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Methods: We used data of TAVI-patients treated in 2013-2017. For each original-model, the best update-
method (model-intercept, model-recalibration, or model-revision) was selected by a closed-testing pro-

?f;’ r‘:;ir;i;:eter Aortic Valve Implantation cedure. We internally validated both updated models with 1000 bootstrap samples. We also updated the
(TAVI) models on the 2013-2016 dataset and temporally validated them on the 2017-dataset. Performance
Prediction model measures were the Area-Under ROC-curve (AU-ROC), Brier-score, and calibration graphs.

Model updating Results: We included 6177 TAVI-patients, with 4.5% observed early-mortality. The selected update-
External Validation method for FRANCE-2 was model-intercept-update. Internal validation showed an AU-ROC of 0.63
Model recalibration (95%CI 0.62-0.66) and Brier-score of 0.04 (0.04-0.05). Calibration graphs show that it overestimates
Closed-testing procedure early-mortality. In temporal-validation, the AU-ROC was 0.61 (0.53-0.67).

The selected update-method for ACC-TAVI was model-revision. In internal-validation, the AU-ROC was

0.63 (0.63-0.66) and Brier-score was 0.04 (0.04-0.05). The updated ACC-TAVI calibrates well up to a
probability of 20%, and subsequently underestimates early-mortality. In temporal-validation the AU-
ROC was 0.65 (0.58-0.72).
Conclusion: Internal-validation of the updated models FRANCE-2 and ACC-TAVI with data from the NHR
demonstrated improved performance, which was better than in external-validation studies and compa-
rable to the original studies. In temporal-validation, ACC-TAVI outperformed FRANCE-2 because it suf-
fered less from changes over time.
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1. Introduction

Since 2002, the Transcatheter Aortic Valve Implantation (TAVI)
was introduced as a less invasive treatment for patients with severe
aortic stenosis at high-mortality risk and not candidate for surgical
aortic valve replacement (SAVR) [1-2]. Over the last years, TAVI
emerged as a safe and efficacious alternative treatment also for
intermediate and low-risk patients with severe aortic stenosis [3-4].

Proper risk estimation of post-operative early (30-day) mortality
following TAVI using mortality prediction models (MPM) may help
heart teams in getting insight into the outcome of TAVI procedures
and may help to improve the quality of care. In the past, the classical
cardiac surgery MPMs, such as the European System for Cardiac
Operative Risk Evaluation (EuroSCORE-I and EuroSCORE-II) [5-7],
and the Society of Thoracic Surgeons Predicted Risk of Mortality
(STS-PRoM) [8], were used to predict early-mortality after TAVI.
However, those classical MPMs had significant limitations in
early-mortality prediction after TAVI [9]. Therefore, several TAVI-
specific MPMs (such as FRANCE-2 and ACC-TAVI) have been devel-
oped for preoperative risk estimation [10-11]. These TAVI-specific
MPMs were externally validated on different TAVI-populations
[12-15]. The models FRANCE-2 and ACC-TAVI have been shown to
outperform other validated MPMs on their discrimination perfor-
mance. However, in those external-validation studies, the predictive
performance of both MPMs (FRANCE-2 and ACC-TAVI) was still poor.
The discrimination in terms of the Area Under the Receiver-Operat
ing-Characteristics (AU-ROC) was 0.63 and 0.64, respectively; cali-
bration was poor; and accuracy was limited [12-13].

Besides, MPMs in general may also lose their predictive perfor-
mance over time due to performance drift [16-18]. Poor predictive
performance could be due to deficiencies in the development meth-
ods of the original-models, changes in the population’s characteris-
tics over time (e.g. expanding TAVI indication to low-risk patients),
or due to improvements in the intervention procedure. For these
reasons, using such MPMs without their adaptation on an external
population is suboptimal [18-22]. Although developing a new
MPM from scratch on new datasets is a common practice, especially
when the performance of pre-existing models is poor, updating
these models can capitalize on information in the pre-existing mod-
els [16,23-26]. Updating existing prediction models can indeed
improve their performance in new populations as demonstrated in
various studies [24-25,27-28] and enables reusing the MPMs for
their original purposes [13,29-30]. Generally, there are three com-
mon updating-methods for logistic regression models: updating
the intercept, updating the intercept and slope (model-
recalibration), or updating all estimated coefficients (model-
revision). The closed-testing procedure described by Vergouwe
et al. [23] selects the best updating-method.

In spite of the fact that different existing and recently developed
TAVI-specific models are available, only a few models were exter-
nally validated. For this study, we selected the models FRANCE-2
and ACC-TAVI because they have been externally validated in three
external-validation studies and have shown the best performance
[12-14]. One of these three external-validation studies was recently
performed on our own NHR population [14]. We hence sought to
update the best two externally performing models on our population,
and for simplicity did not attempt to update all proposed models.

In this study, we aim to update two TAVI-specific models
(FRANCE-2 and ACC-TAVI) for predicting the early-mortality
depending on the closed-testing procedure [23]. We perform
internal-validation on the updated models using a recent TAVI-
cohort from the NHR. To understand the performance of the
updated models over time, which best mimics the model’s envi-
sioned usage in clinical practice; we also perform temporal-
validation in which the models are tested on a dataset collected
prospectively after the models have been updated on earlier data.
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2. Methods
2.1. Study population

In the Netherlands, 16 heart centers perform TAVI procedures.
The Dutch heart centers submit patients’ data (including demo-
graphics, clinical characteristics, intervention risk factors, procedu-
ral details, mortality status, complications, and follow-up data
after hospital discharge) to the NHR registry [31]. In total, data
from 13 Dutch heart centers, who had the outcome measurement
“30-day mortality”, were included in this study. Data from three
heart centers were excluded as they did not timely present the out-
come measurements. All variables used in each model were
obtained from the NHR, including the outcome (early-mortality
status), from January 1, 2013, to December 31, 2017. Although
the obtained data originate from several centers, in our sample
we has no information about which center a patient belongs to
due to local privacy regulations.

2.2. The prediction models FRANCE-2 and ACC-TAVI

The model FRANCE-2 (French Aortic National CoreValve and
Edwards) is an early-mortality risk score. It was developed in
2014, based on the TAVI French registry with 3883 TAVI patients
to predict early-mortality after TAVI [10]. As reported on the
internal-validation of this model, the AU-ROC of FRANCE-2 was
0.59 (95% CI 0.54-0.64), and both calibration-intercept and
calibration-slope did not deviate from their ideal values of zero
and one [10]. This MPM was externally validated [13-14], where
the AU-ROC was 0.63 (95% CI 0.60-0.67), the Area Under
Precision-Recall Curve (AU-PRC) was 0.09, the Brier-score was
0.044, the Brier-skill score (BSS) was —0.01 and both the
calibration-intercept and calibration-slope did significantly deviate
from 0 and 1, respectively [13-14] (see E-component Table 1).

ACC-TAVI was developed in 2016 by the society of thoracic sur-
geons and the American college of cardiology to predict in-hospital
mortality in TAVI patients (n = 20586) in the United States [11]. As
reported on the internal-validation of this model, the AU-ROC of
ACC-TAVI was 0.66 (95% CI 0.62-0.69), and the calibration-
intercept and calibration-slope did not deviate from the ideal val-
ues of zero and one, respectively [11]. The stated purpose of this
MPM is TAVI patient counselling, quality-of-care improvement,
and national monitoring for appropriateness of the selection of
patients for TAVI. This MPM was externally validated [13-14],
where the AU-ROC was 0.64 (95% CI 0.61-0.67), the AU-PRC was
0.09, the Brier-score was 0.043, the BSS was 0.002 and only the
calibration-intercept did not deviate from zero [14], (E-
component Table 1).

2.3. Definition of the primary outcome and the used variable
predictors

In this study, the primary outcome is the 30-day mortality or
early (post-procedural) mortality, which we defined as death
within 30-days from the TAVI procedure date.

The variables used in each MPM and the definition of the pre-
dictor variables and their corresponding variables in the TAVI-
NHR cohort are given in the supplementary material (E-
component Tables 2, 3, and 4).

2.4. Statistical analysis

Continuous predictor variables are summarized as mean
(standard deviation) or median (inter-quartile-range) and were
compared using Students’ t-test or the Mann-Whitney test as
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appropriate. Categorical predictor variables are summarized as
counts and percentages and were compared using the chi-
squared test or Fisher exact test as appropriate. A p-value < 0.05
of a 2-tailed test was considered significant for all analyses. For
bootstrapping the 95% confidence interval was calculated using
the percentile method.

2.4.1. Missing predictors and missing values

There could be missing predictors and missing values of exist-
ing predictors. For missing predictors, and in line with the
approach used in other studies [13-14,32], if a variable predictor
required by an MPM was not registered in the NHR-TAVI cohort,
the condition represented by this predictor was assumed to be
absent for all patients. However, in addition, we performed a sen-
sitivity analysis by simulating the values of the missing predictor
variable. In each simulation, we have randomly drawn values, with
a probability of 0.5 of each outcome (absent/present), and calcu-
lated the predictive performance measures.

If the registered existing variable predictors of FRANCE-2 and
ACC-TAVI in the NHR-TAVI cohort have missing values then we
assumed that they were missing at random, as we have no specific
reason to assume otherwise. Therefore, and in line with the
approach in other studies [13-14,32], multiple imputations with
ten imputed datasets were generated for the missing values using
Multiple Imputation by Chained Equations (MICE) [33]. The out-
come measure early-mortality was included, as methodologically
recommended, in the imputation models of missing variable
predictors.

The flow diagram in E-component Fig. 1 summarizes the follow-
ing statistical analysis methods.

2.4.2. Selection of the update-method strategy by the closed-testing
procedure, and model updating

To select the most appropriate update-method for the two
MPMs, we applied the closed-testing procedure of Vergouwe
et al. on the whole NHR-TAVI cohort [23]. Application of this pro-
cedure will decide on one out of the four following update options:
no update; update only the intercept (calibration-in-the-large),
update both intercept and slope (logistic calibration); or revise
the coefficients of the underlying predictors. Details about these
methods appear in E-component Methods 1.

The four update-methods imply an increasing number of esti-
mated parameters. Accordingly, the closed-testing procedure
allows the extensiveness of the update to increase progressively
from a minimum (no update) to a maximum (model-revision).
The procedure involves multiple testing with maintaining approx-
imately the chosen type I error rate by implementing a series of
likelihood ratio tests of the updated models against the original-
model. The procedure will only select the model-revision method
if there is enough evidence that the new regression coefficients
are significantly different in the updating population [23].

The update-method that is referred to as model-extension,
which considers adding variable predictors other than the original
estimated variable predictors, is outside the scope of this paper.

2.4.3. Internal-validation of the update-method strategy

We repeated the multiple imputations and the closed-testing
procedure in each of the 1000 bootstrap samples to choose the
update-methods in each sample [34]. Specifically, we updated each
of the two models (FRANCE-2 and ACC-TAVI) in the bootstrap sam-
ple using the corresponding chosen update-method. Consequently,
we assessed the optimism corrected performance for our perfor-
mance measures. The optimism corrected performance was calcu-
lated by subtracting the optimism from the apparent model
performance, where optimism was based on the difference in the
performance of the models trained on the bootstrap samples and
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tested on the original dataset. We also calculated the proportions
of times in which an update method was selected, and the average
performance of that chosen method.

2.4.4. Temporal and cross-validation of the updated models

We also validated the predictive performance of the updated
MPMs by temporal-validation. Specifically, we updated the mod-
els, with the respective selected update-method, on the NHR-
TAVI January-2013 up to December-2016 cohort and validated
them onward on the cohort from January-2017 up to and including
December-2017. This approach reflects the envisioned real-life
behavior of the model when facing new patients.

We also performed cross-validation with four folds. This size
was chosen so that each fold, and hence the corresponding test
set, is about equal to the test set in the temporal-validation
approach. Unlike in the temporal-validation approach, in cross-
validation, we do not take changes over time (which can denote
performance drift) into account. Comparing the results of
temporal-validation with cross-validation helps understand
whether a model in temporal-validation suffered from changes
over time due to drift.

2.4.5. Performance measures

For each of the validation approaches, we used the following
performance aspects and their respective measures: discrimina-
tion by the Area Under Receiver Operating-Characteristic Curve
(AU-ROC); the balance between the positive predictive value
(PPV) and the sensitivity by the Area Under Precision-Recall Curve
(AU-PRC) [35]; calibration by calibration graphs and the Cox
method for inspecting the calibration-intercepts and calibration-
slopes [36]; and prediction accuracy by Brier-score and the Brier-
skill score (BSS) [37]. For each updated model, we measured the
Youden’s index (] statistic), which allows to identify the optimal
cut-off point of the early-mortality risk probabilities [38] to strike
a balance between sensitivity and specificity. Details about these
performance measures appear in E-component Methods 2.

All statistical analyses were performed in the R statistical envi-
ronment version 3.5.1 [39]. Multiple imputations of the dataset
were completed using the MICE package. The graphical plots were
made using the ggplot2 package. The package pROC was used for
constructing the ROC plots and testing the AU-ROCs. The package
PRROC was used to construct the PRC plot and obtain the AU-
PRCs. The reporting in this study adheres to the TRIPOD checklist
for the reporting of multivariable prediction models, the checklist
is the E-component Table 8 [40].

3. Results
3.1. General results

To update the existing FRANCE-2 and ACC-TAVI model, we
included 6177 TAVI patients from the NHR-TAVI registration
(2013-2017) with an observed early-mortality rate of 4.5%
(n = 280) (Table 1). The mean age of the patients was 80.0 years,
51.0% of the patients were female, 7.6% had NYHA class-IV, and
56.0% had NYHA class-III. Urgent TAVI-procedures were 9.0% and
emergency procedures were 0.3%. Patients with critical preopera-
tive state had the highest early-mortality risk of 21.1%, followed
by patients with NYHA class-IV 9.4%, dialysis with 9.2%, non-
transfemoral access route with 8.2%, and urgent procedure-acuity
with 7.6% (Table 1). The mean EuroSCORE-II (the estimated
early-mortality risk) for the whole population was 5.5%. The mean
EuroSCORE-II in the first year (2013) was slightly higher with 5.8%,
while in the last year (2017) it was lower with 5.1%. The same pat-
tern has been observed for the mean estimated early-mortality risk
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Table 1
Patient baseline and procedural characteristics of the study population (n = 6177) stratified according to 30-day postprocedural early mortality.

Variable Total cases Alive (n = 5897) Early-mortality Risk of early-mortality® P-value

N (%) n (%) (n = 280) (%)

n (%)

Age (year) (mean (SD)) 80.0 (6.90) 79.9 (6.9) 80.9 (28.9) - 0.036
Female gender (yes) 3170 (51.3) 3023 (51.3) 147 (52.5) 4.6 0.731
BMI kg/m? (mean (SD)) 27.2 (4.88) 27.3 (4.9) 26.4 (9.4) - 0.006
eGFR (mean (SD)) 59.1 (21.31) 59.2 (21.7) 55.9 (20.0) - 0.014
SPAP (mean (SD)) 31.1(10.93) 30.9 (10.8) 33.7 (12.0) - 0.002
SPAP > 60 mmHg (yes) 86 80 (1.3) 6(2.1) 6.9
Chronic lung disease (yes) 1377 (22.4) 101 (22.2) 76 (27.1) 5.5 0.037
Critical preoperative state (yes) 38 (0.6) 30 (0.5) 8(2.9) 21.1 <0.001
Dialysis (yes) 87 (1.5) 79 (1.4) 8(2.9) 9.2 0.057
NYHA class (yes) <0.001
NYHA class I 666 (12.5) 646 (12.7) 20(7.1) 45
NYHA class I 1270 (23.8) 1232 (24.2) 38 (13.6) 2.9
NYHA class III 2991 (56.1) 2851 (55.9) 140 (50.0) 4.7
NYHA class IV 405 (7.6) 367 (7.2) 38 (13.6) 9.4
Procedure acuity (yes) <0.001
Procedure acuity Elective 5415 (90.8) 5200 (91.1) 215 (76.8) 3.9
Procedure acuity Urgent 536 (9.0) 495 (8.7) 41 (14.6) 7.6
Procedure acuity Emergency 15 (0.3) 14 (0.2) 1(04) 6.7
Unstable angina (yes) 10 (0.2) 10 (0.2) 0(0) 0 $
TAVI access route (yes) <0.001
Transfemoral (TF) access route (yes) 4926 (79.7) 4744 (80.4) 182 (65) 3.7
TF Surgical 770 (12.6) 745 (12.8) 25 (8.9) 3.2
TF Per-cutaneous 2793 (45.8) 2691 (46.2) 102 (36.4) 3.7
TF Unknown © 1363 (22.3) 1308 (22.5) 55 (19.6) 4.0
Non-transfemoral access route (yes) 1165 (18.8) 1067 (18.1) 6 (34.3) 8.2
Subclavian access 103 (1. ) 94 (1.6) 9(3.2) 8.7
Transapical access 506 (8.3 462 (7.9) 44 (15.7) 8.7
Direct aortic access 554 (9. l) 511 (8.8) 43 (15.4) 7.9
Acute pulmonary oedema (yes) N.A. N.A. N.A.

Abbreviations: BMI: Body mass index, eGFR: estimated Glomerular Filtration Rate, SPAP: Systolic pulmonary arterial pressure, NYHA: New York Heart Association functional

status, TF: Transfemoral.

¢: Risk of early-mortality = (the number of death - the total number of cases) x 100. $: Not applicable. ¢: TF Unknown: the TAVI access route is also transfemoral access, but
the sort (surgical or per-cutaneous) wa was not registered in the dataset. N.A.: Not Available in the NHR-TAVI-cohort.

when measured by FRANCE-2 (8.2% in 2013, which gradually
dropped over the years to 6.9% in 2017), and when measured by
ACC-TAVI (4.8% in 2013, which gradually dropped to 4.1% in 2017).

In the NHR-TAVI cohort, only the predictor variable acute-
pulmonary-oedema, which is used in the FRANCE-2, was not regis-
tered. The variables systolic pulmonary artery pressure and NYHA
class had 35.6% and 13.7% missing values in the TAVI NHR cohort,
respectively. The rest of the missing values of predictors were<2%.
Nine predictors with missing values were imputed with 10 multi-
ple imputations. E-component Table 5 provides details about the
percentage of missing values before imputation.

3.2. Performance of FRANCE-2 before and after update

The predicted Mortality of the FRANCE-2 model -as measured
before updating the model in our population- was 7.4%. The AU-
ROC was 0.60 (95% CI 0.58-0.63). The original model overestimates
the early-mortality, as shown in the calibration graph (Fig. 1). The
Brier-score was 0.044. The selected update-method after applying
the closed-testing was model-intercept-update (Table 2). Perform-
ing this update method on the whole dataset resulted in the corre-
sponding final updated model (E-component Table 6a for the final
updated intercept of the model).

The predicted mortality of the updated model was 4.8%. The
optimism-corrected AU-ROC was 0.64 (0.63-0.67). The updated
FRANCE-2 model initially underestimate up to 5% probability then
overestimates the early-mortality as shown in the updated
FRANCE-2 calibration graph (Fig. 1). Only the calibration-slope
did not deviate from its expected value of 1 (Table 2). Brier-score
was 0.043 (0.041-0.47).

4

Repeating the whole model-updating strategy involving the
multiple imputations and update-method selection on 1000 boot-
strap samples revealed that model-revision was the most selected
method (in 62% of the bootstrap samples) (Table 2). This is unlike
the model-intercept update method that happened to be selected
when deploying the close-test on only the whole cohort. However,
the optimism-corrected AU-ROC via bootstrapping of the updated
FRANCE-2 (with model-revision) was 0.63 (95% CI 0.61-0.66). Only
the calibration-slope did not deviate from its expected value of 1
(Table 2). Details of the results about the Area Under the
Precision-Recall-curve, Brier-skill score, and Calibration-in-the-
large and calibration-slope appear in E-component Results 1 and 2.

3.3. Performance of ACC-TAVI before and after update

The predicted mortality of the original ACC-TAVI model on our
population before being updated was 4.4%. The AU-ROC was 0.61
(95% CI 0.59-0.64). The model calibrates well up to predictions of
5%, were most of the predications are. Subsequently, overestimates
the early-mortality as shown in the calibration plot (Fig. 1). The
Brier-score was 0.043.

Applying the closed-testing method resulted in selecting
model-revision as update-method (Table 2). Performing the
selected update method on the data results in the corresponding
final updated model (E-component Table 6b for the final updated
model).

The predicted mortality of the updated model was 4.4%. The
optimism-corrected AU-ROC via bootstrapping was 0.63 (95% CI
0.62-0.66). The updated model calibrates well up to predictions
of 20%, subsequently, it underestimates the early-mortality pro-
portion as shown in the calibration graph (Fig. 1). Both
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Fig. 1. Area under receiver operating characteristic curves and calibration graphs of the original and the updated models France-2 and ACC-TAVIL. In the calibration graphs:
the vertical axes represent the observed early-mortality, while the horizontal axes represent the predicted probabilities of the early-mortality. Note that there is a high

density of cases in the lower range of probabilities.

calibration-intercept and calibration-slope deviated from their
ideal values of 0 and 1 (Table 2). The Brier-score was 0.043
(0.041-0.05). Details of the results about the Area Under the

5

Precision-Recall-curve, Brier-skill score, and Calibration-in-the-
large and calibration-slope appear in E-component Results

1 and 2.
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Table 2
Internal-validations of the model update and fitting strategy in each of 1000 bootstrap samples that were applied on the original models FRANCE-2 and ACC-TAVI.
Performance measures FRANCE-2 FRANCE-2 FRANCE-2 FRANCE-2
No-update model Model-intercept-update Model-recalibration Model-revision
Total number of selected update-methods® 0 339 33 628
AU-ROC* (95% CI) 0 0.64 (0.63-0.67) 0.67 (0.66-0.68) 0.63 (0.61-0.66)
Brier-score (95% CI) 0 0.043 (0.041-0.47) 0.043 (0.041-0.05) 0.043 (0.041-0.05)
Performance measures ACC-TAVI ACC-TAVI ACC-TAVI ACC-TAVI
No-update model Model-intercept-update Model-recalibration Model-revision
Total number of selected update-methods® 9 0 33 958
AU-ROC* (95% CI) 0.64 (0.63-0.66) 0 0.65 (0.64-0.68) 0.63 (0.62-0.66)
Brier-score (95% CI) 0.042 (0.03-0.05) 0 0.043 (0.041-0.05) 0.043 (0.041-0.05)

Abbreviations: AU-ROC: Area under the Receiver operating characteristic curve, ACC-TAVI: (ACC TVT) American College of Cardiology Transcatheter Valve Therapy, FRANCE-

2: French Aortic National CoreValve and Edwards, N.A. Not applicable.

$ Total number of the selected update-methods from the 1000 bootstrap drawn with replacement from the whole NHR-TAVI cohort and having the same size.

# The presented AU-ROC is after adjustment for in-sample optimism.

3.4. Results of temporal-validation for both updated models

In the temporal-validation, the training set (years 2013-2016)
included data of 4345 patients with an observed early-mortality
rate of 5.1%. We updated in this training set each of the original
MPMs using the respective update methods that have been
selected earlier by applying the closed-testing procedure on the
whole cohort. On the validation set (the cohort of the year 2017,
n = 1832, observed early-mortality rate = 3.2%).

For the updated model FRANCE-2 (intercept-update), the pre-
dicted early-mortality rate in the validation set was 4.6%, the AU-
ROC was 0.61 (95% CI 0.53-0.67) (Table 3). For the updated model
ACC-TAVI (model revision) the predicted early-mortality rate was
4.6%, and the AU-ROC was 0.65 (95% CI 0.58-0.72) (Table 3). Details
of the results about the Area Under the Precision-Recall-curve,
Brier-skill score, and Calibration-in-the-large and calibration-
slope appear in E-component Results 3.

3.5. Results of cross-validation for both updated models

In the 4-folds cross-validation (per fold n = 1544), the AU-ROC
updated FRANCE-2 via the intercept-update was 0.63 (95% CI
0.62-0.67). The AU-ROC for the ACC-TAVI (updated with model-
revision) was 0.65 (95% CI 0.64-0.68) (Table 3). For both updated
models, the calibration-intercept and calibration-slope did not
deviate from their ideal values in any of the folds (Table 3).

4. Discussion

In this study, we updated and internally and temporally vali-
dated the FRANCE-2 and ACC-TAVI prediction models for early-
mortality for TAVI patients with contemporary data of TAVI
patients from the Netherlands Heart Registration. The update-
method for FRANCE-2 was intercept-update and the internally val-
idated AU-ROC was 0.63. The update-method for ACC-TAVI was
model-revision and the internally validated AU-ROC was 0.63.
After updating the models and on temporal-validation, ACC-TAVI
did not have a significantly better AU-ROC than FRANCE-2 (0.65
vs. 0.61, p = 0.06).

Internal-validation of both updated models FRANCE-2 and ACC-
TAVI showed AU-ROC (discrimination) to be comparable to the
reported performance of their original models [10-11], and better
than the performance reported in the external-validation studies
[12-14]. (Table 2 and E-component Table 1).

Temporal-validation showed improvement in the discrimina-
tion ability of the updated models, which was comparable to the
original model [11] (Table 3 and E-component Table 1). However,
both calibration-intercept and calibration-slope for both updated

6

Table 3

Results of temporal-validations and cross-validations ofthe updated-models ACC-
TAVI (updated with model-revision) and FRANCE-2 (updated with model-intercept-
update). The development sample of the temporal-validation (cohort 2013-2016)
n = 4345. The validation sample (cohort 2017) n = 1832. Table is showing the results
of the 4-folds cross-validation (n = 1544 per fold).

Performance measures FRANCE-2 ACC-TAVI
Model- Model-revision
intercept-
update
Temporal-validation
AU-ROC* (95% CI) 0.61 (0.53- 0.65 (0.58-0.72)
0.67)
Brier score 0.031 0.031
4-folds cross-validation
AU-ROC" (95% CI) 0.63 (0.62- 0.65 (0.64-0.68)
0.67)
Brier-score (95% CI) 0.043 (0.04- 0.043 (0.041-0.05)
0.5)

Abbreviations as in table 2.
*# The presented AU-ROC is after adjustment for in-sample optimism.

models have significantly deviated from their ideal values of 0
and 1, respectively.

The updated model FRANCE-2 calibrated poorly in this study.
The calibration plot of FRANCE-2 in Fig. 1 shows significant devia-
tions from the ideal calibration in the whole risk range. It under-
predicted early-mortality in lower-risk classes (up to 5%) and
after that overpredicted early-mortality.

On the other hand, the updated ACC-TAVI calibrated better than
the updated FRANCE-2 in this study. The calibration plot of ACC-
TAVI in Fig. 1 did not show significant deviations from ideal cali-
bration in the first two deciles of risk (up to 20%). However, the
updated ACC-TAVI has underpredicted early-mortality in the
higher-risk range, above 20%.

Miscalibration in external-validation studies is common [12-
15]. A common reason could be the improvement of care and/or
procedural techniques that took place between the development
time of the original MPMs and the time of external-validation. Both
FRANCE-2 and ACC-TAVI were developed in the years 2014 and
2016, respectively. Besides, TAVI became a common procedure
and the learning curve is likely to have flattened. In addition, the
TAVI population’s characteristics have been changing over time
(e.g. expanding TAVI indication to intermediate and low-risk
patients) instead of the initial predominance of high-risk cases.
This is likely the reason behind the reduced mortality risk in this
study. A noticeably decrease in early-mortality after TAVI-
procedures during that period has been reported [41-43].
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It is worth mentioning that the included patients’ data in this
study were collected in a period where most of the candidate
patients originated from the high-risk category. However, in
2017 (the last year in our cohort), the European Society of Cardiol-
ogy guidelines suggested offering TAVI procedures for
intermediate-risk patients. This could explain the gradually
decreasing mean early-mortality risk, which we measured over
the years by the EuroSCORE-II, FRANCE-2 and ACC-TAVI. The inclu-
sion of a relatively lower risk group of patients in the last year
increases the heterogeneity of the patient sample in that year. This
heterogeneity, in turn, has likely contributed to the improved dis-
criminatory ability of the models in the temporal-validation.

All these factors might affect the predictive performance and
calibration of logistic prediction models. Therefore, and unlike in
cross-validation, in temporal-validation, both updated models did
not perform well when facing population drift. This underscores
the importance of implementing a periodic dynamic model update
for TAVI-specific MPMs.

Individual updates for the prediction models FRANCE-2 and
ACC-TAVI were performed previously by Martin et al. in 2018
[32]. In that study, a “hybrid method” was proposed for updating
and aggregating multiple MPMs. A method was used that re-
calibrates multiple MPMs using stacked regression while simulta-
neously revising specific covariates in the final model. They
updated both models (FRANCE-2 and ACC-TAV], in addition to
other MPMs) for comparison purposes with their proposed new
method. Both updated models (FRANCE-2 and ACC-TAVI) had an
AU-ROC of 0.63 and 0.64, respectively [32], which are fairly compa-
rable with our findings.

To the best of our knowledge, our study is new in its use of the
closed-testing procedure for selecting appropriate update methods
for these two TAVI-specific early-mortality models FRANCE-2 and
ACC-TAVI. Apart from the study of Martin et al. [32], we could
not find updating studies that report on updating TAVI-specific
early-mortality models such as FRANCE-2 or ACC-TAVI. There are,
however, model updating studies in cardiology and cardiac surgery
for MPMs other than the TAVI-specific MPMs [25-26,30,44]. These
studies used either one of the update-methods (intercept update,
intercept and slope update, model-revision, or model extension),
or apply all of them and choose the model with the best perfor-
mance without using a formal testing procedure [25-26,44]. The
utility of deploying the formal closed-testing procedure for select-
ing an appropriate update method has been motivated by van Cal-
ster et al [45]. Of note, in the study [45] and unlike our study, the
predictive performance of the updated model was measured
instead of repeating the whole update strategy itself as we did in
this paper, and as we would recommend.

Our study has several strengths. We used a large multi-center
dataset of more than 6000 TAVI patients from a recent national
registry dataset. We also used comprehensive predictive perfor-
mance measures (including the area under the precision-recall
curve and Brier-skill Score) to quantify the predictive performance
of the updated models. In addition to the internal validation in
which the update strategy was repeated in 1000 bootstrap sam-
ples, we also performed temporal-validation to inspect the real-
life behavior of the updated models when facing new patients;
and cross-validation to understand whether this behavior is
ascribed to performance drift.

A limitation of this study is that the predictor variable acute-
pulmonary-oedema in FRANCE-2 is not registered in the NHR-
TAVI registration (E-component Tables 2, 4, and 5). Therefore, in
line with other studies [13-14,32], we assumed that acute-
pulmonary-oedema was absent for all patients. However, to under-
stand whether there is a risk of bias, we performed a sensitivity
analysis by simulating the values of the acute-pulmonary-
oedema predictor and calculated the performance measures of
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the updated model. The analysis revealed essentially the same pre-
dictive performance measures (E-component Table 7). Another
limitation is that the generalisability of the updated models is
unknown since we were unable to externally validate the predic-
tive performance in external data. Thus, we recommend research-
ers to externally validate the models.

We found that ACC-TAVI had the best predictive performance
for early-mortality for TAVI patients. For clinical practice, although
most of the existing MPMs for TAVI patients are still far from hav-
ing a good performance, updating the models on new populations
does improve their predictive performance, and hence improves
their applicability for supporting clinical decision-making.

This study also showed that the updated MPMs suffer from per-
formance drift over time. One should hence, in general, consider a
dynamic strategy for updating prediction models, to maintain their
relevance to contemporary patient populations. This is a topic that
is becoming more pertinent as interventions are increasingly given
to lower risk patients [17]. A strategy using statistical process con-
trol (SPC) to detect structural deviations from the natural variabil-
ity in a prediction model’s behavior over time has been suggested
as a possible solution to correct for population, and hence, perfor-
mance drift [46]. In addition, the implications of performance drift
on benchmarking have been demonstrated [47], which is useful for
quality of care officers.

Different lines of work merit future research. First, one may
consider model-extension techniques for updating prediction
models, whereby additional predictors (such as anatomical fea-
tures and dynamic and continuous parameters from ECG, MRI
or ECHO) are considered beyond those used in the original
model. Second, instead of early-mortality, researchers may con-
sider updating, extending and validating such MPMs with long-
term (1-year) mortality as a primary end point. Third, one may
consider comparing the updated (and extended) models, with
new MPMs developed using different machine learning methods.
Fourth, because the estimation of low prevalent outcomes like
early-mortality [14,41-43] is challenging, one might also look
at more prevalent outcomes, such as combining several adverse
outcomes (post-operative mortality and complications such as
paravalvular leak, major vascular bleeding, stroke and permanent
pacemaker implantation) or other patient-relevant outcomes like
quality of life. Using additional variables in model extension and
update, and by applying machine learning approaches to develop
new models, might help identify the best treatment to offer
(TAVI vs. SAVR) with the lowest predicted post-operative com-
plication rate [48], assuming that the patient is readily eligible
to the given alternatives. Finally, there is a need for more
external- and temporal-validation and model updating studies
in other countries [30,49].

5. Conclusion

Applying the update-methods and the internal-validation
methods on the FRANCE-2 and ACC-TAVI prediction models with
data from the NHR-TAVI registration improved the performance
of the models to the extent of their original internal validation.
Currently, the updated ACC-TAVI with model-revision proved
to be the best current tool for early-mortality risk prediction
in TAVI patients. However, the predictive performance of the
updated models is still suboptimal. The updated models
FRANCE-2 and ACC-TAVI are not guaranteed to improve perfor-
mance in new populations, and hence we recommend that, if
possible, other countries and centers consider model updates in
their populations as well. Moreover, findings from temporal-
validation reinforce the need for implementing a periodic
dynamic model update strategy to overcome the effect of perfor-
mance drift
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