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Abstract
Wepresent a robust deep learning-based framework for dose calculations of abdominal tumours in a
1.5 TMRI radiotherapy system. For a set of patient plans, a convolutional neural network is trained on
the dose of individualmulti-leaf-collimator segments following theDeepDose framework. It can then
be used to predict the dose distribution per segment for a set of patient anatomies. The networkwas
trained using data from three anatomical sites of the abdomen: prostate, rectal and oligometastatic
tumours. A total of 216 patient fractionswere used, previously treated in our clinic with fixed-beam
IMRTusing the ElektaMR-linac. For the purpose of training, 176 fractionswere usedwith random
gantry angles assigned to each segment, while 20 fractionswere used for the validation of the network.
The ground truth datawere calculatedwith aMonte Carlo dose engine at 1% statistical uncertainty
per segment. For a total of 20 independent abdominal test fractions with the clinical angles, the
networkwas able to accurately predict the dose distributions, achieving 99.4%± 0.6% for thewhole
plan prediction at the 3%/3mmgamma test. The average dose difference and standard deviation per
segmentwas 0.3%± 0.7%. Additional dose prediction on one cervical and one pancreatic case yielded
high dose agreement of 99.9% and 99.8% respectively for the 3%/3mmcriterion. Overall, we show
that our deep learning-based dose engine calculates highly accurate dose distributions for a variety of
abdominal tumour sites treated on theMR-linac, in terms of performance and generality.

1. Introduction

Magnetic resonance imaging (MRI) guidance directly from the treatment table for radiotherapy (RT) allows for
real-time, high soft-tissue contrast visualization ofmalignant tumours, surrounding anatomies and organs at
risk (OARs). HybridMRI-linear accelerators (MR-linacs) are beingwidely explored (Lagendijk et al 2014,
Mutic andDempsey 2014). They consist of a linear accelerator rotating under the presence of an external
magnetic field and delivering the desired radiation to the targeted tumour cells while sparing theOARs. The
introduction of theMR-linac in the clinic has significantly changed the treatmentworkflowof radiation therapy
by offering reliable and personalized treatment plan adaptation, accounting for the latest anatomical changes of
the patient on a daily basis (Winkel et al 2019), and by allowing the exploration of advanced delivery techniques
(Kontaxis et al 2017).

A common characteristic of hybridMRI RT systems is the presence of the electron return effect (ERE). This
phenomenon is caused by the deflection of the released secondary electrons due to the Lorentz force from the
staticmagnetic field. This deflection causes electrons to return to the skin surface after their exit from the body,
thus resulting in a dose increase at tissue-air interfaces, like the skin or the lungs. The impact of the external
magnetic field on the dose planning ofMR-linacs has been extensively studied. Early research showed that the
treatment planning and dose calculations are affected by the ERE (Raaymakers et al 2004, Raaijmakers et al
2007), however, using amulti-beam arrangement in combinationwith IntensityModulated Radiation Therapy
(IMRT) proved successful at compensating for the dose distortions caused (Raaijmakers et al 2007). Therefore,
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an accurate dosemodelling needs to take into account the impact of themagnetic field on the dose deposition to
model effects such as ERE.

Conventionally, several dose calculation algorithms have been used in treatment planning systems including
pencil beam (Mohan et al 1986) andMonteCarlo (MC) (Rogers 2006) based ones. Among contemporary state-
of-the-art dose engines awidespread adoption of analyticalMC simulations can be observed, which have been
proven to yield the highest dose accuracy compared to other algorithms. Thanks to recent advances in computer
hardware, GPU-basedMCdose engine (GPUMCD) implementations (Hissoiny et al 2011) offer
computationally boosted, highly-accurate dose calculations for dosimetry applications by simulating the full
particle transport.

The evolution of deep learning (DL)methods has facilitated their use in dose calculations for radiation
therapy treatment planning. Initial approaches included ‘contour-to-dose’methods, where dose predictions
from anatomical information (such asOAR contours) and computed tomography (CT) scanswere explored
(Kearney et al 2018,Nguyen et al 2019).While thesefirst attempts assumedfixed beam angle setup, research has
also been conducted towards developingmore generic frameworks by incorporating beam arrangement
information into the training (Barragán-Montero et al 2019).

Furthermore, recentDL approaches were focused on replicating dose engines by using inputs in themulti-
leaf-collimator (MLC)domain, as the term ‘dose engine’ is typically used to describe the unit responsible for
forward calculating the dose of a singleMLC shape/element. The feasibility of aDL-based beamlet dose
calculationmethod by predictive denoising forMRI-guided RT (MRIgRT)was proven inDeepMC (Neph et al
2020), where a denoised low-noise dosewas predicted from an extremely noisy dose input andCTdatawhile at
the same time speeding up significantly the dose calculations. In addition, dose prediction using pre-calculated
low-accuracy dose distributions from IMRTfluencemaps has been examined (Xing et al 2020). Themethodwe
present in this work fits to this latter application category, as we developed a dose engine framework operating
directly onMLC segments.

As presented above, a broad use ofDL-based dose calculationmethods can be found in literature.
Nonetheless, one reasonwhy artificial intelligence-basedmethods are often criticised, is the fact that they
strongly rely on the data used for the training of the network and are usually restricted to solving a narrowly
defined task of the treatment workflow. Thus, developingmore generic DL-based solutionswould require the
presence of a framework robust enough to incorporate a broad amount of patient data while serving a highly
significant clinical purpose. To that end, this paper examines the potential use of aDL-based dose engine capable
of generating accurate clinical plans for a variety of cancer cases and patient anatomies.

The feasibility of aDL-based standalone dose calculation engine for prostate IMRTwas proven inDeepDose
(Kontaxis et al 2020), where dose distributionswere generated per segment from a set of physics-based inputs
andMLC segment shapes for each targeted anatomy. The patient cohort consisted of prostate cancer clinical
plans from a conventional linear accelerator. The concept ofDeepDosewas able to generate highly accurate dose
distributions, demonstrating a potential of being introduced to clinical setups in the future. Yet the framework
was not previously tested on patients treatedwithMRIgRTunder the presence of externalmagnetic field or for
multiple tumour sites.

In this work, we aim to prove that aDL-based dose engine can be robust for anatomical variations, as well as
robust for gantry positions and that it can include the impact ofmagnetic field dose effects.We propose an
improved version ofDeepDose by introducing cancer data from three anatomical sites: prostate, rectal and
oligometastatic abdominal nodules. Also, the effects of the 1.5 Tmagnetic field on the delivered dose
distribution are included to further expand ourmethod. Additionally, we designed a generic framework by
decoupling the dependency of beam angle configuration from the training process. This is accomplished by
training the networkwith radiation beams emerging from randomly generated gantry angles.With this reliable
DL-based dose engine we aim to investigate its potential future use in an onlineworkflow, serving as themain
dose engine for a broad range of clinical sites.

2.Materials andmethods

2.1. Patient data
The patient cohort we used consisted of prostate, rectal and oligometastatic fractions, previously treated in our
clinic withfixed-beam IMRTon the ElektaMR-linacwith 6MVFFF beamandMLC collimatorwith
22× 57 cm2

field size, 80 leaf pairs and 7.15 mm leaf width. The tumour sites included in the dataset were all
located in the low abdominal area. Based on the treatment protocol, the prostate tumourswere treatedwith
36.25 Gy split over 5 fractions, the rectal treatment consisted of 25 Gy delivered in 5 fractions and the
oligometastatic tumours received 35 Gy in 7 fractions. The prescribed linac gantry angles were set to 0°, 50°,
100°, 155°, 205°, 260°, 310° for prostate, 80°, 145°, 180°, 215°, 280° for rectal and 45°, 80°, 120°, 145°, 180°,
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215°, 235° for oligometastatic nodules respectively. In some oligometastatic tumour cases, an additional foam
mattress was used for positioning purposes. For each of the patient fractions, theMLC shapes were extracted
from the clinical plans, resulting in a total of 10279 segments.

Regarding the included data, we aimed at using only the first fraction of the treatment for each patient in our
database, in order to increase the variability of the anatomies. Thus, unique patient planswere added to the
dataset for all oligometastatic and prostate patients. However, the rectal plans available were fewer, therefore
additional fractions of some rectal patients were used, yielding in total 72 unique prostate, 72 (43 unique) rectal
and 72 unique oligometastatic patients in the dataset.

The datawere uniformly distributed into training, validation and inference sets based on criteria of
equivalent square area per segment, patient fractions per treatment site and beam angle configuration. After the
final split, the distribution of data was 176 patient fractions for training, 20 for validation and 20 for inference,
and thus 8368 training, 916 validation and 996 inference segments. Their average equivalent square area per
segmentwas 33.8± 41.7 cm2, 31.1± 37.5 cm2 and 34.2± 42.6 cm2 respectively.

Before training themodel, randombeamangles were assigned to each training sample to ensure its
independence from the clinical beam angle configuration. This was achieved by substituting the prescribed angle
of each segmentwith a randomly generated beam angle (synthetic segments), whilemaintaining the distribution
of the assigned angles as uniform as possible. However, the various network inputs for both synthetic and clinical
angles were calculated in order to compare the prediction of the total doses in the end.

The experiments were performed at 3 mm3 grid spacing, which is the clinical resolution used for treatment
planning and dosimetric evaluation. All patient grids included the treatment couch andwere cropped to
216× 160× 80whilemaking sure that thewhole dose distribution of each patient is included in the grid. The
ground-truth doses for each of the segments were calculated using the research version of theGPUMCDdose
engine (Hissoiny et al 2011) using a statistical uncertainty of 1%per segment. Each segment was calculatedwith
100MonitorUnits (MU) in order to ensure a standardized dose output.

2.2. Network
2.2.1. Input
After splitting the data, the required input grids were calculated for each segment. The inputs of the network are
the same as presented inDeepDose. The network expects five different 3D volumes, each onemodelling a
physical feature also used implicitly by conventional dose engines. These inputs are themask of the segment, the
distance from the source, the central beamline distance, the radiological depth and the volume density. These
inputs, apart from adding information from a physics perspective, also allow patch-based training and
localization instead of using full 3D anatomies. In order to gain a deeper insight of the intuitive physics-based
inputs used, the reader is advised to inspect their analysis in the initial DeepDose implementation (Kontaxis et al
2020).

2.2.2.Model architecture
The network used for the dose prediction is based on the initial implementation ofDeepDose, which follows the
3DUNet, originally published byÇiçek et al (2016) (figure 1). For the experimentsNiftyNet (Gibson et al 2018),
amedical image analysis platformwas used and its original 3DUNet implementationwasmodified accordingly
tomatch our objectives.

For the training of the network input grids of 3× 3× 3 mm3 grid spacingwere used. Themodel was then
trained in a supervisedway using patch-based training, with patches of size 32× 32× 32. A batch size of 32
patches was used and the rootmean squared errorwas selected as a loss function. TheAdamoptimizer was
chosenwith a learning rate of and beta1, beta2 and epsilon parameters set to 0.9, 0.999 and 10−8 respectively.
During training a validation stepwas performed every 5 iterations on the validation data in order to evaluate the
performance of the network.

2.3. Analysis
The training of the networkwas performed on aworkstationwith a dual Intel® Xeon® E5-2690 v4, 128 GBRAM.
TheGPUMCDdose calculations used a singleNVIDIA®QuadroGP100 card.

For the evaluation of the performance of ourmethod the dose differences of the predicted dose distributions
of each individual test segment were calculated for the voxels within the 10%–100%of the dosemaximum.
Moreover, gamma analysis of the predicted individual segments at 1%/1 mm, 2%/2 mmand 3%/3 mmwas
performed. The aforementioned evaluationwas performed on both the clinical and the synthetic segments and
the results were compared.

After summing up all clinical segments of each patient, weighted using their originalMUvalues in the
clinical plan, and constructing the total predicted dose, the dose differences were reported for each of thewhole
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treatment plans for the voxels lyingwithin the 50%–100%of the dosemaximumand the same gamma analysis
stats were calculated. PTV andOAR coveragewas also evaluated by plotting some dose-volume-histogram
(DVH)parameters.

Additionally, themodel was used to predict the dose distributions of two extra anatomical sites. One cervical
and one pancreatic tumour casewere used to demonstrate the robustness of ourmethod. For these additional
cases, previously treated at our clinic with theMR-linac, the dose differences and 3%/3 mmgamma pass rate of
the predicted dose grids were calculated. The performance of themodel on these supplementary anatomical sites
is presented byDVHcurves. Compared to the clinical plans of our dataset, these additional cases included
differentOARs and bony anatomy, for example spinal cord, and different beam arrangement.

The accuratemodelling of the EREwas assessed by comparing the ground-truth and predicted segment
central profiles.

3. Results

3.1. Training results
Themodel was trained for approximately 14 days until convergence. It was trained for a total of 5.3× 105

iterationswith 32 patches per batch, resulting in over 108 processed randompatches before being stopped early
in order to avoid a potential overfitting (figure 2). The trained networkwas then used to generate the dose per
segment for the fractions of the test set.

3.2. EREmodelling
The presence of the EREwas taken into account and successfullymodelled from the network. Figure 3(a)
illustrates one indicative view of a predicted prostate segment at 0°, where the ERE ismost evident. On
figure 3(b), the respective predicted central dose profile is compared to the target one. The ERE is evident at the
posterior part of the patient body as depicted clearly with a dose increase spike, prior to reaching the body/couch
mattress interface.

3.3.Dose calculation results
The overall agreement between the target and predicted dose distributionswas very good. The networkwas
capable of predicting the dose deposition in the patient anatomies from the generated input quantities regardless
of the beamangle arrangement.

Among all individual synthetic segments, an average dose difference and standard deviation of 0.3%± 0.7%
(0.002± 0.006 Gy)was reported for the voxels within 10%–100%of the dosemaximum,while the per segment
average dose difference for the clinical segments was 0.3%± 0.7% (0.002± 0.007 Gy), demonstrating an equally
accurate behaviour.

For each of the synthetic and clinical segments a gamma analysis was performed and the gammapass rates
for different criteria were calculated (figure 4). Synthetically generated segments averaged gammapass rates of

Figure 1. 3DUNet architecture.
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Figure 2.Training and validation losses of the trainedmodel, smoothed and excluding some initial outliers.

Figure 3.Modelling the electron return effect for a single segment.

Figure 4.Gamma analysis.
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87.7%± 7.7%, 97.7± 2.9% and 99.3± 1.5% for the 1%/1 mm, 2%/2 mmand 3%/3 mmrespectively. For
each of the segments following the clinical protocol, the average pass rates were 87.6%± 8.3%, 97.9± 2.6% and
99.5± 1.0% for the 1%/1 mm, 2%/2 mmand 3%/3 mm, respectively, demonstrating highly accurate
agreementwith the reference dose values.

For the clinical total dose distributions of the 20 inference patients, very good agreement was reported, with
average dose difference of 0.6%± 0.6% (0.2± 0.2 Gy). Average gammapass rates of 82.2%± 9.7%,
96.1%± 3.1% and 99.4%± 0.6% for the 1%/1 mm, 2%/2 mmand 3%/3 mmcriteria respectively were
achieved. Figure 5 depicts theDVHand the central transversal slice of a predicted total dose distribution for a
prostate case of the test set.

3.4. Additional testing
For the additional cervical and pancreatic cases, a very good agreementwas observed. After predicting the dose
distribution for the cervical patients, the gamma pass rate reportedwas 91.9% for the 1%/1 mm, 99.3% for the
2%/2 mmand 99.9% for the 3%/3 mmcriteria. The dose difference calculatedwas at 0.2 Gy (0.6%), while the
overall organ coverage of theDVHwas assessed as highly acceptable (figure 6).

The pancreatic case showed similar performance, the dose difference lied at 0.5 Gy (1.3%), alsowith a
convincingOAR coverage. The according gammapass rates were 83.3%, 98.0% and 99.8% for the 1%/1 mm,
2%/2 mmand 3%/3 mmanalysis.

4.Discussion

In this paper we proposed a robustDL-based solution for accurate dose calculations of abdominal tumours in
IMRT.We extendedDeepDose by introducing segments of varying shapes and sizes, using randombeamangles,
from three different anatomical sites treated clinically on a 1.5 TMR-linac The networkwas trained on a set of
intuitive physics-based inputs per segment andwas then used to infer whole dose distributions. Ourmethodwas
successful atmodelling the particle interactions and dose deposition under the externalmagnetic field, including
the ERE. For the clinically used 3 mm3 grid spacingwe demonstrated convincing dose predictions for a set of
previously unseen abdominal plans.

Amajor enhancement of this extendedDeepDose framework is the generality of segment shapes and sizes
included in the dataset. In particular, each abdominal tumour site offered segments with highly heterogeneous
size, with an average equivalent square area of 20.2± 12.0 cm2, 69.5± 52.9 cm2 and 8.1± 7.3 cm2 for the
prostate, rectal and oligometastatic cases respectively. Additionally, compared to the 40 leaf pairs present in a
conventional Elekta linac,MR-linac has 80 leaf pairs, thus offering higher spatialmodulation and yieldingmore
complex segment shapes. The proposedmodel was able to accurately reproduce the delivered dose of the various
MLCpatterns, proving the robustness of our approach.

In addition, we tested the trainedmodel on one cervical and one pancreatic tumour case in order to
demonstrate the generality of ourmethod and reproduce the delivered dose of theseMLC shapes. The generated
dose predictions passed all clinical QA gamma tests with an excellent agreement score. The diverse beam
arrangement and 3Ddose distributions of these additional cases show the potential of extending the treatment
sites currently handled by our framework.

To our knowledge, this is the first DL-based dose engine trained onMR-linac data from various anatomical
sites that can additionally be robust to beam angle variations.While other dose calculation approaches, such as
DeepMC (Neph et al 2020), operate on individualMLCbeamlet data, our proposed network architecture differs
as it usesMLC segments, namely shapes containingmultiple beamlets. To that end, the networkwe use relies on
a novel set of physics-based quantities that encode allMLC segment shape information for the dose deposition
inside different tissue types. The use of random angles during the training phase significantly enhances the
generality of ourmethod and its robustness to different anatomies.

As further shown in the initial implementation ofDeepDose (Kontaxis et al 2020), different input
combinations can be explored in order to reduce the number of input grids needed and to investigate a potential
speedup of the training procedure. The average total time needed for the dose calculation of one segmentwith
DeepDose is approximately 3 sec (around 2 sec for input generation and 0.8 sec for the inference). Also, for the
whole plan calculationsDeepDose is currently faster thanGPUMCD for an uncertainty value of 1%per
segment. Future researchwill focus on optimizing both themodel and the hardware components, thus giving
higher computational boost to our framework.

The accuratemodellingof theparticle interactions in a 1.5T transversemagneticfield alongsidewith theprior
applicationofDeepDose at 0Tusingprostate plans (Kontaxis et al2020)proves thepotential applicability of our
approachondifferentRT systems, suchas a 0.35T environment (Mutic andDempsey2014).However, in order to
use data from linear acceleratorswith adifferentMRIfield, an additional trainingof thenetworkwill be required to
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ensure optimal results. In addition, future research could focus on applyingDeepDoseondynamicVolumetric
ModulatedArcTherapy (VMAT) treatment plans. This typeof therapy typically features awide variety ofMLC
shapes and each treatment plan consists ofmultiple control points per arc. The appropriatemodifications toour
framework inorder to incorporatemore complexVMAT treatment plans are considered tobe futurework.

Until now the limitations of ourmethodhave not yet been thoroughly explored. Apart from its highly accurate
performance on tumour sites of the abdomen, it is expected that introducing additional tumour anatomieswhich
include a significant amount of previously unseen tissue type, for instance air cavities in lung tumours,will demand
additional training of the network.Nevertheless, thiswork shows that our network canbe trained to correlate
arbitrary gantry angles and segment shapeswith the corresponding dosedistribution and as such that indeed
addingmore sites to the training datawill increase the applicability of theDL-baseddose engine.

For this purpose, our futureworkwill focus on establishing aworking envelope that will set boundaries on
the plan parameters thatDeepDose can accurately handle. Thus, a precise range of segment types will be assessed
as acceptable, based on their shape, equivalent square area and other structural features. In thatway, the creation
of a safe environment for the introduction ofDeepDose in a clinical settingwill be facilitated andwewill be able
tomove forward towards an application targetingwhole body dose calculations.

In the near futurewe aim to demonstrate further progress in clinical research by introducingDeepDose into
theMR-linac treatment workflow. An initial goal would be to take advantage of its reduced inference time and
include it in the treatment pipeline of abdominal tumours as a fast secondary dose check. The primary goal of a
secondary dose engine is to assess the quality of the generated plans prior to treatment. DeepDose is expected to
surpass the accuracy of the current secondary dose check software for the clinical 3%/3 mmcriterion and

Figure 5.Prediction on a prostate fraction of the inference set.

Figure 6.Additional evaluation on a cervical case.
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therefore we are confident that it will enhance the current plan evaluation procedure. Furthermore, no external
software is needed in order to run awhole plan inference, thus indicating that our approach could serve as a
standalone dose application.

On the long term, the ability of ourmethod to accurately predict a variety of patient plans in the range of a
few secondsmakes it a promising candidate for a clinical dose engine used in the online plan optimization itself.
Therefore, after establishing its performance on various anatomies, for instance lung and brain tumours, we aim
to graduallymove towards exploringDeepDose as the primary dose calculation engine for a variety of tumours
inMRI-guided radiation therapy.

5. Conclusion

Wepresented a robust DL-based framework for dose calculations of abdominal tumours in IMRT. The network
was trained per segmentwithMR-linac data from three different abdominal tumour sites using randombeam
angle configuration. The trained networkwas then able to generate 3Ddose predictions forwhole patient plans.
This approachwill increase the efficiency of dose checks in the onlineworkflowby initially serving as a secondary
dose engine forMRIgRTof the abdominal area in our clinic. Subsequently, we aim to introduceDeepDose as the
primaryDL-based dose engine for online plan optimization.
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