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Computer-Aided Diagnosis in Multiparametric Magnetic
Resonance Imaging Screening of Women With Extremely Dense

Breasts to Reduce False-Positive Diagnoses
Erik Verburg, MSc,* Carla H. van Gils, PhD,† Marije F. Bakker, PhD,† Max A. Viergever, PhD,*

Ruud M. Pijnappel, MD, PhD,‡ Wouter B. Veldhuis, MD, PhD,‡ and Kenneth G. A. Gilhuijs, PhD*

Objectives: To reduce the number of false-positive diagnoses in the screening of
women with extremely dense breasts using magnetic resonance imaging (MRI), we
aimed to predict which BI-RADS 3 and BI-RADS 4 lesions are benign. For this pur-
pose, we use computer-aided diagnosis (CAD) based onmultiparametric assessment.
Materials and Methods: Consecutive data were used from the first screening
round of the DENSE (Dense Tissue and Early Breast Neoplasm Screening) trial.
In this trial, asymptomatic women with a negative screening mammography and
extremely dense breasts were screened using multiparametric MRI. In total, 4783
women, aged 50 to 75 years, enrolled and were screened in 8 participating hospi-
tals betweenDecember 2011 and January 2016. In total, 525 lesions in 454women
were given a BI-RADS 3 (n = 202), 4 (n = 304), or 5 score (n = 19). Of these le-
sions, 444 were benign and 81 were malignant on histologic examination.

The MRI protocol consisted of 5 different MRI sequences: T1-weighted im-
aging without fat suppression, diffusion-weighted imaging, T1-weighted contrast-
enhanced images at high spatial resolution, T1-weighted contrast-enhanced images
at high temporal resolution, and T2-weighted imaging. Amachine-learningmethod
was developed to predict, without deterioration of sensitivity, which of the
BI-RADS 3– and BI-RADS 4–scored lesions are actually benign and could be
prevented from being recalled. BI-RADS 5 lesions were only used for training,
because the gain in preventing false-positive diagnoses is expected to be low in
this group. The CAD consists of 2 stages: feature extraction and lesion

classification. Two groups of features were extracted: the first based on all
multiparametric sequences, the second based only on sequences that are typically
used in abbreviated MRI protocols. In the first group, 49 features were used as
candidate predictors: 46 were automatically calculated from the MRI scans, sup-
plemented with 3 clinical features (age, body mass index, and BI-RADS score).
In the second group, 36 image features and the same 3 clinical featureswere used.
Each group was considered separately in a machine-learning model to differenti-
ate between benign and malignant lesions. We developed a Ridge regression
model using 10-fold cross validation. Performance of the models was analyzed
using an accuracy measure curve and receiver-operating characteristic analysis.
Results: Of the total number of BI-RADS 3 and BI-RADS 4 lesions referred to
additional MRI or biopsy, 425/487 (87.3%) were false-positive. The full multi-
parametric model classified 176 (41.5%) and the abbreviated-protocol model
classified 111 (26.2%) of the 425 false-positive BI-RADS 3– and BI-RADS
4–scored lesions as benign without missing a malignant lesion.

If the full multiparametric CAD had been used to aid in referral, recall for
biopsy or repeat MRI could have been reduced from 425/487 (87.3%) to 311/487
(63.9%) lesions. For the abbreviated protocol, it could have been 376/487 (77.2%).
Conclusions: Dedicated multiparametric CAD of breast MRI for BI-RADS 3
and 4 lesions in screening of women with extremely dense breasts has the poten-
tial to reduce false-positive diagnoses and consequently to reduce the number of
biopsies without missing cancers.

Key Words: magnetic resonance imaging, machine learning, breast density,
screening, false-positives

(Invest Radiol 2020;55: 438–444)

W omen with extremely dense breasts (Breast Imaging Reporting
and Data System [BI-RADS] class D), that is, breasts containing

a large amount of fibroglandular tissue, have a 3 to 6 times higher risk
of developing breast cancer than women with very fatty breasts. More-
over, these cancers are harder to detect on mammography due to the low
contrast between fibroglandular tissue and tumor tissue and overlapping
tissue.1 Consequently, additional screening modalities, such as magnetic
resonance imaging (MRI), have been proposed.

Magnetic resonance imaging is known to be a sensitive method
to detect lesions. Several studies showed that additional MRI screening
increases the number of detected malignancies.2–5 However, MRI is
also associated with lower specificity thanmammography.5,6 Moreover,
MRI ismore costly and time-consuming than mammography. The effec-
tiveness of additional MRI for the screening of women with extremely
dense breasts is the main research aim of the Dense Tissue and Early
Breast Neoplasm Screening (DENSE) trial in the Netherlands. Within
the framework of this randomized controlled trial, 4783 women with ex-
tremely dense breasts have been screened using additional MRI after a
negative screening mammography.7,8

As anticipated, additional breast cancers were detected; in the
first round of this trial, the cancer detection yield with MRI after nega-
tive mammography was 79 in 4783 women, or 16.5/1000 screens.8 Sub-
sequently, women in the MRI arm experienced a significantly lower
number of interval cancers than those in the control arm.8 However, in
total, 454 women (9.5%) were referred for additional diagnostics after
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MRI. BI-RADS 3 lesions led to recommendation for repeatMRI screen-
ing after 6 months and subsequent biopsy on indication. For women
with BI-RADS 4 or BI-RADS 5 lesions, biopsy was indicated.

For women with BI-RADS 4 or BI-RADS 5 lesions, biopsy was
indicated. As expected, the percentage of benign findings in BI-RADS
3– and BI-RADS 4–scored women was high. No malignant lesion was
present in 97%ofBI-RADS3–scoredwomen (146 of 150) and 79%of the
BI-RADS 4–scored women (226 of 286). In BI-RADS 5–scored women,
17% (3 of 18) had no malignant lesions. Especially in BI-RADS 3 and
BI-RADS 4–scored women, increased specificity would lead to reduced
follow-up activities.

Reports on different, heterogeneous populations of women
showed potential for computer-aided diagnosis (CAD) to improve the
specificity of breast MRI.9–11 To the best of our knowledge, no studies
focused explicitly on a consecutively included screening population of
asymptomatic women with extremely dense breasts and average risk.

Typically, CAD for breast MRI is based on dynamic contrast-
enhanced T1-weighted images,12 but combination with other sequences
have been used as well (ie, multiparametric MRI).11,13,14 In particular,
high-temporal resolution dynamic contrast-enhanced series (fast-DCE),13

diffusion-weighted imaging (DWI),15 and T2-weighted imaging16 have
shown complementary value to discriminate between malignant and
benign lesions.

To reduce the number of false-positive diagnoses in the MRI
screening of women with extremely dense breasts, the aim of this study
is to predict which BI-RADS 3 and BI-RADS 4 lesions are benign
using multiparametric CAD.

MATERIALS AND METHODS

Study Population
Clinical data and MRIs were obtained during the first round of

the DENSE trial. The DENSE trial has been described in detail else-
where.7 In short, this multicenter randomized controlled trial investigates
the additional value of MRI screening in Dutch women with extremely
dense breasts (ie, BI-RADS D and normal mammography). Written in-
formed consent was obtained from all women before MRI screening.
The trial was approved by the Dutch Minister of Health, Welfare, and
Sport (2011/19WBO, The Hague, the Netherlands). In this study, all im-
age datasetswere acquired between December 22, 2011, and January 22,
2016. Allwomen with lesions that were scored as BI-RADS 3, 4, or 5 on
MRI were included in the analysis described here. Somewomen with an
indication for biopsy (31 of 331) did not undergo a biopsy because, for
example, the lesion was not/no longer visible on additional imaging, the
biopsy was technically not possible (in which case short-term follow-up
imaging was applied), or the lesion was known to be benign from the pa-
tient records from another hospital.8 The median age of the participants
was 54 years (range, 49–75 years).

MRI Scan Acquisition
All breastMRI scanswere acquired according to a fixed imaging

protocol as described by Emaus et al.7 In summary, the examinations
were performed with a 3.0-T (Achieva or Ingenia) system from Philips
or a 3.0-T (Trio, Verio, or Skyra) system from Siemens using a dedi-
cated phased-array bilateral breast coil. Images were acquired in axial
planes. The MRI protocol consisted of DWI, T1-weighted imaging
without fat suppression, DCE-MR, and an optional T2-weighted se-
quence. Dynamic contrast-enhanced MR consisted of a high-spatial-
resolution precontrast image, followed by a high-temporal-resolution
series after contrast agent injection, followed by 4 or 5 high-spatial-
resolution images. Fat suppression was optional during DCE-MR ac-
quisition. The high-temporal-resolution series were acquired in 3.9- to
5.1-second intervals and consisted of 15 to 19 postcontrast acquisitions.
Contrast agent was injected at a rate of 1 mL/s to a total dose of

0.1 mmol of macrocyclic gadolinium based contrast agent gadobutrol
(Gadovist; Bayer AG, Leverkusen, Germany) per kilogram of body
weight. Diffusion-weighted imaging was acquired with a minimum of
2 b-values and a maximal b-value of at least 800.7

Methods
A CAD model was developed and tested to predict whether le-

sions onMRI in womenwith extremely dense breasts are benign or ma-
lignant. The first stage of the CAD workflow was image processing
(section 3.3.1) followed by automated calculation of features from all
BI-RADS 3, 4, and 5 lesions (section 3.3.2). The features were used
to train and validate the model using cross validation (section 3.3.3).
These steps were repeated for a subset of images typically available in
abbreviated MRI protocols,9,17 that is, T2-weighted imaging, DWI
and DCE-MRI consisting of high-temporal-resolution series, and one
precontrast and one postcontrast image with a high spatial resolution.

Image Processing
Seven consecutive image processing steps were performed: (1)

image registration of DCE-MR series, (2) lesion segmentation, (3)
DCE-MRI scan normalization, (4) aorta segmentation, (5) chest wall
segmentation and extraction of pectoral muscle intensity, (6) calculation
of apparent diffusion coefficient (ADC), and (7) registration of lesion
mask to ADC map.

1. Image registration of DCE-MRI scans: All postcontrast DCE-MRI
scans with high spatial resolution were registered to their pre-
contrast counterparts using a nonrigid B-spline transformation in a
multiresolution scheme.18

2. Lesion segmentation: The semiautomated segmentation method
proposed by Alderliesten et al19 was used for lesion segmentation
of mass lesions as well as nonmass lesions. Lesions were detected
by breast radiologists associated with the DENSE trial, and whose
experience ranged from 5 to 23 years.8 A seed point was manually
placed at or near the lesion by a technical physician (E.V.). Subsequently,
constrained volume growing was performed in the DCE-MR series.
This step resulted in a segmented lesion volume in 3D. Segmentations
were reviewed by a trained breast radiologist (W.B.V.) and corrected
when necessary by adding or replacing seed points.

3. DCE-MRI scan normalization: Although all images where acquired
according to the screening protocol, some variations were present in
the settings of the different MRI devices used, mainly flip angle and
repetition time. Changes in intensity due to the inflow of contrast
agent depend on these settings and may therefore differ between hos-
pitals. Hence, we normalized intensities by calculating the signals that
would be acquired at a standard flip angle and repetition time.20,21 All
DCE imageswith high spatial resolutionwere harmonized to a standard
flip angle of 10 degrees and a standard repetition time of 3.78 millisec-
onds. All DCE images with high temporal resolution were harmonized
to a standard flip angle of 10 degrees and a standard repetition time
of 2.17 milliseconds.

4. Aorta segmentation: Contrast uptake speed in the lesion is related to
contrast uptake in the descending aorta of the subject. Accordingly,
the descending aorta was segmented in the DCE-MRI scans with
high temporal resolution. The aortawas located on the basis of its tu-
bular shape.We used the Hough transform to detect one circle with a
diameter between 1 and 5 cm in each transversal slide in the last
postcontrast series of the fast acquisition. A linear Hough transform
was used to detect the main axis of the descending aorta. All found
circles centered at the detected main axis were defined as the con-
tours of the descending aorta.

5. Chest wall segmentation and extraction of pectoral muscle intensity:
T2-weighted image intensities were normalized to the intensity of the
pectoral muscle.16 First, the pectoral muscle was automatically
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detected in the T1-weighted images without fat suppression using
dynamic programming.22 Next, the detected chest wall was resampled
to the dimensions of the T2-weighted image. The median intensities
[MI(d)] of the voxels located at nearest distance d = 0, 1, 2 … n mm
medial from the chest wall in the T2-weighted imagewere calculated.
The pectoral muscle intensity was defined as MI(d) where the first
local minimum or local maximum was present in MI(d).

6. Calculation of ADC:ADC values for all voxels in the DWI images of
each subject were calculated using a linear least squares estimator
based on QR decomposition. ADC values were computed using
the nonweighted image (b-value = 0) in combination with all indi-
vidual diffusion-weighted images (b-value > 0), which resulted in
one ADC map per subject.

7. Registration of lesion mask to ADC map: DWI images are suscepti-
ble to artifacts such as geometric distortions due to magnetic sus-
ceptibility differences.23 This geometric distortion was corrected by
registration as follows: First, the T2-weighted imageswere registered
to the corresponding DWI image with b-value 0 or 50. Nonrigid
B-spline transformation in amultiresolution schemewas used.18 Because
the lesion mask is inherently aligned with the lesion on T2-weighted
imaging, the transformation from T2 to DWI was applied to the lesion
mask in order to align the mask with the lesion on ADC. Manual ad-
justment was applied by a technical physician (E.V.) when necessary.

Image registration was performed using Elastix (version: 4.7)24.
MeVisLab (version 3.0; MeVis medical Solution AG, Bremen,
Germany), in combination with Python (version 2.7; Python Software
Foundation) with packages “numpy” (v1.15.1) and “scipy” (v1.1.0), was
used for lesion segmentation, image normalization, and aorta segmenta-
tion. Chest wall segmentation and ADC map calculation were performed
using MATLAB (v R2017a; Mathworks, Natick, MA).

Feature Extraction
In total, 49 features were calculated and used to train the CAD

model. All 46 MRI-based features were obtained automatically. Twenty-
two features describing morphology and contrast dynamics of the lesion
were computed from the high-spatial DCE images.12,25

Six contrast uptake features were computed from the fast-DCE
images using a method based on the work of Dalmiş et al.13 Here,
time-related featureswere expressed relative to the start of contrast uptake
in the detected descending aorta. Nine ADC features and 9 T2 intensity
features were computed (see Table, Supplemental Digital Content 1,
http://links.lww.com/RLI/A516: Description of image features).

In addition to image features, 3 clinical features were considered in
the model: BI-RADS score (3, 4, or 5), age, and body mass index (BMI).

Missing features (506 of 24,794) caused by missing images
(n = 369), deviating imaging (n = 108), or missing clinical information
(BMI only, n = 29) were multiply imputed (5 imputation sets).

A second feature set was extracted using only images that are
available in abbreviated breast MRI protocols. Processing step 2, lesion
segmentation, and feature extraction were repeated using only the first
postcontrast images of the high-spatial-resolution dynamic image
series. This feature set consisted of 36 image features and the same 3
clinical features.

Feature extraction was performed using MeVisLab (version 3.0;
MeVis medical Solution AG, Bremen, Germany), Python (version 2.7;
Python Software Foundation) with packages “numpy” (v1.15.1) and
“scipy” (v1.1.0), and R (version 3.1.3, R Foundation for Statistical
Computing, Vienna, Austria) with the packages “psych” (v1.5.8) and
“Mice” (v2.25), which was used for data imputation.

Training and Validation
Outliers in feature values were defined as values deviating more

than 3 standard deviations of the mean value. All feature values were

normalized to values between 0 and 1. All BI-RADS 3, 4, and 5 lesions
were used to train the model. The set was divided into 10 folds; each
fold contained 7 or 8 malignant and 40 or 41 benign lesions to maintain
the prevalence of malignancy observed in the DENSE study. To train
the prediction model, 9 folds were used to fit a logistic regression model
(the training set); the other fold was used as a validation set. BI-RADS 5
lesions were removed from the validation set, because in future applica-
tion of the model, the gain of preventing false-positive diagnosis is ex-
pected to be low in this group. Cross-validation was repeated 10 times,
each fold was used as validation set once. Before model fitting, feature
values labeled as outliers in the training set were censored by clipping
the extreme values.26 To prevent overfitting, model weights were re-
duced for each fit using Ridge regression.27 By iterating over all folds,
cross-validated probabilities were obtained for all lesions. The results of
5 imputation sets were combined using Rubin rules.28,29 The regulariza-
tion parameter in the Ridge feature selection was determined using a
second 10-fold cross-validation loop over the training data, using the
deviance as performance measure. The regularization parameter was
selected 1 standard error above the parameter with lowest error. Hence,
we chose the simplest model whose accuracy was comparable with the
best model.30

The posterior probabilities of the model to predict the presence
of malignant disease in BI-RADS 3 and 4 lesions were summarized
in an accuracy measure curve (AMC)31 and receiver operator charac-
teristic (ROC) curve. An AMC shows the percentage of correctly pre-
dicted malignant lesions and correctly predicted benign lesions for a
range of values of the probability threshold (pt) using:

Sensitiviy ptð Þ ¼ TP ptð Þ
TP ptð Þ þ FN ptð Þ Equation 1

Specificity ptð Þ ¼ TN ptð Þ
TN ptð Þ þ FP ptð Þ Equation 2

PPV ptð Þ ¼ TP ptð Þ
TP ptð Þ þ FP ptð Þ Equation 3

NPV ptð Þ ¼ TN ptð Þ
TN ptð Þ þ FN ptð Þ Equation 4

where TP is the number of true-positives, TN the number of true-
negatives, FP the number of false-positives, and FN the number of
false-negatives for each probability threshold. In each decision curve,
3 operating points were selected, at a sensitivity level of 100%, 99%,
and 95%, respectively. The models were compared using the McNemar
χ2 test; a P value less than 0.05 was considered significant.

Training and validation were performed using R (version 3.1.3, R
Foundation for Statistical Computing, Vienna, Austria) with the packages
“psych” (v1.5.8), “glmnet” (v2.0-5), and “pROC” (v1.8).

RESULTS
In the total screening population of 4783 women, 81 malignant

lesions were found in 79 women and 444 benign lesions were found
in 390 women. Fifteen women had both a malignant and a benign le-
sion. Four malignant lesions in 3 womenwere excluded because the im-
ages were not available. Fifteen benign lesions were excluded: images
of 9 lesions were not available for this study, one lesion was imaged
using a deviant MRI protocol, and 5 lesions could not be examined
due to imaging artifacts affecting correct segmentation or feature ex-
traction. Image artifactswere caused bymovement of thewoman during
imaging. The deviant images or artifacts did not alter the ability of the
radiologist to score the images; however, the images were unusable
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for the automated method presented. In summary, 429 benign and 77
malignant lesions were available for this study (Tables 1–3). Most le-
sions (293) were scored BI-RADS 4, whereas 194 lesions were scored
BI-RADS 3, and 19 lesions were scored BI-RADS 5 (Table 2).

The AMC and corresponding ROC curve (Fig. 1) show feasibility
to increase the specificity using CAD. AnAMC andROC curvewere ob-
tained for the subgroup of all BI-RADS 3 and BI-RADS 4 lesions. The
presentedmodel outputs a probability ofmalignancy for each lesion. Cut-
off thresholds in this probability define the sensitivity and specificity of
the model. We chose 3 cutoff thresholds corresponding to sensitivity
100%, 99%, and 95%. The cutoff thresholds are shown in the AMCs
(Fig. 1). Corresponding specificity at each threshold is shown in Table 4.

The full multiparametric model classified 176/425 (41.5%) of the
false-positive BI-RADS 3– and BI-RADS 4–scored lesions as benign
withoutmissing amalignancy. Of the total group of lesions referred to ad-
ditional MRI or biopsy, 425/487 (87.3%) were false-positive. With addi-
tional CAD used before referral, this fraction may be reduced to 311/487

(63.9%). For the abbreviated protocol model, the referrals would be 376
instead of 487 (77.2%). Examples of lesions that were false-positive and
correctly identified as such by CAD are shown in Figure 2 and Figure 3.

DISCUSSION
From a screening population of 4783 women, MRI scans of 77

malignant breast lesions and 429 benign lesions were used to create a
multiparametric CAD model based on Ridge regression, to identify
benign disease with high certainty. The model may have potential to
reduce follow-up on benign BI-RADS 3 and BI-RADS 4 lesions:
41.5% reduction for the full multiparametric protocol and 26.2% for
the abbreviated protocol model, without missing a malignant lesion.

Although the performance of the full-protocol model and the
abbreviated-protocol model is comparable in terms of AUC (0.85 vs
0.84), the number of detected benign lesions without missing malignant
lesions was observed to be higher in the full-protocol model (P <0.01).
These results suggest that the high-resolution postcontrast images con-
tain information to increase the specificity to identify benign disease at
high sensitivity. We observed comparable performance between mass
and nonmass lesions, indicating that the features accurately describe both
types of lesions (Supplemental Digital Content 2, http://links.lww.com/
RLI/A517: Performance in mass- and non–mass-enhancing lesions).

To our knowledge, this study is the first to apply a multi-
parametric CADmodel in unselected homogeneous data obtained from
a multicenter screening trial in women with extremely dense breasts.
The performance of presented models (AUC of 0.85 ± 0.04 and
0.84 ± 0.04) based on DCE, fast-DCE, ADC, T2, and clinical data is
on par to that of other published methods in other study populations.
Dalmiş et al9 used deep learning on fast-DCE, T2, and DWI, and ob-
tained an AUC of 0.852. Other authors designed multiparametric models

TABLE 1. Lesion Types of BI-RADS 3, 4, and 5 Lesions

Lesion Types 429

Benign Lesions
Adenomyoepithelioma 2
Adenosis 24
Apocrine metaplasia 14
Atypical ductal hyperplasia 5
Cholesterol crystal 1
Cylindrical cell metaplasia 1
Cyst 8
Fat necrosis 1
Fibroadenoma 40
Fibrosis 35
Hemangioma 2
Lobular carcinoma in situ* 4
Lipoma 3
Lobular hyperplasia 1
Lobular neoplasia 4
Lobulitis 3
Lymph node 5
Mastopathy 27
Normal breast tissue 23
Papilloma 18
Usual ductal hyperplasia 32
Unknown† 176

Malignant lesions 77
Ductal carcinoma in situ 13
Invasive ductal carcinoma 35
Invasive ductal lobular carcinoma 5
Invasive intracystic
papillary carcinoma

2

Invasive lobular carcinoma 13
Invasive mucinous carcinoma 1
Invasive tubular carcinoma 8

Results were obtained from the pathology reports after biopsy.

*In the DENSE trial, LCIS is considered a benign lesion,8 conforming to the
Dutch guidelines.32

†No biopsy result was available for these lesions. No biopsy performed after
BI-RADS 3 score (n = 153); the lesionwas not/no longer visible on additional im-
aging (n = 16); biopsy result was unknown (n = 7).

TABLE 3. Comparison BetweenMalignant and Benign Lesions Used
for This Study

Benign Malignant P

No. lesions 429 77
Lesion volume, cm3 0.18 (0.10–0.36) 0.33 (0.16–0.77) <0.001
BMI 22.25 (20.75–24.01) 22.86 (21.48–24.95) 0.013
Age, y 53.05 (50.90–56.90) 54.80 (51.30–61.70) 0.008

For statistical comparison, the Kruskal-Wallis test was used; P <0.05 was con-
sidered significant. Median feature values and interquartile range are shown.

TABLE 2. Overview of All Lesions Used for Development of the
CAD Model Stratified by BI-RADS Score and Mass- or
Non–Mass-Enhancing Lesions

BI-RADS Score No. Benign Lesions No. Malignant Lesions

3
Mass 105 3
NME 84 2

4
Mass 168 47
NME 68 10

5*
Mass 4 14
NME 0 1

Total 429 77

*Only used for model training, not for model testing.

NME, non–mass-enhancing lesions.
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using fewer image sequences for feature extraction, for example, DCE
and T2-weighted images,11,33,34 resulting in AUCs of 0.88 ± 0.01,11

0.83 ± 0.03,33 or 0.85 ± 0.03.34 Using only DCE yielded comparable re-
sults (AUC of 0.85).35 However, the above results might not be directly
comparable to our results because they were based on single institution
data. In addition, the current study omitted BI-RADS 2 and 5 lesions.
The rationale for this omission is that the problem of false-positives does

not occur in BI-RADS 2 and BI-RADS 5. BI-RADS 2 lesions are not
referred, and by definition, BI-RADS 2 lesions are nearly always be-
nign. BI-RADS 5 lesions are nearly always malignant. By omitting

FIGURE 1. Accuracy measure curve of the CAD model and corresponding ROC curve using all MRI series (top row) and abbreviated imaging series
(bottom row). The blue curve denotes specificity; the yellow curve, the positive predictive value (PPV); the green curve, the sensitivity; and the red curve,
the negative predictive value (NPV). One standard deviation corrected for multiple imputation using Rubin rules is shown using dashed curves. The
vertical gray lines indicate the cutoff threshold probabilities (pt) corresponding to sensitivity 100%, 99.0%, and 95.0% from left to right.

TABLE 4. Overview of Correctly Classified Benign BI-RADS 3 and 4
Lesions and Corresponding Levels of Correctly Classified Malignant
Lesions for Both Models

Correctly Classified
Malignant Lesions

Correctly Classified Benign
BI-RADS 3 and 4 Lesions

Full Protocol Abbreviated Protocol P

100.0% 41.5% ± 3.2% 26.2% ± 3.2% <0.01
99.0% 45.8% ± 3.5% 36.6% ± 3.0% <0.01
95.0% 52.4% ± 3.1% 44.3% ± 3.6% <0.01

Results denote mean ± 1 standard deviation. Models were compared using the
McNemar χ2 statistic.

FIGURE 2. Maximum intensity projection of a 14-mm false-positive lesion
in a 59-year-old woman who was referred to biopsy. The BI-RADS 4
classified lesion (right breast) was a benign fibrotic lesion (arrow). The
computer-aided diagnosis correctly classified it as benign with
probability of malignancy of 2.5%.
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these categories, the CAD is tested on the most difficult and clinically
relevant cases.

In this study, the risk of overfitting was reduced using Ridge re-
gression.36 Features with the largest regression weights were signal-
enhancing ratio, top washout, volume uptake, and volume washout
from the DCE image series; the maximum slope and general slope from
the fast-DCE; and the 75th percentile of ADC values in the lesion. T2
features did not have high weighting in the model.

We did not use deep learning because the number of malignant
lesions was relatively small for such an approach. Deep learning can
outperform linear regression methods when the number of training data
is large enough to avoid overfitting.11 Currently, however, the literature
does not indicate a clear benefit of deep learning over radiomics for this
problem, other than that deep-learning models are less time-consuming
to construct. The largest study on deep learning to discriminate between
benign and malignant disease on MRI uses 1294 cases,11 and yields
comparable performance (AUC of 0.88). A potential risk of deep learn-
ing is, however, that the millions of parameters that describe the data
may cause unnoticed bias in the detection of malignant disease in pop-
ulations for which the model was not explicitly trained.

Although all MRI datawere acquired according to the same pro-
tocol, variation was introduced between institutions because MRI scan-
ners from different vendors were used. Moreover, some MRI settings
varied across hospitals, for example, the use of fat suppression, flip an-
gle, and repetition time. We used a data harmonization step between
MRI scanners to counter the effect of some of these variations.

This study also has some limitations. We were not able to vali-
date the method in an unseen dataset, but used cross-validation. In fu-
ture research, the CAD model should be validated in an independent
population of women with extremely dense breasts. Another potential
limitation is that we used lesions found only during the first round of
the screening trial. We have not yet investigated whether the machine-
extracted phenotype of lesions detected in subsequent, or incident,
screening rounds is representative of that detected in the first round.
For instance, lesionsmay be smaller on average in subsequent screening
rounds, and perhaps also more aggressive. The tumors in the first, or
prevalent round, may comprise relatively slow-growing, less aggressive
tumors that have been present for a long time.

We describe computerized analysis ofMRI scans with BI-RADS
score of the radiologist as input. Computer-aided diagnosis is, however,
typically implemented as an aid to radiologists, using the computer as
second opinion. This interaction has not yet been investigated.

In conclusion, we developed a CAD method based on Ridge re-
gression to identify benign lesions with high certainty in multiparametric
breast MR screening of extremely dense breasts, thus pursuing to reduce
the number of recalls on benign lesions. Using internal validation, the
method showed potential to reduce referral of benign BI-RADS 3 and
BI-RADS 4 lesions without loss of sensitivity.

ACKNOWLEDGMENTS
The authors acknowledge the study participants for their contribu-

tions: H.M. Chan, M.J. van Rijssel, Dr B.H.M. van der Velden, and
Dr A. de Luca for assistance in the MR physics aspects of this study;
B.M. den Dekker and S.V. de Lange for assistance in data management;
andDr P.J. vanDiest forassistance in the pathological aspects of this study.

REFERENCES

1. Carney PA, Miglioretti DL, Yankaskas BC, et al. INdividual and combined effects
of age, breast density, and hormone replacement therapy use on the accuracy of
screening mammography. Ann Intern Med. 2003;138:168–175.

2. BergWA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of an-
nual screening ultrasound or a single screening MRI to mammography in women
with elevated breast cancer risk. JAMA. 2012;307:1394–1404.

3. Kuhl CK, Schrading S, Strobel K, et al. Abbreviated breast magnetic resonance
imaging (MRI): first Postcontrast subtracted images and maximum-intensity
projection—a novel approach to breast cancer screening with MRI. J Clin Oncol.
2014;32:2304–2310.

4. Kuhl CK, Strobel K, Bieling H, et al. Supplemental breast MR imaging screening
of women with average risk of breast cancer. Radiology. 2017;283:361–370.

5. Saadatmand S, Geuzinge HA, Rutgers EJ, et al, FaMRIsc study group. MRI versus
mammography for breast cancer screening in women with familial risk (FaMRIsc):
a multicentre, randomised, controlled trial. Lancet Oncol 2019;20:1136–1147.

6. Menezes GL, Knuttel FM, Stehouwer BL, et al. Magnetic resonance imaging in
breast cancer: a literature review and future perspectives. World J Clin Oncol.
2014;5:61–70.

7. Emaus MJ, Bakker MF, Peeters PH, et al. MR imaging as an additional screening
modality for the detection of breast cancer in women aged 50-75 years with ex-
tremely dense breasts: the DENSE trial study design. Radiology. 2015;277:
527–537.

8. Bakker MF, de Lange SV, Pijnappel RM, et al. Supplemental MRI screening for
women with extremely dense breast tissue. N Engl J Med. 2019;381:2091–2102.

9. Dalmis MU, Gubern-Mérida A, Vreemann S, et al. Artificial intelligence-based
classification of breast lesions imagedwith a multiparametric breastMRI protocol
with ultrafast DCE-MRI, T2, and DWI. Invest Radiol. 2019;54:325–332.

10. Zhang M, Horvat JV, Bernard-Davila B, et al. Multiparametric MRI model with
dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer
diagnosis with high accuracy. J Magn Reson Imaging. 2019;49:864–874.

11. Truhn D, Schrading S, Haarburger C, et al. Radiomic versus convolutional neural
networks analysis for classification of contrast-enhancing lesions at multi-
parametric breast MRI. Radiology. 2019;290:290–297.

12. Gilhuijs KG, Deurloo EE, Muller SH, et al. Breast MR imaging in women at in-
creased lifetime risk of breast cancer: clinical system for computerized assessment
of breast lesions—initial results. Radiology. 2002;225:907–916.

13. Dalmış MU, Gubern-Mérida A, Vreemann S, et al. A computer-aided diagnosis
system for breast DCE-MRI at high spatiotemporal resolution. Med Phys. 2016;
43:84–94.

14. Tahmassebi A, Wengert GJ, Helbich TH, et al. Impact of machine learning with
multiparametric magnetic resonance imaging of the breast for early prediction
of response to neoadjuvant chemotherapy and survival outcomes in breast cancer
patients. Invest Radiol. 2019;54:110–117.

15. Kuroki Y, Nasu K, Kuroki S, et al. Diffusion-weighted imaging of breast cancer
with the sensitivity encoding technique: analysis of the apparent diffusion coeffi-
cient value. Magn Reson Med Sci. 2004;3:79–85.

16. Ballesio L, Savelli S, Angeletti M, et al. BreastMRI: are T2 IR sequences useful in
the evaluation of breast lesions? Eur J Radiol. 2009;71:96–101.

17. Chhor CM, Mercado CL. Abbreviated MRI protocols: wave of the future for
breast cancer screening. AJR Am J Roentgenol. 2016;208:284–289.

18. Gubern-Mérida A, Martí R, Melendez J, et al. Automated localization of breast
cancer in DCE-MRI. Med Image Anal. 2015;20:265–274.

19. Alderliesten T, Schlief A, Peterse J, et al. Validation of semiautomatic measure-
ment of the extent of breast tumors using contrast-enhanced magnetic resonance
imaging. Invest Radiol. 2007;42:42–49.

FIGURE 3. Maximum intensity projection of a 10-mm false-positive lesion
in a 52-year-old woman who was referred to biopsy. The BI-RADS 4
classified lesion (left breast) was a benign fibroadenoma (arrow). The
computer-aided diagnosis correctly classified it as benign with
probability of malignancy of 2.1%.

Investigative Radiology • Volume 55, Number 7, July 2020 CAD in MRI of Extremely Dense Breasts

© 2020 The Author(s). Published by Wolters Kluwer Health, Inc. www.investigativeradiology.com 443

www.investigativeradiology.com


20. Haacke EM, Filleti CL, Gattu R, et al. New algorithm for quantifying vascular
changes in dynamic contrast-enhanced MRI independent of absolute T1 values.
Magn Reson Med. 2007;58:463–472.

21. van Rijssel MJ, Pluim JPW, Chan HM, et al. Correcting time-intensity curves in
dynamic contrast-enhanced breast MRI for inhomogeneous excitation fields at
7T. Magn Reson Med. 2019; In press.

22. Verburg E, Wolterink JM, de Waard SN, et al. Knowledge-based and deep
learning-based automated chest wall segmentation in magnetic resonance images
of extremely dense breasts.Med Phys. 2019;46:4405–4416.

23. Chilla GS, Tan CH, Xu C, et al. Diffusion weighted magnetic resonance
imaging and its recent trend-a survey. Quant Imaging Med Surg. 2015;5:
407–422.

24. Klein S, StaringM,Murphy K, et al. Elastix: a toolbox for intensity-basedmedical
image registration. IEEE Trans Med Imaging. 2010;29:196–205.

25. Gilhuijs KG, Giger ML, Bick U. Computerized analysis of breast lesions in three
dimensions using dynamic magnetic-resonance imaging. Med Phys. 1998;25:
1647–1654.

26. Hastings C, Mosteller F, Tukey JW, et al. Lowmoments for small samples: a com-
parative study of order statistics. Ann Math Statist. 1947;18:413–426.

27. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal
problems. Dent Tech. 1970;12:55–67.

28. Rubin DB. Multiple Imputation for Nonresponse in Surveys. Hoboken, NJ:
Wiley; 2004.

29. Marshall A, Altman DG, Holder RL, et al. Combining estimates of interest in
prognostic modelling studies after multiple imputation: current practice and guide-
lines. BMC Med Res Methodol. 2009;9:57.

30. Breiman L. Classification and Regression Trees. Boca Raton, FL: Chapman &
Hall/CRC; 1984.

31. Vos S, Elias SG, van der Groep P, et al. Comprehensive proteomic profiling-derived
immunohistochemistry-based prediction models for BRCA1 and BRCA2 Germline
mutation-related breast carcinomas. Am J Surg Pathol. 2018;42:1262–1272.

32. Smorenburg CH. Borstkanker Landelijke richtlijn. Version 1.0. Integraal
kankercentrum Nederland (IKNL). Available at: https://www.oncoline.nl/in-
dex.php?pagina=/richtlijn/item/pagina.php&id=41189&richtlijn_id=1069.
Accessed September 1, 2019.

33. Gallego-Ortiz C, Martel AL. Using quantitative features extracted from T2-
weighted MRI to improve breast MRI computer-aided diagnosis (CAD). PLoS
One. 2017;12:e0187501.

34. Bhooshan N, Giger M, Lan L, et al. Combined use of T2-weighted MRI and T1-
weighted dynamic contrast-enhanced MRI in the automated analysis of breast le-
sions.Magn Reson Med. 2011;66:555–564.

35. Deurloo EE,Muller SH, Peterse JL, et al. Clinically andmammographically occult
breast lesions onMR images: potential effect of computerized assessment on clin-
ical Reading. Radiology. 2005;234:693–701.

36. van SmedenM,Moons KG, de Groot JA, et al. Sample size for binary logistic pre-
diction models: beyond events per variable criteria. Stat Methods Med Res 2019;
28:2455–2474.

Verburg et al Investigative Radiology • Volume 55, Number 7, July 2020

444 www.investigativeradiology.com © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

www.investigativeradiology.com

