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a b s t r a c t 

Resting-state functional magnetic resonance imaging (rs-fMRI) has an inherently low signal-to-noise ratio largely 

due to thermal and physiological noise that attenuates the functional connectivity (FC) estimates. Such attenua- 

tion limits the reliability of FC and may bias its association with other traits. Low reliability also limits heritability 

estimates. Classical test theory can be used to obtain a true correlation estimate free of random measurement 

error from parallel tests, such as split-half sessions of a rs-fMRI scan. 

We applied a measurement model to split-half FC estimates from the resting-state fMRI data of 1003 participants 

from the Human Connectome Project (HCP) to examine the benefit of reliability modelling of FC in association 

with traits from various domains. We evaluated the efficiency of the measurement model on extracting a stable 

and reliable component of FC and its association with several traits for various sample sizes and scan durations. 

In addition, we aimed to replicate our previous findings of increased heritability estimates when using a mea- 

surement model in a longitudinal adolescent twin cohort. 

The split-half measurement model improved test-retest reliability of FC on average with + 0.33 points (from 

+ 0.49 to + 0.82), improved strength of associations between FC and various traits on average 1.2-fold (range 

1.09–1.35), and increased heritability estimates on average with + 20% points (from 39% to 59%) for the full 

HCP dataset. On average, about half of the variance in split-session FC estimates was attributed to the stable and 

reliable component of FC. Shorter scan durations showed greater benefit of reliability modelling (up to 1.6-fold 

improvement), with an additional gain for smaller sample sizes (up to 1.8-fold improvement). 

Reliability modelling of FC based on a split-half using a measurement model can benefit genetic and behavioral 

studies by extracting a stable and reliable component of FC that is free from random measurement error and 

improves genetic and behavioral associations. 

1

 

t  

1  

F  

f  

d  

G  

I  

t  

S  

h  

A  

f  

a  

B

 

a  

m  

n  

r  

M  

i  

t  

2  

c  

t  

G  

f  

h

R

A

1

. Introduction 

Resting-state functional connectivity has become a popular method

o study the functional organization of the human brain ( Biswal et al.,

995 ; Greicius et al., 2002 ; van den Heuvel and Hulshoff Pol, 2010 ).

unctional connectivity has shown promise as a potential biomarker

or its association with neuropsychiatric and neurological disor-

ers ( Hager and Keshavan, 2015 ; Hohenfeld et al., 2018 ; Whitfield-

abrieli and Ford, 2012 ; Zhang and Raichle, 2010 ; Fox et al., 2014 ).

n addition, it is associated with various cognitive and behavioural

raits ( Vaidya and Gordon, 2013 ; Basten et al., 2015 ; Shen et al., 2018 ;

mith et al., 2015 ; Toschi et al., 2018 ), and functional connectivity is

eritable to a certain extent ( Ge et al., 2017 ; Colclough et al., 2017 ;

dhikari et al., 2018 ; Teeuw et al., 2019 ). However, for resting-state

unctional connectivity to become a biomarker, it needs to be a reli-
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ble and state-independent endophenotype ( Gottesman and Todd, 2003 ;

eauchaine and Constantino, 2017 ). 

Resting-state functional magnetic resonance imaging (rs-fMRI) has

n inherently low signal-to-noise ratio (SNR) primarily due to ther-

al noise of the magnetic resonance (MR) scanner and physiological

oise from the subject, such as head motion, cardiovascular and respi-

atory activity ( Logothetis and Wandell, 2004 ; Bianciardi et al., 2009 ;

urphy et al., 2013 ; Liu et al., 2016 ). These sources of noise are mixed

nto the blood-oxygenation level dependant (BOLD) signal and may lead

o biased estimates of resting-state functional connectivity ( Birn et al.,

014 ; Siegel et al., 2017 ). Numerous strategies have been proposed to

lean the BOLD signal from these unwanted sources of noise and recover

he signals related to neural activity ( Burgess et al., 2016 ; Caballero-

audes and Reynolds, 2017 ; Power et al., 2015 ). However, no per-

ect solution exists ( Bright and Murphy, 2015 ; Varikuti et al., 2017 ;

arkes et al., 2018 ; Krishnamurthy et al., 2018 ; Lindquist, 2020 ). Noise
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Table 1 

Demographics table for participants included in 

the extensively processed fMRI data package of 

the Human Connectome Project Young Adult 

cohort. 

Measure Statistic 

Participants (N) 1003 

Families (N) 429 

Age range (min; max) 22–37 years 

Age (mean ± SD) 28.71 ± 3.71 years 

Sex ratio (female:male) 534:469 

Abbreviations: SD = standard deviation of the 

mean. 
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1 https://www.humanconnectome.org/study/hcp-young- 

adult/document/extensively-processed-fmri-data-documentation 
2 https://www.humanconnectome.org/storage/app/media/documentation/ 

s1200/HCP1200-DenseConnectome + PTN + Appendix-July2017.pdf 
n the BOLD signal has a negative impact on the reliability of the signal

nd results in the attenuation of functional connectivity estimates based

n temporal correlation between two BOLD signals ( Spearman, 1904 ;

ang, 2010 ; Birn et al., 2014 ; Mueller et al., 2015 ). Even with state-

f-the-art procedures, test-retest reliability of functional connectivity is

nly poor to moderate for short scans (i.e. less than 30 min) ( Noble et al.,

019 ; Chen et al., 2015 ; Shah et al., 2016 ), with large variation in relia-

ility for the different connections measured in a single individual over

n extended period of time ( Choe et al., 2015 ). Although reliability of

unctional connectivity can be improved by increasing the scan duration

p to 1.5 hour ( Birn et al., 2013 ; Laumann et al., 2015 ), this approach

s not always feasible due to the burden on the subject or the cost and

vailability of MRI. The limited reliability of functional connectivity for

can lengths that are typically used in resting-state fMRI studies puts

n upper bound on the heritability estimates of functional connectivity

nd its association with traits ( Vul et al., 2009 ; Neale and Cardon, 1992 ;

e et al., 2017 ). Thereby making it difficult to reliably identify func-

ional connections in the brain that are associated with particular traits

 Geerligs et al., 2017 ; Kruschwitz et al., 2018 ). 

In Classical Test Theory, the true score of a measure can be ob-

ained from the observed score if the error term is known: observed

core = true score + error term ( Streiner, 2003 ; Miller, 1995 ). The er-

or term can be approximated from ‘parallel scores’ (i.e. repeated mea-

ures). When it is not feasible to acquire two full measurements, two

arallel half-score measures might be an option; e.g. an odd-even split

n an event-related study design ( van Baal et al., 1998 ; van Beijsterveldt

t al., 2001 ). Resting-state fMRI data is uniquely suited for ‘split-half’

eliability modelling because of the temporal nature of the BOLD sig-

al to create two parallel half-score measures by splitting scan session

ata into two or more parts ( Brandmaier et al., 2018 ). For associations,

uch as functional connectivity based on the temporal correlation of two

OLD signals, the error term is defined by the reliability of the two mea-

ures ( Spearman, 1904 ). The true association can be obtained by scal-

ng the observed association with a factor inversely proportional to the

eliability ( Mueller et al., 2015 ; Golestani and Goodyear, 2011 ). How-

ver, classical disattenuation requires the correction factor to be known

 priori and has the risk of overcorrecting the association ( Wang, 2010 ).

nstead, a structural equation measurement model can be applied to the

alf-score measures to derive a latent variable representing the trait of

nterest that is “free ” of measurement error without the need of an a

rior correction factor or the risk of overcorrection ( Brandmaier et al.,

018 ; Cooper et al., 2019 ). Such measurement models have previously

een applied in twin studies to separate the variance attributed to mea-

urement error from genetic and environmental variance components

o obtain a robust heritability estimate for the reliable part of the vari-

tion ( van Baal et al., 1998 ; van Beijsterveldt et al., 2001 ; Ge et al.,

017 ; Teeuw et al., 2019 ). The measurement model is however suited

or many types of measures and study designs, as long as some form of

arallel scores can be obtained. This implies that reliability modelling

an be useful for the typical cross-sectional resting-state fMRI dataset of

nrelated individuals. However, little is known about the effectiveness

f reliability modelling of resting-state MRI functional connectivity and

ts ability to uncover the true associations between functional connec-

ivity and other traits. 

Here, we examine the benefits of reliability modelling of functional

onnectivity in association with physiological, cognitive and behavioral

raits. For that purpose, a measurement model was applied to functional

onnectivity estimates from the resting-state functional MRI scans of the

uman Connectome Project Young Adult (HCP-YA) cohort ( van Essen

t al., 2013 ). The efficiency of reliability modelling was evaluated for

arious sample sizes and scan durations on (i) the ability to extract a

table and reliable component of functional connectivity and (ii) the

mprovement in the associations of functional connectivity with various

raits. We also aimed to replicate our previous findings of increased her-

tability estimates for the reliable component of functional connectivity

 Teeuw et al., 2019 ). Finally, we investigate the use of the measurement
2 
odel for a typical study that comprises a single resting-state fMRI ses-

ion. 

. Materials and methods 

.1. Human connectome project 

We utilized data from the publicly available extensively processed

MRI data package 1 that is part of the Human Connectome Project Young

dult cohort ( van Essen et al., 2013 ). The package provides data for

003 related individuals (siblings, including monozygotic- and dizygotic

wins; aged 22 to 37 years) from 429 families with four complete runs

f resting-state fMRI scans ( Table 1 ) and consists of precomputed de-

oised and centered BOLD signal time series for nodes in the brain based

n group-ICA decomposition of the data at various decomposition lev-

ls. The acquisition parameters and processing of this data have been

escribed elsewhere 2 ( Smith et al., 2013 ; Glasser et al., 2013 ; see sup-

lementary methods for summary). All analyses were performed using

he group-ICA decomposition with 50 nodes ( Supplementary Figure

1 ). 

.2. Functional connectivity 

Functional connectivity estimates were obtained by calculating the

emporal correlation coefficient between the BOLD time series of two

odes using Pearson correlation ( Biswal et al., 1995 ; van den Heuvel

nd Hulshoff Pol, 2010 ). Functional connectivity was estimated for dif-

erent temporal blocks of the time series data to provide full-, half-,

nd quarter-score estimates of functional connectivity for the purpose

f reliability modelling ( Fig. 1 A ). All statistical and mathematical op-

rations on functional connectivity were performed on Fisher’s r-to-Z

ransformed functional connectivity estimates. 

.3. Reliability modelling of functional connectivity 

A measurement model is applied to half-score measures of functional

onnectivity to extract a reliable component of functional connectivity

epresented by the latent variable F i ( Fig. 1 ). Variance shared between

alf-score measures that can be attributed to the latent variable is quan-

ified by the path coefficient ( f i ), which are constrained to be equal in

roportion of variance for both half score measures. Any residual vari-

nce of the half-score measures, which includes measurement error, is

onsidered noise, and is represented by the measurement-specific latent

ariables Es i quantified by the path coefficients es i . 

To demonstrate the ability of the measurement model to extract a

table and reliable component of functional connectivity, test-retest re-

iability is estimated between two latent variables 𝐹 1 and 𝐹 2 that each

https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
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Fig. 1. Partitioning of the BOLD time series and the measurement models used in the analyses. ( A ) Decomposition of the BOLD time series data into temporal blocks 

for the estimation of full-, half-, and quarter-score functional connectivity based on the original full-length time series with 4800 frames (approximately 1 h) of 

resting-state functional MRI data. ( B ) A measurement model with two latent variables each representing a reliable component of functional connectivity across a set 

of half-score measures of functional connectivity. The model is used to estimate corrected test-retest reliability between the two reliable components of functional 

connectivity at different scan sessions ( Rphf ) quantified by the correlation between the two latent variables. ( C ) A standard association model is used to estimate the 

uncorrected test-retest reliability between the observed half-score measures of functional connectivity ( Rphm ) quantified by the correlation between the two observed 

variables. ( D ) A measurement model with one latent variable representing the reliable component of functional connectivity of two half-score measures and another 

latent variable representing the trait. This model is used to estimate the corrected association between the reliable component of functional connectivity and the trait 

( Rphf ) quantified by the correlation between the two latent factors. ( E ) A standard association model is used to estimate the uncorrected correlation between the 

observed full-score measure of functional connectivity and the trait. 

r  

h  

s  

r  

v  

p  

i  

f  

r  

u

 

a  

a  

t  

e  

p  

i  

s  

s

 

p  

t  

v  

m  

u  

m  

2  

m  

m  

(

 

a  

a  

a  

w  

a  

a  

m

epresent a reliable component of functional connectivity based on two

alf-score measures of functional connectivity from independent scan

essions acquired on different days ( Fig. 1 B ). The corrected test-retest

eliability ( Rphf ) is estimated as the correlation between the two latent

ariables. Test-retest reliability from the measurement model is com-

ared to the uncorrected test-retest reliability of functional connectiv-

ty estimated as the correlation between the two half-score measures of

unctional connectivity ( Fig. 1 C ). Improvement in corrected test-retest

eliability is determined by the pointwise difference compared to the

ncorrected test-retest reliability estimate ( Rphm ). 

The measurement model can be adapted to estimate the corrected

ssociation between the reliable component of functional connectivity

nd a trait ( Fig. 1 D ). For comparison, the uncorrected association be-

ween the full-score measure of functional connectivity and the trait is

stimated and compared over all connections ( Fig. 1 E ). The overall im-

rovement in association strength (i.e. the average improvement factor)

s determined by the slope coefficient of the linear regression of the as-

ociation strengths from the measurement model onto the association

trengths from the standard association model. 
3 
All models included fixed effects of sex, age, head motion and HCP

rocessing pipeline version as covariates on the means of the func-

ional connectivity estimates, and fixed effects of sex and age as co-

ariates on the means of the trait. Head motion was approximated by

ean framewise displacement ( Power et al., 2012 ; Supplementary Fig-

re 2 ). All models were specified in the OpenMx structural equation

odelling (SEM) software package ( Neale et al., 2016 ; Boker et al.,

018 ) for R ( R Core Team, 2018 ). The definition of the measurement

odel in OpenMx is provided as a supplementary data file ( Supple-

entary Data File F1 ), and is available on GitHub with an example

 Teeuw, GitHub 2020 ). 

The suitability of applying a measurement model to the data was

ssessed with the goodness of fit metrics Comparative Fit Index (CFI)

nd root-mean-square error of approximation (RMSEA). Model fits with

 CFI > 0.95 and RMSEA < 0.05 were deemed a good fit, model fits

ith a CFI > 0.90 and RMSEA < 0.08 were deemed an acceptable fit,

nd the remaining models (CFI < 0.90 or RMSEA > 0.08) were deemed

n unsuitable fit ( Hu and Bentler, 1999 ; Browne and Cudeck, 1992 ). All

odels with an unsuitable fit were excluded from statistical analyses. 
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Table 2 

Parameters and their values used in the evaluation of the minimal requirements on the 

input dataset for the measurement model. 

Parameter Values Unit 

Total scan duration 

Four sessions across two 

different days 

5, 7.5, 10, 15, 20, 30, 45, 60 

———————————————

400, 600, 800, 1200, 1600, 2400, 

3600, 4800 

Minutes 

———–

Volumes 

Total scan duration 

Two sessions on the same day 

5, 7.5, 10, 15, 20, 25, 30 

———————————————

400, 600, 800, 1200, 1600, 2000, 2400 

Minutes 

———–

Volumes 

Total scan duration 

Single session scan data 

5, 7.5, 10, 12.5, 15 

———————————————

400, 600, 800, 100, 1200 

Minutes 

———–

Volumes 

Number of participants per 

sample 

25, 50, 75, 100, 150, 200, 250, 300, 

400, 500 

Count 

Total number of combinations of parameter values per connection (e.g. for four sessions 

across two different days): 8 scan durations x 10 sample sizes x 100 sample draws = 8000 

models per connection. 
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.3.1. Physiological, cognitive, and behavioral traits 

The Human Connectome Project provides rich phenotypic informa-

ion on the participants. 3 Because of the computational complexity of

he measurement models, we used the results from the standard asso-

iation model ( Fig. 1 E ) applied to 110 continuous and normally dis-

ributed measures ( Supplementary Data File F2 ) to identify seven rep-

esentative traits from different domains for extensive analysis (see Sup-

lementary Materials for details; Supplementary Table S1 ): five traits

 BPDiastolic – diastolic blood pressure levels; CogTotalComp_AgeAdj – to-

al composite score on cognition adjusted for age; WM_Task_2bk_Acc –

ccuracy on all condition in the 2-back working memory task; Emo-

ion_Task_Median_RT – median response time for each condition in the

motion task; and PicVocab_AgeAdj – picture vocabulary test score ad-

usted for age) were among the most strongly associated measures with

unctional connectivity at any individual connection, and two traits

 Gambling_Task_Reward_Perc_Larger – percentage of trials that received a

larger’ prediction in the gambling task; and Taste_AgeAdj – score on the

aste intensity test adjusted for age) were chosen because they were only

eakly associated with functional connectivity. For these seven traits,

e estimated the association with all functional connectivity measures.

For the remaining 103 traits, measurement models were computed

nly for the top 20 connections most strongly associated with functional

onnectivity and the 5 connections with the weakest associated with

unctional connectivity (i.e. near zero association) based on the results

rom the standard association model. The connections were selected in-

ependently for each trait ( Supplementary Data File F2 ). This sam-

ling scheme provides a good approximation of the actual improvement

actor in association strength for the seven fully sampled traits, with

ean absolute difference in improvement factor 2% (range from 0% to

%; Supplementary Table S2 ). 

.3.2. Heritability of functional connectivity 

To emphasize that the measurement model can be applied to the

ypical dataset consisting of unrelated individuals, up to this point we

ssumed that the subjects were independent. However, the Human Con-

ectome Project cohort includes families with monozygotic and dizy-

otic twins and their siblings, and families with non-twin siblings ( Sup-

lementary Table S3 ). We aimed to replicate our previous findings

f increased heritability estimates for the reliable and stable compo-

ent of functional connectivity in a longitudinal adolescent twin cohort

 Teeuw et al., 2019 ). In brief, genetic modelling of data from twins and

iblings allows for the decomposition of the variance of a trait ( 𝑉 ) into

enetic and environmental components. Often, three variance compo-

ents representing additive genetic ( 𝐴 ), common environmental ( 𝐶) and
3 https://wiki.humanconnectome.org/display/PublicData/HCP + Data + 
ictionary + Public- + Updated + for + the + 1200 + Subject + Release 

o  

8  

t  

a  

4 
nique environmental ( 𝐸) influences are considered ( Boomsma et al.,

002 ; Posthuma et al., 2000 ; Neale and Cardon, 1992 ). Heritability

s the standardized additive genetic component: ℎ 2 = 

𝐴 

𝑉 
= 

𝐴 

𝐴 + 𝐶+ 𝐸 . The

nique environmental influences are confounded by measurement error

 𝑀) that can be separated from the “true ” unique environmental ( 𝐸 

′)

nfluences by the measurement model: 𝐸 = 𝐸 

′ + 𝑀 . The variance of the

eliable trait (i.e. the reliable component in the measurement model) be-

omes 𝑉 ′ = 𝑉 − 𝑀 or 𝑉 ′ = 𝐴 + 𝐶 + 𝐸 

′. Heritability of the reliable trait

s estimated as the standardized additive genetic component after ex-

luding measurement error: ℎ 2 = 

𝐴 

𝑉 ′
= 

𝐴 

𝐴 + 𝐶+ 𝐸 ′ . The heritability of the

eliable component of functional connectivity was estimated for a mea-

urement model on the half-score measures of functional connectivity

 Supplementary Figure S3 ). Heritability estimates of the reliable com-

onent of functional connectivity are compared to heritability estimates

rom the full (i.e. uncorrected) measure of functional connectivity ( Sup-

lementary Figure S3 ). Full details on the heritability analysis are pro-

ided in the Supplementary Materials. 

.3.3. Evaluation of the measurement model at different samples sizes and 

can durations 

We performed a parameter sweep to empirically determine the effi-

iency of the measurement model on improving the reliability of func-

ional connectivity and the strength of the association between traits

nd functional connectivity for various sample sizes and total scan du-

ation ( Table 2 ). We repeated the analysis for four sessions across two

ifferent days, two sessions on the same day, and single session scan

ata. 

Each combination of total scan duration and sample size was sampled

00 times per functional connection, with a random set of the desired

umber of participants drawn from the full sample of participants at

ach iteration. To reduce the computational burden of evaluating the

erformance of the measurement model for all connections, the same 25

onnections identified through the sparse sampling scheme previously

escribed were used for each of the seven exemplar traits. 

BOLD time series for the desired scan durations were extracted from

he original full-length BOLD time series data by distributing four time

locks of equal length across all four scan sessions, with each block

tarting at the first volume of each scan session. The blocks were then

oncatenated to construct the time series of the full-, and half–score

easures of functional connectivity ( Supplementary Figure S4 ). This

istributed approach was adopted for multi-session scan data to prevent

alf-score measures from crossing scan boundaries; e.g. for a total time

eries length of 1600 vol (20 min), the second half-score measure would

therwise have been computed across data from both scan #1 (volumes

01:1200) and #2 (volumes 1:400), which has a detrimental effect on

he reliability of the second half-score. This distributed approach was

lso used when the full time series could have fit in the length of a sin-

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
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Fig. 2. Test-retest reliability of functional connectivity estimates. ( A ) Improvement in test-retest reliability between the standard association model ( x -axis) and 

the measurement model ( y -axis); data points are scaled by the average proportion of variance explained by the reliable component, thereby emphasizing the more 

reliable and stable connections, and color-coded by the Comparative Fit Index. ( B ) Point-wise improvement in test-retest reliability between the standard association 

model and the measurement model. ( C ) Proportion of variance of the quarter-score measures explained by the reliable components of functional connectivity. For all 

panels, uncorrected test-retest reliability was estimated as the association between half-score measures of functional connectivity. The corrected test-retest reliability 

from the measurement model was estimated as the association between the two reliable components of functional connectivity based on the quarter-score measures 

of functional connectivity. The red lines indicate the mean of the distributions. 
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o  
le session (i.e. total scan duration < 15 min) to ensure time series are

ased on the same data. For single session data, contiguous blocks were

elected ( Supplementary Figure S4 ). 

.5. Minimal requirements on the input dataset 

The requirements, in terms of sample size and total scan duration , for

 dataset suitable for reliability modelling was evaluated empirically

o determine the threshold where the goodness of fit indices for the

easurement model started to deteriorate. Since no universal absolute

hreshold exists, the proportion of bad fits over the hundred iterations

or each combination of sample size and total scan duration is provided

ith a lower and upper boundary marked at 25% and 50% quantiles.

he same goodness of fit indices Comparative Fit Index (CFI) and root-

ean-squared-error of approximation (RMSEA) and their judgement cri-

eria were used as described before. 

. Results 

.1. High consistency of group-level mean functional connectivity 

Group-level mean functional connectivity was highly consis-

ent across the two half-score measures of functional connectivity

 rho = + 0.996; intraclass correlation ICC = 0.995, see supplementary

nformation for details), with functional connectivity estimates ranging

rom –0.52 to + 0.66 (mean FC = 0.003) ( Supplementary Figure S5 ),

nd absolute differences between the two half-score measure of less than

.06 for individual connections. However, there is high variation within

ndividuals. 

.2. Reliability modelling improves test-retest reliability between scan 

essions 

At the level of individual connection, test-retest reliability of func-

ional connectivity between scan sessions acquired on different days

mproved substantially for 760 connections (62% of all 1225 connec-
5 
ions) with an acceptable or good fit of the measurement model ( Fig. 2 ;

upplementary Figure S6 ). On average, the uncorrected test-retest re-

iability estimate of functional connectivity was + 0.49 (range = + 0.17

o + 0.82; Fig. 2 A ) and the test-retest reliability estimates of the reli-

ble component of functional connectivity was + 0.83 (range = + 0.60 to

 1.00; Fig. 2 A ). The test-retest reliability estimates improved on aver-

ge with + 0.33 points (range = + 0.13 to + 0.82; Fig. 2 B ). Connections

ith lower uncorrected test-retest reliability improved more than con-

ections with already high test-retest reliability due to the ceiling effect

f the upper bound of + 1.00 on test-retest reliability estimates ( Fig. 2 A ).

n average, 44% of the variance of the quarter-score measures of func-

ional connectivity was explained by the reliable components of func-

ional connectivity (range = 7% to 79%; Fig. 2 C ). 

.3. Reliability modelling improves the association between functional 

onnectivity and traits 

The improvement in the strength of the associations between func-

ional connectivity and the seven extensively tested traits ranged from

 17.0% to + 23.7% ( Fig. 3 A; Supplementary Figure S7 ). On average,

he improvement in association strength for all 110 traits was + 20%

range = + 12 to + 30%; Fig. 3 B; Supplementary Data File F3 ) using a

parse sampling scheme to approximate the improvement factor when

he full set of connections would have been used ( Supplementary Table

2 ). On average, 1035 connections (84% of all connections) passed the

oodness of fit criteria, with highly similar distributions for the seven

raits ( Supplementary Figure S6 ). On average, 50% of the variance of

he half-score measures of functional connectivity is explained by the

eliable component, with a range from 17% to 81%. 

.4. Reliability modelling increases heritability estimates of functional 

onnectivity 

The heritability estimates of full-score functional connectivity were

n average 39% (range = 0% to 75%; Supplementary Figure S8 ). The
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Fig. 3. Association between functional connectivity and traits. ( A ) Improvement in association strength between functional connectivity and the traits diastolic blood 

pressure level ( BPDiastolic ), total composite score for cognition adjusted for age ( CogTotalComp_AgeAdj ), and taste intensity test adjusted for age ( Taste_AgeAdj ); with 

association strength from the uncorrected association model on the x-axis and the corrected association strength from the measurement model on the y-axis . The 

remaining four extensively tested traits show comparable results and are presented in the Supplement Materials ( Supplementary Figure S7 ). The red line represents 

the slope coefficient of the regression (i.e. the improvement factor). ( B ) Improvement factor for all 110 continuous and normally distributed traits ( Supplementary 

Data File F3 ). The red line represents the mean of the distribution. For all panels, a standard association model was used to estimate the uncorrected association 

between the full-score measure of functional connectivity and the trait. A measurement model applied to the half-score measures of functional connectivity was used 

to estimate the corrected association between the reliable component of functional connectivity and the trait. 
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eritability estimates of the reliable component of functional connectiv-

ty were on average 59% (range = 0% to 93%; Supplementary Figure

8 ). On average, the heritability estimates increased with + 20% points

range = –3% to + 54% points; Supplementary Figure S8 ). 

.5. Efficiency and minimal requirements for using a measurement model 

Test-retest reliability of functional connectivity depends on scan du-

ation and the number of scan sessions ( Fig. 4 ). With the standard asso-

iation model, the average uncorrected test-retest reliability across con-

ections in the brain for a single session out-performed the uncorrected

est-retest reliability of multi-session scan data (dashed lines; Fig. 4 ).

owever, given the same number of scan sessions, the corrected test-

etest reliability from the measurement model (solid lines; Fig. 4 ) ex-

eeded the uncorrected test-retest reliability for all variants and across all

can durations (dashed lines; Fig. 4 ). Of special note is the dataset vari-

nt with two scan sessions. The current measurement model ( Fig. 1 B )

stimates the corrected test-retest reliability based on the reliable com-

onents of functional connectivity that are corrected for intra-session

ariation with each session only. Despite improvement in the test-retest

eliability, there is still substantial variation between the two sessions.

f the quarter scores Q2 and Q4 are interchanged, such that the reliable
6 
omponents of functional connectivity now account for inter-session

ariation instead of intra-session variation, the corrected test-retest re-

iability approaches near perfect scores. Similar results were observed

or single-session and four-session scan data after interchanging quar-

er scores Q2 and Q4. The sample size had little effect on the average

est-retest reliability apart from increased variation due to sampling bias

or the smaller sample sizes ( Supplementary Figure S9 ). Note that for

mprobable connections (e.g. connection 47–49) model fits started to de-

rade (i.e. increasing number of bad fits out of the 100 random samples

rawn). 

All seven traits exhibit the same general pattern of improvement in

he association strength, with greater benefit from reliability modelling

or shorter scan durations and a slight increase for the smaller sample

izes up to 1.8-fold increase averaged over the 100 iterations per com-

ination of total scan duration and sample size ( Fig. 5 ; Supplementary

igure S10 ). Note that for the combinations of very low sample size

25 subjects) and short scan durations ( ≤ 1600 vol, or ≤ 20 min), model

ts started to degrade (i.e. increasing number of bad fits out of the 100

andom samples drawn for a specific combination of sample size and

otal scan duration for each of the seven traits). Results for two scan

essions on the same day are nearly identical ( Supplementary Figure

11 ). However, the improvement in association strengths are slightly di-
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Fig. 4. Test-retest reliability depends on scan duration and number of sessions. 

The average uncorrected test-retest reliability across all connections ( y -axis) was 

estimated for the full-score estimate of functional connectivity for four variants 

of the full dataset (symbol- and colour-coded curves): a single scan session where 

the measurement model accounts for intra-session variation between half scores 

of the same session ( ∗ ), two scan sessions on the same day accounting for inter- 

session variation between half-scores of different sessions ( ▴), two scan sessions 

on the same day accounting for intra-session variation between half-scores of 

the same session ( ■), and four scan sessions across two days accounting for 

inter-session variation between half-scores of sessions on the same day ( ●). The 

total scan duration was varied from 5 min up to the maximum allowed by the 

dataset of 15 min per available scan session. 
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inished for single session scan data; up to 1.5-fold increase for smaller

ample sizes and short scan durations ( Supplementary Figure S11 ). 

Comparing the different variants of the dataset (i.e. single session,

wo sessions on the same day, and four sessions across two days) re-
ig. 5. Improvement in association strength between functional connectivity and the

omponent ( CogCompTotal_AgeAdj ), and age-adjusted taste test score ( Taste_AgeAdj ) for

actor ( y -axis) is defined by the slope coefficient from the linear regression of the co

parsely sampled connections. color-shaded bands represent the 95% confidence i

o estimate the uncorrected association between the full-score measure of functiona

easures of functional connectivity was used to estimate the corrected association b

emaining four extensively tested measures showed similar patterns ( Supplementary

7 
ealed a consistent pattern for all seven measures; for brevity we present

he results for the total composite score on cognition adjusted for age

rait ( CogTotalComp_AgeAdj ) ( Supplementary Figure S12 ). Keeping the

otal scan duration the same for a single session and two sessions on

he same day, both datasets produce similar uncorrected associations

 Supplementary Figure S12A ). However, the multi-session variant pro-

uces stronger corrected associations after applications of a measure-

ent model ( Supplementary Figure S12A ). There is no additional ben-

fit to using four sessions across two days compared to two sessions

n the same day ( Supplementary Figure S12B ). However, it should

e noted that the current model only accounts for measurement er-

or between the two half-scores (i.e. Day 1 versus Day 2); more elabo-

ate models that account for both inter- and intra-session measurement

rror might still benefit from multi-session data across different days

 Brandmaier et al., 2018 ). Similarly, there is no benefit to splitting sin-

le session data into more than two half-score measures of functional

onnectivity ( Supplementary Figure S12C ). 

The goodness of fit assessment from the parameter sweep was used

o evaluate the minimal requirements on the input dataset in terms of

ample size and total scan duration for reliability modelling. Although no

lear boundary can be defined when a measurement model is no longer

uitable or practical to use, the chance that the measurement model does

ot describe the data well for a random sample of participants starts to

ncrease with lower sample size or shorter scan durations ( Fig. 6 ), with

imilar profiles for all seven measures ( Supplementary Figure S13 ). 

. Discussion 

We have shown that reliability modelling of functional connectivity

sing a measurement model on split-session half-score estimates of func-

ional connectivity is able to extract a reliable component of functional

onnectivity with improved test-retest reliability between scan sessions

cquired on separate days. Secondly, we found that the reliable compo-

ent of functional connectivity is more strongly associated with traits
 traits diastolic blood pressure levels ( BPDiastolic ), age-adjusted total cognitive 

 various sample sizes ( x -axis) and total scan duration (color-coding). Improvement 

rrected association strength onto the uncorrected association strength over all 

nterval of the means. For all panels, a standard association model was used 

l connectivity and the traits. A measurement model applied to the half-score 

etween the reliable component of functional connectivity and the traits. The 

 Figure S10 ). 
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Fig. 6. Percentage of sampled connections for each combination of sample size 

and total scan duration for which the goodness of fit for the behavioral asso- 

ciation measurement models deteriorated below acceptable levels (CFI < 0.90 

or RMSEA > 0.08), averaged across all seven measures (see Supplementary 

Figure S13 for the profiles of the individual measures). Total scan duration is 

reported in minutes. Dotted lines mark the boundary where on average more 

than 25% and 50% of the model fits are considered bad. 
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han the full-score estimate of functional connectivity. Finally, we have

mpirically evaluated the minimal requirements of the dataset for re-

iability modelling of functional connectivity in terms of scan duration

nd sample size. We have previously reported increased heritability es-

imates for the stable and reliable component of functional connectivity

n a longitudinal adolescent twin cohort ( Teeuw et al., 2019 ). Here, we

ave replicated this finding in the Human Connectome Project. 

.1. Reliability modelling is able to extract a stable and more reliable 

omponent of functional connectivity 

The moderate uncorrected test-retest reliability of functional con-

ectivity (average rho = + 0.49) that we found is comparable to other

tudies using the HCP Young Adult dataset ( Shah et al., 2016 ; Ge et al.,

017 ; S. Noble et al., 2017 a; Mejia et al., 2018 ; Elliot et al., 2019 ). Many

actors influence test-retest reliability of functional connectivity, and as

uch, the test-retest reliability can vary substantially between datasets,

anging from poor (mean ICC ~ 0.15) to moderate (mean ICC ~ 0.65)

 Noble et al., 2019 ; S. Noble et al., 2017 b; Andoh et al., 2017 ). Despite

he high quality of the HPC Young Adult dataset, we found a substan-

ial improvement in test-retest reliability using a measurement model

average increase = + 0.33), in some cases resulting in good to excel-

ent scores (average rho = + 0.82). Longer scan duration has a positive

ffect on the uncorrected test-retest reliability, as has previously been

eported ( Birn et al., 2013 ; Laumann et al., 2015 ; S. Noble et al., 2017 a;

eija et al., 2018 ; Elliot et al., 2019 ). However, there is a penalty to

nter-session test-retest reliability for multi-session scan data that should

e taken into consideration when setting up a new study design. Other

ethods that improve test-retest reliability, such as disattenuation (i.e.

caling a measure by its reliability to obtain a true estimate), shrinkage

i.e. gravitating unreliable measures towards a group-mean estimate), or

ombining multiple modalities (e.g. resting-state and task-based func-

ional connectivity), are able to increase the reliability of functional

onnectivity from + 25% upto two-fold improvement ( Mueller et al.,

015 ; Shou et al., 2014 ; Mejia et al., 2018 ; Elliot et al., 2019 ). Our re-

ults show that the split-session measurement model is able to extract a

omponent of functional connectivity separately from independent scan

essions acquired on separate days that is more reliable than the indi-

idual half-score estimate of functional connectivity. This component

epresents a stable and reliable component of functional connectivity
8 
or a single link connection that explains on average about half (44%)

f the variance in the split-session measurements. The remaining half

s attributed to random variation between split-session measurements

nd is considered “measurement error ”. In a 7-Tesla resting-state func-

ional MRI study, a similar proportion (50%) of the variance could be

ttributed to spontaneous neural activity, and the other half to non-

hermal physiological noise ( Bianciardi et al., 2009 ). Functional connec-

ivity shows a strong state-like nature where it is influenced by intrinsic

nd extrinsic factors such as caffeine consumption, heart rate variability,

ircadian rhythm, daily mood, or attention ( Wu et al., 2014 ; Choe et al.,

015 ; Hodkinson et al., 2014 ; Facer-Childs et al., 2019 ; Ismaylova et al.,

018 ; Geerligs et al., 2017 ). These short-term fluctuations in connec-

ivity strength have been the topic of investigation for dynamic func-

ional connectivity ( Chang and Glover, 2010 ; Handwerker et al., 2012 ;

utchison et al., 2013 ; Abrol et al., 2017 ). The residual variance that

s specific to the individual half-score estimate of functional connec-

ivity is considered “measurement error ” in the measurement model,

ut is likely to represent both different sources of measurement error

 Brandmaier et al., 2018 ) and relevant biological transients ( Ge et al.,

017 ). For example, the increased variation between sessions (either

ame day or several days apart) that resulted in lower test-retest relia-

ility will be treated as measurement-specific variation by the measure-

ent model, but may reflect the “mental state ” of the participants at

he time of the scan. Instead, the stable component of functional con-

ectivity would be of particular interest for researchers in the pursuit

f a reliable and state-independent (or “trait-like ”) endophenotype that

ould serve as a biomarker ( Beauchaine and Constantino, 2017 ). 

.2. Reliability modelling improves association of functional connectivity 

ith various traits by revealing the true association in absence of 

easurement error 

The stable and reliable component of functional connectivity ob-

ained by the measurement model on half-score estimates of functional

onnectivity is more strongly associated with all 110 traits compared to

he association between full-score functional connectivity and the traits

average improvement factor 1.2) in the full-sized dataset of the Hu-

an Connectome Project ( N = 1003 participants; ~1 hour of resting-

tate fMRI data). Overall, measures were only weakly associated with

ull-score measure of functional connectivity (maximum absolute rho <

.25) when measured by the connection with the strongest association.

hese low associations are typical for resting-state functional connectiv-

ty ( Vaidya and Gordon, 2013 ; Kruschwitz et al., 2018 ; Geerligs et al.,

017 ; S. Noble et al., 2017 a; Basten et al., 2015 ; Toschi et al., 2018 ;

iegel et al., 2017 ). Even at connectome level, functional connectivity

s only moderately associated with behavioural measures ( Smith et al.,

015 ; Finn et al., 2015 ; Rosenberg et al., 2016 ). It was recently shown

hat individual variation in the spatial distribution of functional brain

etwork organization are stable trait-like features that may be associ-

ted with behaviour ( Seitzman et al., 2019 ; Kong et al., 2018 ), and that

eneral cognitive ability is associated with the stability of the dynamic

unctional connectome ( Hilger et al., 2020 ). This could indicate that

lthough the purpose of a measurement model is to provide a more re-

iable measure from parallel test scores, it could be the temporally stable

i.e. “trait-like ”) component extracted from the split-session half-score

easures of functional connectivity that provide the improved associ-

tions with behavioural measures. The short-term stability of within-

ession functional connectivity likely reflects the “mental state ” of the

articipant at time of the scan. Changes in the mental state of the

articipant between scan sessions contributes to the inter-session vari-

tions and negatively impacts the test-retest reliability. Using multi-

ession scan data will allow the measurement model to account for these

ession-specific contributions of the mental states and extract the stable

trait-like ” component. Splitting single session scan data into more sec-

ions (e.g. using quarter-scores instead of half-scores to represent the

atent component of functional connectivity) revealed almost identical,
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ut with overall slightly lower performance in improvement of the asso-

iation strength between the reliable component of functional connec-

ivity and behaviour for the model based on the quarter-scores compared

o the model based on half-scores. In addition, the increased complexity

f the quarter-score model and the associated increase in computational

untime suggest there is little benefit to gain by splitting the scan data of

 single session into more than two half-scores. Splitting multi-session

can data into more than two half-score may be beneficial in combina-

ion with a model that accounts for both intra- and inter-session varia-

ion ( Brandmaier et al., 2018 ). It must be noted however, that in some

ases applying the measurement model decreases (and should decrease)

he observed association. For example, when a true association is absent

ut may arise by chance for the full-score measure, when the connec-

ion studied is not between two functionally connected regions, or when

he connection is unstable or highly dynamic, we expect the corrected

ssociation to go down. 

.3. Studies with short scan duration and small samples size will 

xperience greater benefits from reliability modelling 

The parameter sweep reveals that the improvement in association

trength is dependant on scan duration and, to lesser extent, on sample

ize. Datasets with a shorter total scan duration (down to five minutes

f resting-state fMRI data) show much greater benefit from reliability

odelling (on average up to 1.8-fold increase in association strength,

ith a similar profile for all seven extensively tested traits). A simi-

ar pattern was observed for variants of the dataset with a single ses-

ion or two sessions on the same day, but with diminished results for

ingle session scan data. The diminished results are most likely due to

he higher test-retest reliability of single-session scan data. Multi-session

can data provided better results for the corrected associations after ap-

lication of a measurement model, but no additional benefit was seen

or four sessions across different days. However, it should be noted that

he current model only accounts for measurement error between the

wo half-scores (i.e. Day 1 versus Day 2); more elaborate models that

ccount for both inter- and intra-session measurement error might still

enefit from multi-session data across different days ( Brandmaier et al.,

018 ). Previously, scan duration has been reported to influence reliabil-

ty and reproducibility of functional connectivity estimates ( Birn et al.,

013 ; Laumann et al., 2015 ; S. Noble et al., 2017 a; Meija et al., 2018 ;

lliot et al., 2019 ) but estimates on the recommended scan duration for

aximal reliability vary from 5 to 90 min. With typical scan duration

or resting-state fMRI studies anywhere between the minimum recom-

ended 5 min ( Birn et al., 2013 ) to 8 min ( Waheed et al., 2016 ), equiv-

lent to about 400 to 667 vol in the Human Connectome Project dataset,

uggests that most dataset can expect a decent boost in association

trength with reliability modelling, despite the fact that the corrected

ssociations remain modest. Datasets with smaller sample sizes show a

lightly greater benefit of reliability modelling. However, smaller sam-

le sizes are accompanied by increased variation in the improvement

actor that is due to sampling bias, which a measurement model cannot

ccount for. It is therefore possible that the larger improvements we ob-

erve for smaller sample sizes are directly caused by the fact that the

nitial estimates of the uncorrected association were worse. For datasets

ith small sample sizes ( ≤ 50 participants), the utility of the measure-

ent model starts to drop, with 50% to 80% of the sampled connec-

ions resulting in a bad fit. Note that there is a baseline rejection rate of

n average 15% of the connections with a bad fit of the measurement

odel in the full-sized dataset. This baseline is also present in the pa-

ameter sweep because we did not exclude connections with a bad fit

rior to selecting the connections for sparse sampling. Previous studies

ave examined the sample size required for structural equation mod-

lling, with initial estimates suggested that at least 200 participants are

eeded ( Boomsma, 1985 ), or as a rule of thumb ten times the number

f estimated parameters ( Bentler and Chou, 1987 ; Wolf et al., 2013 ).

ample sizes as low as 50 participants might be enough to obtain satis-
9 
actory fits for task-based fMRI ( Sideridis et al., 2014 ). Our parameter

weep shows that variation due to sampling bias goes down with a sam-

le size around 100 to 150 participants, suggesting that, combined with

 typical scan length of around 8 min, reliability modelling would be

easible for most contemporary resting-state fMRI studies. 

.4. Stronger genetic signal for the reliable component of functional 

onnectivity 

Measurement models have previously been used in the context of

win studies to obtain heritability estimates for the reliable portion of the

ariation ( van Baal et al., 1998 ; van Beijsterveldt et al., 2001 ; Ge et al.,

017 ). We have previously applied a measurement model to functional

onnectivity in a longitudinal adolescent twin cohort ( Teeuw et al.,

019 ). Here, we replicated our earlier finding that heritability estimates

f functional connectivity can be increased substantially (from average

 

2 = 39% to h 2 = 59%) by using a measurement model on data from

plit-half scan sessions. Previous studies on the heritability of functional

onnectivity using the Human Connectome Project dataset have typ-

cally reported low heritability for single link connections ( Ge et al.,

017 ; Colclough et al., 2017 ; Adhikari et al., 2018 ). One earlier study

pplied a custom linear mixed effects model to repeated measures of

unctional connectivity from the Human Connectome Project dataset

i.e. considered scans on Day 1 and Day 2 as repeated measures, simi-

ar to the two half-score measures for the full-sized dataset used in this

tudy) and reported similar improvements for heritability estimates of

round + 20% points when averaged across connections for the major

unctional networks ( Ge et al., 2017 ). 

.5. Methodological considerations for the application of a measurement 

odel 

There are a few methodological considerations of measurement mod-

ls in general that should be mentioned ( Muchinsky, 1996 ). First, it is

mportant to note that the ultimate purpose of the measurement model

s to obtain estimates that are closer to the true value in the absence of

rror in the measurements. The measurement model will provide more

ccurate estimates that can guide future studies, but will not change the

uality of the data. Secondly, while we discussed our results in terms

f improvement factors, correlations obtained with the measurement

odel are associations between the stable components (i.e. reliable vari-

tion) rather than between the full traits (i.e. full variation) and those

wo are not directly comparable. In addition, there is no ground-truth

vailable for resting-state functional connectivity of the human brain

hat could verify the correctness of the measurement model outputs.

e would like to emphasise again that an improvement of association

s not informative for the existence of “true ” correlated neuronal activ-

ty. It is therefore good practice to always report the uncorrected results

rom uncorrected association in addition to the corrected results from

he measurement model, and important to assess the goodness of fit of

he measurement model. 

Given our finding that multi-session scan data seems to outperform a

ingle scan session of the same length, we would recommend researchers

o adopt an acquisition protocol that splits their fMRI resting-state scans

nto two parts; for example, 5 min at the beginning and 5 min at the end

f a scan session or day, instead of a single 10 min scan. This approach

ould maximize the (unwanted) variation in measurement error and

ental state of the participant between half scores to better capture the

table core (or trait-like) component of functional connectivity with a

easurement model. For the researcher that has single session resting-

tate fMRI data already acquired, we would recommend splitting the

ingle session into two parts. Splitting single-session scans into more

han two parts has shown not to improve the results in our data. We

ave put a practical example and a step-by-step “walkthrough ” of the

odel on GitHub ( Teeuw, 2020 ). The output of the measurement model

nd its goodness of fit should be interpreted within the context of what
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he latent component of functional connectivity represents; specifically,

ow much variation is explained by the latent component, as determined

y the factor loadings of the measurement model, and is roughly pro-

ortional to the test-retest reliability between the half-score measures of

unctional connectivity. Models with a low proportion of variance ex-

lained are likely nonsense connections or not functionally connected

egions, or highly unstable or dynamic connections, and may result in a

oor goodness of fit. For practical studies, we would recommend target-

ng specific connections that are known to be useful or relevant to the

rait under investigation and that the connection is between functionally

onnected regions based on prior knowledge. Additionally, extending

he model may improve the fit to the data; e.g. including correlated er-

or covariance structure may resolve the bad fit (e.g. Brandmaier et al.,

018 ). 

.6. Limitations to the current study 

There are some limitations specific to the current study. First, there

s quite some variation in quality between resting-state fMRI datasets

 Noble et al., 2019 ). Other datasets might see a shift in the performance

nd requirements curves based on the quality of the dataset. Secondly,

eliability modelling was not applied to the traits and the reported cor-

ected association might still be limited by the reliability of the trait.

f multiple or repeated measures of the trait or measurements from dif-

erent modalities are available, a measurement model can be applied to

oth the brain measure (e.g. functional connectivity) and the trait to ob-

ain a more accurate estimate of the association between the two in the

bsence of measurement error ( Beaty et al., 2015 ; Cooper et al., 2019 ;

öhncke et al., 2020 ). 

.7. Conclusion 

In conclusion, reliability modelling of functional connectivity using

 measurement model on split-half session resting-state fMRI data is an

ffective method to compensate for attenuation of the temporal correla-

ion coefficient due to noise in the BOLD signal. The measurement model

s able to extract a stable and reliable component of functional connec-

ivity that can reveal the true associations with traits and increased her-

tability estimates compared to the analysis with full-score estimate of

unctional connectivity. The benefit of a measurement model is greater

or studies with short scan duration or a limited number of participants.
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