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Different types of translational heteroge-
neity can be distinguished: cell or tissue
heterogeneity (translation of a gene
differs in distinct cell or tissue types),
‘intergenic’ heterogeneity (mRNAs
derived from different genes are trans-
lated differentially), and ‘intragenic’
heterogeneity (different mRNAs derived
fromone gene in a single cell show trans-
lational heterogeneity).
DuringmRNA translation, the genetic information stored inmRNA is translated into
a protein sequence. It is imperative that the genetic information is translated with
high precision. Surprisingly, however, recent experimental evidence has demon-
strated that translation can be highly heterogeneous, even among different
mRNAmolecules derived from a single gene in an individual cell; multiple different
polypeptides can be produced from a single mRNAmolecule and the rate of trans-
lation can vary in both space and time. However, whether translational heteroge-
neity serves an important cellular function, or rather predominantly represents
gene expression ‘noise’ remains an open question. In this review, we discuss the
molecular basis and potential functions of such translational heterogeneity.
Recent studies using single-molecule
imaging have revealed the widespread
occurrence of intragenic translational
heterogeneity.

Intragenic translational heterogeneity can
havemultiple origins, including heteroge-
neity in primary mRNA sequence, RNA-
binding proteins, RNA modifications,
mRNA structure, and ribosome
composition.

Translational heterogeneity is likely to
represent ‘noise’ aswell as spatiotempo-
ral regulation of translation.
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Mechanisms of Translational Control
The fate and function of each cell depends on its protein composition. Therefore, accurate gene
expression control is critical for proper cell functioning. A key step in gene expression is mRNA
translation (see Figure I in Box 1), during which the genetic information stored in mRNA is
decoded. Regulation of translation can affect both protein sequence and abundance [1]. More-
over, translational regulation is fast, reversible and provides spatial control, making it a unique reg-
ulatory mechanism of gene expression. In a simplistic view, each mRNA molecule encodes a
single protein and mRNAs derived from the same gene are decoded in the same way. However,
it is now clear that translation is far more heterogeneous. Different types of translational heteroge-
neity can be distinguished. First, a single mRNA species can be translated differentially in different
cell types, resulting in ‘cell-to-cell’ translational heterogeneity, which is important during various
cellular processes such as differentiation [2]. Second, mRNA molecules originating from different
genes can be differentially translated in a single cell, resulting in ‘intergenic’ translational heteroge-
neity. Third, mRNAmolecules originating from a single gene in a single cell can also display trans-
lational heterogeneity, which we refer to as ‘intragenic’ heterogeneity. Finally, a single mRNA
molecule can also be translated differentially over time, representing a special case of intragenic
heterogeneity. While regulatory functions for cell-to-cell and intergenic translational heterogeneity
are well known, potential functions and mechanisms of regulation for intragenic translational het-
erogeneity are less evident.

In this review, we focus on intragenic translational heterogeneity, a field that has rapidly emerged
in recent years in part due to the development of new methods that provide sufficient detection
sensitivity to study the translation of single mRNA molecules. First, we describe experimental
evidence supporting the existence of intragenic translational heterogeneity as well as its potential
functions. Next, we discuss the molecular mechanisms underlying intragenic translational hetero-
geneity. We also discuss whether intragenic translational heterogeneity represents (functional)
translational regulation or whether it is a consequence of the variability inherent to translational
regulation and mainly reflects ‘noise’ in the system.

Experimental Evidence for Heterogeneity in Translation
Two types of intragenic translational heterogeneity can be distinguished: heterogeneity in the
amino acid sequence of newly synthesized proteins (Figure 1A) and heterogeneity in the protein
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synthesis rate (Figure 1B). In this section, we discuss the experimental evidence and function of
both types of translational heterogeneity.

Heterogeneity in Protein Sequence
Heterogeneity in protein sequence can be caused by alternative translation start site selection, ri-
bosome frameshifting during translation elongation, or stop codon readthrough (RT) (Figure 1A).
Here, we focus on translation start site heterogeneity and stop codon RT, as these processes
are best described and likely to represent the predominant mechanisms underlying translational
heterogeneity in eukaryotic cells.

5′-to-3′ directed scanning along the mRNA by the 43S preinitiation complex (PIC) generally re-
sults in translation initiation at the first (i.e., most 5′) AUG codon (see Figure IB in Box 1). The de-
tection efficiency of AUG codons depends on the surrounding sequences, and AUG codons are
most effectively recognized as a translation initiation site (TIS) when surrounded by the Kozak
consensus sequence (GCCACCAUGG) [3]. However, translation initiation can also occur at
non-AUG codons, such as GUG or CUG [4]. Moreover, a PIC can fail to initiate at an AUG
codon when encountering it during scanning (a process termed leaky scanning). Several lines
of evidence have demonstrated that heterogeneity in start site usage is indeed apparent in cells
(see Box 2 for further information on the type of methods used to assess translational heteroge-
neity). Ribosomal profiling revealed that at least half of the humanmRNA transcripts contain more
than one TIS [4,5] and in a small number of cases proteins synthesized from an alternative TIS
have been detected by mass spectrometry [6–10].

Alternative TISs can be used by the cells to drive isoform-specific expression of a protein. In-frame
upstream and downstream initiation from alternative start sites leads to protein N-terminal exten-
sions and N-terminal truncations, respectively, which may affect protein localization or function in
the cell [9,11]. The N-terminal extended protein isoform of the c-myc gene, for example, that
stems from an upstream alternative initiation event has enhanced DNA-binding capacity that drives
the expression of cell cycle repressors [11]. While the example of c-myc clearly demonstrates the
Box 1. Mechanism of Translation Initiation, Elongation, and Termination

(1) Initiation

The 43S PIC comprises the small (40S) ribosomal subunit, GTP-bound eIF2, and the initiator methionine tRNA (Met-tRNAi)
along with several other translation initiation factors (Figure IB). The PIC is recruited to the 7-methylguanosine cap of an
mRNA, a process that is mediated by an interaction of cap-bound eIF4E, eIF4G, and eIF4A translation initiation factors
and the PIC. After recruitment to the cap, the PIC scans the mRNA from 5′ to 3′ in search of a start codon (Figure IB). Upon
base pairing between the start codon and the Met-tRNAi, the PIC undergoes a conformational change, resulting in the re-
cruitment of the large (60S) ribosomal subunit and the start of the translation elongation phase (Figure IB).

(2) Elongation

During elongation, the ORF is decoded in steps of three nucleotides (one codon) to synthesize a polypeptide chain. The
elongation cycle starts with a peptidyl-tRNA in the P site and an empty aminoacyl and exit site (A and E site, respectively)
(Figure IC, step i). First, an aminoacyl-tRNA is selected at the empty A site by base pairing of the tRNA anticodon and the mRNA
codon (Figure IC, step ii). Next, a peptide bond is formed in the peptidyl transferase center between the nascent peptide and the
aminoacyl-tRNA, resulting in a deacylated-tRNA and a new peptidyl-tRNA, respectively (Figure IC, step iii). Finally, the tRNAs
adopt a hybrid state (Figure IC, step iv), followed by eEF2-mediated translocation of the deacylated-tRNA and the new
peptidyl-tRNA to the E and P site, respectively (Figure IC, step v). The elongation cycle is repeated until a stop codon is
encountered.

(3) Termination and Recycling

Translation is terminated upon the recognition of a stop codon in the A site by the release factors eRF1 and eRF3 (Figure ID).
After binding to the stop codon in the A site, eRF1 induces release of the polypeptide and stimulates recruitment of the ribo-
some recycling factor ABCE1, which in turn results in dissociation of the ribosome subunits from the mRNA.
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Figure I. Mechanism of Translation Initiation, Elongation, and Termination. (A) Overview of the different phases of
translation. (B–D) Schematic of translation initiation (B), translation elongation (C), and translation termination and recycling
(D) (see Box 1 text for details).
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possibility of precise regulation of gene expression through alternative TIS usage, it is unclear
whether the widespread occurrence of alternative TIS usage contributes to functional proteome di-
versification. Alternative TIS usage could also act as part of a regulatory mechanism to deflect ribo-
somes away from the main open reading frame (ORF). Translation from alternative TISs may result
in ‘junk’ polypeptides that are produced as a result of infidelity of the translation initiationmachinery.
This is especially the case for alternative TISs that are out of frame with respect to the main protein-
coding ORF, which generally result in the synthesis of short peptides with an amino acid sequence
unrelated to the main protein-coding ORF. Additional work is required to catalog the expression of
such alternative protein products and identify functions for these (poly)peptides. In this context, it is
608 Trends in Cell Biology, August 2020, Vol. 30, No. 8
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Figure 1. Intragenic Translational Heterogeneity. Intragenic translational heterogeneity can be divided into
(A) heterogeneity in protein sequence and (B) heterogeneity in protein synthesis rate. (A) Different mRNA molecules are
shown that produce proteins with different amino acid sequences due to distinct mechanisms: (i) canonical translation
(ii) alternative translation initiation; (iii) ribosome frame shifting; and (iv) stop codon readthrough. (B) Two mRNAs are
depicted that have distinct synthesis rates of the protein encoded in the canonical open reading frame (ORF), resulting in
translational heterogeneity between the two mRNA molecules (high and low synthesis rates for top and bottom mRNAs
respectively). Protein synthesis rates of the canonical ORF are affected by: (i) 43S ribosome recruitment rates; (ii) the
presence of upstream ORFs (uORFs); and (iii) ribosomal stalling in the transcript.
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Box 2. Methods for Measuring Translational Heterogeneity

Mass Spectrometry

Mass spectrometry allows direct detection of distinct protein isoforms; for example, those arising from alternative TISs,
stop codon RT, or the translation of alternatively spliced isoforms. Identification of distinct protein isoforms using mass
spectrometry is limited by the detection sensitivity of the instrument, which can be challenging for the detection of rare
and/or unstable translation products. To enhance the detection of alternative translation products, multiple enrichment
strategies have been developed, such as enrichment of protein N termini for the identification of alternative TISs [96,97].
While distinct translation products can be identified by mass spectrometry, single-cell analysis has not yet been achieved,
making it challenging to study intragenic translational heterogeneity in single cells using this method.

Ribosome Profiling

Ribosome profiling is a sequencing-based method used to identify the precise position of ribosomes along mRNA by se-
quencing the ribosome-protected mRNA fragments [19]. Ribosome profiling is well suited to study intergenic translational
heterogeneity in a genome-wide fashion, as it enables the identification of TISs, translation of the noncoding regions of the
transcript, and measurements of translation efficiency. Since ribosome profiling is an ensemble method, it requires aver-
aging of thousands of mRNAs and cells, so measurements of the translation of different mRNA molecules in single cells
are challenging.

Single-Molecule Imaging Methods

Recently, several methods have been developed that enable visualization of translation of single mRNA molecules
[21–26,98]. Most of these methods rely on the introduction of multiple copies of a short peptide sequence (e.g., the
SunTag [99]) into the coding sequence of a gene of interest. Upon translation, the short epitope sequence is synthesized
and bound by a fluorescently labeled antibody that is stably expressed in the cell, resulting in a bright fluorescence signal
that reports on the translation efficiency of individual mRNAmolecules [100]. Through direct visualization of translation, het-
erogeneity has been observed in many aspects of mRNA translation and decay [16,21–26,101–104]. Furthermore, use of
multiple tags (e.g., SunTag and MoonTag or Frankenbody [16,103]) allows quantification of translation of multiple ORFs at
a single molecule resolution. Therefore, single-molecule imaging methods are uniquely suited to study intragenic transla-
tional heterogeneity in single cells. A drawback of these methods is the low throughput (only one or a couple of genes can
be analyzed at a time) and the need to introduce bulky tags into the gene of interest, which has so farmostly limited analysis
to reporter genes, although endogenously tagged genes are becoming available [23].

Trends in Cell Biology
interesting to note that prokaryotes use the Shine–Dalgarno (SD) sequence, which is located di-
rectly upstream of the main TIS, to guide ribosomes directly to the correct site of initiation, rather
than using a scanningmechanism for TIS identification (reviewed in [12]). It is possible that TIS iden-
tification by scanning provides more flexibility for alternative TIS selection and, if so, would have
evolved only if alternative TIS selection is functionally important (and thus not only noise).

A second process that can cause protein sequence heterogeneity is translation stop codon
RT. Stop codon recognition is generally efficient and results in translation termination. How-
ever, in rare cases the stop codon can be decoded as a sense codon, resulting in a C-
terminally extended protein. Estimates of stop codon RT vary from 0.01% to 0.1% in mam-
malian cells for most genes (with the UGA stop codon being the most prone to induce RT
[13]), although in some examples the RT frequency can exceed 30% of translation termina-
tion events [14]. Recent studies in both mammalian cells and bacteria used live-cell imaging
to directly visualize translation of the 3′ untranslated region (UTR). Surprisingly, both studies
found that 3′ UTR translation was highly heterogeneous between [15] and even within [16]
individual cells. Furthermore, a genome-wide study revealed extensive changes in RT for
many mRNAs during Drosophila development [17]. While there is limited understanding of
the mechanisms controlling RT, one recent paper on the RT of the AGO1 mRNA stop
codon revealed that RT is enhanced by miRNA binding downstream of the stop codon
[18]. It will be interesting to learn whether this or a similar mechanism also acts on other
genes. Together, these studies show that RT is highly heterogeneous and is likely to be a
regulated process.
610 Trends in Cell Biology, August 2020, Vol. 30, No. 8
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Heterogeneity in Protein Synthesis Rate
A second type of translational heterogeneity is heterogeneity in the translation rate (i.e., the num-
ber of proteins synthesized from a single mRNA molecule per unit time) (Figure 1B).
Transcriptome-widemethods, such as ribosome profiling [19], are widely used to study the trans-
lation rate of individual genes and can readily uncover cell-to-cell and intergenic heterogeneity in
the translation rate (Box 2). Furthermore, a recent genome-wide study using polysome profiling
demonstrated that different transcript isoforms can often have distinct translation rates [20], sug-
gestive of intragenic translational heterogeneity. More recently, new single-molecule imaging ap-
proaches (Box 2) have revealed intragenic translation rate heterogeneity for individual mRNAs as
well as temporal fluctuations in the translation rate of single mRNAs [21–26], further confirming
the existence of intragenic translation rate heterogeneity.

Since translation initiation is generally the rate-limiting step for protein synthesis, heterogeneity in the
translation rate is likely to originate predominantly at the initiation step. Differential recruitment rates of
the PIC to the 5′ cap can cause translation rate heterogeneity. In addition, the translation rate of the
main ORF can be affected by the usage of alternative TISs. For example, (short) upstream ORFs
(uORFs) often reduce translation of the main ORF by promoting translation initiation of the uORF
followed by ribosome recycling after termination at the uORF stop codon, preventing initiation at
the main ORF TIS [27]. Importantly, differential usage of uORFs between distinct mRNA molecules
may result in intragenic translation rate heterogeneity, providing a direct link between translation start
site heterogeneity and translation rate heterogeneity [16]. In addition to the translation initiation step,
variability in the translation elongation rate (e.g., due to ribosome pausing) may contribute to intra-
genic translation rate heterogeneity, although this remains a largely unexplored question.

Intragenic translation rate heterogeneity can represent spatial control over the translation rate. For
example, in neuronal cells certain transcripts are translated only locally in axons (see [28] for a re-
view). In addition, translation rate heterogeneity could be a consequence of cell-wide translation
rate regulation; to achieve a cell-wide reduction in translation rate, either the translation rate of
eachmRNAmolecule is reduced partially or the translation of a subset ofmRNAs is reduced severely
while other mRNAs are translated normally. Experimental evidence suggests that the latter mecha-
nism may occur, at least under some conditions. For example, on inhibition of mTOR signaling, the
translational repressor 4E-BP binds to eIF4E associated with individual mRNAs [29], which is likely
to result in complete inhibition of translation of those mRNAs, while mRNAs that are not bound by
4E-BP are likely to be unaffected (at least at short timescales). In these examples, intragenic trans-
lation rate heterogeneity has important functional consequences and is tightly regulated. However,
it is also possible that intragenic translation rate heterogeneity is simply a consequence of the sto-
chastic nature of translation initiation. For example, the translation rate may fluctuate as translation
factors bind and release stochastically from single mRNAs. Dissecting the contributions of active
regulation and stochastic events to translation rate heterogeneity is an important future goal.

Molecular Mechanisms of Translational Heterogeneity
In the previous sections we discussed emerging evidence of intragenic translational heterogeneity.
In the following sections, we provide an overview of different possible mechanisms that could
cause translational heterogeneity (Figure 2).

mRNA Primary Sequence
Many eukaryotic genes encode multiple mRNA isoforms that differ in their primary nucleotide se-
quence. A median of six transcript isoforms has been detected per human protein-coding gene
(GENCODE, Release 33) and different transcript isoforms can coexist in a single cell [30–33]. Pri-
mary mRNA sequence variations can originate from variable transcription start site (TSS) usage,
Trends in Cell Biology, August 2020, Vol. 30, No. 8 611
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Figure 2. Molecular Mechanisms of Translational Heterogeneity. Overview of the potential origins of intragenic
translational heterogeneity. Two mRNA molecules are shown that differ in: (i) the composition of the translating ribosome;
(ii) mRNA structure; (iii) mRNA sequence; (iv) nucleotide modifications; and (v) RNA-binding proteins (RBPs) bound to the
mRNA molecule. Together these different features drive translational heterogeneity.
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alternative usage of polyadenylation sites, or through alternative splicing. The possible contribu-
tions of these types of sequence variability to intragenic translational heterogeneity are discussed
below.

TSSmapping using CAGE in over 900 human cell lines and tissues uncoveredmore than 1million
TSSs [34]. An alternative TSS creates an alternative 5′ UTR and therefore may affect the transla-
tion rate of the transcript isoform [35]. Indeed, several studies have identified hundreds of genes
for which transcripts with alternative 5′UTRs showed distinct translation rates [20,36]. How differ-
ences in 5′ UTRs result in different translation rates is not completely understood. Differential in-
clusion of a uORF or alternative TISs in a subset of transcript isoforms could contribute to the
observed differences in translation rate. However, additional mechanisms may also exist; one
study combined a massively parallel reporter assay and advanced computing and identified mul-
tiple new sequence motifs that regulate the translation initiation efficiency of 5′ UTRs [37], al-
though the mechanism by which these motifs affect translation remains to be explored.
Alternative TSS usage can also affect protein sequence. For example, if the TSS is located down-
stream of the TIS, the mRNA will generate a truncated protein. Similarly, an upstream TSS could
introduce additional TISs in the 5′UTR that result in either short peptides or N-terminally extended
proteins [36]. Thus, 5′ UTR heterogeneity occurs for many, if not most, genes due to alternative
TSS usage and may be an important driver of intragenic translational heterogeneity.

Sequence analysis of exon–exon boundaries in human cells revealed that most, if not all,
multiexon genes undergo alternative splicing [38], and in many cases differentially spliced tran-
scripts appear to coexist in individual cells [30]. Differential splicing in a single cell may be caused
by imperfect recognition of the splice sites by the spliceosome or weak/partial regulation of alter-
native splicing, such that a subset of mRNAmolecules escapes the regulation. Most events of al-
ternative splicing occur in the coding sequence and thus mainly cause protein sequence
heterogeneity rather than translation rate heterogeneity. Nonetheless, a subset of splicing events,
especially those in the 5′ UTR that impact the 5′ UTR sequence, can also cause translation rate
heterogeneity [20].
612 Trends in Cell Biology, August 2020, Vol. 30, No. 8
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During transcription, the 3′ end of mRNAs is processed through cleavage of the pre-mRNA
followed by the addition of a polyA tail. pre-mRNA cleavage occurs downstream of a cleavage
and polyadenylation sequence (e.g., AAUAAA) and is regulated by a number of RNA-binding pro-
teins (RBPs) [39]. Interestingly, over half of the human and mouse genes express multiple tran-
script isoforms that differ in their 3′ UTR sequence due to cleavage and polyadenylation at
alternative sites [40]. Even within single cells, multiple transcript isoforms are often detected
that differ in the site of polyadenylation [32]. Why different pre-mRNA molecules originating
from a single gene are processed differently is largely unclear. It is possible that differentially
polyadenylated mRNAs were produced at different times in the cell’s life cycle when distinct
regulatory processes were active. Alternatively, determination of the polyadenylation site may
be stochastic, with different probabilities of usage for different polyadenylation sites. Alternative
usage of polyadenylation sites generally alters the sequence of the 3′ UTR of mRNAs. Since
many RBPs and miRNAs, both of which can affect mRNA fate, bind to the 3′ UTR, an alternative
3′ UTR sequence may lead to an altered translation rate. Moreover, interactions between RBPs
and microtubule motor proteins can control the localization of an mRNA in the cell [40], and a
recent study found that hundreds of transcript isoform pairs with different polyadenylation site
usage showed distinct localizations in the brain [41]. Since the localization of a transcript can
affect its translation (especially in neurons), alternative localization of specific mRNA isoforms
may also affect their translation.

In summary, most genes express multiple transcript isoforms with distinct primary sequences,
often within a single cell. Distinct transcript isoforms frequently show different translation rates
due to inclusion or exclusion of specific regulatory sequences or alternative translation start
sites, and, when the ORF sequence is affected, protein sequence is likely to be altered as well.

mRNA Modifications
Information in mRNA is stored not only in the primary sequence but also through post-
transcriptional modifications of RNA nucleotides. Eleven distinct nucleotide modifications
have been described for mRNAs, which collectively have been termed the ‘epitranscriptome’
[42]. The most prevalent modification is methylation of the adenosine base at the nitrogen-6
position (m6A), with an average occurrence of one to three modified adenosines per mRNA
[42]. While other modifications are involved in translational regulation as well, we focus our
discussion on the m6A modification because it is the most abundant and best characterized
modification on mRNAs. A plethora of studies has shown that m6A modifications affect
mRNA translation. First, m6A modifications can increase the translation initiation rate by
directly recruiting eIF3, METTL3, or YTHDF1 to the mRNA [43–46]. Second, it has been
reported that m6A present in the coding sequence inhibits translation [47–49], possibly by
slowing down translation elongation [50]. Thus, m6A plays an important regulatory role
during translation.

Several studies have performed transcriptome-wide mapping of m6A sites to uncover the posi-
tions of m6A modifications in all mRNAs [51–56]. Interestingly, detailed quantitative analysis of
individual m6A sites revealed that, for most individual m6A sites, only a subset of mRNAmolecules
contain the modification [57]. This ‘m6A stoichiometry’ (i.e., the fraction of mRNA molecules that
contains a m6A modification at a specific site) can range from 7% to 77% depending on the
modification site and cell line [57]. Recently, a new technique, MAZTER-seq, has further ex-
panded the analysis of m6A stoichiometry to allow the measurement of m6A stoichiometry for a
substantial fraction of all m6A sites in the transcriptome. This study confirmed that, in most
cases, only a subset of mRNA molecules is modified at any given site (‘intrasite heterogeneity’).
In addition, substantial variability exists in m6A stoichiometry for different sites (‘intersite
Trends in Cell Biology, August 2020, Vol. 30, No. 8 613
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heterogeneity’) [58]. Intersite m6A heterogeneity (i.e., different stoichiometries for different m6A
sites) depends on local sequence context and RNA structure, suggesting that the specific stoichi-
ometry of a m6A site is, at least in part, ‘hard coded’ in the mRNA sequence [58]. By contrast,
intrasite m6A heterogeneity is likely to be caused by variability in m6A deposition and/or removal.
For example, some mRNAs show decreased m6A methylation levels after transport to axons,
where these mRNA molecules are locally translated [49]. Taken together, these studies reveal
that m6A modifications are highly heterogeneous and are a potential source of intragenic transla-
tional heterogeneity.

mRNA Structure
RNA can form intricate higher-order structures, adding another layer of information to RNA
molecules. RNA structure is formed by Watson–Crick base pairing and can be further stabilized
through other RNA interactions, such as sugar-backbone interactions. Structure in mRNAs can
affect translation in multiple ways. First, mRNA structures can inhibit translation initiation by
physically blocking the PIC during scanning [59]. Second, mRNA structure can also promote
translation initiation; for example, through recruitment of the translation initiation factor eIF3 to
specific RNA hairpin structures [60]. Moreover, mRNA structure can stimulate translation initiation
from noncanonical start codons through stalling of the PIC during scanning [61,62] or induce
noncanonical translation initiation through direct recruitment of ribosomes to internal ribosome
entry sites (IRESs) [63]. Finally, RNA structures in the coding sequence can stall ribosomes during
translation elongation [64,65]. Collectively, these examples illustrate that mRNA structures have a
profound impact on translation.

In recent years, many methods have been developed that use chemical probing combined
with deep sequencing to investigate the structure of mRNA molecules in vivo (see [66] for a
comprehensive review). While such methods have provided a wealth of new information on
mRNA structures in vivo, these methods often provide only an ensemble mRNA structure.
To understand whether mRNA structural heterogeneity contributes to translational heteroge-
neity, methods are required that resolve all the different structures of a (full length) mRNA, pref-
erably even in a single cell. Although this is challenging, new computational methods,
analogous to methods used for NMR data analysis, have been developed to determine individ-
ual mRNA structures in chemical probing data sets [67–69]. Through these approaches, a re-
cent study suggested that ACTB mRNA adopts multiple structural conformations in vivo,
affecting the accessibility of the binding site of a protein [70]. Thus, mRNA molecules are likely
to adopt different mRNA structures in vivo, which may be an important contributor to transla-
tional heterogeneity.

RNA structure is likely to be highly dynamic, such that a single mRNAmolecule can adopt multiple
different conformations over time in vivo, which may further contribute to structural heterogeneity.
Several studies have shown that mRNAmolecules can adopt different conformations during their
lifetime; for example, as mRNAs translocate from the nucleus to the cytoplasm or during their
translation by ribosomes [71–74]. Moreover, our recent work using single-molecule imaging un-
covered substantial structural dynamics at short timescales (s to min) as well [75]. Such dynamic
changes in mRNA structure can affect binding site accessibility of regulatory proteins with the
mRNA, possibly affecting translation. Similarly, an in vitro study found that bacterial mRNA mole-
cules constantly refold into different conformations, affecting the accessibility of the SD sequence
over time, which, in vivo, may result in temporal translational heterogeneity [76]. Thus, to under-
stand the contribution of mRNA structure to translational heterogeneity, it is necessary to assess
both the suite of mRNA structures that are adopted by different mRNAmolecules and the dynamics
of these mRNA structures.
614 Trends in Cell Biology, August 2020, Vol. 30, No. 8
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RBPs
RBPs regulate the fate of mRNAs in multiple ways, including the regulation of mRNA stability,
localization, and translation. Most RBPs associate with the mRNA through one or multiple well-
defined RNA-binding domains (RBDs) to form ribonucleoprotein complexes (RNPs). RBDs
often bind a relatively short sequence motif of around two to eight nucleotides. In a number of
cases, the binding affinities of a RBP and RNA have been measured in vitro, which revealed dis-
sociation constants ranging from low nanomolar (strong binder) to micromolar [77–80]. Affinities
in the nanomolar to micromolar range will generally result in interaction half-lives in the (m)s to min
range [78,81,82]. Since a typical mRNAmolecule has a half-life of several hours [1], the duration of
these interaction half-lives suggest that the protein composition of every mRNP is constantly
changing, resulting in a high intragenic mRNP heterogeneity. The degree of mRNP heterogeneity
depends on RBP concentration as well, as at high RBP concentrations binding sitesmay become
saturated. Additional intragenic heterogeneity in mRNP composition is expected as a result of
competition between RBPs that bind the same, or overlapping, binding sites on an mRNA.
While experimental evidence for intragenic heterogeneity in mRNP composition is limited due to
technical limitations in detecting interactions between a single mRNA and protein molecules,
the existence of mRNP compositional heterogeneity can be deduced from RBP–mRNA interac-
tion durations and the mRNA half-life, and may have a major effect on translational heterogeneity.

While heterogeneity in mRNP composition is likely to exist for all mRNAs due to stochastic
binding and unbinding of RBPs to individual mRNAs, mRNA compositional heterogeneity
can also be due to active regulation. For example, during early development caudal mRNA is
translationally active only at the posterior side of the embryo due to the asymmetric distribution
of the translational repressor bicoid [83]. Even in nonpolarized somatic cells, spatial distribution
of mRNAs can cause translational heterogeneity; for example, a recent study identified a new
membraneless organelle, called a TIS granule (assemblies of the protein TIS11B), which
resides adjacent to the endoplasmic reticulum (ER) [84]. The localization of mRNAs to TIS
granules depends on RBPs, including HuR, that selectively bind specific mRNA transcripts
[85]. Thus, translational heterogeneity can arise through heterogeneous localization of the
mRNA transcripts, which can be mediated by RBPs.

Ribosome Heterogeneity
The protein composition of the ribosome is generally considered invariant. However, several studies
have suggested that some degree of heterogeneity may exist in the composition of the ribosome
and that distinct ribosomes may be capable of performing unique functions (reviewed in [86,87]).

Heterogeneity in ribosome composition is supported by gene expression analysis of ribosomal
genes across various tissues and cell lines [88,89], which revealed that up to 25% of the ribosomal
genes are differentially expressed [89]. Moreover, several paralogs of ribosomal proteins (RPs) are
exclusively expressed in one tissue or cell type [88]. Given the structural similarity betweenRPs and
their paralogs, RP paralogs may substitute canonical RPs during ribosome assembly [90,91]. Ex-
clusion of canonical RPs or incorporation of an RP paralog may result in an ‘alternative ribosome’,
potentially capable of performing specific functions (e.g., translating a subset of mRNA molecules
differently). Indeed, four RPs were recently identified to be substoichiometric in mouse embryonic
stem cells, suggesting that evenwithin single cells some ribosomes contain these RPswhile others
do not. Ribosome profiling using ribosomes containing these RPs identified hundreds of mRNAs
that are preferentially translated by ribosomes containing these RPs [92]. In another example,
haploinsufficiency of RPL38 causes severe developmental defects, originating from impaired
IRES-mediated translation of a specific set of HOX genes [92,93]. While alternative ribosomes
may preferentially translate specific transcripts, some genes may also be more sensitive than
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Outstanding Questions
While different mechanisms can
contribute to translational heterogeneity,
the relative contributions of each
mechanism to overall translational
heterogeneity remain to be determined.

How widespread is intragenic
translational heterogeneity on
endogenous genes? Several studies
have found extensive translational
heterogeneity on reporter genes.
However, the extent of translational
heterogeneity on native mRNAs has
not been explored. It will be interesting
to determine whether different mRNA
species show distinct levels of
intragenic translational heterogeneity.

mRNA molecules can have differing
mRNA sequences, RBP composition,
nucleotide modification status, or
mRNA structure. Does the large num-
ber of heterogeneous parameters
mean that (almost) every mRNA mole-
cule is unique or do subgroups of
mRNA molecules exist due to co-
regulation of different parameters?

What are the timescales on which
the translation of individual mRNA
molecules changes? The answer to
this question is likely to vary for each
type of translational heterogeneity.

To what extent are heterogeneous
mRNA features actively regulated?
Regulation of mRNA features may
result in spatiotemporal regulation of
translation, while unregulated mRNA
features may contribute to translation
‘noise’.
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others to the availability of ribosomes (i.e., when the ribosome number is reduced), resulting in
gene-specific changes in translation efficiency [94]. Ribosomes were also found to associate
with hundreds of additional proteins [95], providing another source of potential heterogeneity in ri-
bosome function. One of these ribosome-associated proteins, PKM,was identified as a factor spe-
cifically involved in the translation of ER-associated mRNAs, suggesting that the compositional
heterogeneity of ribosome-associated proteins can also contribute to spatial heterogeneity in
translation [95].

Concluding Remarks
The main function of translation is to decode the genetic information that is stored in the DNA. In
this light, translation might be expected to be highly homogeneous, as the information stored in
mRNA should be faithfully translated to protein. However, recent experimental evidence has
demonstrated that mRNA molecules originating from the same gene can produce different
amounts of protein and can synthesize entirely different polypeptides, suggesting that translation
is highly heterogeneous. The development of new tools to visualize mRNA translation of individual
mRNA molecules in space and time provides exciting new opportunities to study translational
heterogeneity and will hopefully help to address the many questions that remain unanswered
(see Outstanding Questions).

To what extent translational heterogeneity is functionally important remains a central question.
Translational heterogeneity may be a consequence of temporal or spatial regulation of trans-
lation. Additionally, translational heterogeneity may contribute to functional proteome diversi-
fication [9]. On the other hand, translational heterogeneity could be a side-effect of the
stochastic nature of the processes underlying mRNA translation. While translational control
and functional proteome diversification are important for cellular function, stochasticity in
translation may result in ‘unwanted’ heterogeneity that can result in the production of aberrant
or even toxic proteins. We speculate that the flexibility required for complex translational reg-
ulation, for example, the synthesis of multiple functional protein isoforms from a single mRNA,
may have inadvertently resulted in unwanted translational heterogeneity as well. For example, regu-
lation of the translation start site requires ‘flexible’ rules for translation initiation, which may also in-
duce stochastic translation initiation at nonfunctional sites and thus the production of aberrant
proteins. It will be of great interest to further study how maximal regulatability is achieved while
unwanted heterogeneity is minimized.

As discussed in this review, many different mechanisms can underlie intragenic translational
heterogeneity and it is currently unclear what the contribution of individual processes (e.g.,
RNA structural dynamics, m6A stoichiometry) is to the overall levels of heterogeneity. Moreover,
it is unclear whether the heterogeneity caused by each of these processes individually mostly
results in functional heterogeneity or mostly represents unwanted noise. Finally, a direct, causal
link between the observed intragenic translational heterogeneity and its potential molecular or-
igins requires new methods that can quantify translation of single mRNA molecules and simul-
taneously measure different features (e.g., m6A modification, primary sequence) of the same
mRNA molecule. A better understanding of the origins and potential functions of translational
heterogeneity will provide a full picture of the mechanisms underlying the decoding process
of genetic information, a central process in life.
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