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A B S T R A C T

IL-1 mediated auto-inflammatory diseases are characterised by episodes of unexplained fever, generalized and
localized inflammation. The characteristic symptoms predominantly result from exaggerated activation of innate
immune pathways. However, in some patients with typical IL-1 mediated diseases, chronic disease manifesta-
tions develop in the absence of acute inflammation, suggesting the involvement of adaptive immune pathways.
We discuss clinical observations as well as novel insights in how chronic activation of innate immune pathways
can lead to auto-immune disease features in patients with auto-inflammatory diseases and how we need to better
understand these sequelae in order to improve treatment strategies.

1. Introduction

The term auto-inflammation was coined in the late nineties of the
previous century by McDermott [1], to describe recurrent and see-
mingly unprovoked fever and inflammation lacking the typical features
of classical auto-immune diseases. The first genes associated with
monogenetic auto-inflammatory disorders, encoded proteins associated
with innate immune cells. It transpired that in this group of in-
flammatory disorders, innate immune pathways were dysregulated as
opposed to auto-immune disease in which adaptive immune pathways
are involved. The first group to be identified as hereditary auto-in-
flammatory diseases were the ‘periodic fever syndromes’. These have
also been termed ‘classical’ inflammasomopathies, because over-
activation of the IL-1 pathway seems to be the cardinal underlying
disease mechanism. However, there is more than one innate response
pattern and hence the spectrum of auto-inflammatory diseases has ex-
panded over the past decades, to include, among others, those involving
type -1 interferon signalling.

This review focusses on the ‘classical’ IL-1 mediated in-
flammasomopathies where previous reviews included type I inter-
feronopathies and complement disorders [2] or focused on systemic
Juvenile Idiopathic Arthritis (sJIA) as a specific complex inflammatory
disease [3]. The characteristic features of IL-1 mediated in-
flammasomopathies are recurrent episodes of fever, increased levels of
acute phase reactants and signs of organ involvement like

lymphadenopathy, arthritis/arthralgia, serositis or mucosal/skin in-
volvement. These clinical manifestations are supposed to result from
exaggerated activation of innate immune pathways. In addition, it has
become clear that patients with ‘classical’ auto-inflammatory diseases
may develop more chronic disease manifestations that suggest in-
volvement of adaptive immune pathways as well.

We will describe disease mechanisms in monogenetic ‘auto-in-
flammatory diseases Familial Mediterranean Fever, CAPS, TRAPS and
Mevalonate Kinase deficiency (MKD) and subsequently how these in-
sights have also impacted recent understanding of complex a multi-
factorial auto-inflammatory disorders like systemic JIA. We describe
the clinical signs of presumed auto-immune involvement in these dis-
eases and discuss the existing evidence and insights of the underlying
auto-immune pathways involved in order to increase our understanding
how typical auto-inflammation may drive auto-immune pathways.

2. Monogenetic classical auto-inflammatory diseases:
mechanisms of disease related to typical auto-inflammatory
clinical symptoms

The classical monogenic auto-inflammatory diseases are mediated
by exaggerated inflammasome activation and IL-1β production [4]. In
short, inflammasomes are complexes of proteins that activate caspases,
leading to processing and secretion of active IL-1β and IL-18. The core
component of most inflammasomes are proteins of the NOD-like
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receptor (NLR) family. These either carry an N-terminal pyrin domain
(NLRP) or a caspase-recruitment domain (NLRC). Inflammasomes are
rapidly assembled in response to a variety of stimuli, through nuclea-
tion of an adaptor protein ASC, harbouring a PYRIN domain as well as a
Caspase Activation and Recruitment Domain (CARD). ASC filaments
assemble through interaction of their PYRIN domains, bringing CARD
domains in close proximity to each other. These subsequently recruit
the pro-enzyme pro-caspase I, which undergoes autoproteolysis to yield
the active protease Caspase I [5]. Caspase I in turn, is able to cleave the
inactive cytokine precursors pro-IL-1β and pro-IL-18 into the active pro-
inflammatory cytokines IL-1β and IL-18., Alternative infammasome
activation is possible as well, for example in caspase-8 mediated NLRP3
inflammasome activation, though the exact mechanisms behind this
have to be elucidated [6].

In the next section, we will summarize typical clinical findings of
disease episodes in four of the classical IL-1 mediated in-
flammasomopathies: FMF, MKD, CAPS and TRAPS. Moreover, we will
discuss the presumed mechanisms of inflammasome activation in these
diseases. We will then discuss examples of auto-immune manifestations
in classical IL-1 mediated inflammasomopathies and the presumed
mechanisms involved. Conversely, we will address the involvement of
innate pathways in typical auto-immune diseases.

3. Familial Mediterranean Fever (FMF): gain-of-function
mutations in the pyrin inflammasome

FMF is the most common monogenic auto-inflammatory disease,
mainly affecting populations around the Mediterranean sea [7]. Pa-
tients with FMF suffer from episodes of fever, serositis, arthritis and
skin manifestations and are at risk for development of systemic amyloid
A amyloidosis [8]. The prevalence of FMF in Turkey, Armenia and Is-
rael is estimated to be between 1:400 and 1:1000 [7]. FMF is caused by
mutations in MEFV, which encodes the protein pyrin [9]. The me-
chanism by which MEFV-mutations lead to disease was initially thought
to involve to a loss of function of anti-inflammatory function of the
pyrin protein, although this could not be supported by a variety of
murine studies [4]. Recent studies indicate that FMF-associated MEFV
mutations (predominantly in exon 10) are actually gain-of-function
mutations leading to constitutive activity of the pyrin inflammasome
[10,11,12]. Normally, pyrin is only activated when cellular Ras
homolog family member A (RhoA) GTPases are inhibited, e.g. by bac-
terial toxins like the TcdA and TcdB toxin from Clostridium Difficile
[12,13]. Once active, pyrin assembles with ASC and pro-caspase 1,
inducing activation and secretion of IL-1β and IL-18. Most FMF patients
do not have constitutively enhanced autonomous IL-1β signalling or
clinical symptoms of inflammation between attacks [14]. The MEFV
variants associated with increased IL-1β production in response to en-
vironmental triggers such as lipopolysaccharide, do not interfere with
the production of the regulatory natural antagonist protein IL-1receptor
antagonist (IL-1RA), which may explain the observation that the in-
flammatory episodes resolve spontaneously within 2-3 days [14].

4. Mevalonate Kinase Deficiency (MKD) metabolic defects
resulting in pyrin inflammasome activation

The phenotypic spectrum of MKD ranges from a milder phenotype,
known as hyper IgD syndrome (HIDS) to a severe form, known as
mevalonic aciduria [15]. MKD is characterized by episodes of fever
accompanied by gastro-intestinal symptoms, myalgia, arthralgia, skin
rash and lymphadenopathy [16]. Additionally, mevalonic aciduria pa-
tients exhibit growth retardation and severe neurological and ocular
involvement [17]. Albeit a rare disease with less than 500 cases re-
ported worldwide, a disproportionate number of patients are reported
from the Netherlands, probably due to a founder mutation (V377I) in
the Dutch population [18]. Typically, the inflammatory episodes in
MKD last around 4 days [16]. The most prevalent clinical features

during a disease episode including fever are: (cervical) lymphadeno-
pathy (~85% of patients), gastro-intestinal symptoms (> 95% of pa-
tients), mucocutaneous symptoms (~85% of patients) and muscu-
loskeletal symptoms (~80% of patients, most prominent are arthralgia
and myalgia). Most of the affected children (87%) display an episodic
disease pattern, whereas a minority of MKD patients suffers from con-
tinuous disease activity. Chronic arthritis has been reported in about a
quarter of patients and may become erosive [16].

MKD is caused by loss-of-function mutations inMVK, which encodes
mevalonate kinase. Enzyme activity of mevalonate kinase is severely
decreased in patients with MKD [18–20]. The mechanism linking me-
valonate kinase enzyme deficiency to inflammation has remained elu-
sive until recently [10,11]. Now it has transpired that decreased me-
valonate kinase activity leads to low levels of geranylgeranyl
pyrophosphate (GGPP), a downstream molecule of the mevalonate
pathway. Less GGPP results in inactivation of RhoA and subsequent
activation of the pyrin inflammasome and thus hypersecretion of IL-1β.
This explains the therapeutic efficacy of IL-1 blockade in MKD [21–23].

5. Cryopyrin Associated Periodic Syndrome (CAPS): activation of
the NLRP3-inflammasome

Gain-of-function mutations in NLRP3 cause constitutive over-acti-
vation of the NLRP3-inflammasome [24]. The conformational changes
in the NLRP3 protein of CAPS patients result in enhanced NLRP3-in-
flammasome assembly and increased production of (especially) IL-1β
[25], and as reviewed in 2019the clinical spectrum of CAPS is wide
[26], At the ‘benign’ end of the spectrum, familial cold auto-in-
flammatory syndrome (FCAS) is characterised by brief self-limiting
episodes of fever, rash, and conjunctivitis when exposed to cold. At the
other extreme, almost continuously increased IL-1β production within
the first year of life results in neonatal onset multisystem inflammatory
disorder (NOMID). The disease may be the result of germline mutations
but even somatic mosaicism for NLRP3 gene mutations in myeloid cell
lineages can lead to severe disease., Expansion of mutated clones over
time may result in later onset of clinical symptoms in patients [27–29].

The NLRP3-inflammasome can be activated by both pathogen-as-
sociated molecular patterns (PAMPs) and intrinsic (non-bacterial de-
rived) danger-associated molecular patterns (DAMPs). An example of a
PAMP is lipopolysaccharide (LPS), a component of the outer membrane
of gram-negative bacteria which elicits strong immune responses via
Toll-like receptor (TLR)4. Examples of DAMPs are extracellular ATP
and the S100A proteins, the levels of which are strongly elevated in
several auto-inflammatory disorders [30,31]. The classical activation of
the NLRP3-inflammasome requires two signals [24]. First of all, TLR4-
signalling by DAMPs or PAMPs causes NF-κB activation, which leads to
production of NLRP3, pro-IL-1β and pro-IL18. A second danger signal,
such as extracellular ATP or mitochondrial reactive oxygen species
(ROS), leads to the assembly of a multimeric inflammasome complex.
This complex includes NLRP3 and the adaptor protein apoptosis-asso-
ciated speck-like protein containing a ASC. This protein has a CARD
domain enabling recruitment of pro-caspase-1, which is subsequently
cleaved into the active caspase-1. The result is the cleavage of inactive
pro-IL-1β and pro-IL-18 into their active forms. Monocytes of CAPS
patients seem to produce more IL-1β after TLR4 stimulation compared
to healthy controls, not requiring exogenous ATP [32]. Clinically, CAPS
patients display excellent responses to IL-1 signalling blockade [33–35].

6. TRAPS: Endoplasmic reticulum stress leading to auto-
inflammation?

TRAPS is a dominantly inherited auto-inflammatory disease, char-
acterized by prolonged episodes of fever (typically 7-14 days), ab-
dominal pain, arthralgia and migratory myalgia and rash. Around 5-
10% of TRAPS patients develop (chronic) arthritis as part of their dis-
ease [36].
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TRAPS is caused by mutations (mostly residing in exon 2-3-4) in
TNFRSF1A, which leads to conformational changes (misfolding) in the
encoded TNF-receptor TNFR1 [1]. The mutated TNFR1 is retained in
the endoplasmic reticulum, but the exact mechanism how this leads to
inflammation has not completely been elucidated yet [4]. Some me-
chanisms have been proposed, such as the unfolded protein response
and increased mitochondrial ROS production, both leading to activa-
tion of JNK and MAPK signalling and subsequent increase in production
of pro-inflammatory cytokines like TNFα and IL-1β [37,38]. Further-
more, decreased surface expression of TNFR1 due to mutated TNFR1
might also result in reduced shedding of the exogenous part of the re-
ceptor, which functions as a natural antagonist for TNF-α. The ob-
servation that TRAPS patients in general have a better response to IL-1
blockade than to TNF-blockade favours a TNF-independent disease
mechanism [21,39]. One example of such a mechanism has been pro-
posed to relate to defective autophagy, a pathway involved in the
elimination of insoluble intracellular aggregates, linking TRAPS with
the TNF-R1-IL-1 signalling cascade [40].

7. How chronic inflammation in classical IL-1 mediated auto-
inflammatory diseases may induce adaptive immune pathways

As outlined in the introduction of this review and in the description
of the classical IL-1 mediated auto-inflammatory diseases, increased
inflammatory responses develop in these monogenetic disorders as a
result of gain-of-function mutations or loss-of-function mutations in
genes involved in the build-up and activation of inflammasomes. In
2018, Achmet Gul proposed the terms autonomous versus hyperin-
flammatory states in auto-inflammatory disorders [41]. In the ‘hyper-
inflammatory state’ the host will develop enhanced innate immune
system dominated inflammatory responses upon a defined trigger.
These episodes generally last for days before returning to a normal state
without inflammation in between attacks. Examples are the typical
episodes of FMF or the milder episodes seen in CAPS, like episodes of
familial cold associated auto-inflammatory syndrome (FCAS).Opposed
to this phenotype of the ‘hyperinflammatory state’, is the so called
‘autonomous inflammatory state’, in which specific gain of function
mutations result in continuous production of IL-1β and IL-18, with
ongoing inflammatory activity between attacks. For example, patients
with the dominantly inherited p.Ser242Arg mutation in exon 2 of
MEFV, develop a different clinical phenotype than most FMF patients,
related to constitutive pyrin-inflammasome activation and continuous
IL-1β production. This phenotype has been named pyrin-associated
auto-inflammation with neutrophilic dermatosis (PAAND) and is char-
acterised by a chronic course of fever, neutrophilic dermatosis ar-
thralgia/myalgia, pyogenic arthritis, cardiomyopathy and serositis.
Phosphorylation of serine at this position is an important regulatory
mechanism of pyrin activity, and a missense mutation at this site results
in autonomous activation of the pyrin-inflammasome, resulting in
persistent (or autonomous) inflammatory disease [13,42]. Interestingly,
it has been suggested that a subgroup of FMF patients, with inadequate
response to colchicine, display a more “autonomous” phenotype as
well, due to (epi-) genetic and/or environmental factors inducing per-
sistent Caspase I activity and subsequent IL-1β production [41]. In some
of these patients, the ‘autonomous state’ may be temporary and
blocking the activity of IL-1β by biologic treatment may ‘reset’ the
autonomous production of IL-1β, sometimes resulting in restored re-
sponse to colchicine [43].

Prolonged elevation of IL-1β and IL-18 in patients with autonomous
auto-inflammatory states can also affect T cell differentiation [44,45].
Auto-immune animal models show that IL-1signaling in T cells, when
synergizing with IL-6 and IL-23 activation, results in the induction /
differentiation of Th17 cells and to Th17 mediated immunopathology
[46]. Indeed, in CAPS patients, levels of IL-17 in serum and numbers of
Th17 T cells in peripheral blood were increased, and both normalized
after the start of IL-1β blockade with Canakinumab, accompanying

clinical improvement in these patients [47]. This Th17 polarization in
IL-1mediated disease has shown to occur in FMF patients as well [48].
Interestingly, in FMF, up to 3% of the patients will eventually develop
often seronegative (HLAB27) spondyloarthropathy, mainly sacroiliitis
[49,50].

IL-18 is known as an inducer / activator of type-1 responses in in-
nate cells (like NK cells, macrophages and innate lymphoid cells) as
well as adaptive cells (like Th1 and B cells), promoting the release of
cytokines like interferon-γ [51]. Already in 2000, it was shown that in
conjunction with IL-12, IL-18 is able to enhance Th1 Immune responses
[52]. In 2013, Brydges et al elegantly showed a divergence between IL-
1 and IL-18 in disease manifestations in murine model of CAPS [53]. By
breeding NLRP3 mutations on an IL-18Receptor (IL-18R) knock-out
background, they showed that IL-1 and IL-18 mediated pathology oc-
curs at different stages of the disease process [53]. Knocking out the
IL18R resulted initially in partial resolution of symptoms including skin
and visceral disease in young mice and a normalization of serum cy-
tokines in comparison with the IL-1R knock-out mice. However, aging
of the IL-18R knock-out mice led to increased systemic inflammation
compared to the IL-1R knock-out mice, indicating that IL-1 drives in-
flammation earlier in the disease course compared to IL-18. Therefore,
one could hypothesize that IL-18 activity might be one of the me-
chanisms for late residual disease in some CAPS patients on main-
tenance therapy with IL-1 blockade. In agreement with this, (human)
patients with a congenital deficiency of the IL-1 receptor antagonist
(DIRA), resulting in life-threatening systemic inflammation with mul-
tifocal osteomyelitis, periostitis, and pustulosis, may in turn experience
less residual disease as long as adequately being treated with adequate
IL-1R-blockade [54].

Finally, new insights in immunological responses have revealed that
the innate immune response can induce a sort of immunological
memory, now called trained immunity [55], in which a second stimulus
with a different pathogen after a first induction of an innate response by
an infection or vaccination, can result in a stronger inflammatory re-
sponse with a broader specificity [56]. This trained immunity involves
epigenetic re-programming of innate immune cells by histone mod-
ification and metabolic changes in myeloid derived cells [57]. This
explains for example how activation of the cholesterol pathway is in-
volved in stimulation of trained immunity in MKD, and how mevalo-
nate is the critical molecule of this pathway inducing epigenetic
changes such as H3K4me3 histone modifications in the promoter re-
gions of TNFA and IL6 genes [58]. This environment could then con-
tribute to increased sensitivity for the activation of adaptive immune
pathways.

8. (Functional) variants of genes involved in inflammasome
activation are associated with both the susceptibility to auto-
immune diseases and the subsequent disease course

The interaction of inflammasome-activation and auto-immune
pathways is further reflected by the recent findings that multiple
functional variants / polymorphisms in inflammasome-related genes
have been shown to be associated with disease susceptibility, severity
and disease course in multiple diseases that are regarded as typically
auto-immune disorders. For example, genetic polymorphisms and
functional variants in genes involved in priming of the inflammasome,
like P2X(7) and NLRP1, seem to be associated with the development of
vitiligo [59,60], systemic lupus erythematosus (SLE) [61], rheumatoid
arthritis (RA) [62,63] and systemic sclerosis [64,65]. These variants in
NLRP1 have been shown to result in exaggerated IL-1β excretion under
resting and activating (LPS stimulation) conditions in cultured mono-
cytes [60].

Moreover, the disease course and response to treatment of complex
auto-immune disorders can be linked to specific polymorphisms and/or
functional variants in genes for inflammasome components. In RA for
example, increased levels in Caspase-I and IL-18 were observed in
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patients with active arthritis, prior to the start of anti TNF-treatment
(infliximab) [63]. NLRP3-inflammasome-related gene expression
(NLRP3-FL CASP 1, MEFV, ASC) was upregulated, suggesting increased
activity of the NLRP3 inflammasome. Interestingly, the response to
anti-TNF treatment (infliximab) was associated as well with a specific
SNP in CARD8 in this study [63].

Altogether, these findings seem to point to a contribution of in-
flammasome activation in the chronic inflammatory cascades in auto-
immune disease.

9. Disease mechanisms in a complex auto-inflammatory diseases:
systemic Juvenile Idiopathic Arthritis

Although auto-inflammatory disorders clinically, genetically and
immunologically clearly differ from classical auto-immune disorders,
the difference is not black and white as many diseases display features
of both disorders. To explain this, McGonagle proposed the im-
munological disease continuum in 2009 [66]. Therein, the monogenetic
auto-inflammatory disorders are at one end of the spectrum and the
classic autoimmune diseases at the other. Intermediate in this con-
tinuum are polygenic diseases with prominent auto-inflammatory and/
or auto-immune components. SJIA is such a multifactorial auto-in-
flammatory disease. The disease manifestations and clinical features in
sJIA clearly differ from the other subtypes of JIA. Especially early in the
disease course, auto-inflammatory pathways seem to underly the clin-
ical characteristics. SJIA is characterized by the presence of prominent
systemic inflammatory features, which (may) includes arthritis. There
is a typical spiking fever pattern for more than 2 weeks, and at least 1 of
the following symptoms: a skin rash, generalised lymphadenopathy,
hepatosplenomegaly or serositis [67]. Routine laboratory parameters
reflect marked inflammation with increased levels of CRP and ferritin, a
raised ESR, thrombocytosis and leucocytosis with neutrophilia. In
analogy to how rheumatologists have defined classification criteria for
adult onset Still’s disease, recently Martini et al have proposed new
classification criteria for sJIA, in which now arthritis is not a pre-
requisite reflecting the notion that systemic inflammation (and not ar-
thritis) is really the cardinal feature of this disease [68].

On a genetic level, polymorphisms in the putative promoter regions
of several cytokines have been associated with sJIA [69–74]. In the past
decade, the National Institute of Health (NIH) performed a genome-
wide association study (GWAS) in a cohort of 770 systemic JIA patients
and 6947 healthy controls patients from 9 national patrient cohorts and
identifiedgenetic risk loci for sJIA [75]. The consortium investigated 26
single nucleotide polymorphisms (SNPs) in 11 loci that had been pre-
viously implicated in sJIA [76]. These loci included plausible con-
tributors to disease biology, including IL1A/B, IL1R2, IL10/20, IL6, and
MVK. However, none of these 26 SNPs were found to be associated with
sJIA in the larger cohort. Extending the analysis to other SNPs within
these 11 regions, only one locus emerged as significantly associated
with systemic JIA risk – IL1RN, encoding the IL-1 receptor antagonist
(IL-1ra). Intriguingly, the complexity of this disease is underscored by
another key observation in this GWAS study: a significant association to
HLA-DRB1*11 haplotypes in patients with sJIA [77]. Although this
haplotype differs from HLA haplotypes associated with non-systemic
JIA, this finding does suggest involvement of adaptive immune path-
ways in sJIA as well.

The importance of aberrant innate immune responses in the pa-
thophysiology of sJIA is further supported by critical observations in
over a decade of translational research as reviewed in 2014 and 2015
[78,79]. Especially in the early phases of sJIA there is prominent innate
immune activity and a limited role for adaptive immunity. Specifically
the IL-1 pathway and the IL-6 pathway appear to be central in the
pathophysiology of sJIA. The strong IL-1 signature in sJIA was first
shown by Virginia Pascual in 2005 and since then evidence has am-
plified that many features of sJIA are IL-1 mediated [30,80–84]. As a
translation of these observations, blocking the IL-1 route via

recombinant IL-1RA (rIL-1RA, Anakinra) or long acting IL-1 blocking
agents (Canakinumab) showed beneficial effects of IL-1 blockade in
sJIA even in patients with longstanding steroid resistant disease
[85–87].

Especially in the early phase of sJIA, innate immune cells, such as
monocytes and neutrophils, are clearly increased in peripheral blood
and seem to play a cardinal role in the evolving systemic inflammation
[88,89]. These neutrophils display an activated and primed phenotype,
resembling neutrophils in the early phase of sepsis [90,91]. Interest-
ingly, natural killer (NK) cells are deficient in both numbers and
function, which may contribute to the high risk of developing macro-
phage activation syndrome (MAS), a well-known dangerous complica-
tion of sJIA [92–95]. MAS is less common in patients with classical
monogenic auto-inflammatory disorders. However, a clear exception to
this is the NLR-family CARD-containing protein 4 (NLCR4) in-
flammasomopathy, in which a gain of function mutation leads to life-
threating inflammation with infantile enterocolitis and episodes of MAS
[96]. Interestingly, NLRC-4 patients have levels of IL-18 that are
chronically strongly elevated. As IL-18 levels are also very high in
(active) sJIA at time of MAS, they seem to play an important role in the
development of MAS [95,97–99].

10. Divergence in disease-course in sJIA: window of opportunity
for IL-1 blockade early in the disease?

Notwithstanding the central role of the IL-1β pathway in sJIA, it has
become clear that not all sJIA patients respond equally well to IL-1
blockade [32,86,100]. This suggests the involvement of more than just
IL-1 mediated mechanisms in the disease pathogenesis. In fact, the IL-6
pathway is an important disease mechanisms as well, explaining a
variety of clinical characteristics of sJIA and exemplified by excellent
clinical responses to therapeutic blockade of IL-6 in many patients
[101,102]. The picture arises of a heterogeneous disease with a subset
of patients responding to IL-1 directed therapies, a subset responding to
IL-6 blockade and a subset remaining unresponsive to both IL-1 and IL-
6 blocking modalities

Thus, sJIA seems to be an example of a complex auto-inflammatory
IL-1 mediated disease, with IL-6 and IL-18 mediated inflammatory
features as well. Interestingly, observations in several case series and 1
prospective cohort study showed that most sJIA patients achieve in-
active disease or disease remission when intervened early in the disease
with rIL-1RA therapy [89,100,103,104]. These observations support
the existence of a so-called ‘window of opportunity’. Apparently, at
least in a significant subset of sJIA patients, the early phase of this
disease is dominated by IL-1 dependent disease mechanisms, and early
intervention by (1st line) therapeutic IL-1 blockade, has resulted in
excellent clinical outcomes [103–105]. The prospective Dutch cohort
study using rIL-1RA therapy as 1st line therapy in a treat-to-target ap-
proach, reports excellent disease remission rates also 3-5 years after
diagnosis without the need for maintenance therapy in the majority of
patients. The rates for chronic arthritis after 3 and 5 years are re-
markably low, when compared to pre- rIL-1RA cohorts [104,106–108].

11. Adaptive immune mechanisms in sJIA with a persistent
disease course?

Historical cohort studies over the past 30 years have consistently
shown that more than half of the children with SJIA have a persistent
disease course [109,110]. Indeed, notwithstanding the intriguing re-
sponse to IL-1 blockade early in the disease course, not all sJIA patients
respond equally well to rIL-1RA therapy [86,100,111]. Apparently, the
targeted blockade of IL-1 by rIL-1RA is insufficient in a subset of pa-
tients to prevent or overcome a perpetuating loop of chronic in-
flammation.

There are several indications for involvement of auto-immune
pathways being relevant in the disease mechanisms of sJIA as well. As
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stated before, the GWAS study in sJIA coordinated by NIH, found HLA-
DRB1*11 to be associated with sJIA [77]. In addition, Hugle et al
showed in their single center cohort study that many sJIA patients
developed positive antinuclear antibodies and rheumatoid factor over
time, suggesting triggering of auto-immune pathways during the course
of sJIA [112]. Later work of this group indicated involvement of the
transcription factors STAT3, STAT4 and BCL6, already present quite
early in the disease course [113]. These transcription factors play an
important role in T- and B cell differentiation respectively.

Several translational studies have provided evidence for the in-
volvement of the Th17 pathway in the pathophysiology of sJIA, at least
in patients with a persisting disease course [114–116]. Similar to what
is described in the monogenetic IL-1 mediated inflammasomopathies,
several murine studies have shown that activation of the IL-1 and/or IL-
18 pathway could contribute to the induction of Th17 cells
[46,47,117]. In this respect, the presence of IL-6, which is over-
expressed in sJIA [101,118], and IL-23 could be of importance as well
[119]. Besides an effect on T cell differentiation, increased IL-1R sig-
nalling has shown to stimulate effector functions in Th1, Th2 and Th17
cells [120]. Interestingly, a recent study pointed to a potential role of
IL-1 activation in stimulating production of IL-17 by γδT cells in sJIA
[115]. Accordingly, another study showed that mice lacking IL-1RA
expression (the natural occurring antagonist for IL-1 signalling), de-
velop spontaneous Th17 driven arthritis [121]. Very recently, Hen-
derson et al published data on effector and regulatory T (Treg) cell
subsets in patients with different disease courses in sJIA [116]. They
sjowed that in sJIA patients in the acute inflammatory course of the
disease, Th17 signatures could be predominantly identified in Treg cell
populations, whereas in patients with a more chronic disease course,
the Th17 signature predominantly resided in effector T cell, but less in
Treg populations. Moreover, data from sJIA patients in whom IL-1
blockade was used within the 1st month of the disease, seemed to
abolish Th17 expression in Treg, suggesting that chronic exposure to IL-
1signaling is a driving factor to Th17 polarisation in sJIA,.

Altogether, persistent activation of both IL-1 and IL-18 pathways
might be involved in the perpetuation of inflammation in sJIA, shifting
from a primarily innate response in the early phases of disease to a
more chronic and complex immune response, including T, B and γδT
cells, in (a subset of) chronically affected sJIA patients.

12. Concluding remarks

Translational research in monogenetic and complex inflammatory
diseases with a clear auto-inflammatory signature has improved our
insight in the disease mechanisms underlying these recurrent and/or
chronic inflammatory diseases. Moreover, it has resulted in the suc-
cessful employment of targeted treatments in both the mono-genetic
and complex auto-inflammatory diseases, increasingly in an early phase
of the disease in a treat-to-target approach. Current treatment strategies
often result in high response rates, certainly when compared to the pre-
biologic era. However, it also has become clear that not all patients
respond equally well, some loose response over time, and some develop
complications and / or a more chronic disease course in which different
disease mechanisms, including more adaptive immune pathways seem
to play a role. In order to benefit these complex or difficult to treat
patients as well, we need to further dissect and target the relevant
pathways involved.
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