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PERSPECTIVE

Impact of antimicrobial de-escalation on mortality: a literature review of study
methodology and recommendations for observational studies
Inger Van Heijl a,b, Valentijn A. Schweitzer b, Paul D. Van Der Linden a, Marc J.M. Bontenb,c

and Cornelis H. Van Werkhoven b

aDepartment of Clinical Pharmacy, Tergooi Hospital, Hilversum/Blaricum, The Netherlands; bJulius Center for Health Sciences and Primary Care,
University Medical Centre Utrecht, Utrecht, The Netherlands; cDepartment of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The
Netherlands

ABSTRACT
Introduction: The safety of de-escalation of empirical antimicrobial therapy is largely based on
observational data, with many reporting protective effects on mortality. As there is no plausible
biological explanation for this phenomenon, it is most probably caused by confounding by indication.
Areas covered: We evaluate the methodology used in observational studies on the effects of de-
escalation of antimicrobial therapy on mortality. We extended the search for a recent systematic review
and identified 52 observational studies. The heterogeneity in study populations was large. Only 19
(36.5%) studies adjusted for confounders and four (8%) adjusted for clinical stability during admission,
all as a fixed variable. All studies had methodological limitations, most importantly the lack of adjust-
ment for clinical stability, causing bias toward a protective effect.
Expert opinion: The methodology used in studies evaluating the effects of de-escalation on mortality
requires improvement. We depicted all potential confounders in a directed acyclic graph to illustrate all
associations between exposure (de-escalation) and outcome (mortality). Clinical stability is an important
confounder in this association and should be modeled as a time-varying variable. We recommend to
include de-escalation as time-varying exposure and use inverse-probability-of-treatment weighted
marginal structural models to properly adjust for time-varying confounders.
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1. Introduction

Empirical antimicrobial therapy of suspected bacterial infections
often includes broad-spectrum antibiotics to ensure coverage of
multiple potential pathogens. According to antimicrobial steward-
ship principles, empirical treatment should be de-escalated when
possible to reduce antimicrobial pressure and antimicrobial resis-
tance [1]. In a systematic review, de-escalation of empirical anti-
microbial therapy compared to the continuation of empirical
treatment was associated with a relative risk reduction of 56%
(95% CI 34%-70%) for mortality, which was based on one rando-
mized controlled trial (RCT) and 19 observational studies [2].
However, the RCT [3] demonstrated no difference in mortality
between de-escalation and continuation. A total of 116 patients
with severe sepsis admitted to an ICU were included and de-
escalation was not statistically significantly associated with mor-
tality with an adjusted HR of 1.7 (95% CI 0.79–3.49, p = 0.18) [3].
The trial had relatively small sample sizes resulting in imprecise
effect estimates. Therefore, the evidence of safety of de-escalation
is largely based on observational data reporting a reduction in
mortality. We postulate that the mortality reduction based on
interpretation of observational data could reflect a true causal
effect if narrow-spectrum antibiotics are more effective or safer
than broad-spectrum antibiotics, i.e. if they cause less (ultimately

fatal) side effects. We consider the first hypothesis (more effective)
unlikely because generally the antimicrobial spectrum and activity
of narrow-spectrum antibiotics are entirely included in the spec-
trum and activity of broad-spectrum antibiotics. For specific
pathogens, narrow-spectrum antibiotics can potentially be more
effective than broad-spectrum antibiotics, such as penicillin for
Staphylococcus aureus infections although the level of evidence is
low [4]. However, this is not likely to result in a mortality reduction
of 56% as seen in the aforementioned systematic review.
The second (fewer side effects) might hold for less severe out-
comes such as duration of hospitalization or complications such as
Clostridioides difficile infection, but is considered unlikely or of
indiscernible size formortality. If not causal, the observedmortality
reduction may reflect residual confounding by indication, mean-
ing that, even after adjustment for measured confounders, the
prognosis of those in whom antimicrobial therapy is de-escalated
is more favorable compared to those continuing or escalating the
antibiotic treatment due to differences in unmeasured patient
characteristics.

In this paper, we review the methodology used in observa-
tional studies on the effect of de-escalation of empirical anti-
microbial therapy on mortality, followed by an expose of
causal effects that need to be taken into account in the
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study of de-escalation. Finally, we provide recommendations
for the design and analysis of antibiotic de-escalation studies.

2. General characteristics of observational studies
evaluating de-escalation and mortality

A PubMed search was done until October 2019 to find all studies
evaluating the effect of de-escalation of empirical antimicrobial
therapy on mortality. We used the search strategy described by
Schuts et al. [2] (Appendix 1). In addition, we checked all other
available systematic reviews and meta-analyses for missed pub-
lications [5–9]. We selected papers evaluating the effect of de-
escalation on mortality (as primary or secondary outcome),
which yielded 52 observational studies [10–61]. The heterogene-
ity in study populations between the studies was large (Table 1).
Eighteen studies (34.6%) were done in an ICU setting, the
remaining in a non-ICU hospital setting.

A retrospective design was used in 34 (65.4%) of the studies.
The majority was performed in a single center (n = 42; 80.8%).
Mortality differences were reported as crude estimates in 33
(63.5%) studies. In the other studies multivariable analyses
(n = 19; 36.5%) were used to adjust for potential confounders;

11 (21.1%) used logistic regression, 1 (1.9%) used Poisson regres-
sion and 7 (13.5%) used Cox proportional hazard regression. The
effect estimates obtained in these multivariable analyses are
depicted in Figure 1, clustered by study population. Studies
that did not present an OR, HR, or RR in their article [45,50,56]
are not included. The confidence intervals between the different
studies per study population overlap largely and the point esti-
mates are mostly in favor of de-escalation. This means that the
individual studies yield comparable results. In the next section,
we will discuss the limitations in the methodology used in
observational de-escalation studies.

3. Methodological limitations in de-escalation
studies

Several limitations were identified in the methodology of obser-
vational studies regarding the association between de-escalation
of empirical antimicrobial therapy on mortality after evaluating

Article Highlights

● De-escalation as an antimicrobial stewardship strategy is mainly
based on observational data.

● The protective effect on mortality for de-escalation in observational
studies is likely due to confounding by indication.

● De-escalation in observational studies should be analyzed with tech-
niques that take time-varying variables into account.

Figure 1. Adjusted effect estimates for the association between de-escalation of empirical antimicrobial therapy and mortality. Koupetori (1) and (2) are effect
estimates from different time periods (resp. 2006–2009 and 2010–2013). Joffe (1) and (2) are effect estimates from culture-positive and culture-negative patients,
respectively. Joung et al. reported an effect estimate for non-de-escalation; we calculated the inverse effect estimate for de-escalation which results in an aHR of
0.25 (95% CI 0.14–21). Note that this confidence interval seems incorrect, as it is asymmetric on a log scale, which also was the case for the reported confidence
interval. We contacted the corresponding author to verify this; however, we received no response.

Table 1. Study populations.

Study population N = 52 (%)

Community-acquired pneumonia 5 (9.6)
Hospital-acquired or ventilator-associated pneumonia 12 (23.1)
Healthcare-associated pneumonia 1 (1.9)
Pneumonia (acquisition not specified) 4 (7.7)
Urinary tract infection 2 (3.8)
Intra-abdominal infections 1 (1.9)
Skin infections 1 (1.9)
Bloodstream infections 10 (19.2)
Severe sepsis and/or septic shock 5 (9.6)
Critically ill patients 2 (3.8)
Neutropenic fever 2 (3.8)
Any infection in severe aplastic anemia patients 1 (1.9)
Any infections treated with specific antibiotic classes 6 (11.5)
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the abovementioned studies. For 33 studies solely reporting
crude estimates on mortality, we confine ourselves by stating
that they suffer from severe confounding by indication and are of
no use for a causal inference. For the remaining we discuss
studies that adjusted for potential confounders (N = 19)
[15,20,21,27,28,31,33,34,40,43,45–47,50,53,56,57,60,61]. For the
purpose of this review, we focus on three main issues: (1) lack
of adjustment for the patients’ clinical course, (2) modeling de-
escalation as a fixed variable, and (3) modeling time-varying
confounders as fixed variables.

All studies adjusted for baseline characteristics as potential
confounders, which are measured from the time point the
patient is enrolled in the study. In Table 2 we have summar-
ized all the potential confounders used in the studies, cate-
gorized by type of baseline factor.

Although these studies used multiple baseline characteris-
tics as potential confounders, this is probably insufficient to
adjust for confounding by indication. Our previous study,
which aimed to quantify the potential confounding effect of
clinical stability during hospital stay on the estimated impact
of de-escalation on mortality in patients with CAP, suggests
that clinical stability in de-escalated patients is likely to explain
the lower mortality observed in patients after de-escalation
[61]. This was done by simulating a variable representing
clinical stability on day 3, using data on prevalence and asso-
ciations with mortality from the literature. Therefore, it is
important to not only include confounders measured at the
time of admission, but also confounders that occur during
hospital stay. This is intuitive because the decision to de-

escalate is made several days after initiation of empirical ther-
apy and is influenced by clinical stability during hospital stay
and available culture results. As clinical stability is also a strong
prognostic factor, not including this in the analysis inevitably
results in biased effect estimates in favor of de-escalation. Only
four studies adjusted for clinical stability or a similar variable
indicating the clinical course up to the time of de-escalation
[20,28,40,50] (Table 2). Three of these studies included
patients admitted to an ICU; Joung et al. included APACHE II
score (used in ICU [62]) and modified CPIS (used for VAP [63])
at day 5 [20]. Garnacho Montero et al. included SOFA score
(used in ICU [64]) at culture result day [28] and Montravers
included SOFA score at day 3 [40]. Parameters to establish
clinical stability during admission are measured (and regis-
tered) more regularly in ICU than in non-ICU populations. So,
it is probably more convenient to collect such data and to
adjust for variables representing clinical stability during admis-
sion in ICU populations. The fourth de-escalation study that
included a variable predictive for the clinical course was per-
formed in a population with and without admission at ICU,
and included PBS (used in bloodstream infections [65]) at day
3 after the start of antibiotic treatment [50]. Although there
are specific criteria for clinical stability in patients with CAP
[66], which have been used in studies evaluating iv to oral
switches [67,68], these have not been used in de-escalation
studies.

Another limitation in observational de-escalation studies is
that de-escalation is analyzed as a time-fixed variable, which
applies to all 19 studies that corrected for confounders. For

Table 2. Summary of all potential confounders used in individual studies.

Variable group Variables used
Frequency
(n = 19) Reference

Baseline disease
severity

APACHE II score, CPIS score, SOFA score, PSI score, A-DROP, Pitt bacteremia score,
CPIS score, ICU admission before onset, mechanical ventilation before onset,
presence of sepsis or septic shock.

17 (90%) [19,20,27,30,32,33,39,42,44–
46,49,52,55,56,59,60]

Comorbidities No. of comorbidities, Charlson index, McCabe classification, or specific type of
comorbidity.

14 (74%) [14,20,26,30,33,42,44,45,49,52,55,56,59,60]

Demographics Age, gender, BMI, previous use of antibiotics, previous hospitalization, nursing home
residence.

12 (63%) [14,20,27,39,44–46,52,55,56,59,60]

Antibiotic therapy (In)appropriateness of initial therapy, time to appropriate therapy, monotherapy vs.
combination therapy, specific type (or rank) of antibiotic therapy.

11 (58%) [19,20,26,27,32,42,44,46,55,59,60]

Type of infection Acquisition; Community- or nosocomial or specific focus, timing of onset. 8 (42%) [20,27,42,45,52,55,56,59]
Hospital or
department of
admission

Type of hospital/department. 5 (26%) [26,27,44,56,59]

Disease severity
during
admission

Acute Physiology and Chronic Health Evaluation (APACHE) II score at ICU day 5,
modified Clinical pulmonary infection score (CPIS) at ICU day 5, sequential organ
failure assessment (SOFA) score at culture result day, SOFA score at ICU day 3, Pitt
bacteremia score (PBS) at day 3 after start of antibiotic treatment.

4 (21%) [19,27,39,49]

Laboratory results Creatinine, hemoglobin, pH, blood urea nitrogen, sodium, glucose, hematocrit,
partial pressure of oxygen

3 (16%) [33,45,60]

Timing of
admission

Certain year, season or day (week/weekend). 3 (16%) [26,44,60]

Health behavior Smoking 2 (11%) [44,60]
Medical imaging Presence of pleural effusion 2 (11%) [44,60]
Medication use Use of specific medication or other therapies; steroids, blood transfusion, albumin,

immunoglobulins, NSAIDs, Proton pump inhibitors/H2 receptor antagonists,
protease inhibitors, anticoagulants.

2 (11%) [42,44]

Signs and
symptoms

Tachycardia, altered mental status, respiratory rate, systolic blood pressure,
temperature, heart rate

2 (11%) [52,60]

Other Specific surgery 1 (5%) [39]
Pneumococcal vaccination 1 (5%) [52]
Injury Severity Score (ISS) 1 (5%) [55]
Invasive procedures 1 (5%) [59]

* Sorted from most to least commonly used baseline factors as confounders.
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example, in one patient, de-escalation occurs at day 3 of
hospital admission, and then survival time until day 3 is incor-
rectly counted as survival time for the de-escalation group,
when in fact these patients were not exposed to de-escalation
until day 3. Not adjusting for time-varying exposures results in
immortal time bias (also termed time-dependent bias) [69] in
favor of the de-escalated group. This can be intuitively under-
stood as too much survival time being incorrectly classified as
survival time for de-escalation. In only one study de-escalation
was included as a time-varying variable in the analysis, but
unfortunately without adjustment for confounders [32].

A third common limitation is analyzing all possible confoun-
ders as time-fixed variables. Some confounders, such as clinical
stability, differ over time with different trajectories for different
patients. Such variables, when analyzed as time-fixed confoun-
ders, lead to biased estimates, as explained in the next sections.
The four studies that correct for a variable indicating the clinical
course up to the time of de-escalation mentioned above
[20,28,40,50] have included this variable in a time-varying way.
For example, in the study from Montravers et al. [40], clinical
improvement is defined as a > 2 points decrease in SOFA score
on day 3 compared to day zero or a SOFA score of 0 points.
Patients that died or were discharged alive within the first 3 days
were excluded from the analysis. In the multivariable analysis,
clinical improvement was included as a confounder. De-
escalation was analyzed after 48 h. The difference in SOFA
score was assessed at day 3, which is usually the day when
empirical therapy is evaluated and when culture results are
available, and most de-escalation decisions are taken. This
approach adjusts for clinical improvement; however, still clinical
stability is reached at different points in time for individual
patients so including it as a real time-varying confounder will
be more appropriate. This causes collider stratification bias, i.e.
adjusting for a variable that may occur after escalation, which we
will elaborate on in section 4.

In summary, all studies evaluating the effects of de-escalation
have methodological limitations, most importantly the lack of
adjustment for the clinical course, ignoring time-varying expo-
sure, and ignoring the time-varying nature of some confounders.
In the next section, we provide a proposal to study the causal
effect of de-escalation on mortality.

4. Expert opinion

To study the causal effect of de-escalation on mortality we first
need to consider all variables that might influence this asso-
ciation. We will first propose causal diagrams, also called
directed acyclic graphs (DAGs) visualizing the causal associa-
tions, after which we will provide recommendations for future
studies with observational data.

4.1. Proposal of a DAG for studying the causal effect of
de-escalation on mortality

In observational data, it is important to adjust for confounding.
The preferred method to identify confounders is to use prior
knowledge. In recent years, DAGs have been increasingly used
to identify confounders (i.e. common causes of the exposure and
the outcome) [70,71]. In Figure 2 a simple DAG is depicted on the

relation between exposure and outcome with one confounder.
All DAGs consist of variables connected by arrows that represent
direct causal effects (which can denote positive or negative
associations) and they are acyclic because arrows always go in
one direction and a causal path is not allowed to go back to its
origin [70]. Not adjusting for confounder C, in Figure 2, will bias
the causal association between exposure E and outcome O. This
pathway from E to O through C is also called a ‘backdoor path’
which is a non-causal pathway. When adjusting for confounder
C this ‘backdoor path’ is closed (and so is the non-causal path-
way). If both arrows from C to E and from C to O were directed to
C, then C is not a confounder but a collider (Figure 3), which is
a variable caused by both exposure (E) and outcome (O). When
adjusting for a collider, a ‘backdoor path’ (or a non-causal path-
way) is introduced rather than closed, which causes bias rather
than to solve it. It is therefore essential to distinguish confoun-
ders from colliders, for example, with a DAG, because it is impor-
tant to adjust for confounders and not for colliders. Of note,
a collider can also exist through a proxy or precursor of the
outcome as we will see later. Finally, in Figure 4 the effect of
exposure (E) can be mediated through an intermediate (M) on
outcome (O). Adjustment for intermediates is not necessary;
there is no ‘backdoor path’ because M is on the causal pathway
of E to O. Researcher may wish to adjust for intermediates if they
are explicitly interested in the relative contribution of distin-
guished causal pathways, rather than estimation of the main
causal effect, but this is beyond the scope of the current paper.

Figure 2. An example of a causal diagram (or DAG). E = exposure, O = outcome,
and C = confounder. For example, in the relationship between alcohol con-
sumption (E) and lung cancer (O), smoking (C) is highly correlated with alcohol
consumption and also a cause of lung cancer.

Figure 3. DAG with a collider. E = exposure, O = outcome, and C = collider. For
example, in the relationship between obesity (E) and cardiovascular disease (O),
there are also other risk factors for cardiovascular disease (C). E and C both are
causes of cardiovascular disease, which makes C a collider.

408 I. VAN HEIJL ET AL.



For estimating the causal relationship between de-escalation of
empirical therapy andmortality, we consider the following aspects
essential: (1) the exposure de-escalation is time-varying, i.e. expo-
sure of individual patients is set at different points in time and (2)
confounders can be time-fixed or time-varying. Examples of time-
fixed confounders are patients’ comorbidity and severity of dis-
ease at presentation (more examples are presented in Table 2).
Examples of time-varying confounders are culture results and
clinical stability. After a certain time period, culture results become
available (pathogen detection) and clinical stability can be
reached; the values of these variables change over time and
influence the decision for de-escalation. In Figure 5 we present
the DAG in which all important factors involved in the association
of de-escalation of empirical therapy onmortality are depicted. E is
exposure, which is the change of empirical antimicrobial therapy;
either de-escalation, escalation, or continuation. Exposure is time-
varying presented as E1 (exposure day 1) and Et (exposure day t),
which occurs after the start of empirical therapy (A) at the day of
admission. Also, exposure (E) influences future clinical stability (C)
and is associated with outcome O. O is the outcome which is
mortality. The other variables in this diagram are fixed or time-
varying confounders in the association between exposure E and
outcome O. B is a collection of time-fixed confounders, such as
comorbidities and disease severity. B influences empirical therapy
(A), the unknown pathogen (P0), clinical stability at day 0 (C0), and
mortality (O). B is very disease specific and researchers should take
efforts to identify all variables relevant to the disease and setting

of investigation prior to commencing the study. Both P and C are
time-varying confounders, as mentioned above, representing
pathogen detection and clinical stability. P0 is the unknownpatho-
gen and P1 and Pt are day 1 and day t, when the culture results
could be available and the pathogen is possibly detected. P0
influences clinical stability at day 0 (C0) and mortality (O). P1 and
Pt influence exposure (E) by the decision to de-escalate, escalate,
or continue treatment. C0 is clinical stability at the day of admis-
sion, C1 and Ct are clinical stability determined on day 1 and day
t. Clinical stability (C) influences mortality (O). For simplification we
only used E1, P1, and C1 measured at day 1, all other admission
days are presented as Et, Pt, and Ct. There is one important issue to
add to the already complicated causal relationship between de-
escalation (E) and mortality (O), which is clinical stability not only
being a time-varying confounder, but also a mediator and collider
in the association between de-escalation (E) and mortality (O).
Firstly, it is a confounder because it is a cause of future exposure
(E) (the decision to de-escalate or not) and is also a prognostic
factor for the outcome (O) mortality. For example, in the figure C1
influences E1 and O, either directly or through Ct. Secondly, clinical
stability at a certain day (Ct) is influenced by past exposure (E1; de-
escalation or continuation of empirical therapy) and is a risk factor
for mortality (O); it is, therefore, an intermediate between E1 and
O. At the same time, Ct is also influenced by clinical stability from
the previous day (C1) and is, therefore, also a collider.

The tackle these complicated relationships we provide meth-
odological recommendations for future studies for how to deal
with this and other important limitations in the next section.

4.2. Methodological recommendations for observational
(de-escalation) studies

For future observational studies, we provide the following
recommendations.

Figure 4. DAG with an intermediate. E = exposure, O = outcome, and
M = intermediate. For example, statins (E) reduce cholesterol in the blood
(M), and thereby lower the risk for a stroke (O).

Figure 5. A directed acyclic graph (DAG) for the causal relationship between de-escalation of empirical antimicrobial therapy and mortality. Exposure (E) = change
or continuing antimicrobial therapy. Outcome (O) = mortality. Time-fixed confounder (A) = empirical therapy. Other time-fixed confounders (B) = e.g. comorbidities
and disease severity. Time-varying confounders (P) = pathogen detection and (C) = clinical stability. The numbers 0 and 1 are day 0 and day 1, all other admission
days are presented as t.
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First, the exposure variable (de-escalation) has to be
included as a time-varying variable to prevent immortal time
bias (also called time-dependent bias). The difference between
time-fixed and time-varying exposures has been nicely
explained by Munoz-Price et al. Antibiotic exposure is often
available in patients’ medical records and can, therefore, be
determined on a daily basis. Cox proportional hazard models
can be used to adjust for time-varying exposures [69].

Second, in our opinion, important fixed confounders to con-
sider in the analyses are patient demographics, disease severity
score, comorbidities, and (appropriate) empirical antimicrobial
therapy, all measured at baseline. These are based on our sum-
mary in Table 2 and can all be considered as common causes of
exposure and outcome. Also, source control (which was never
included in the observational studies) should be considered. Still,
it is the responsibility of the researcher to choose the appropriate
confounders. Some of these will be specific for different infectious
diseases. For example, source control can be relevant for abdom-
inal infections and pneumonia but not for urinary tract infections.
It is beyond the scope of this paper to elaborate further on this
topic. Drawing a causal diagram can be extremely helpful to
determine which variables are to be considered a confounder;
however, a limitation of DAGs is that they cannot easily visualize
interactions, which can be a relevant part of causal inference.

Thirdly, it is inappropriate to exclusively include confoun-
ders measured at the time of admission. Confounders that
change over time, and are both associated with the outcome,
and influence the decision for de-escalation, such as clinical
stability, should also be included. Clinical stability, as
a concept, is not easily measured. To the best of our knowl-
edge, there are criteria defined by the Infectious Diseases
Society of America (IDSA) for non-ICU hospitalized patients
with CAP but not for other populations [72]. Clinical stability
in CAP patients is reached when temperature ≤37.8°C, heart
rate ≤100 beats/min, respiratory rate ≤24 breaths/min, systolic
blood pressure ≥90 mm Hg, arterial oxygen saturation ≥90%,
or pO2 ≥60 mm Hg on room air. For the switch to oral treat-
ment, two variables are added: ability to maintain oral intake
and normalized mental status. For disease entities where such
criteria are not established, researchers should determine cri-
teria for clinical stability. The availability of accepted criteria
does not exclude the researchers' responsibility to critically
consider which other factors (e.g. oral food intake) determine
the decision for de-escalation, as these can vary locally. Clinical
stability should be modeled as a time-varying confounder
because individual patients become clinical stable at different
time points.

A complicating factor is that clinical stability is influenced by
past exposure; de-escalation or continuation of empirical anti-
microbial therapy may influence the clinical stability of a patient
during the subsequent hospital stay, for example, by clinical
deterioration after de-escalation. As a result, conventional Cox
proportional hazard models may provide biased estimates
caused by adjustment for an intermediate and a collider (collider-
stratification bias), as explained in the previous section [73,74].
For time-varying confounders that are influenced by past expo-
sure, G-methods are proposed [75]. The G-methods comprise
three statistical causal methods: G-computation algorithm

formula, G estimation of a structural nested model, and inverse-
probability-of-treatment weighted (IPTW) marginal structural
models (MSM) [75]. Recently, statistical software has also become
available for other methods, such as the ‘gfoRmula’ and ‘DTReg’
package in R. For IPTW MSM, statistical software is available [76]
and the model will provide correct estimates for associations
between de-escalation of empirical antimicrobial therapy and
mortality, provided that the model assumptions are met. MSM
was first introduced by Robins and Hernán [74], interested read-
ers may also consider the more accessible introductions to these
models [76–78], or themore technical tutorial of Daniel et al. [79].
Space prohibits an elaborate discussion on these model
assumptions.

Ideally, clinical stability is determined daily until patients are not
at risk for the exposure (de-escalation) anymore, which is after the
last day of antibiotic therapy (or after hospital discharge or death).
A disadvantage of current MSM implementations in statistical soft-
ware is that exposure can occur only once, and the model cannot
incorporate escalation after prior de-escalation (it could be done,
but you have to do this by hand, requiring statistical expertise).
Alternatively, researchers might simply report the crude propor-
tion of escalations occurring after de-escalation. Unfortunately, in
real-life situations, missing data in the daily measurements of
clinical stability may occur, for which in most circumstances multi-
ple imputation is the recommended approach.

Obviously, the better alternative to avoid confounding by
indication is a trial in which randomization for de-escalation or
continuation is performed when patients are clinically stable
and/or culture results are known. However, clinical trials are
time-consuming and expensive, not all indications can be stu-
died in a trial, and not all at the same time, making observational
studies, when performed correctly and with the right data,
valuable alternatives until trial data become available. When
planning a randomized trial, such observational studies can be
useful to generate hypotheses and inform the design of the trial.

4.3. Conclusion

The current evidence base on the safety of de-escalation of
empirical antimicrobial therapy contains one RCT and 52 obser-
vational studies that suffer from various methodological limita-
tions. Future observational studies could be improved by using
advanced statistical analyses such as IPTW MSM to adjust for the
time-varying exposure of de-escalation and the time-varying
confounding effect of clinical stability during hospital stay.

4.4. Five-year view

In the next 5 years, researchers and clinicians should establish
a standardized definition for de-escalation and clinical stability
for specific infections, particularly outside the ICU, which
should be developed as a continuous score rather than
a binary variable. Also, an important goal is to determine the
causal effect of de-escalation on mortality either by well-
designed RCTs or by observational studies using appropriate
methodology, such as MSM.
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