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Abstract

Heart failure is a growing health issue as a negative consequence of improved survival upon myocardial infarction, unhealthy
lifestyle, and the ageing of our population. The large and complex pathology underlying heart failure makes diagnosis and es-
pecially treatment very difficult. There is an urgent demand for discriminative biomarkers to aid disease management of heart
failure. Studying cellular pathways and pathophysiological mechanisms contributing to disease initiation and progression is
crucial for understanding the disease process and will aid to identification of novel biomarkers and potential therapeutic tar-
gets. Growth differentiation factor 15 (GDF15) is a proven valuable biomarker for different pathologies, including cancer, type
2 diabetes, and cardiovascular diseases. Although the prognostic value of GDF15 in heart failure is robust, the biological func-
tion of GDF15 in adverse cardiac remodelling is not fully understood. GDF15 is a distant member of the transforming growth
factor-β family and involved in various biological processes including inflammation, cell cycle, and apoptosis. However, more
research is suggesting a role in fibrosis, hypertrophy, and endothelial dysfunction. As GDF15 is a pleiotropic protein, elucidat-
ing the exact role of GDF15 in complex disease processes has proven to be a challenge. In this review, we provide an overview
of the role GDF15 plays in various intracellular and extracellular processes underlying heart failure, and we touch upon crucial
points that need consideration before GDF15 can be integrated as a biomarker in standard care or when considering GDF15
for therapeutic intervention.
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Introduction

The mortality rates related to cardiovascular disease (CVD)
have increased worldwide; since 2015, one in three deaths
worldwide is a consequence of a CVD.1 Heart failure is a
growing health issue as a negative consequence of improved
survival upon myocardial infarction (MI), unhealthy lifestyle,
and the ageing of our population.2 Therefore, the European
Society of Cardiology recently updated their criteria defining
heart failure by including extra-cardiac organ co-morbidities
like diabetes, hypertension, and kidney dysfunction.3,4 These
new criteria show the complexity of heart failure throughout
the patient population.

Heart failure cannot be classified as a single disease;
multiple underlying causes, including hypertension, vascular

calcification, or MI, show that heart failure better fits the de-
scription of a syndrome rather than a disease.5,6 Further-
more, apart from underlying cardiac pathologies,
extra-cardiac pathologies such as cardiorenal syndrome and
anaemia contribute to the development of heart failure.7,8

Disease progression is further accelerated by ageing, diabe-
tes, and hypertension as they cause endothelial dysfunction,
left ventricular hypertrophy, and vascular disease.9–11

A key process underlying heart failure is cardiac remodel-
ling as response to injury, like inflammation, volume, and
pressure overload. In response to injury, the heart compen-
sates for the loss of cardiac output by remodelling of the
myocardium. Cardiac remodelling is characterized by molecu-
lar, cellular, and structural changes that manifest in morpho-
logical changes of heart size, shape, and function.12,13 The
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mechanisms underlying cardiac remodelling are not fully un-
derstood, as they vary from apoptosis, oxidative stress, and
inflammation to changes in energy metabolism and contrac-
tile proteins.5,12,13 Severe remodelling of cardiac tissue asso-
ciates with progressive worsening of cardiac function
eventually increasing mortality risk in patients‚ this highlights
the need for assessment of cardiac remodelling to monitor
disease and therapy adjustment where needed.

The demand for biomarkers that improve disease manage-
ment of heart failure patients is increasing.14 Although no cu-
rative therapy for heart failure is available, co-morbidities
influence disease progression and contribute to worsening
of cardiac function. Proper biomarkers would allow to rou-
tinely assess disease progression and, in case of heart failure,
which includes many co-morbidities, inform on their presence
to combine this information and maintain optimal treatment
for the patient.

Elevated protein expression of circulating growth differen-
tiation factor 15 (GDF15) is correlated to many pathological
conditions, mainly being different types of cancer and also
metabolic diseases such as obesity and diabetes.15–18 GDF15
is easily detectable in the blood; however, concentrations
vary with age and gender.15,19–21 For instance, we have
shown that circulating levels of GDF15 can serve as strong in-
dependent predictor for cardiovascular events in women but
not in men.22 Although GDF15 has a sex-dependent prognos-
tic value in heart failure patients,23 the prognostic value of
GDF15 is not standardly analysed for men and women sepa-
rately to increase accuracy.24–26 Elevated serum levels of
GDF15 were also associated with enhanced CVD develop-
ment, progression, and mortality in both disease and general
population.17,27–31 In line, experimental murine ischaemia/
reperfusion injury models show an rapid increase in circulat-
ing and tissue GDF15 levels upon cardiac injury that remained
elevated for several days.27,32 Moreover, GDF15 has been
proven to be a valuable biomarker for heart failure, apart
from the existing cardiac markers such as natriuretic pep-
tides, ST2, high-sensitivity troponin, and procalcitonin,19,33,34

as it can serve as independent biomarker for survival and
outcome.35,36 This accounts for both heart failure with pre-
served ejection fraction (HFpEF) and heart failure with re-
duced ejection fraction (HFrEF) and heart failure with mild
reduced ejection fraction (HFmrEF), where GDF15 levels are
reported to be similar.37,38 Based on the current lack of
knowledge on the function of GDF15, there is no significant
evidence regarding a clinical advantage of GDF15 in diagnosis
or classification of HFpEF and HFmrEF compared with
HFrEF.39–41 Nevertheless, GDF15 has been linked to the inci-
dence, progression, and prognosis of heart failure as
biomarker for acute and chronic cellular stress.28,35 In line, a
commercial assay that provided robust data of GDF15 levels
in serum and plasma under routine conditions is currently
developed.21 To implement GDF15 as biomarker in
standard clinical practice, we need to understand which

pathophysiological processes are associated with increased
levels in order to adjusted disease management accordingly.

Besides its biomarker function, GDF15 may have a causal
role in heart failure, something we need to elucidate before
GDF15 can become the new discovered target for therapeutic
therapy. As GDF15 is an active player in many pathophysio-
logical processes,16,42 understanding its molecular basis, bio-
logical mechanism, and receptor activity in heart tissue
could help elucidating its role in the onset and progression
of heart failure. Therefore, the aim of this review is to sum-
marize current literature regarding biomarker function and
causal role of GDF15 relevant in heart function and adverse
cardiac remodelling. We describe the molecular background
of GDF15, followed by an overview of effects on intracellular
and extracellular processes associated with pathophysiologi-
cal mechanisms driving heart failure. Lastly, based on all this
information, we will touch upon future perspectives and cur-
rent needs in the GDF15 cardiac research field.

Growth differentiation factor 15

Growth differentiation factor 15, also termed macrophage in-
hibitory cytokine 1, is a divergent member of the
transforming growth factor (TGF)-β family.42,43 The TGF-β
family consists of TGF-β isoforms, activins, and bone morpho-
genetic proteins (BMPs) and are best known for their effects
on tissue homeostasis and cell proliferation and
differentiation.44 Although GDF15 belongs to this TGF-β su-
perfamily and shares homology with BMPs, its major func-
tions are not completely identical. GDF15 is robustly
expressed by placenta and prostate tissue, while in other tis-
sues, expression is very low.15,17,42,45 However, under patho-
physiological conditions like cellular stress and tissue injury,
GDF15 can be produced and secreted by many various cell
types like macrophages, vascular smooth muscle cells, endo-
thelial cells, and cardiomyocytes15–18 in organs such as the
kidney, heart, and liver.

Growth differentiation factor 15 receptor
identification

Knowing GDF15 is rapidly produced and secreted by various
tissue and cells, one of the most urgent questions is to which
receptor GDF15 binds and which intracellular signalling cas-
cades are activated. It was recently established that GDF15
can bind with high affinity to the GDNF family receptor α-like
(GFRAL) receptor.46–49 GFRAL is mainly locate in the central
nervous system,50 and binding and signalling of GDF15/
GFRAL axis lead to a decreased food intake and subsequent
weight loss.51,52 This discovery helped unravel a role for
GDF15 on activation of certain metabolic pathways and
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increases knowledge about possible therapeutic use of
GDF15 in obesity and weight loss.48

To our knowledge, expression of the GFRAL receptor has
only been found in the central nervous system, leaving the
question to which primary receptor GDF15 binds in the pe-
riphery still open.53 So far, studies have reported GDF15 bind-
ing to the TGF-β II receptor54 and ALK receptors,17,54,55 and
some indicate binding to tyrosine or serine/threonine
receptors.56 The discovery of GFRAL provided important in-
sight in the signalling capabilities of GDF15 via non TGF-β-
related receptors and suggests that signalling of GDF15 be-
yond the TGF-β receptor family may be very important in
the periphery as well. As such, exploring the possible cardiac

signalling receptors of GDF15 in cardiomyocytes, fibroblasts,
and endothelial cells may provide more insights in mechanis-
tic effects and possible therapeutic targeting of GDF15 during
progressive heart failure.

Regulation of growth differentiation factor 15 on
the genetic level

Growth differentiation factor 15 is located on chromosome
19p12-13.1, with a length of 2.746 base pairs containing
two exons separated by an intron15,57 (Figure 1). Various
gene polymorphisms [single nucleotide polymorphisms

Figure 1 Growth differentiation factor 15 (GDF15) transcription and maturation. Originating from two exons, GDF15 is synthesized as polypeptide
consisting of a propeptide and a mature region. Between two mature regions, a homodimer is formed by a interchain disulfide bond. The propeptide
plays an important role intracellular trafficking and secretion. Pro-protein convertase subtilisin/kexin types (PCSKs) and matrix metalloproteinases
(MMPs) are able to cleave the pro-GDF15 polypeptide at the RXXR cleave site, thereby forming a biological active mature GDF15. After cleavage, both
the propeptide and a mature GDF15 are secreted (figure adapted from Servier Medical Art, https://smart.servier.com/).
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(SNPs)] are suggested to affect GDF15 expression; for exam-
ple, rs888663 and rs1054564 located upstream of the
GDF15 gene58–60 are associated with CVDs.61–63 Contradic-
tory, no effect of SNPs increasing GDF15 transcription
activity62 in CVDs is also present.60,64 In addition, SNPs in
the miRNAs (miR) regulating GDF15 expression are suggested
to be important as well; an example is miRSNP rs1054564 in
the 3′ UTR of the GDF15 transcript, which causes
allele-specific translational repression via has-miR-1233-3p.65

Furthermore, miRSNP rs1054564 is associated with reduced
levels of circulating GDF15 in a Taiwanese CVD population.66

They suggest GDF15 to be a major genetic determinant of the
GDF15 concentration.66

Production of growth differentiation factor 15

Originating from two exons, GDF15 is synthesized as a poly-
peptide (pre-pro-GDF15), which consists of a signal peptide,
a propeptide, and a mature region47,67 (Figure 1). The
GDF15 polypeptide is biologically inactive and forms a
homodimers through an interchain disulfide bond at the
C-terminus in the endoplasmic reticulum.68 The N-terminal
side contains the signalling peptide important for secretion
and intracellular trafficking.47 Once located in the endoplas-
mic reticulum, the polypeptide is cleaved by the serine pro-
teinases pro-protein convertase subtilisin/kexin types
(PCSKs).69 PCSK3, PCSK5, and PCSK6 are able to recognize
and remove the signalling peptide of the GDF15 polypeptide
and therefore essential in the formation of a biologically ac-
tive GDF15.70 In addition to PCSKs, GDF15 can also be proc-
essed by matrix metalloproteinase (MMP)-2671 (Figure 1).
The presence of GDF15 and MMP-26 in placental develop-
ment suggests that MMP-26 is just as important as PCSKs in
the processing and maturation of GDF15. Besides serine and
MMPs, there are also cysteine proteinases,72 all involved in
extracellular proteolysis,73 and further research should eluci-
date their possible contribution to GDF15 maturation. After
cleavage of the pro-GDF15 domain, both a mature GDF15
protein and the remaining propeptide are secreted (Figure
1). Pro-GDF15 is secreted into the extracellular matrix and is
stored in latent stromal extracellular matrix stores.68 Under
stress conditions, latent pro-GDF15 from the storage pools
is cleaved to its active mature form. Bauskin et al. 68,74 found
that the propeptide of pro-GDF15 is responsible for this
cleaving and signalling to increase circulating serum levels of
GDF15 upon demand. Whether these storage pools are pres-
ent or activated in cardiac tissue during the progression of
heart failure has not been clarified, but it may contribute to
increased GDF15 secretion into the circulation during heart
failure. As previously reported that an increase in these stro-
mal stores of GDF15 associates with disease outcome of pros-
tate cancer patients, it could be very relevant to investigate
the presence of stores in cardiac tissue.68 Therefore,

histopathological assessment of GDF15 in cardiac tissue of
heart failure patients could indicate the increased GDF15 pro-
duction and storage, possibly predictive of disease severity
and outcome.

Growth differentiation factor 15 as
non-cardiac specific biomarker in heart
failure

The heart failure population is diverse as multiple causes and
co-morbidities affect disease progression and prognosis.75 Un-
derlying risk factors like diabetes, hypertension, and inflamma-
tory responses predict the onset of future CVDs including
heart failure.76 This exemplifies the urgency for methods to
distinguish between heart failure subpopulations based on
the underlying processes aside from a functional
classification.77 Current biomarkers like natriuretic peptides
and cardiac troponins are especially strong in reflecting the de-
gree of acute cardiac injury andmostly represent systolic heart
failure or HFrEF (Table 1). We are currently lacking biomarkers
reflecting the more chronic type of cardiac remodelling, which
is mostly observed in patients with heart failure of
non-ischaemic origin.78 New and promising biomarkers like
soluble ST2, galectin-3, and GDF15 are currently evaluated
for their contribution to diagnosis or prognosis of heart failure
as they reflect underlying pathophysiological pathways related
to chronic cardiac remodelling (Table 1). Non-cardiac-specific
biomarkers have a potential use as diagnostic tool in heart fail-
ure patients as they report on the different biological pro-
cesses involved in the systemic consequences or causes of
heart failure.78 In heart failure patients, GDF15 levels in-
creased with disease severity in various tissues and cells partic-
ularly during pathological inflammatory conditions.78 We
propose that GDF15 levels represent underlying mechanisms
of disease that would inform clinicians about the patients’ gen-
eral state of disease progression. In relation to treatment of
co-morbidities to reduce disease progression, GDF15may also
provide information on treatment responsiveness. This would
especially help patients with chronic heart failure or HFpEF,
which are difficult to diagnose and often affected by several
co-morbidities contributing to the disease. Nevertheless, we
feel that all patients independent on their heart failure classi-
fication would benefit from a general marker of disease to
evaluate the patients’ systemic conditions.

Growth differentiation factor 15 as a
causal player in adverse remodelling

Growth differentiation factor 15 can be produced by almost
every cell type in the periphery under stress conditions and
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can have an influence on numerous cell types.79,80 Depending
on the state of cells and the micro-environment present,
GDF15 can have both beneficial and adverse effects on sev-
eral different cellular processes.16,49 Most pathophysiological
and mechanistic effects of GDF15 are observed in cancers;
however, also inflammation, hypertrophy, and fibrosis in or-
gan dysfunction are under direct influence of GDF15.16,49 In
the succeeding text, we describe the most important cellular
mechanisms that can be influenced in cardiac cells by GDF15
and are related to the onset and progression of heart failure.

Effect of growth differentiation factor 15 on
cardiomyocytes

The loss of cardiomyocyte as a consequence of apoptosis and
the very low proliferation rate of cardiomyocyte are highly
important mechanisms in the development of heart failure.
Studying interactions of GDF15 with cell cycle processes has
so far gained most insights from the cancer research field. El-
evation of circulating GDF15 levels has been associated with
increased apoptosis and reduced cell proliferation in solid
tumours.90,91 Multiple oncogenic studies propose GDF15 to
play a role in cell growth arrest and apoptosis, via either
p53-dependent or p53-independent mechanisms.92–94 In line,
as mentioned earlier, Jones et al. 95 identified a p53-regulated
miR embedded in the GDF15 intron gene able to reduce cell
proliferation and desensitize cells to DNA damage-induced
apoptosis in a human colorectal cancer cells line. Moreover,
as GDF15 is also a downstream target of p53, early growth re-
sponse 1, and Akt/GSK-3β, there is a feedback loop for the ef-
fect of GDF15 plays in cell growth arrest and
apoptosis.90,92,93,96,97 Nevertheless, knowing that GDF15 is
pleotropic, opposing studies showed that an increase in
GDF15 is able to induce proliferation of cervical and malig-
nant glioma cancer cells.98,99 Relating to cardiomyocytes,
GDF15 is associated with protection against ischaemia reper-
fusion and angiotensin II, nitric oxide (NO), or TGF-β1 induced
apoptosis.32,100 Even more interesting, GDF15 is associated
with ERBB2 and cyclin D1 in cervical cancer cell
proliferation,98 both known factors to induce cardiomyocyte
proliferation.101–103 In line, recently, the Hippo–YAP pathway
gained special attention in regard to cardiac regeneration as
potential therapeutic target.104,105 Moreover, interplay be-
tween Hippo–YAP and TGF-β pathways is known to be in-
volved in tissue homeostasis.106–108 This suggests that
GDF15, as TGF-β family member, may affect the Hippo–YAP
pathway, thereby possibly targeting cardiomyocyte prolifera-
tion. To conclude, the effect of GDF15 on proliferation and
apoptosis is relevant to study in cardiomyocytes to maintain
high number of viable and functional cardiomyocytes in order
to maintain cardiac output.

Cardiac hypertrophy is characterized by an increase in
heart size and a loss of sufficient cardiac output as

cardiomyocytes enlarge as consequence of pathophysiologi-
cal stimuli.109 Elevated circulating GDF15 levels positively cor-
relate with thickness of the posterior wall of the left ventricle,
interventricular septum, and left ventricular mass.56,110,111

Mechanistically, GDF15 is reported to have a
pro-hypertrophic effect on cardiomyocytes that attenuates
cardiac hypertrophy via phosphoinositide 3-kinase and extra-
cellular signal-regulated kinase signalling pathways, thereby
affecting transcription via the Smad1 pathway.100,112,113

However, it has also been described that GDF15 can protect
against hypertrophy through Smad-dependent pathways.112

Moreover, it has been shown that GDF15 can inhibit the acti-
vation of endothelial growth factor receptor, thereby attenu-
ating hypertrophic responses in a Smad-independent
manner.111 Furthermore, in animal models, mesenchymal
stem cell treatment showed beneficial paracrine effects via
induction of GDF15 secretion, thereby reducing hypertrophy
and left ventricular remodelling.114,115 Concluding, both
pro-hypertrophic and anti-hypertrophic effects of GDF15 are
described, suggesting a mediating role of GDF15 in cardiac
hypertrophic responses dependent on the environmental cir-
cumstances. It remains unclear if Smad-dependent signalling
pathways dominate other pathways in GDF15-mediated hy-
pertrophic responses.

Effect of growth differentiation factor 15 on
endothelial cells

Endothelial dysfunction is crucial mediator of impaired coro-
nary and systemic perfusion and reduced cardiac capacity
via directly negatively affecting cardiac remodelling and car-
diomyocyte function.116,117 Endothelial dysfunction in pa-
tients with chronic heart failure is associated with increased
mortality.118 Increased adhesion molecule expression, re-
duced anticoagulant properties, and imbalanced production
of vasodilating and vasoconstriction substances all lead to en-
dothelial dysfunction.119 There are sufficient indications that
GDF15 causes endothelial dysfunction by impairing vascular
contraction and relaxation, which consequently could have
a large impact on the function of the heart, by inducing not
only large artery disease but also microvascular disease,
which is associated with a deteriorating cardiac function.120

Mechanistically, Mazagova et al. 119 showed that the vascular
contractility in response to vasoconstrictor agents was re-
pressed under presence of GDF15, suggesting that GDF15 af-
fects the NO system in endothelial cells. Indeed, others show
that increased levels of GDF15 are important for NO release
in endothelial cells that will result in reduced vasodilation.121

Furthermore, it has been shown that GDF15 can induce pro-
liferation of endothelial cells during angiogenesis122 and also
endothelial senescence via reactive oxygen species pathway
activation, implicating endothelial function loss.123,124
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Recently, various studies have addressed the contribution
of epithelial–mesenchymal transition and endothelial–
mesenchymal transition (EndMT) to the inflammation and fi-
brosis response in tissue repair, implicated to play a role in
pathological processes of heart failure.125,126 It is well
established that the TGF-β pathway plays an important role
in EndMT and thereby cell migration and fibrosis as expres-
sion of respectively MMPs and collagens is up-regulated dur-
ing this process. It has been shown that GDF15 inhibits TGF-β
I target genes, thereby diminishing cell migration as a result
of suppressed epithelial–mesenchymal transition in bone tu-
mour epithelial cells.127 These data support the notion that
GDF15 has a potential anti-migratory effect on endothelial
cells.128 However, contradictory results are found that display
EndMT progression and increased cell migration promoted by
GDF15, through activation of the TGF-β pathway in a para-
crine and autocrine signalling manner.93,129,130

Effect of growth differentiation factor 15 on
fibroblasts

In cardiac pathologies, during repair and regenerative pro-
cesses following upon tissue injury, an excessive amount of fi-
brous connective tissue is formed consisting of extracellular
matrix deposition, including collagen, fibronectin, and
laminin.131,132 This myocardial fibrosis is an integral compo-
nent leading to both functional impairment and
arythmogenesis.133–136 Various studies show associations be-
tween GDF15 and cardiac fibrosis, collagen turnover, and col-
lagen depositions in respectively heart failure, MI, and
atherosclerosis.54,137,138 However, the exact source of this in-
creased GDF15 production has not been clearly identified.
Lok et al.137 showed that cardiac tissue itself was not the
main source of GDF15 production in cardiac fibrosis but sug-
gest systemic oxidative stress to increase GDF15 in different
cells and organs, while Kempf et al. 32 show that GDF15 is
expressed and secreted in cardiomyocytes subjected to
ischaemia/reperfusion injury, through a nitrosative
stress-dependent signalling pathway. GDF15 is recently iden-
tified as a possible inhibitor of fibroblast growth via repres-
sion of TGF-β signalling and oncogenic protein N-Myc,
reducing fibroblast activation and fibrosis in chronic kidney
disease and pulmonary fibrosis.139,140 These results suggest
the possibility of using GDF15 as therapeutic to delay pro-
gression of fibrosis.139 However, contrary results have also
been found in gastric cancer, suggesting that GDF15 stimu-
lates the activation and proliferation of fibroblasts and there-
fore playing an important role in fibrosis progression.141

Considering the anti-fibrotic and pro-fibrotic effects of
GDF15 described, using GDF15 as possible therapeutic target
for cardiac fibrosis relies on further research to discover spe-
cific effects of GDF15 on cardiac-related fibrosis.

Effect of growth differentiation factor 15 on
resident and infiltrating inflammatory cells

As GDF15 is a family member of TGF-β and an inflammatory
cytokine secreted upon injury, it is opposed to be a mediator
of tissue inflammation.142 The balance in resident and infil-
trating inflammatory cells varies depending on acute and
chronic heart failure, with respectively monocytes and mac-
rophages and later reparative monocytes and T-cell
infiltration.143,144 In acute heart failure upon MI, the necrotic
area is controlled by inflammatory cells like neutrophils,
monocytes, and macrophages, thereby prone to cardiac
rupture.145,146 Kempf et al.147 showed an anti-inflammatory
role of GDF15 after an MI, as the infarct border zone in-
creased GDF15 expression, thereby inhibiting myeloid cell re-
cruitment and protecting the myocardium from cardiac
rupture. In chronic heart failure, for example, HFpEF, the in-
crease in GDF15 is thought to reflect the inflammatory re-
sponse as systemic low-grade inflammation is a central
pathophysiological mechanism.120 In chronic heart failure,
an increasing amount of infiltrating inflammatory cells is pres-
ent in cardiac tissue; the same accounts for GDF15 levels with
progression of the disease. For example, macrophages ex-
press GDF15 during inflammatory responses contributing to
the inflammatory activity of activated macrophages.148 In
line, a lack of GDF15 resulted in impaired macrophage migra-
tion and monocyte recruitment and a down-regulation of
pro-inflammatory cytokines such as interferon-γ.54,149 This
suggests that circulating GDF15 reflects the inflammatory sta-
tus of the patient, and reduction of GDF15 as therapeutic in-
tervention may be useful to attenuate macrophage
inflammation in CVD.

Discussion and future perspective

With this review, we aimed to summarize the current knowl-
edge about GDF15 in heart failure and define the most vital
questions that should be addressed in the coming years. Over
the last years, GDF15 gained more and more interest in the
cardiovascular field as it hold promise as a valuable bio-
marker. It has been shown that GDF15 has cardioprotective
properties mostly through anti-apoptotic, anti-hypertrophic,
anti-fibrotic, and anti-inflammatory actions. However, an
increase in GDF15 concentrations has also been associated
with pro-apoptotic, pro-hypertrophic, pro-fibrotic, and
pro-inflammatory responses including a worse prognosis
and higher mortality rates among heart failure patients. How-
ever, a causal role for GDF15 in adverse cardiac remodelling
remains to be elucidated; whether GDF15 plays an adaptive
or maladaptive role in heart failure patients is still poorly un-
derstood. Summarizing on the data included in this review,
we propose that GDF15 may be a valuable therapeutic target
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in heart failure as it is involved in several key processes in the
pathobiology of heart failure.

Added value of growth differentiation factor 15
as a heart failure biomarker?

Currently, it has been well established that GDF15 level is in-
creased during CVD development and progression and can
prognosticate disease progression.31 However, the availability
of a reliable diagnostic test for routine clinical use and the
complementary relevant cut-off values are lacking. With the
recent development of a diagnostic GDF15 kit, the first steps
towards a clinical biomarker approach are made.21 However,
it remains unclear what the specific implications are when
heart failure patients have increased levels of GDF15, as we
cannot connect the level to a specific pathophysiological con-
tributor to disease progression, like cardiac fibrosis. There-
fore, we need more information on the causal role of
GDF15 before the specific biomarker function of GDF15 in
clinical care can be established. For example, it has been re-
ported that after left ventricular assist device implantation
in patients with advanced heart failure, GDF15 levels
decrease.137,150 This indicates that the elevation of GDF15
in heart failure patients is reversible upon treatment. A phar-
macological treatment with vasodilator hormone human
relaxin-2 (Serelaxin) was able to lower to GDF15 levels in pa-
tients with acute heart failure.151,152 This indicates that im-
proving heart function by reduction of cardiac stress due to
treatment consequently lead to down-regulation of GDF15
levels and insinuates GDF15 may be an interesting biomarker
for treatment responsiveness. Furthermore, treatment of
co-morbidities could strongly benefit the heart failure prog-
nosis; however, determining if patients are treated optimally
remains very difficult as this is poorly reflected by current
biomarkers.77 Current biomarkers, like N-terminal pro-brain
natriuretic peptide, provide information on the cardiac func-
tion in HFrEF, where critical information on disease state
and progression for HFpEF are lacking from current bio-
markers. HFpEF patients will most likely benefit most from
non-cardiac biomarkers like GDF15, specifying the general
disease state, as they provide information on the systemic
and chronic cardiac stress induced by multiple co-morbidities.
If treatment focuses on the co-morbidities in HFpEF patients,
we can use GDF15 as a marker for treatment responsiveness,
as the general state of disease in HFpEF patients should im-
prove upon therapy. To assess within the diverse heart pop-
ulation which patients would benefit most from GDF15 as
biomarker for diagnosis or treatment responsiveness, we sug-
gest that levels of GDF15 should be thoroughly assessed in
patients with severe non-ischaemic heart failure, which
would benefit most. Nonetheless, because this is a very
heterogeneous patient population, the relation between
GDF15 and specific co-morbidities and their underlying

pathophysiology should be thoroughly addressed. Besides
patient-based research, the molecular insights should be
studies in experimental disease models (in vivo and in vitro)
that reflect the specific patient population as best as possible.

When looking for future therapeutic intervention options
or clinical discriminative biomarkers to aid to prediction and
guide treatment, it is of crucial importance to gain more in-
sight in the specific signalling effects of GDF15 within cardiac
tissue. Elucidating the balance in GDF15 concentration
needed for normal pathophysiological function, thereby
needing to either increasing or decreasing the GDF15 levels,
is needed to provide a beneficial effect on cardiac function.

Growth differentiation factor 15 as therapeutic
intervention for heart failure

Before GDF15 can become a therapeutic option, we need to
elucidate on the possible options for intervention, for
example, inhibiting or enhancing GDF15 production,
post-transcriptional regulation, receptor ligand binding, and
protein interactions. Before clinical application of therapeutic
interventions with GDF15, we need to understand these pro-
cesses through thorough basic research into the function of
GDF15. This includes receptor identification and unravelling
the specific effects of GDF15 on cardiac cell types both
in vitro and in vivo. Furthermore, we have to establish the
contribution of GDF15 to adverse processes of cardiac dys-
function like fibrosis and cardiac remodelling to find a specific
cellular target for GDF15. Although cardiomyocytes are the
functional cellular cardiac component, these cells have
proven to be difficult targets153 as endothelial cells form
the functional barrier between the circulating levels and car-
diac tissue. Therefore, a more relevant cell type for targeting
via receptor interaction would be endothelial cells, especially
as endothelial dysfunction can be reversible.154 In this man-
ner, modulation of fibrotic responses could be made possible.
GDF15 receptor inhibition is where potential lies, as shown
with the GFRAL receptor in the blood–brain barrier, which
yields beneficial treatment potential for obesity.47,48 A logical
druggable target are receptors, as they are easily accessible
for biologicals; however, for heart failure, this will remain
complex because of the lack of known cardiac receptor for
GDF15. Therefore, emphasizing more research into the spe-
cific cardiac receptor for GDF15 is crucial.

Microvascular intervention

To the best of our knowledge, no research has been per-
formed into the role of GDF15 on cardiac tissue calcification,
something less prevalent but nevertheless interesting as it
plays a major role in conduction disturbances in cardiac
tissue.155 In line, HFpEF is associated with microvascular
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stiffness and microvascular calcification.156,157 Well esta-
blished are coronary artery calcifications associated with
heart failure as they increase the risk for cardiovascular
events.158,159 Until known preventive treatment for calcifica-
tion is not possible because of lack of knowledge about the
underlying mechanism,160–162 GDF15 is associated with the
presence of carotid artery calcification,22 increased expres-
sion resulted in reduced atherosclerotic lesion formation,163

and absence of GDF15 in leukocytes resulted in stable lesion
formation.54 From patients and animal studies, we know that
endothelial dysfunction leads to increased vascular calcifica-
tion via BMP pathway activation,164,165 addressing endothe-
lial cells as possible target to reduce calcification. Therefore,
the role of GDF15 in vascular calcification and stiffness could
give valuable information towards unravelling the mechanism
behind heart failure.

Conclusions

With this review, we aimed to display the potential behind
GDF15 beyond a biomarker function as it is involved in many
pathophysiological processes in heart failure. The future of
GDF15 as therapeutic target lies in additional cardiac specific
research unravelling the causal effect of GDF15 in cardiac dys-
function on a cellular and molecular level.
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