effective treatment interventions, eventually leading towards more individualized
approaches for patients undergoing allo-HCT.
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