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Antigen-presenting cells (APCs) are present throughout the human body—in tissues,

at barrier sites and in the circulation. They are critical for processing external signals

to instruct both local and systemic responses toward immune tolerance or immune

defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to

detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily

of PRRs dedicated to sensing glycans, including those expressed by commensal and

pathogenic bacteria. This review summarizes recent findings on the recognition of

and responses to bacteria by membrane-expressed CLRs on different APC subsets,

which are discussed according to the primary site of infection. Many CLR-bacterial

interactions promote bacterial clearance, whereas other interactions are exploited by

bacteria to enhance their pathogenic potential. The discrimination between protective

and virulence-enhancing interactions is essential to understand which interactions to

target with new prophylactic or treatment strategies. CLRs are also densely concentrated

at APC dendrites that sample the environment across intact barrier sites. This suggests

an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced

glycans in maintaining tolerance at barrier sites. In addition to providing a concise

overview of identified CLR-bacteria interactions, we discuss the main challenges and

potential solutions for the identification of new CLR-bacterial interactions, including those

with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial

glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in

vitro, in vivo and ex vivo models to develop therapeutic applications in this area.

Keywords: bacteria, antigen-presenting cells, immunity, glycan, host-pathogen interaction, C-type lectin,

pattern-recognition receptor

INTRODUCTION

A large variety of bacterial species, collectively called the microbiome, lives in and on the
human body. Most of these species have beneficial effects on human health, but opportunistic
pathogens are also frequently present. In case of barrier defects or (temporary) immune system
impairments, these microbes can enter tissues with the risk of causing local or, upon further
dissemination, systemic infections. Fortunately, the human immune system is well-equipped with
a wide range of innate pattern-recognition receptors (PRRs) that sense specific constituents or
microbe-associated molecular patterns of bacteria. Among these PRRs, four different families
are currently distinguished (Takeuchi and Akira, 2010). Nucleotide-binding oligomerization
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domain-like receptors and retinoic acid-inducible gene-I-like
receptors (RLRs) are the cytoplasmic sensors of a cell, whereas
Toll-like receptors (TLRs) are expressed in endosomes and on
the cell surface (Takeuchi and Akira, 2010). The family of C-
type lectin receptors (CLRs) include both transmembrane and
soluble extracellular proteins (Brown et al., 2018). On tissue-
resident antigen-presenting cells (APCs), engagement of PRRs
including CLRs triggers local cytokine production, which is
important to attract other immune cells such as neutrophils
from the circulation to the site of infection and clear invading
microbes (Janela et al., 2019; Sparber et al., 2019). Moreover,
CLR-induced APC activation is instrumental to instruct adaptive
immunity, including T cell polarization through production of
cytokines and expression of co-stimulatory molecules, antibody
production as well as immunological memory formation (Brown
et al., 2018). The induction of these adaptive responses is
indispensable for protection from reinfection and key for efficacy
of vaccines. Therefore, a better understanding of CLR-bacterial
glycan interactions could aid the development of therapeutic
applications and vaccines.

CLRs are specialized in recognition of exposed sugar residues
or sugar motifs present on self as well as non-self structures
(Hoving et al., 2014; Yan et al., 2015). Recognition of specific
glycans occurs through one or more carbohydrate recognition
domains (CRDs) in a Ca2+-dependent manner. CLRs expressed
on APCs can be divided based on their topology as type I and type
II transmembrane proteins; type I receptors are characterized
by the N-terminus pointing out of the cell and multiple CRDs,
whereas type II receptors have their N-terminus directed toward
the cytoplasm and an extracellular C-terminus that contains a
single CRD (van Kooyk, 2008). Receptors of both groups have
a stalk region, a transmembrane region and an intracellular
domain with or without a signaling motif. Within type I and
type II receptors, CLRs can additionally be categorized based on
conserved amino acid motifs in their CRDs that determine their
glycan specificity and Ca2+ coordination. CLRs with an EPN
(Glu-Pro-Asn) amino acid motif in their CRD, such as DC-SIGN
(CD209), langerin (CD207) andmannose receptor (MR, CD206),
preferentially bind glycans with equatorial 3- and 4-hydroxyl
groups such as mannose, fucose, and N-acetylglucosamine
(GlcNAc) residues. On the other hand, CLRs with a QPD
(Gln-Pro-Asp) motif preferentially bind glycans with axial 4-
hydroxyl groups such as galactose and N-acetylgalactosamine
(GalNAc) terminated glycans (Drickamer, 1992). In humans,
most CLRs possess the EPN motif, with the exception of
Macrophage Galactose-type C-type lectin (MGL, CD301), which
possesses the QPD motif (Drickamer and Taylor, 2015). Despite
the shared structural features of their CRDs, CLRs display
considerable variation in overall structure, cellular expression
profiles and signal transduction cascades. These differences have
important consequences for the specific contributions of CLRs
to antimicrobial immunity, since they strongly affect ligand
specificity and the induced immune responses, which can either
support host defense or allow immune escape. The role of
CLRs in host defense against fungal, viral and mycobacterial
infections has recently been reviewed by others (Liu et al., 2017;
Shiokawa et al., 2017; Bermejo-Jambrina et al., 2018). Instead,

our review focuses on recent findings on the importance of CLRs
in recognition of and responses to bacterial pathogens by APCs.
In addition, we highlight tools and technologies used for the
identification of new interactions, and discuss challenges in the
choice of appropriate cell model systems and in the translation of
in vitro to in vivo studies. We conclude our review with possible
applications of the gathered knowledge for the development of
new CLR targeting strategies in vaccines or CLR blocking to
counter bacterial immune evasion (Lang et al., 2011; Wamhoff
et al., 2019).

RECOGNITION OF BACTERIAL GLYCANS
BY TISSUE-RESIDENT APCs

The bacterial cell wall is essential for bacterial survival; it
defines bacterial cell shape, is critical to sequester ions for
bacterial homeostasis and serves as a scaffold for proteins and
glycopolymers, to name but a few important features (Silhavy
et al., 2010; Dorr et al., 2019). As such, it is much more than a
structure that provides resistance to physical stress or harmful
environmental factors. In fact, the bacterial cell wall and all
its associated structures provide an important interface for
direct sensing and communication with the environment,
including the host. Despite considerable differences in
overall cell wall composition between Gram-positive and
-negative bacteria, both classes of bacteria decorate their cell
wall with glycans. The best studied examples are capsular
polysaccharides, lipopolysaccharide (LPS) and peptidoglycan.
Capsular polysaccharides and LPS are effective vaccine antigens
when conjugated to protein carriers (glycoconjugate vaccines),
whereas proteins in the peptidoglycan biosynthesis pathways are
proven targets of antibiotics (Schneider and Sahl, 2010; Rappuoli,
2018). However, bacteria produce a much broader array of glycan
structures, which are incorporated in glycolipids, proteins,
flagella and glycopolymers (Tytgat and Lebeer, 2014). All these
structures are potential ligands for CLRs, and considerable
insight into specific molecular interactions has been made the
past decades (Prado Acosta and Lepenies, 2019). Importantly,
these studies have revealed that interactions between bacterial
glycans and CLRs do not always support host defense.
Instead, bacteria can exploit CLR interactions for immune
evasion, resulting in subversion of host defense responses
and increased morbidity. Consequently, detailed molecular
and functional insight into bacterial glycan recognition by
CLRs is critical to distinguish beneficial from detrimental
interactions and inform the development of new treatment or
prophylactic strategies.

The functional consequences of CLR engagement are
determined by the encountered bacterial ligands but also on
the location in the body where the interaction occurs. First,
different tissues are populated with specific APC subtypes,
which can be phenotypically distinguished from each other
by presence of specific immunological markers (Bigley et al.,
2015; Alculumbre and Pattarini, 2016; Gunawan et al., 2016;
Alcantara-Hernandez et al., 2017; Collin and Bigley, 2018).
Second, the local microenvironment provides specific signals to
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FIGURE 1 | Graphical overview of the discussed C-type lectin receptors on various antigen-presenting cells. For every receptor, the known interacting bacterial

species are indicated. Where known, the intracellular signaling motif or associated signaling adaptor molecule is stated. For simplicity, the oligomerization state of the

CLRs is not incorporated in the Figure. FcRγ, Fc receptor gamma chain.

induce APC tissue adaptation, resulting in different receptor
expression profiles and migratory capacities of similar APC
subtypes in different tissues (Lundberg et al., 2013; Alcantara-
Hernandez et al., 2017; Collin and Bigley, 2018). Here, we
summarize and discuss specific interactions between CLRs and
bacterial glycans (Figure 1), categorized by tissue as relevant for
site of bacterial entry.

Skin
The skin represents the largest organ of the body and is colonized
by a plethora of microorganisms (Byrd et al., 2018). Immune
cells of the skin constantly interact with microbes and their
products, even deeper within the tissue, without causing infection
or inflammation (Nakatsuji et al., 2013). However, two common
skin resident species, Staphylococcus aureus and Streptococcus
pyogenes, are also frequent causes of skin infections (Cardona

andWilson, 2015). Skin infections caused by these pathogens are
diverse in their presentation and pose a risk for life-threatening
systemic infections. Both these skin-tropic pathogens, but
not other more abundant species, such as Staphylococcus
epidermidis and Staphylococcus lugdunensis, interact with the
CLR langerin (CD207) as confirmed by experiments using
recombinant human langerin as well as ectopically-expressing
langerin cell lines (van Dalen et al., 2019a,b). Langerin is
exclusively expressed on human Langerhans cells (LCs), which
are a subclass of myeloid cells that are abundantly present
in the skin epidermis. LCs form an important first line
of defense against pathogens (Doebel et al., 2017; Deckers
et al., 2018). Although most studies focus on skin LCs, their
localization is not restricted to the skin; they are also present
in mucosal tissues and other epithelial linings, for example
foreskin, cervical mucosal tissue, tonsils, tongue and the upper

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 309

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Mnich et al. Lectin Receptors in Host Immunity

TABLE 1 | Overview of human CLRs and their characteristics discussed in this review, and their characteristics.

Common names Cellular expression pattern Signaling Glycan specificity Recognized bacteria

Langerin (CD207,

CLEC4K)

LCs (Valladeau et al., 2000) Unknown but contains

intracellular proline-rich

WPREPP motif (Thépaut

et al., 2009)

Mannose, fucose, GlcNAc

(Feinberg et al., 2011)

S. aureus (van Dalen et al., 2019a),

S. pyogenes (van Dalen et al.,

2019b), Y. pestis (Yang et al., 2015)

MGL (CD301,

CLEC10A)

Macrophages, DCs in skin and

lymphoid organs (Raes et al.,

2005; van Vliet et al., 2008).

Unknown Galactose, α- and β-GalNAc

(Suzuki et al., 1996)

S. aureus ST395 (Mnich et al., 2019),

C. jejuni (van Sorge et al., 2009),

N. gonorrhoeae (van Vliet et al.,

2009), E. coli (Maalej et al., 2019)

DC-SIGN (CD209,

CLEC4L)

DCs at mucosal surfaces, skin

dermis and lymphoid organs,

macrophages (Geijtenbeek et al.,

2000a,b; Soilleux et al., 2002).

Unknown Mannose, α1-3 and α1-4

fucosylated glycans,

GlcNAc (Suzuki et al., 1996;

van Vliet et al., 2005)

H. pylori (Bergman et al., 2004),

Y. pseudotuberculosis (Zhang et al.,

2006b), Y. pestis (Zhang et al., 2008),

E. coli K12 (Zhang et al., 2006b),

N. meningitidis (Steeghs et al., 2006),

N. gonorrhoeae (Zhang et al., 2006a),

Salmonella enterica serovar

Typhimurium (Zhang et al., 2006b)

Mincle (CLEC4E) Activated macrophages, some

subpopulations of B cells

(Matsumoto et al., 1999; Kawata

et al., 2012)

ITAM motif in associated

FcRγ chain (Matsumoto

et al., 1999; Yamasaki et al.,

2008)

Broad range of self and

non-self glycolipids (Lu

et al., 2018)

K. pneumoniae (Sharma et al., 2014),

H. pylori (Devi et al., 2015),

S. pyogenes (Imai et al., 2018),

S. pneumoniae (Imai et al., 2018)

Dectin-2 (CLEC6A) Macrophages, DCs, LCs,

monocytes (Ariizumi et al., 2000;

Taylor et al., 2005)

ITAM motif in associated

FcRγ chain (Sato et al.,

2006)

α-mannans (Fernandes

et al., 1999; Sato et al.,

2006; Saijo et al., 2010)

Hafnia alvei (Wittmann et al., 2016),

E. coli O9a (Wittmann et al., 2016)

DC, dendritic cell; LC, Langerhans cell, ITAM, intracellular tyrosine-based activation motif; GlcNAc, N-acetylglucosamine; GalNAc, N-acetylgalactosamine.

respiratory tract (Patterson et al., 2002; van der Vlist et al.,
2011).

Langerin is expressed as a trimer through oligomerization
of the neck region, and its cytoplasmic tail contains a putative
proline-rich signaling motif (Valladeau et al., 2000; Stambach
and Taylor, 2003; Tateno et al., 2010) (Table 1). Based on
binding profiles of recombinant human langerin to individual
microbes, glycan arrays, langerin has specificity for sulfated
and mannosylated glycans as well as β-glucans, which it
binds in a Ca2+-dependent manner (de Jong et al., 2010b;
Feinberg et al., 2010, 2011; Hanske et al., 2017). However, these
particular glycans are unlikely to be involved in the interaction
with S. pyogenes or S. aureus, as they are not produced by
these bacterial species. Although the ligand of langerin on S.
pyogenes has not been identified yet (van Dalen et al., 2019b),
human pharyngeal LCs have been observed to interact with
S. pyogenes (Reed et al., 1994). On S. aureus, the langerin
ligand depends on the gene tarS as confirmed by binding
studies comparing wild-type and isogenic mutant strains (van
Dalen et al., 2019a). TarS encodes a glycosyltransferase that
attaches a conserved β1,4-linked N-acetylglucosamine (β1,4-
GlcNAc) moiety on the surface glycopolymer wall teichoic acid
(WTA) (Brown et al., 2012), which is an important structural
component of the Gram-positive bacterial cell wall (Brown et al.,
2013). Recognition of WTA β1,4-GlcNAc increases cytokine
production of Th1- and Th17-skewing cytokines by in vitro-
generated LCs. Correspondingly, epicutaneous infection with S.
aureus producing β1,4-GlcNAc increases skin inflammation in
human langerin transgenic mice (van Dalen et al., 2019a). The
use of langerin transgenic mice was required since the murine

langerin homolog does not recognize S. aureus (van Dalen
et al., 2019a), which is of interest as S. aureus is not a mouse
commensal. Species-specificity for this interaction may therefore
reflect the extended co-evolution of S. aureus with the human
host. Approximately 30% of the S. aureus strains are able to
co-decorate WTA with the accessory modification α1,4-GlcNAc,
which requires the glycosyltransferase TarM (Xia et al., 2010).
Langerin does not interact with α1,4-GlcNAc-modified WTA,
but co-expression of α1,4-GlcNAc and β-GlcNAc decreased
interaction with langerin, suggestion a possible strategy to evade
detection by langerin (van Dalen et al., 2019a) Recently, a
third WTA glycosyltransferase, TarP, was identified in 5–10%
of S. aureus strains (Gerlach et al., 2018). TarP attaches β1,3-
GlcNAc to WTA (Gerlach et al., 2018), but it is currently
unknown whether or how this modification impacts interaction
with langerin or responses by LCs. Several SNPs in the langerin
CRD alter the ligand specificity of langerin (Feinberg et al.,
2013). These SNPs impair S. aureus recognition and uptake by
langerin-expressing cells, thereby providing a potential increase
in disease susceptibility (van Dalen et al., 2019b). Intriguingly,
interaction with S. pyogenes was much less affected by these
SNPs. Although preliminary, these data seem to suggest that such
genetic variation does not affect overall susceptibility to bacterial
infections (van Dalen et al., 2019b).

Another bacterium that can enter the body through the skin is
the Gram-negative pathogen Yersinia pestis, the cause of plague.
Infections with Y. pestis can occur after a bite from an infected
flee, which delivers the bacterium directly into the tissue, past the
protective layer of stratum corneum. Through interaction with
langerin, Y. pestis can be phagocytosed by LCs (Yang et al., 2015).
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In addition to langerin,Y. pestis also interacts withDendritic-cell-
specific intracellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN, CD209) (Zhang et al., 2008), which is expressed
on dendritic cells (DCs), but not LCs, in mucosal linings, skin
dermis, and lymphoid organs and macrophages (Geijtenbeek
et al., 2000a,b; Soilleux et al., 2002). DC-SIGN is expressed as
a tetramer on the cell surface, with each monomer consisting
of a single CRD, neck region and an intracellular domain (van
Kooyk and Geijtenbeek, 2003). Although triggering of DC-SIGN
alone does not induce DC responses, activation of DC-SIGN
modulates signaling cascades induced by other PRRs (Gringhuis
et al., 2009). DC-SIGN selectively recognizes oligosaccharides
containing high mannose residues but also fucosylated structures
in a Ca2+-dependent manner and tetramerization of the receptor
favors the recognition of closely-spaced mannose residues on the
target molecule (Mitchell et al., 2001; Feinberg et al., 2005; Yu
et al., 2009). For Y. pestis, the interaction with langerin and DC-
SIGN occurs through the core oligosaccharide of LPS and strains
that are genetically-engineered to cover the LPS core are defective
in DC and LC invasion (Zhang et al., 2008; Yang et al., 2015).
Lectin-dependent phagocytosis seems to favor dissemination
of Y. pestis by facilitating migration of bacteria to the lymph
nodes (Yang et al., 2015, 2019). However, additional infection
experiments in knock-out mice are required to specifically link
the observed phenotype to the langerin or DC-SIGN mouse
homolog (Zhang et al., 2008; Yang et al., 2015, 2019).

Skin macrophages and DCs, but not LCs, express the CLR
Macrophage Galactose-type C-type lectin (MGL, CD301) (Raes
et al., 2005; van Vliet et al., 2008). MGL is a homotrimeric
receptor that interacts in a Ca2+-dependent manner with
galactose and terminal GalNAc residues through the QPD motif
in its CRD (Suzuki et al., 1996; Marcelo et al., 2014; Tanaka et al.,
2017). Recently, a specific lineage of S. aureus (ST395) was shown
to interact with MGL, as based on binding experiments with
recombinant human MGL (Mnich et al., 2019). This interaction
depends on the unique WTA structure of this S. aureus lineage,
which is composed of a glycerol-phosphate (GroP) backbone (as
opposed to ribitol-phosphate in all other described S. aureus
lineages) decorated with α-N-acetylgalactosamine (α-GalNAc)
(Winstel et al., 2013, 2014). WTA α-GalNAc expression by wild-
type S. aureus confers binding to human monocyte-derived
dendritic cells (moDCs) and induces proinflammatory cytokine
production compared to S. aureus strains genetically modified
to lack α-GalNAc expression (Mnich et al., 2019). It remains to
be determined whether the observed responses correspond to the
responses of primary human macrophages or DCs isolated from
skin. This knowledge is highly relevant to our understanding of
the skin immune detection of these S. aureus strains.

In addition to interaction with langerin, S. pyogenes cell
wall components also activate Macrophage inducible C-type
lectin (Mincle). Mincle is modestly expressed under homeostatic
conditions but significantly upregulated on resident and
attracted myeloid cells and neutrophils upon infection or
sterile inflammation in murine and human skin (Iborra et al.,
2016; Kostarnoy et al., 2017). Increased expression results
from increased transcriptional activity induced by inflammatory
cytokines such as TNF-α, IL-6, and IFN-γ (Matsumoto et al.,

1999). Enhanced surface expression and phagocytic capacity
is also conferred by the formation of heteromeric complexes
of Mincle with other CLRs such as macrophage C-type lectin
(MCL) (Lobato-Pascual et al., 2013). Despite the presence of
an EPN motif in its CRD, which usually confers specificity
for mannan, all Mincle ligands identified so far contain
a lipid moiety in addition to the glycan, suggesting that
glycolipids are the molecular signature required for Mincle
recognition (Lu et al., 2018). Mincle induces cellular activation
through coupling with the Fc receptor common γ chain
(FcRγ), which contains an intracellular ITAM signaling motif
(Matsumoto et al., 1999; Yamasaki et al., 2008). Mincle
interacts with glycolipid antigens from S. pyogenes, specifically
the lipophilic components monoglucosyldiacylglycerol (MGDG)
and diglycosyldiacylglycerol (DGDG) (Imai et al., 2018), which
constitute membrane anchors for lipoteichoic acid (LTA) in
the bacterial cell envelope. Intriguingly, MGDG activates DCs
via Mincle, resulting in antigen-induced IL-17 production
from CD4+ T cells, whereas DGDG prevents MGDG-induced
cellular activation through the same receptor (Imai et al.,
2018). Abrogation of Mincle-mediated S. pyogenes detection
impairs production of pro-inflammatory cytokines, resulting
in increased bacteremia and mortality in a mouse model of
systemic infection (Imai et al., 2018).Mincle-mediated protection
depends on induction of interferon-γ by a specialized lineage of
immature myeloid cells, which in turn requires TLR2-induced
IL-6 production by these same cells (Matsumura et al., 2019).
As MGDG and DGDG are a product of the same biosynthetic
pathway, controlled expression of these different lipid anchors
may allow S. pyogenes to escape Mincle detection.

Overall, these examples highlight that APC subsets in
the skin express distinct CLR repertoires that affect the
molecular interaction and immunological responses upon
bacterial infection. As DCs, macrophages and LCs are located at
different anatomical depths, it is likely that the depth of infection
is an important determinant for the outcome of infection.
We believe this represents an important area of research to
understand pathogenesis of bacterial skin infections (Quaresma,
2019).

Genital Tract
DCs and LCs are both present at barrier sites of the genital
tract. Neisseria gonorrhoeae is a Gram-negative pathogenic
bacterium and the cause of the sexually-transmitted disease
gonorrhea. It can express different lipooligosaccharide (LOS)
variants that correlate with altered disease states, i.e. active
disease is associated with N. gonorrhoeae variant C (Schneider
et al., 1991). N. gonorrhoeae variants A, B, and C only differ in
their LOS glycosylation, expressing terminal GlcNAc, galactose
and GalNAc, respectively (van Vliet et al., 2009). Using these
three well-defined N. gonorrhoeae variants, recombinant soluble
CLR-constructs and human moDCs, it was discovered that
N. gonorrhoeae variant C interacts with MGL, whereas N.
gonorrhoeae variant A is detected by DC-SIGN. Engagement of
MGL on moDCs by N. gonorrhoeae variant C shifts DC cytokine
secretion and subsequent T helper differentiation toward Th2
in a co-culture system compared to N. gonorrhoeae variants
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A and B (Zhang et al., 2006a; van Vliet et al., 2009). The
interaction with MGL is thought to benefit bacterial survival as
a shift toward Th2 is considered to be a non-protective response
against N. gonorrhoeae infection. So far, no interactions of LCs
with bacteria relevant to genital tract infections or sexually-
transmitted diseases have been studied.

Gastrointestinal Tract
The stomach is a hostile environment due to its very low
pH. In fact, it was assumed for a long time that this was a
sterile site of the body. However, Helicobacter pylori, a Gram-
negative bacterium and cause of ulcers and stomach cancer, has
evolved unique strategies to survive and colonize the gastric
mucosa. Intriguingly, H. pylori expresses phase-variable LPS and
LPS variants containing Lewis epitopes interact with DC-SIGN
(Bergman et al., 2004). Functional in vitro experiments using
human moDCs and H. pylori strains with and without Lewis
antigen epitopes on their LPS, demonstrated that engagement of
DC-SIGN blocks Th1 development (Bergman et al., 2004). This
response is assumed to contribute to long-lasting colonization
of H. pylori in a large proportion of the population. In addition
to DC-SIGN, H. pylori also affects immune responses through
Mincle as based on experiments with PMA-differentiated THP-1
cells, in which Mincle expression was strongly upregulated after
exposure to H. pylori. Furthermore, Mincle expression decreases
production of pro-inflammatory cytokines while concordantly
increasing the production of anti-inflammatory IL-10 in response
to H. pylori (Devi et al., 2015). Computational modeling studies
indicate that Mincle could interact with LPS of H. pylori
containing Lewis-antigens (Devi et al., 2015), but additional
studies are required to confirm the interaction and relevance of
H. pylori-Mincle interaction at a molecular level.

In contrast to the stomach, the intestines are colonized by
a wealth of different bacterial species. Multiple interactions
between pathogenic enteric bacteria and CLRs have been
discovered. For example, DC-SIGN interacts with the core LPS,
especially the GlcNAc residues, of many Gram-negative enteric
pathogens, including Salmonella enterica serovar Typhimurium,
E. coli K12 and Yersinia pseudotuberculosis (Zhang et al., 2006b).
The interaction between Y. pseudotuberculosis and DC-SIGN
promotes systemic dissemination and further infection in mice
(He et al., 2019). For the other interactions the impact on
infection is awaiting further studies. MGL is targeted by at least
two gastrointestinal bacteria, Campylobacter jejuni and E. coli
R1, through their LOS terminal GalNAc residues and, in case
of C. jejuni, through expression of glycosylated proteins (van
Sorge et al., 2009; Maalej et al., 2019). MGL targeting by C. jejuni
suppresses IL-6 production by moDCs compared to isogenic C.
jejuni mutant strains that lack N-glycan protein modifications
(van Sorge et al., 2009). Finally, the CLRDendritic-cell-associated
C-type lectin-2 (Dectin-2/CLEC6A) interacts with mannosylated
O-antigen of LPS from the nosocomial bacterial pathogens
Hafnia alvei and E. coliO9a (Wittmann et al., 2016). Engagement
of Dectin-2 by H. alvei mannosylated LPS enhances TLR4-
induced cytokine responses of murine bone marrow-derived
DCs (BM-DCs) as demonstrated using BM-DCs from Dectin-
2 knockout mice (Wittmann et al., 2016). Dectin-2-induced

signaling also synergizes with TLR4 responses in human myeloid
cells and is dependent on Syk (Wittmann et al., 2016). These data
suggest that Dectin-2 could have an important role in sensing
bacteria that express mannosylated structures on their surface.
The effect of Dectin-2 engagement for the outcome of infection
requires further investigation.

Respiratory Tract
The respiratory tract is continuously exposed to airborne
microorganisms, including potential pathogens. The distribution
and density of APC subsets differs along the respiratory tract. For
example, LCs are much more abundant in the upper respiratory
tract but are scarce when descending toward the lung (van der
Vlist et al., 2011). On the other hand, subsets of DCs, which vary
in expression of surface receptors and therefore likely in function,
are observed within specific lung microenvironments (Patel and
Metcalf, 2018). More precise and comprehensive information on
CLR expression along the respiratory tract would be helpful to
further interpret results from studies demonstrating that CLRs
can protect from bacterial pneumoniae. Specifically, Mincle was
shown to have a critical role in protection from pneumonia
caused by Klebsiella pneumoniae and Streptococcus pneumoniae.
For K. pneumoniae, no bacterial ligand was identified but the
increased susceptibility to pneumonia is associated with an
increased bacterial burden and exaggerated hyperinflammation
(Sharma et al., 2014). The increased bacterial burden may
be explained by defects in neutrophil-mediated clearance, as
Mincle-deficient neutrophils show an impaired uptake of non-
opsonized bacteria and impaired formation of neutrophil-
extracellular traps (Sharma et al., 2014, 2017). A similar increase
in pneumonia as well as mortality was observed in Mincle-
knockout vs. wild-type mice challenged intrapulmonary with S.
pneumoniae serotype 19F. The Mincle ligand of S. pneumoniae
was identified as the LTA anchor moiety glucosyl-diacylglycerol
(Glc-DAG), which is the same ligand as MGDG identified in
S. pyogenes (Imai et al., 2018). Engagement of Mincle was not
sufficient to protect mice from invasive pneumococcal disease as
caused by S. pneumoniae serotype 3, which is more aggressive
compared to serotype 19F as this strain causes bacteremia in
addition to pneumonia (Behler-Janbeck et al., 2016). These
results suggest thatMinclemay contribute to local lung immunity
against S. pneumoniae but is unable to contain bacteria once in
the blood stream (Behler-Janbeck et al., 2016). However, it is
very difficult to draw firm conclusions on the role of Mincle in
pneumococcal infection, since the strains were not quantified for
expression of the Mincle ligand. In addition, the two strains are
genetically quite diverse, which likely alters the molecular context
in which the Mincle ligand is expressed. As discussed above,
this could lead to co-engagement of additional cellular receptors,
leading to a different outcome of Mincle activation. Therefore,
additional studies are required to fully unravel the role of Mincle
in anti-pneumococcal lung immunity.

Nasopharynx
Neisseria meningitidis can colonize the nasopharynx of healthy
individuals but is also a common cause of invasive disease,
most notably sepsis and meningitis. Dependent on the molecular
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composition of N. meningitidis LPS, the strain can interact
with DC-SIGN with important consequences for uptake and
induction of adaptive immunity. Truncation of N. meningitidis
LPS (1lgtB; representative of immunotype L6) results in
enhanced uptake by human moDCs through DC-SIGN and
induction of anti-bacterial Th1 responses, as assessed by in
vitro co-cultures with human primary cells (Steeghs et al.,
2006). Immunotype L6 is rarely found among clinical isolates,
suggesting that interaction with DC-SIGN is unfavorable for N.
meningitidis survival (Steeghs et al., 2006). From an alternative
perspective, immunotype L6 LPS may be used as a powerful
vaccine adjuvant as it induces a favorable Th profile compared
to unfavorable Th2 type responses with the currently approved
human adjuvant alum.

CLR-Mediated Transcompartmental
Sampling
The studies described so far all involve interactions between
CLRs and pathogenic or nosocomial bacterial species within
tissues. However, interactions with commensal members of the
microbiome are also likely to occur (Li T. H. et al., 2019).
APCs at barrier sites such as the skin, gut or lung do not only
respond to bacteria that have penetrated the epithelial barrier,
but also have the capacity to actively sample the environment
through extension of dendrites across the physical barriers
(Rescigno et al., 2001; Niess et al., 2005; Jahnsen et al., 2006;
Sung et al., 2006; Kubo et al., 2009; Thornton et al., 2012;
Yoshida et al., 2014). CLRs are concentrated at the tips of APC
protrusions and are able to trigger localized antigen uptake
(Baranov et al., 2014), suggesting a critical role for CLRs in
transcompartmental antigen sensing and uptake. The biological
significance of this uptake process was demonstrated in a mouse
model of staphylococcal scalded skin syndrome (SSSS), which
depends on S. aureus exfoliating toxin (ET) (Ouchi et al.,
2011). Patch-immunization induces specific cellular and humoral
immunity that protects mice from SSSS which depends on the
presence of LCs (Ouchi et al., 2011). Importantly, antigen-uptake
through patch-immunization does not induce local inflammation
or tissue damage (Ouchi et al., 2011). As such, non-invasive
application is being explored for development of vaccines against
infectious agents (Zheng et al., 2018). Investigations in this area
may reveal a role for CLR-mediated APC transcompartmental
uptake and activation in maintaining tissue homeostasis at
barrier sites.

THE IMPACT OF BIOLOGICAL VARIATION
ON CLR-BACTERIAL INTERACTIONS

In many of the studies described above, new interactions
were identified using a representative bacterial strain of the
species of interest and a single growth condition. Biologically-
relevant interactions may be missed using such a limited set of
experimental conditions. First, the bacterial target may only be
expressed in a specific environment or under specific growth
condition as a result of regulation. We have recently observed
this for the interaction between MGL and Staphylococcus

lugdunensis (Mnich et al., 2019). The gene encoding the bacterial
glycosyltransferase TagN, responsible for the incorporation of
GalNAc on WTA (Winstel et al., 2013, 2014), was identified
in the S. lugdunensis genome, but no MGL binding to this
bacterial strain was observed (Mnich et al., 2019). In contrast,
constitutive expression of S. lugdunensis tagN from a plasmid
did confer MGL binding (Mnich et al., 2019). These results seem
to indicate lack of tagN expression in S. lugdunensis under our
experimental growth conditions. Second, the target may only
be present in a restricted subset or lineage from that specific
species. Again, we can take the example of MGL interaction with
GalNAc-decorated WTA, which is exclusive for the S. aureus
ST395 lineage (Mnich et al., 2019). Overall, the glycan expression
profile or repertoire on the bacterial surface after in vitro growth
may not be representative for the in vivo situation. Variation
between strains from a single species can be estimated based
on genetic studies, but, as illustrated with the example of S.
lugdunensis above, the presence of a gene does not guarantee
expression under the used experimental conditions. In addition
to genetic sequences, information on conditions that induce the
gene or glycan biosynthesis cluster of interested can be estimated
by transcriptional data from a wide range of growth conditions
(Mader et al., 2016).

Even when a CLR-bacterial interaction is identified in vitro,
translation to mouse models is often challenging as no murine
homologs exist (e.g., DC-SIGN) or have vastly different glycan-
binding profiles compared to the human CLR homolog (Hanske
et al., 2016; van Dalen et al., 2019a). As an example of the latter,
comparison of the glycan specificity using a bacterial glycan
array for recombinantly-expressed murine and human langerin
revealed a different binding pattern, in which murine langerin
recognizes a broad set of bacterial glycans, but the binding
pattern of human langerin is muchmore restricted (Hanske et al.,
2017). Therefore, results from mouse infection models where
CLRs are implicated should be interpreted with care with regard
to translation of the results for human infection.

MULTIVALENCY AND EPITOPE DENSITY
IN CLR-LIGAND INTERACTIONS

CLRs not only differ from many other receptors due to their
specificity for glycans, but also in their preference for binding
multivalent ligands and densely-expressed epitopes (Dam and
Brewer, 2010). Indeed, carbohydrate-protein interactions are
usually of low affinity, which is overcome by multivalent display
of the receptor and/or the ligand (Lepenies et al., 2013).
In addition, multivalency and epitope density contribute to
discrimination between self and non-self and are not just based
on the identity of the glycan, since similar glycan epitopes
are often found in pathogens and the host (Medzhitov and
Janeway, 2002; Dam and Brewer, 2010). Indeed, data from sugar
competition assays for several receptors revealed that glycans
carrying multiple carbohydrate epitopes have higher ability to
bind to these receptors than monosaccharides (Hsu et al., 2009).
Studies that have systematically probed the effect of multivalency
and configuration on binding capacity and cellular activation
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have been conducted for DC-SIGN and MGL (Eriksson et al.,
2014; Li R. E. et al., 2019). Overall, higher glycan density increases
lectin affinity and kinetics of binding, which is likely explained
by one of the following concepts. The first is known as the
‘binding and sliding’ mechanism, in which lectins constantly bind
to and dissociate from the glycan epitope (Dam and Brewer,
2008). By increasing the number of glycan epitopes along the
surface, the lectin-epitope complex becomes longer and of higher
affinity. This theory can be applied to soluble lectins such as
galectins (Dam and Brewer, 2008). In the second concept, lectins
containing multiple CRDs align to allow simultaneous binding
of multiple epitopes on a multivalent ligand in a face-to-face
interaction (Dam and Brewer, 2008). This concept is proposed
for the binding mechanism of DC-SIGN, which forms a tetramer
on the surface of DCs and thereby increases affinity for its ligands
mannan and gp120 (Mitchell et al., 2001; Bernhard et al., 2004).
Additionally, DC-SIGN becomes organized in nanoscale clusters
within lipid rafts, which further supports ligand binding and
internalization byDCs (Cambi et al., 2004; Neumann et al., 2008).
Finally, it was suggested that for the interaction between highly
mannosylated structures and DC-SIGN additional secondary
binding sites on the CRD are present that further increase the
binding affinity of multivalent epitopes (Mitchell et al., 2001).
Knowledge of binding and activation requirements have been
exploited to target anti-cancer vaccines to DC-SIGN (Li R. E.
et al., 2019). Similar targeting strategies could be applied to other
CLRs, whichmay provide the opportunity to target different APC
subsets, such as LCs (Porkolab et al., 2018; Neuhaus et al., 2019;
Wamhoff et al., 2019).

INTERACTION BETWEEN CLRs AND
OTHER PRR FAMILY MEMBERS

Bacteria express a specific combination of PRR ligands.
Complementary, PRRs have a specific distribution pattern among
different APC subsets. Consequently, engagement of the same
CLR can have a different immunological outcome as a result
of different co-stimulation in that particular cell type. For
example, engagement of MGL by S. aureus ST395 enhances IL-
6 and IL-12 production by human moDCs (Mnich et al., 2019),
whereas engagement of MGL by C. jejuni glycosylated proteins
dampens cytokine production by the same cell type (van Sorge
et al., 2009). Since it is known that MGL crosslinking does not
induce cellular activation (van Vliet et al., 2013; Heger et al.,
2018), these contrasting outcomes may result from differential
TLR engagement for S. aureus (activating predominantly TLR2;
Takeuchi et al., 2000) and C. jejuni (activating predominantly
TLR4; Rathinam et al., 2009). A similar situation of differential
co-stimulation may contribute to the different outcomes of
langerin targeting by S. aureus and Y. pestis. In this example,
langerin-mediated S. aureus recognition induces production of
Th1/Th17 cytokines, which is generally accepted to promote S.
aureus clearance (van Dalen et al., 2019a), whereas Y. pestis
exploits langerin to gain entry into LCs to facilitate dissemination
to the lymph nodes (Yang et al., 2015). The exact molecular
mechanism underlying these differential outcomes of langerin

engagement by these two pathogens is currently not known. It is
however intriguing to speculate that langerin targetingmodulates
intracellular signaling of co-triggered TLRs or possibly alters
intracellular routing resulting in different antigen presentation.
In the LC context, it is important to realize that these cells appear
to express a restricted repertoire of TLRs compared to DCs, with
consensus on absence of TLR4, TLR8, and TLR9 (Flacher et al.,
2006; van der Aar et al., 2007). Consequently, LCs show no or
little response to classical bacterial PAMPs such as LPS (Flacher
et al., 2006; van der Aar et al., 2007).

For some CLRs, modulation of signaling pathways from
other PRRs is well-characterized. For example, the intracellular
signaling pathways of DC-SIGN and TLR4 converge in response
to fucose-containing LPS from H. pylori, which skews immune
responses from Th1 to Th2 (Bergman et al., 2004; Gringhuis
et al., 2014). The molecular details for Th2 skewing have
been identified and result from activation of the atypical NF-
kB family member Bcl-3 by DC-SIGN, which represses TLR-
induced proinflammatory cytokine expression (Gringhuis et al.,
2014). This opens up the possibility for therapeutic intervention;
addition of anti-DC-SIGN blocking antibodies allow TLR
activation to proceed normally, switching T cell responses toward
Th1 (Gringhuis et al., 2014), which is thought to enhance
pathogen clearance. Another example is the CLRDectin-2, which
interacts with TLR4 signaling after mannosylated LPS (man-LPS)
stimulation (Wittmann et al., 2016). In contrast to BM-DCs from
wild-type mice, BM-DCs from Dectin-2 and TLR4 knockout
mice are unable to enhance IL-10 and TNFα production after
stimulation with Man-LPS, suggesting synergy between these
two PRRs (Wittmann et al., 2016). These examples illustrate
the importance of studying CLR responses in the context of
intact bacteria vs. purified components and also in the relevant
APC subset to most closely resemble the complex biology of
bacteria-APC interaction.

TOOLS AND CHALLENGES IN SCREENING
FOR NEW INTERACTIONS

The described examples of CLR interaction with bacterial
pathogens at different barrier sites highlight the importance of
this PRR subfamily for pathogen detection and the instruction of
appropriate downstream immune responses. As such, it is critical
to identify new interactions to improve our understanding of
immune tolerance, host defense and disease pathogenesis and
apply this knowledge toward the development of new treatment
and vaccines. Screening for new interactions between bacterial
glycans and CLRs is challenging for multiple reasons. From
a biological perspective, we are faced with an overwhelming
diversity of glycans that are produced by bacterial species. For
example, our gut microbiome contains an estimated 1013 − 1014

bacterial cells (Sender et al., 2016a,b), which produce a plethora
of carbohydrate-active enzymes (CAZymes; Cantarel et al., 2009).
Unfortunately, it is currently still challenging to predict glycan
structures based on genome sequences. In addition, bacterial
glycan expression is further regulated by specific environmental
conditions in the gut. Interaction with neighboring bacteria may

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 July 2020 | Volume 10 | Article 309

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Mnich et al. Lectin Receptors in Host Immunity

also affect the glycan composition, for example through secretion
of glycan-hydrolyzing enzymes that modify (surface-associated)
glycans from competitor bacteria. Screening for new interactions
among this large diversity of glycans with different CLRs and
elucidating their function requires a well-developed tool box. We
will discuss developed tools below, as well as the advantages and
disadvantages for each strategy.

CLRs can be recombinantly expressed as soluble extracellular
domains, which facilitates screening of a diverse range of bacteria.
Commercially available recombinant CLRs, both human and
mouse, are often expressed as extracellular domains linked to
a tag, such as IgG Fc (Hsu and Mahal, 2009; Maglinao et al.,
2014; Mayer et al., 2018). Due to the physical nature of IgG
Fc, the soluble CLR-fusion proteins are expressed as dimers,
which increases avidity of the CLR-glycan interaction compared
to single soluble domains. However, the dimeric presentation
does not reflect the natural arrangement of several CLRs, such
as MGL, langerin and DC-SIGN, as trimers or tetramers on the
cell surface (Feinberg et al., 2005, 2010; Jegouzo et al., 2013). In
addition, Fc-binding proteins are expressed by several bacterial
species (Sidorin and Solov’eva, 2011; Nordenfelt and Bjorck,
2013), such as S. aureus and S. pyogenes, and likely by other
species, which further challenges screening for new interactions
with these specific human pathogens due to high non-specific
background binding. The use of non-Fc-based tags (such as
Strep-tag II; Hanske et al., 2016), orientation of the Fc-tagged
constructs on arrays or on protein A/G-coated ELISA plates are
possible solutions to prevent non-specific Fc-mediated binding
(Chen et al., 2008). Alternatively, lectins are spotted on an array,
which can then be exposed to bacterial components or whole
bacterial cells (Hsu et al., 2006). This platform is able to produce
a specific bacterial fingerprint and can assess dynamic changes
to the bacterial glycan coat (Hsu et al., 2006). The mentioned
platform used well-defined plant lectins to probe the bacterial
glycan profile. A similar platform consisting of mammalian CLRs
would be a very valuable tool to identify new CLR-bacteria
interactions. Finally, CLRs can be ectopically expressed on cell
lines, potentially as GFP-reporter constructs (Imai et al., 2018).
This approach conserves the natural multimerization state of
the receptor, but usually provides only a limited window in
which specific interactions can be observed. Furthermore, GFP-
reporter cell lines will only identify activating ligands, whereas
CLR antagonists remain undetected. Additionally, since not
all CLRs contain intrinsic signaling capacity, they need to be
expressed as chimeric constructs for example with the CD3ζ
chain, which may alter their properties in unknown ways (Imai
et al., 2018).

With the aforementioned approaches, specific CLRs can be
screened for interactions using intact bacteria. Alternatively, CLR
constructs are used to screen glycan arrays (Rillahan and Paulson,
2011; Geissner et al., 2019), which display isolated bacterial
glycans. This approach may benefit from the multivalent glycan
display, which increases avidity of the interaction, allowing for
identification of low affinity interactions. However, isolation of
glycans from bacteria can be challenging due to the presence
of labile groups or modifications that are lost during sample
preparation (Lewis et al., 2004; Edgar et al., 2019). This has

sparked the development of synthetic carbohydrate chemistry
(Adamo, 2017; van der Es et al., 2017; Zhang and Ye, 2018),
which allows the generation of libraries consisting of stable
and well-defined glycan structures. In addition, these defined
structures enable structure-function studies and crystallography
(Gerlach et al., 2018). Crystallography with synthetic glycans is
a useful approach once a CLR-glycan interaction is established
but due to the vast number of glycosylated bacterial structures
it does not allow for a comprehensive approach to screen for
new glycan interactions across the entire bacterial kingdom.
Complementary use of all mentioned tools is therefore
essential to identify new interactions between bacteria and
host CLR.

MODEL SYSTEMS TO ASSESS
FUNCTIONAL CONSEQUENCES OF CLR
INTERACTION

The above-mentioned studies have provided insight into
the functional consequences of CLR-bacteria interactions.
However, experimental work with APCs is not without
technical and logistical challenges. First and foremost, the
transcriptional profiles of APCs from the same subset can differ
significantly depending on the tissue where they are isolated
from, as cells receive specific signals from their surrounding
microenvironment (Lundberg et al., 2013). Consequently, APCs
should ideally be isolated from the tissue of interest and be
related to the infection route of the bacterium. However, isolation
of primary APCs is not feasible for every tissue or for every
laboratory due to limited availability or accessibility to human
tissues. Even if the relevant tissues are obtained, it is challenging
to isolate a suitable number of immature cells for experiments,
due to limited cell numbers and (partial) induction of APC
maturation by the isolation procedure (Botting et al., 2017).
Therefore, APCs differentiated from bloodmonocytes or CD34+
cord blood cells by a specific cocktail of cytokines, have become
widely-used models to study APC- and CLR-induced responses.
Using these differentiation strategies, APCs with an immature
phenotype can be obtained and differentiated into mature APCs
in a controlled manner. In addition to human primary cells,
the use of cell lines that can be differentiated in distinct APCs
subsets, such as the myeloid CD34+MUTZ3 cell line (Masterson
et al., 2002; Santegoets et al., 2006), have yielded more insight
into CLR-mediated interaction and responses (de Jong et al.,
2010a; van Dalen et al., 2019a). The advantages of this cell line-
based approach are the absence of donor-to-donor variability,
independence on donor-derived material and amenability of
these cells to CRISPR/Cas9 genetic manipulation, which makes
these cells suitable to address the role of specific molecules
in immunological interactions. Another possibility to generate
APCs is through induced pluripotent stem cells (iPSC) derived
from fibroblasts, which offers an unlimited cell source from
the same individuals and the possibility to generate patient-
specific APCs with genetic defects (Choi et al., 2009, 2011;
Yanagimachi et al., 2013; Ackermann et al., 2015). Although
these approaches are understandably widely applied for ease of
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use and quantity of cells, transcriptomics studies have made
clear that all in vitro differentiated cell and cell lines are
distinct from primary cells (Lundberg et al., 2001; Harman
et al., 2013). For example, MUTZ3-derived LCs express several
TLRs that are not expressed by primary LCs (Lundberg et al.,
2013). Therefore, data obtained with differentiated primary
cells, cell lines and iPSC should be interpreted with care,
and experiments should be reproduced in more physiologically
relevant primary cells, ex vivo tissue models or suitable in
vivomodels.

Fortunately, in recent years, several ex vivo and 3D tissue
models have been developed. Human skin explants have been
used to study the interaction between different cell populations
and common skin pathogens, including S. aureus (Schaudinn
et al., 2017; Olaniyi et al., 2018). This approach is currently
the most relevant model to study the interaction of CLRs with
bacteria in their natural environment, since the explanted tissue
contains all relevant cell populations. Since not all laboratories
have access to human skin, an alternative approach is the
use of designed skin equivalents consisting of either epidermis
alone or together with underlying dermis. Progress is made to
repopulate these organotypic skin models with specific skin-
resident immune cells (Pupovac et al., 2018), for example CD34+
progenitor cells that differentiate into LCs when co-seeded
with human keratinocytes (Regnier et al., 1998). DCs can also
be repopulated in the skin equivalent model by introducing
human moDCs in between layers of keratinocytes and fibroblasts
(Chau et al., 2013). Not only for skin, but also for lung tissue,
3D tissue models have been generated to study molecular
pathogenesis of bacterial infections, such as S. aureus toxin-
mediated lung pathology relevant for pneumonia (Mairpady
Shambat et al., 2015). Also here it was possible to repopulate
the model with functional human moDCs (Mizoguchi et al.,
2017).

The development of organoid technology has brought about
a surge in the use of 3D models, also for studies in the
area of infectious diseases (Schutgens and Clevers, 2020).
There are now a wide variety of tissues and organs that
can be grown from human pluripotent stem cells (hPSCs)
with a specific cocktail of growth factors including lung,
gut, stomach and even brain organoids (Clevers, 2016).
Since organoids consist of all cellular components of the
representative organ, they provide opportunities to study
bacteria-host interactions in a more physiologically-relevant
setting as compared to cell lines. For example, gastric
organoids have been used to study host responses to H. pylori
(Bartfeld et al., 2015). Despite many advantages, organoids
have limitations such as the absence of blood vessels and
immune cells, which are crucial aspects of host defense
against infections. The development of immune-competent
organoids models (Bar-Ephraim et al., 2020) will provide an
opportunity to study interactions between CLR and bacteria
in the fully differentiated context of different human tissues.
Overall, all immunocompetent 3D tissue models can be
useful tools to gain insight into bacterial-cell interactions and

the influence of the specific environmental context on the
functional outcomes of this interactions, i.e., influence of cell-
cell communication.

CONCLUSION AND FUTURE OUTLOOK

From their first discovery, CLRs have been studied mainly
for their role in anti-fungal and anti-viral immunity, with
research on CLR-bacterial interactions lagging behind. Our
overview of bacterial-CLR interactions clearly highlights the
importance of specific CLRs in anti-bacterial immunity, but also
provides examples of pathogens such as Y. pestis that exploit
CLR interaction to enhance virulence or survival. Studies have
generally focused on the role of CLRs in the detection of bacterial
pathogens. However, APCs also actively sample the environment
across intact tissue barriers, suggesting an important role in
immune homeostasis that has yet to be elucidated. A major
challenge in the identification of new interactions of CLRs
with bacterial species in the microbiome is the vast diversity
of bacterial glycan structures, in combination with technical
challenges that have to be overcome to close this knowledge gap.
In this review, we have discussed advantages and disadvantages
of currently available approaches. Applications of CLR-bacterial
interactions include the development of targeting agents for
vaccine delivery to specific CLRs on APC subsets, that can help
boost an effective adaptive immune and memory response. In
this regard, the infectious diseases field should take advantage
of the progress in the area of cancer vaccinology, where studies
have shown the benefit of in vivo targeting of cancer antigens
to APCs to enhance anti-tumor immunity (Hossain and Wall,
2019). Overall, the knowledge gained from studies on bacterial-
CLR interactions could therefore not only shed light on the role
in immune defense or pathogenicity but also be highly relevant
to the translation of vaccine applications.
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