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Abstract
For some experimental approaches in brain imaging, the existing normalization techniques are not always sufficient. This
may be the case if the anatomical shape of the region of interest varies substantially across subjects, or if one needs to
compare the left and right hemisphere in the same subject. Here we propose a new standard representation, building upon
existing normalization methods: Cgrid (Cartesian geometric representation with isometric dimensions). Cgrid is based on
imposing a Cartesian grid over a cortical region of interest that is bounded by anatomical (atlas-based) landmarks. We
applied this new representation to the sensorimotor cortex and we evaluated its performance by studying the similarity of
activation patterns for hand, foot and tongue movements between subjects, and similarity between hemispheres within
subjects. The Cgrid similarities were benchmarked against the similarities of activation patterns when transformed into
standard MNI space using SPM, and to similarities from FreeSurfer’s surface-based normalization. For both between-
subject and between-hemisphere comparisons, similarity scores in Cgrid were high, similar to those from FreeSurfer
normalization and higher than similarity scores from SPM’s MNI normalization. This indicates that Cgrid allows for a
straightforward way of representing and comparing sensorimotor activity patterns across subjects and between hemi-
spheres of the same subjects.
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Introduction

In functional brain imaging (functional MRI; fMRI), spatial
normalization is often applied, where scans are transformed
into a common space, so that the same coordinates in different
subjects correspond to the homologous anatomical location in
the brain. This makes statistics at a group level possible,
allowing for the comparison of brain activity patterns between
groups of subjects, for example patients and healthy controls.
The quality of the normalization is a central determinant of the
quality of the group-level statistics (Pizzagalli et al. 2013),
making accurate normalization a crucial part of the processing
pipeline.

To join multiple brain images together for comparison of
brain activation between groups (for example patients versus
controls) or determining common areas of activation (map-
ping), several options are available and widely used. One is
3D normalization either using a single image (for example
Talairach template), an average of co-registered images from
multiple individuals unrelated to the study (for example MNI
templates), or an average of study participants themselves (for
example DARTEL (Ashburner 2007)). Alternatively, activity
can be mapped on an inflated brain, where sulci are projected
to a spherical surface or a flattened cortex map (Fischl et al.
1999), both of which allow for subsequent normalization (Qiu
and Miller 2007; Van Essen et al. 2001).

For certain research questions, the existing techniques for
representing brain activity patterns do not suffice, due to the
fact that borders between regions (defined by gyral and sulcal
patterns) reflect the natural 3D folding patterns of the brain
(Pizzagalli et al. 2013). Some applications, for example a
quantitative comparison of topographical mapping of sensory
and motor functions, would benefit from a representation in
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the form of a 2D rectangular mesh. This constitutes an easy to
interpret and uniform space, and would allow for easy com-
parison of activation patterns and distances between foci,
while accounting for individual differences in the shape and
size of sensorimotor cortex. Moreover, such a representation
could make cross-hemispheric comparisons more direct and
accurate, something which is not possible using existing nor-
malization methods, as they typically do not conduct a regis-
tration of the two hemispheres. It also would accommodate a
more direct comparison or combination of data from different
studies.

A two-dimensional, grid-shaped representation has been
described for the central sulcus, which was obtained by ex-
traction of a 3D mesh of the central sulcus, which was subse-
quently reparametrized with the y axis along the direction of
the central sulcus, and the x axis along the direction of the
sulcal depth (Coulon et al. 2011). Although Coulon’s method
elegantly maps the sulcus onto a grid, the sensorimotor cortex
in fact extends also into the adjacent gyri, which is not includ-
ed in their approach. Therefore, it is worthwhile transforming
the whole pre- and postcentral gyrus into a Cartesian grid.

Here, we propose a novel extension to existing methods for
standardization of regions in the human brain allowing for
quantitative comparisons, which maps the whole gyri to a
Cartesian grid: Cgrid (Cartesian geometric representation with
isometric dimensions). Cgrid builds upon methods for inflat-
ing the cortex, and constitutes imposing a Cartesian grid on
the region of interest using anatomical (atlas-based) land-
marks. One brain region that seems particularly suitable for
transforming into a rectangular mesh are the primary sensory
and motor areas (S1 and M1), because of their more or less
rectangular shapes with clear top, bottom and side boundaries.
Cgrid is therefore first applied and validated on the precentral
and postcentral gyrus. This special case is called ‘Cgrid-
SMX’, where SMX stands for ‘sensorimotor cortex’.

Cgrid is meant to extend upon standard data preprocessing,
and adding the possibility to easily compare patterns between
subjects and between hemispheres. The presented implemen-
tation requires segmentation and atlas-based parcellation in
FreeSurfer (Fischl 2012) and flat mapping with Caret (Van
Essen et al. 2001), but accommodates any similar method.

The Cgrid-SMX mapping was evaluated using data from
20 healthy volunteers who each performed four motor tasks
(moving left hand, right hand, feet, and tongue). As activation
patterns for these basic motor tasks are expected to be similar
across subjects, and within subjects across hemispheres, the
similarities of the patterns of activity were calculated as a
measure of validity of the transformation. The results were
compared to the similarities obtained by SPM’s normalization
to MNI space (a commonly used normal space) as well as to
the similarity of activation patterns after FreeSurfer normali-
zation. This was to provide a benchmark for the performance
of our new method.

Methods

Subjects

Twenty healthy volunteers participated in this study (age 26.7
± 8.8 years, 9 females, all right handed). Subjects had no his-
tory of neurological or psychiatric disorders. Data acquisition
was approved by the medical-ethical committee of the
University Medical Center Utrecht and all subjects gave their
written informed consent in agreement with the declaration of
Helsinki (World Medical Association 2013).

MRI Data Acquisition and Analysis

MRI data were recorded using a Philips 3 T Ingenia sys-
tem. A structural T1-weighted MRI image was acquired
(TR/TE = 8.4/3.8 ms, voxel size: 1.00 × 1.00 × 1.00 mm3),
followed by functional EPI images (TR/TE = 2500/39 ms,
flip angle = 75°, axial orientation, FOV (AP, FH, LR) =
235 × 120 × 200 mm3, interleaved slice ordering, acquisi-
tion matrix 80 × 40 × 80, voxel size: 2.94 × 3.00 ×
2.94 mm3). For data preprocessing, we used the software
packages FreeSurfer (Fischl 2012), Caret (Van Essen et al.
2001) and SPM (Friston et al. 2007). Custom scripts for
the Cgrid-SMX normalization were written in Matlab
(The MathWorks Inc., Natick, MA) and IDL (Exelis
Visual Information Solutions, Boulder, Colorado).

Structural MRI Preprocessing

For each subject, the cortical surface was reconstructed from
the T1-weighted image using FreeSurfer, and automatically
parcellated into ROIs using the Desikan-Killiany atlas
(Desikan et al. 2006) (Fig. 1a). Each individual’s surface
was then flattened using Caret, making sure that the central
sulcus was oriented vertically (that is, dorsal aspect at the top,
ventral aspect at the bottom, which is necessary for the Cgrid
procedure).

Definition of the Cgrid Standard Space

The flattened cortex was represented as a face-vertex mesh in
2D. Each vertex v has an x- and y-coordinate, vx and vy.
Notably, because a flat map is a deformation of a spherical
surface, distances on the flat map will not exactly correspond
to distances on the brain. Therefore we will consider distances
on the flat map to be measured in arbitrary units (a.u.), al-
though 1 a.u. will approximate 1 mm. Each vertex was tagged
with the ROI label indicating the underlying Desikan-Killiany
atlas region, and L(v) denotes the ROI label of vertex v. The
topology describes which vertices are connected to form the
faces of the mesh. Let the set of neighboring vertices of vertex
v be denoted by Ωv.
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The first step in defining the Cgrid standard space was the
extraction of five anatomical borders. A border B between two
ROIs was defined as the set of vertices having ROI label L1,
while having one or more neighboring vertices with another
ROI label L2:

B L1; L2ð Þ ¼ vjL vð Þ ¼ L1;∃w∈Ωv : L wð Þ ¼ L2f g ð1Þ

Three ‘vertical borders’ (the central sulcus border Bcs, the
precentral sulcus border Bpre and the postcentral sulcus border
Bpost, Fig. 1b) were defined using Eq. 1, where curly brackets
indicate that L2 can be one of the given labels:

Bcs ¼ B “Precentral gyrus”; “Postcentral gyrus”ð Þ ð2Þ

Bpre ¼ B “Precentral gyrus”; “Pars opercularis”; “Caudal middle frontal”; “Superior frontal”f gð Þ ð3Þ

Bpost ¼ B “Postcentral gyrus”; “SupraMarginal”; “SuperiorParietal”f gð Þ ð4Þ

Two ‘horizontal borders’ were defined, constraining
the sensorimotor cortex at the dorsal (Bdor) and ventral
(Bven) side:

Bdor ¼ B “PrecentralGyrus”; “PostcentralGyrus”f g; “ParacentralLobule”ð Þ
ð5Þ

Bven ¼ B “PrecentralGyrus”; “PostcentralGyrus”f g; “Insula”ð Þ
ð6Þ

Fig. 1 Applying Cgrid to the sensorimotor cortex. A: Brain parcellation
from FreeSurfer. B: Flatmap representation, with the five borders that
were extracted using labels from FreeSurfer’s cortical parcellation
according to Eq. 2–6 (solid lines: “vertical borders” and dashed lines:
“horizontal borders”). A vertex was considered to be part of a border if
it had a neighboring vertex with another FreeSurfer label. C: 10th-order
polynomials were fitted through the three vertical borders, and in-
between vertical curves were created by interpolation between y_min
and y_max. Each curve C_i was then truncated using the horizontal

dorsal and ventral borders (drawn in red in the inset) by selecting the
node points closest to any node on these horizontal borders. D:
Truncated vertical curves were divided into vertical segments, resulting
in N ×M “tiles”. To map beta values from statistical maps to Cgrid, a beta
value for each tile is calculated by averaging the beta values of vertices
inside that tile. E: A Cgrid can be visualized as a rectangular grid, where
the central sulcus is the middle, the anterior aspect (A) on the left side,
posterior (P) on the right side, ventral (V) at the bottom and dorsal (D) at
the top
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The next step consisted of fitting a 10th order polynomial
through each of the three vertical borders. The order 10 was
chosen empirically and was found to result in a good balance
between capturing the shape of the borders and still allowing
for extrapolation, which is needed in a next step. For generat-
ing these fits, the vertical coordinate of the vertices (vy, the
coordinate on the dorsal-ventral axis) was treated as the inde-
pendent variable, and the horizontal coordinate (vx, the coor-
dinate on the anterior-posterior axis) as the dependent vari-
able. The vertical curves were resampled and extrapolated
such that they ran from ymin to ymax in unit steps (arbitrary
units), thereby making sure that they covered the whole sen-
sorimotor cortex, where ymin and ymax were defined by:

ymin ¼ min vyjv∈Bven
� � ð7Þ

ymax ¼ max vyjv∈Bdor
� � ð8Þ

In-between vertical polynomial curves were then created
by linear interpolation of each of the 11 polynomial coeffi-
cients regularly at M + 1 points, thereby effectively dividing
the sensorimotor cortex into M “columns” (Fig. 1c).

As each in-between curve Ci ran from ymin and ymax, some
of them extended too far outside the sensorimotor cortex.
Therefore, they needed to be truncated at the dorsal and ven-
tral borders. Let the Xi nodes on the ith interpolated vertical
curve Ci = {uj| j = 1. . Xi}, u = (ux, uy). Ventral and dorsal cuts
for curve Ci were defined as the nodes uCi;med and uCi;dor on
the interpolated curves closest to any point on Bven and Bdor,
where d(u, v) denotes the Euclidean distance between vertices
(v) and nodes on the curve (u):

uCi;ven ¼ argmin
u∈Ci

d u; vð Þ ∀v∈Bven ð9Þ

uCi;dor ¼ argmin
u∈Ci

d u; vð Þ ∀v∈Bdor ð10Þ

Each curve Ci was then divided into Nrows segments by
resamplingCi from uCi;med to uCi;dor in 0.1 arbitrary unit steps.
For this step, the length of each curve was first estimated by:

li ¼ ∑
X i−1

j¼1
d uj; ujþ1

� � ð11Þ

Each of the vertical curves was then resampled again,
where the distances between the nodes equaled li/N. This re-
sulted in a grid imposed on the sensorimotor cortex, consisting
of N rows and M columns, denoted as N ×M “tiles”.

The final step consisted of mapping all vertices from the
cortical surface into the newly defined standard space, by
treating each tile as a polygon and determining which vertices
are enclosed by that polygon. As a result, each vertex was
associated with one tile in Cgrid. This association allows for
mapping any kind of MRI data to Cgrid space, for example
anatomical data, such as cortical thickness, or functional data.

This mapping consists of two steps: first, the MRI data needs
to be projected onto the cortical surface reconstruction vertices
(using tools from the FreeSurfer package). Second, per tile a
value (thickness, functional beta, etc.) can be calculated by
taking the mean of all vertices for that tile (Fig. 1d). In the
Evaluation section, the mapping to Cgrid-SMX space is dem-
onstrated with task-based functional data.

By convention, Cgrid visualizations in this paper are
displayed (and processed) such that the precentral sulcus bor-
der is always on the left, and the postcentral border is always
on the right. This means that the left half of the Cgrid images
represents the precentral gyrus (M1), and the right part repre-
sents the postcentral gyrus (S1), regardless of the hemisphere
(Fig. 1e).

Evaluation

Task-based fMRI activation maps for the 20 subjects were
mapped to Cgrid-SMX. Activation patterns were generated
for four movement tasks (see ‘Task design’, below). Cgrid-
SMX space was evaluated by calculating the within-subject
(left-right) and between-subject similarities of activation pat-
terns in Cgrid space. For this, a Pearson correlation between
Cgrid-SMX activation patterns was used. To benchmark the
results, Cgrid-SMX pattern similarities were then compared to
within- and between-subject pattern similarities in MNI space
from SPM.We focused on four regions of interest (ROIs): left
M1, left S1, right M1, and right S1.

Task Design

Subjects executed four separate movement tasks: following a
visual cue, subjects were instructed to move their right hand
(“Hand-Right task”, opening and closing), their left hand
(“Hand-Left task”, opening and closing), their tongue
(“Tongue task”, moving from left to right), or both feet
(“Feet task”, rotating both feet about the ankle simultaneous-
ly). Each task was set up as a block design, with pseudoran-
dom block durations ranging from 15 to 45 s followed by rest
blocks ranging from 15 to 45 s.

Cgrid Activation Maps

Task data was slice-time corrected, realigned and coregistered
to the subject’s anatomical scan to correct for movements
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). A GLM
analysis with one regressor for movement was applied to the
task data using the contrast ‘movement versus baseline’,
resulting in one statistical map (beta map) per task. These
beta maps were then projected onto the cortical surface
reconstruction vertices using FreeSurfer (with projection
fraction 0.5 and a smoothing of 6 mm FWHM). A beta
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value was then computed per tile by taking the mean of the
beta values for all vertices within that tile. This resulted in beta
maps in Cgrid-SMX space for each of the four ROIs.

MNI Activation Maps

To benchmark the performance of Cgrid space, functional
scans were also normalized to MNI for all subjects using
SPM12, and likewise smoothed with 6 mm FWHM
Gaussian kernel. After normalization and smoothing, a GLM
with one regressor for movement was fit to the task data and
statistical maps were created using the contrast ‘movement
versus baseline’.

Four ROI masks in MNI space (left M1, left S1, right M1,
and right S1) were initially taken from the Brainnetome Atlas
(Fan et al. 2016). Since the method of calculating similarities
between hemispheres requires left and right ROIs to be sym-
metrical, the right M1 was flipped to the left hemisphere, and
combined with left M1 (voxel-wise union). The resulting ROI
was then flipped back to the right hemisphere. The same was
done for S1. The resulting ROIs were used to mask the beta
map and obtain activity patterns for the four tasks in each of
the four ROIs.

Within-Subject Pattern Similarity (Left-Right)

As the Cgrid-SMX space is expected to minimize anatomical
differences between the left and right motor cortex, left and
right activation patterns should demonstrate high similarity
within subjects. For the Feet task and Tongue task, the simi-
larity between left and right Cgrid patterns was calculated
using Pearson correlation. For the hand tasks, the correlation
between contralateral activation patterns was calculated, that
is: the similarity between the left pattern from the Hand-Right
task and the right pattern from the Hand-Left task. All Pearson
correlations were transformed to ‘similarity (z-)scores’ using
the Fisher z-transform (which is equal to the hyperbolic func-
tion arctanh), to allow averaging and statistical testing across
subjects. The 6 similarity scores for each subject (Tongue,
Hand and Feet for M1 and S1) were then averaged per subject
over ROIs and tasks to obtain a single within-subject (left-
right) similarity per subject for Cgrid. Similarity scores can
be transformed back to (group-averaged) correlations using
the inverse Fisher z-transform (the hyperbolic function tanh).

Similarity scores for MNI space were calculated similarly,
and differences in similarity scores between Cgrid-SMX and
MNI space were assessed using a paired-samples t-test.

Between-Subject Pattern Similarity

To assess between-subject pattern similarity, a per-subject
similarity score was calculated using a leave-one-out ap-
proach, where a pattern of the subject under investigation

was correlated with the mean patterns of the other subjects.
This resulted in similarity scores per task and ROI for every
subject, which were then averaged to obtain a mean similarity
score per subject. The same approach was applied to the pat-
terns inMNI space, and a paired-samples t-test was conducted
to compare the between-subject similarity scores for Cgrid
and MNI space.

Since MNI is a 3D space and Cgrid is a 2D space, the
differences in the dimensionality of the approaches might bias
the performance. FreeSurfer includes surface based normali-
zation through spherical registration, using the FS-average as
template. All subjects were normalized using this approach.
Then, activation patterns in FS-average space were extracted
by selecting the beta values in the nodes of the pre- and
postcentral gyrus. A between-subject similarity was calculated
per subject following the same scheme as for the Cgrid and
MNI, using a leave-one-out approach.

Effect of Smoothing on between-Subject Correlations

For the within- and between-subject similarities, a
Gaussian smoothing kernel of 6 mm FWHM was used.
However, since the impact of a smoothing kernel can be
different between Cgrid (2D space) and MNI space (3D),
we tested the effect of the smoothing kernel on the simi-
larities. This was done by repeating the between-subject
analysis described above, using different smoothing ker-
nels both in MNI space and on the cortical surface in the
Cgrid pipeline (see above). Kernel sizes of 4, 6, 8, 10, 12,
18, 25 and 35 mm FWHM were used. A two-way repeat-
ed measures ANOVA was conducted to compare the ef-
fects of method and smoothing kernel size on the
between-subject similarity score.

Results

Defining Cgrid Space

Surfaces reconstructions of all 20 subjects were generated
using FreeSurfer. The five borders (central sulcus, precentral
sulcus, postcentral sulcus, ventral border, and dorsal border)
were extracted and visual inspection of the fitted curves con-
firmed that a 10th order polynomial fit was sufficient to cap-
ture the shape of the borders accurately in all subjects.

A Cgrid standard space was defined and resulted in a
28 × 84 tiled mesh per hemisphere in all subjects. A tile
covered 2.62 ± 0.71 mm2 (mean ± sd) and contained 6 ±
1 vertices. On average, 21 ± 10 tiles (1.8% of all tiles)
did not contain any vertices that were labelled as being
part of the sensorimotor cortex; these tiles were mostly
located at the edges of the Cgrid and were excluded
from the correlation analyses.
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Mapping Beta Maps to Cgrid Space

Volumetric statistical group maps of the tasks showed senso-
rimotor activation in distinctive foot, hand, and tongue areas
(see Fig. 2). The feet and tongue tasks activated both the left
and right sensorimotor cortex. There was no excessive motion
(mean absolute translation over all subjects and tasks: 0.17 ±
0.10 mm; mean rotation: 2.8 × 10−3 ± 2.3 × 10−3 degrees).

Visual inspection of the resulting Cgrid group-mean acti-
vation maps, averaged over subjects, confirmed that Cgrid
was capable of capturing the different activation hotspot pat-
terns associated with movement of the respective body parts
(Fig. 3). Feet activation was located at the dorsal side of the
sensorimotor cortex, tongue activation was located towards
the ventral side, and hand activation was located mostly
contralaterally at approximately 1/3 of the dorsal-ventral axis.
Average activation hotspots for all tasks were mostly located
within the central sulcus. Whereas the group average of Cgrid
patterns demonstrated strong hotspot-like activation, task ac-
tivation patterns per individual did not necessarily consist of
only a single hotspot, but were sometimes complex patterns,
varying somewhat across subjects (Fig. 4).

Within-Subject Pattern Similarity (Left-Right)

The similarities between left and right hemispheric patterns
within subjects from feet, hand, and tongue tasks were com-
puted using Fisher z-transformed Pearson correlations for both
Cgrid and MNI space. A second-level paired t-test demon-
strated a significantly higher similarity in Cgrid (Fisher Z =
0.80 ± 0.09, mean ± standard deviation) than in MNI space
(Fisher Z = 0.67 ± 0.08); t(19) = 6.70, p < 0.001 (Fig. 5a).

Between-Subject Pattern Similarity

The similarity of patterns between subjects was calculated per
task and per ROI using Pearson correlations using a leave-
one-out approach. A paired t-test demonstrated a significantly
higher correlation in Cgrid (Fisher Z = 0.92 ± 0.09) than in

MNI space (Fisher Z = 0.84 ± 0.16); t(19) = 8.25, p < 0.001
(Fig. 5b).

Similarity scores were also calculated directly using
FreeSurfer surfaces in averaged space (FS-average). There
was no significant difference between similarity scores Cgrid
and FS-average (Fisher Z = 0.93 ± 0.10); t(19) = −1.84, p =
0.082 (Fig. 6).

Effect of Smoothing on between-Subject Correlations

Calculating between-subject similarities with different
smoothing kernels resulted in higher similarity scores with
larger smoothing kernels for both Cgrid-SMX and MNI space
(Fig. 7). A two-way repeated measures ANOVA showed a
significant effect of method on the between-subject similarity
score, indicating that Cgrid similarities are higher than simi-
larities in MNI space for all smoothing kernel sizes.

Discussion

We introduce Cgrid-SMX as a Cartesian representation of the
sensorimotor cortex, based on anatomical atlas-based land-
marks and building upon existing data processing methods.
Cgrid imposes a grid on the sensorimotor areas, thereby effec-
tively transforming them into a rectangular, tiled mesh. Cgrid
was successfully applied to 20 healthy subjects on both the left
and right hemisphere. Results of comparing sensorimotor ac-
tivity patterns between individuals and between hemispheres
yielded high similarity scores, exceeding those obtained with
analysis of the same data in MNI space, but equal to similarity
scores calculated in FreeSurfer space. Nevertheless, these
findings indicate that Cgrid yields a representation that allows
for a straightforward way of comparing activity patterns in
sensorimotor cortex, which performs at least as good as rep-
resentations from the more standard FreeSurfer and MNI ap-
proaches in terms of pattern similarities.

Transforming regions of the brain into a grid-like represen-
tation has also been reported in literature. It has been applied
to the visual cortex, based on statistical modelling of the

Fig. 2 Group activation map of
the movement tasks (contrasts
used: Feet > baseline, Tongue >
baseline, Left hand > baseline,
and Right hand > baseline).
Contrasts are displayed on a
standard MNI brain with
threshold t > 8
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borders using visual stimuli (Corouge et al. 2004). Also the
central sulcus has been transformed into a 2D grid mesh
(Coulon et al. 2011), and even the whole cortex has been
parametrized using the alignment of sulci (Auzias et al.
2013). However, there are some key differences between these

approaches and Cgrid. First, the method described by Coulon
only covers the cortex inside the central sulcus, whereas our
method maps the surface of the whole gyrus. Second, the
Cgrid method is described in such a way that it can be applied
on any brain region, as long as clear borders can be defined. It

Fig. 3 Betamaps in Cgrid, averaged over 20 subjects, for every task in both hemispheres. The dashed line indicates the central sulcus. The left border lies
in the precentral sulcus, the right border on the postcentral sulcus (see fig. 1b). Note that for all Cgrid-SMXs the left side is anterior in the brain
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does not statistically model the borders, but rather extracts
them from existing atlases. This makes Cgrid a versatile tool,
since it is easy to select a different set of borders if desired.
Third, the simple geometry of the Cgrids allows for an easy to
interpret visualization, which was one of the goals for the
development of Cgrid.

The validity of using Cgrid was confirmed by multiple
findings. First, analysis of Cgrid-transformed group-averaged

activity patterns associated with movement (feet, left hand,
right hand, and tongue) resulted in focal activation hotspots.
The location of these hotspots allowed for a clear differentia-
tion between the studied motor functions and preserved the
topographical distinction between body parts, according to
what is known from literature: feet activity was located near
the medial wall, tongue activity was bilaterally located in the
ventral sensorimotor area, and hand activation was located

Fig. 4 Beta maps in Cgrid for every subject (N = 20) and every task in both hemispheres
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about halfway the dorsal-ventral axis, mainly on the contra-
lateral hemisphere. Second, as Cgrid is designed as a repre-
sentation accounting for anatomical differences, we expected
a high similarity between the left and right Cgrid activation
patterns within a subject, and also a high similarity between
Cgrid activation patterns across subjects. Indeed, averaged
over tasks and ROIs, similarity scores were high both for
within- (Fisher Z = 0.8, corresponding to a Pearson correlation
of R = 0.66) and between-subject (Fisher Z = 0.97, R = 0.75)
comparisons. This indicates that there is a good correspon-
dence of the functional localization in Cgrid both between left
and right cortex within subjects, and between subjects,
supporting the utility of the common space transformation.
Finally, we compared the within-subject similarities and
between-subject similarities of Cgrid activation patterns to
those in MNI space, as this is the most widely used standard
space for normalization.

When benchmarking Cgrid activity patterns against those
fromMNI, both within- and between-subject similarities were

higher for Cgrid than for MNI space. It should be noted, how-
ever, that the comparison of these two methods should be
taken with some caution. First, different spaces (2D flat map
and 3DMNI volume) required the use of different atlases. The
Desikan-Killiany atlas is provided with FreeSurfer and is the
atlas from which borders for Cgrid are detected, but this atlas
has been developed for surface-based analysis and can there-
fore not be used in 3D volumes.While a volumetric version of
the Desikan-Killiany atlas exists, it only labels the grey matter
voxels of the FreeSurfer average, rendering it unsuitable as an
atlas for SPM volumetric normalization. Although the use of
different atlases is not optimal, the labels used by these two
different atlases (precentral and postcentral) indicate highly
similar brain areas. Any difference in results that originates
from differences in labels would be small. Second, although
smoothing kernels with the same sizes were used in both
Cgrid and MNI, the effect of smoothing may differ, as in
Cgrid smoothing was done in 2D on the surface, and in

Fig. 5 A: Within-subject similarities (averaged over tasks and hemi-
spheres) per subject, for Cgrid (red dots) and MNI space (blue dots).
Similarities in Cgrid space were significantly higher than in MNI
space. B: Between-subject similarities (averaged over tasks and

hemispheres) per subject, for Cgrid (red dots) and MNI space (blue
dots). Similarities in Cgrid space were significantly higher than in
MNI space

Fig. 7 Between-subject correlations (averaged over tasks and ROIs) as a
function of smoothing kernel size. The dashed line indicated the kernel
size used for smoothing in both the Cgrid-SMX and MNI space analyses
throughout the text (6 mm FWHM)

Fig. 6 Between-subject similarities in Cgrid-SMX and in the FreeSurfer
normalized space (FS-average). There was no significant difference in
similarity scores between the two methods
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MNI in 3D on the whole volume. Smoothing in 3D can pos-
sibly also include signals from for example white matter, or
even from areas that are relatively remote when measures
across the surface of the cortex, but proximate in 3D space.
Comparison of the two normalization methods over a wide
range of smoothing kernels, however, revealed that correla-
tions were generally higher in Cgrid than in MNI space, even
with larger kernels. Third, calculating a similarity between
patterns from both hemispheres in MNI space was only pos-
sible when mirroring the masks for the somatosensory cortex
across the longitudinal fissure. This is because for the corre-
lation, left and right ROIs need to be symmetrical (with the
same number of voxels and same spatial configuration), which
is not necessarily the case in an atlas. Therefore, we mirrored
the ROIs, although this does not yield an ROI that is perfectly
anatomically aligned and possibly affects the correlation be-
tween left and right. Note that the limitation in this approach
reflects one of the advantages of Cgrid, where coordinates
within the left and the right hemisphere are automatically
matched. Forth and finally, the comparison between MNI
and Cgrid was performed only using the default settings for
normalization in SPM12, and therefore indicate that Cgrid
yields higher pattern similarities than normalization to MNI
space in a commonly used implementation. Results of the
comparison might differ when alternative settings are used.
However, the aim was not to optimize the MNI normalization,
but to provide a benchmark that reflects a well-known and
commonly used normalization method.

In testing validity of the Cgrid approach it is assumed that
the topographical organization of the sensorimotor cortex is in
proportion to its shape. This means that even if the absolute
location of an activity hotspot differs from one subject to
another, the hotspot’s relative location—that is, the location
relative to the dimensions of the sensorimotor cortex—is as-
sumed to be the same across subjects. Likewise, this assump-
tion applies also to the left versus the right hemisphere. Cgrid
exploits this postulated relative organization of the sensorimo-
tor cortex, and effectively places the sensorimotor cortex of
each individual in a proportional space. As a result, the ana-
tomical differences between subjects are discounted for, as
well as differences between the left and right sensorimotor
cortex. Subjects displayed some variations in not only the
magnitude and location of activity, but also in the extent of
activation along the sensorimotor cortex (compare for exam-
ple the tongue activity on the right hemisphere in subjects 4
and 6). These differences may reflect variations in cortical
representation, but may also well reflect differences in
how tasks (even simple tasks) are performed. The calcu-
lated similarity scores are derived from Pearson correla-
tions of the complete Cgrid pattern, and thus include areas
that should not activate during the task. This makes this
measure sensitive to engagement of additional body parts
in a given task.

Cgrid employs several cumulative preprocessing steps that
may increase the chances of biasing results for individual sub-
jects. It is however difficult to evaluate on theoretical grounds
the impact of each individual processing step and its interac-
tion with the other steps. Similarities from Cgrid representa-
tions were compared to other methods for brain normalization,
where biases should have similar effects. If individual results
would be excessively biased, such bias would negatively im-
pact the similarity across subjects, and our method would
perform worse than the others, which was not the case.

Given a flattened surface reconstruction, the Cgrid method
is automatic. We used Caret to generate these, which requires
some manual steps, but this could be automated as well.
Although the current implementation of the mapping is fully
automatic, manual adjustments on the procedure may be need-
ed in cases where the integrity of gyri and sulci is compro-
mised, for example in patients suffering from brain atrophy or
lesions. An algorithm monitoring the deviation of precentral
and postcentral borders with respect to the central sulcus could
be devised to notify the user if a manual adjustment is needed.

Cgrid is particularly suitable for studying activity patterns
on the left and right sensorimotor cortex within subjects, and
for the comparison of groups of subjects (for example healthy
and diseased), as well as for longitudinal studies on for exam-
ple normal development or disease-related processes, where it
can be used to quantify and visualize changes in activation
hotspots over time. It might be less beneficial in cases where
very detailed patterns in individual subjects are studied, as
transformation of these patterns could be disruptive.
Advantages of Cgrid are that it provides a clear, easy to inter-
pret and consistent representation of the sensorimotor cortex.
It allows for a straightforward comparison of activation pat-
terns between groups of subjects, but also for quantification of
possible alterations (for example shifts and focality) in activa-
tion patterns in longitudinal studies, for example in the areas
of development, progressive disease or plasticity (Bruurmijn
et al. 2017). As the sensorimotor cortex for each individual is
mapped onto the same space, Cgrid allows for comparing
whole activity patterns at once, even if they consist of multiple
distributed hotspots. In principle, the Cgrid approach can be
extended to other primary anatomical regions, and perhaps
even to associative cortex where topography is less consistent.
Moreover, Cgrid allows for mapping of any cortical parame-
ter, and can accommodate weighing of tile values by the num-
ber of included vertices to better represent their quantity where
relevant.

In conclusion, we present a Cartesian representation of the
anatomical sensorimotor cortex in humans, with the aim to
facilitate quantitative comparisons of brain activity within
and between subjects and visualize results. Results of data
from 20 subjects show that the Cgrid performs equal or better
than comparisons in MNI space, while carrying the benefit of
enabling spatial quantitative comparisons of activity patterns.
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Information Sharing Statement

The Cgrid method has been put into a toolbox and can be
downloaded from https://github.com/mathijsraemaekers/
Cgrid-toolbox.

The ethics protocol limits data publication from a public
repository, but does allow data sharing upon request. Please
contact the corresponding author.
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