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Background: Cardiac resynchronization therapy (CRT) is an established treatment in patients with heart failure
and conduction abnormalities. However, a significant number of patients do not respond to CRT. Currently
employed criteria for selection of patients for this therapy (QRS duration and morphology) have several short-
comings. QRS area was recently shown to provide superior association with CRT response. However, its assess-
ment was not fully automated and required the presence of an expert.
Objective: Our objective was to develop a fully automated method for the assessment of vector-cardiographic
(VCG) QRS area from electrocardiographic (ECG) signals.
Methods: Pre-implantation ECG recordings (N= 864, 695 left-bundle-branch block, 589 men) in PDF files were
converted to allow signal processing. QRS complexes were found and clustered into morphological groups. Sig-
nals were converted from 12‑lead ECG to 3‑lead VCG and an average QRS complex was built. QRS area was com-
puted from individual areas in the X, Y and Z leads. Practical usabilitywas evaluatedusing Kaplan-Meier plots and
5-year follow-up data.
Results: The automatically calculated QRS area values were 123± 48 μV.s (mean values and SD), while theman-
ually determined QRS area values were 116 ± 51ms; the correlation coefficient between the two was r = 0.97.
The automated and manual methods showed the same ability to stratify the population (hazard ratios 2.09 vs
2.03, respectively).
Conclusion: The presented approach allows the fully automatic and objective assessment of QRS area values.
Significance: Until this study, assessing QRS area values required an expert, which means both additional costs
and a risk of subjectivity. The presented approach eliminates these disadvantages and is publicly available as
part of free signal-processing software.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Introduction

Cardiac resynchronization therapy (CRT) is an effective way of
treating heart failure patients. Several approaches have been proposed
in the past to predict response to CRT, leading to the current guidelines
for selection of patients for this therapy [1,2] usingQRSmorphology and
QRS duration. Nevertheless, even using these guidelines approximately
30% of patients do not show a recognizable response to CRT [3–5]. As
reviewed recently [6] there are several potential reasons for this
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disappointing number. A) QRS duration may be prolonged due to vari-
ous abnormalities, which not all are amenable to CRT,
B) measurement of QRS duration is less accurate than assumed,
C) there are multiple definitions of LBBB and it requires subjective
judgement. The latter leads to considerable variability between ob-
servers and even within observers [7]. D) Moreover, LBBB has been de-
fined to describe a certain conduction abnormality, but not as a marker
of CRT response. In search for a better marker of dyssynchrony we re-
cently showed that QRS areawas associatedwith echocardiographic re-
sponse to CRT [8]. Moreover, QRS area was associated even better with
the clinical outcome of CRT patients than even the combination of QRS
duration and the LBBB morphology of the QRS complex [9–11].

However, in these studies QRS area measurement has been per-
formed semi-automatically which still makes it partly subjective
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and, first and foremost, time-consuming. Here, we present a fully
automated approach to the measurement of QRS area and related
variables and an evaluation of the results obtained in a large data-
base containing follow-up data.
Materials and methods

Retrospective ECG data from 865 patients (589 men) from the
multicentric MUG database [9] were used. This retrospective cohort
consists of patients with heart failure (NYHA class II-IV, LV ejection
fraction b35%) and a wide QRS complex (QRS duration N120 ms),
qualifying them for de novo CRT implantation, for whom long-
term follow-up data was available. Their baseline ECGs were stored
as PDF files on ECG recording equipment (MAC 5500 ECG Machine
by GE Healthcare, Waukesha, WI, USA), containing at least one com-
mon running lead, at a speed of 25 mm/s. ECGs were acquired prior
to CRT (duration 10 s in the supine position, 12‑lead, sampling fre-
quency 250 Hz or 500 Hz). The mean age was 66.8 ± 11.0 years. A
total of 695 patients were recognized as having left-bundle-branch
block (LBBB) by the criteria of the European Society of Cardiology
(ESC). The endpoint of clinical outcome to CRT was a combination
of death, cardiac transplantation or left ventricular assist device
(LVAD) implantation within 5 years of CRT [9].
Fig. 1.Data processing toolchain. Source ECG signals were converted from PDF file format (A) to
CSV files. CSV files were loaded into SignalPlant [11] processing software where all signal proc
(C) and QRS complexes were clustered by morphology into morphological groups (D). Fil
running‑leads setup (E, F). ECG signals were converted into vector-cardiographic signals (G
obtained (I). Finally, the automated QRS area measurement was executed (J, see Fig. 2 for mor
Method

Digital 12‑lead ECG signals were extracted from the PDF files (Fig. 1,
top). Thiswas performed in several batches – from PDF to SVG (Scalable
Vector Graphics file format) using Adobe Illustrator and then from SVG
into CSV file format using a custom-made convertor. Finally, signals in
CSVfileswere processed fully automatically in SignalPlant [12] software
(Fig. 1, B–K).

Using the digital 12‑lead ECG, derived as described above, but ba-
sically using any digital 12‑lead ECG, QRS complexes can be detected
[13] using amplitude envelograms (Fig. 1B). In our case, within the
~10-second recording, signals were filtered (FIR filter, band-pass
8–30 Hz, Fig. 1C) and QRS complexes were clustered into groups
by morphology [14] (Fig. 1D). If the source PDF file used the com-
mon clinical 3 × 4 leads setup (Fig. 1E), signals were reconstructed
using one or more running leads (Fig. 1F). Next, the data was trans-
formed (Fig. 1G) to Frank orthogonal leads using Kors' approach,
thereby creating vector-cardiogram (VCG) signals [15].

Next, the X, Y and Z signalswerefiltered (FIRfilter, low-pass at 30Hz,
Fig. 1H). The averaged QRS beat was computed (Fig. 1I) usingQRS anno-
tation marks as a trigger. In order to exclude extrasystoles, only QRS
complexes belonging to the most common morphological group were
used to compute the average QRS complex; beats were averaged in
the range of b−0.2 to 0.2 sN from the QRS annotation marks (Fig. 2A).
Scalable-Vector-Graphics (SVG) format and, finally, using a custom-made convertor, into
essing was performed in a batch. QRS complexes were detected (B), signals were filtered
es saved in the common cardiologic setup of 3 × 4 panels had to been converted into
), filtered (H), and the averaged beat from the most common morphological group was
e details) and the results were saved for further processing (K).



Fig. 2.Automated QRS areameasurement. The averagedQRS complex using Frank orthogonal leads (A) is transformed (B, Eq. (1)) and single curve (C,MADC) is computed fromTX, TY and
TZ transformed signals (Eq. (2)). The left and right thresholds (C, dashed horizontal lines) are defined as the median value of the left (from−0.2 to 0 s) and right (from 0 to 0.2 s) half of
MADC, respectively. QRS onset and end are foundwhere themedian of thefloatingwindow (0.025 s) drops below these thresholds. Finally, QRS areas inX-Y-Z leads are found (D, hatched
areas) and are used to compute the QRS area (Eq. (3)).
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The automated measurement of QRS area (Fig. 1J, detail in
Fig. 2) requires the detection of QRS onset and end. We designed
an approach for defining QRS onset and end which, unlike the con-
ventional approach, uses exhaustive information related to small
voltage amplitudes usually invisible on standard millimeter
paper. As a consequence, QRS onset and end are tracked more sub-
tly. We seek locations close to the QRS annotation mark where the
signal starts/stops to change (for this purpose the 1st derivative of
the VCG signal is considered); we also combine information from
multiple leads. The entire procedure is illustrated in Fig. 2 and ex-
plained more specifically below: VCG signals from the averaged
QRS complex (Fig. 2A) were differentiated and each sample was
transformed to its absolute value:

Tx ¼ diff xð Þj j; Ty ¼ diff yð Þj j; Tz ¼ diff zð Þj j ð1Þ

where x, y and z are signals from orthogonal leads from the aver-
aged QRS complex; resultant transformed signals Tx, Ty and Tz are
shown in Fig. 2B. Next, the maximal values of these transformed
leads formed the Maximal Absolute Derivative curve (MADC,
Fig. 2C). Each i-th sample of MADC was therefore computed as:

MADCi ¼ max Tx;i; Ty;i; Tz;i
� � ð2Þ

The median value of the left half of theMADC (Fig. 2C, from−0.2 to
0 s)was used as a threshold for QRS onset,while themedian value of the
right half of theMADC (Fig. 2C, from 0 to 0.2 s) served as a threshold for
the end of the QRS complex (Fig. 2C – dashed horizontals). Finally, QRS
onset and end were found where the median MADC value in a short
floating window (0.025 s) dropped below the corresponding threshold
(Fig. 2C – verticals).

When QRS onset and end were found, the QRS area value was com-
puted from the summed areas above and below the baseline (defined
by the nominal value at onset) in the X, Y and Z leads (Fig. 2D) as:

QRSarea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
area þ Y2

area þ Z2
area

q
ð3Þ

Results of this automated analysis were compared with those ac-
quired by the manual method employed in Maastricht [16]. In brief,



a,y

Table 1
The study results showed significant stratification power for both the presented and the
reference approach; these results are shown as hazard ratios, their significance and Chi-
squares using 5-year follow-up data. CI – confidence interval. SD – standard deviation.
QRS area values are presented in [μV.s].

Automated Manual/expert Difference

Number of cases 864 864 864
QRS area Mean ± SD 123 ± 48 116 ± 51 5.6 ± 12.7
QRS area median 116 111 –
(25th, 75th percentile) (87, 152) (78, 150)
Hazard ratio (95% CI) 2.09 (1.52–2.79) 2.03 (1.49–2.72) –
Significance (Log-rank) p b 0.0001 p b 0.0001
Chi-square χ2 22.02 20.56 –
Pearson correlation r = 0.97 –
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for each individual ECG the vector graphics of the PDFfilewere obtained
by converting the files to an .svg file using Inkscape version 2 (Boston,
MA, USA). The digital ECG signals were semi-automatically analyzed
using a custom-made computer program written in MATLAB R2010b
(MathWorks, Natick, MA). After band-pass filtering between 0.5 and
40 Hz and baseline wander removal, the beginning and end of the QRS
complex were detected using the curve length transformation (cLT).
The beginning of the QRS complex corresponded to the last foundmin-
imum value and the end of the QRS complex was the first point with
maximal cLT value. Subsequently, custom MATLAB software was used
to convert the 12‑lead ECG into the three orthogonal VCG leads (X-, Y-
Fig. 3.Kaplan-Meier plots for QRS area (Aand B) andROC curves (C andD) assessed by the autom
of corresponding variables (see Table 1). 5-year survival based on QRS area measurements sho
though slightly in favor of the presented approach. Hatched areas reflect 95% confidence interv
, and Z-) using the Kors conversion matrix. QRS area was calculated as
the sum of the area under the QRS complex in the calculated
vectorcardiographic X, Y and Z lead [QRS area = (QRSarea,x2 + QRSare2

+ QRSarea,z2 )1/2] [16].

Statistical analysis

Automatically obtained values of QRS area were statistically proc-
essed in GraphPad Prism ver. 6. Association between automated and
manual [16] QRS area values was tested using Pearson correlation. The
ability to stratify the population into responding and non-responding
groups was shown using Kaplan-Meier [17] plots and quantified as
the cumulative hazard ratio and Chi-square (χ2). The significance of
stratification was tested using a log-rank test.

Results

The method has been implemented as an update to the averaging
plugin for the free SignalPlant [12] processing software (plugin name:
“Compare averaged shapes”). The plugin can be controlled in batch op-
eration, and this was used for the data processing in this paper. It can
also be used with GUI, allowing manual inspection.

The results for all 865 recordings are shown in Table 1. The Pearson
correlation of the QRS area between the fully automatically and manu-
ally acquired values was r = 0.97 (p b 0.0001). The automated analysis
provided larger values for QRS area (123 ± 48 vs 116 ± 51 μV.s). The
ated (A, C) andmanual (B,D) approach. Thepopulationwas stratifiedusingmedian values
wed nearly the same stratification power for both automated and manual measurement,
als.



163F. Plesinger et al. / Journal of Electrocardiology 63 (2020) 159–163
delay measured between QRS onset and end was 175 ± 17ms; its cor-
relation with expert QRS duration was 0.62 which reflects the fact that
our approach implements criteria technically invisible to experts.

In terms of clinical outcome, we examined the relationship between
both the manually and automatically determined QRS area and patient
survival during CRT using Kaplan-Meier plots [17] (Fig. 3). Data was
stratified using the median values over the whole population (116 μV.
s and 111 μV.s for automated andmanual QRS area values, respectively).
The results for themanual analysiswere congruent with a prior analysis
on a larger number of patients in the same database [9]. The automated
analysis showed a quite similar result as that for the manual analysis:
survival curves showed Chi-square (χ2) values of 22.02 and 20.56 for
the automated and manual approach, respectively and hazard ratios
(HR) of 2.09 (95% CI 1.52–2.79) and 2.03 (95% CI 1.49–2.72) for the au-
tomated and manual approach, respectively.
Discussion

The aim of this paper was to present a method for fully automated
measurement of QRS area. Our results show that automated andmanual
QRS area values are strongly correlated and provide similar prediction
of outcome after CRT using baseline VCG.
Implications

Based on the results it can be stated that the presented algorithm is
reliable. This finding is important because the method presented here
can be easily implemented in offline analysis and, potentially, also in
medical devices which will allow easier, faster and user-independent
measurement of QRS area. This parameter is increasingly regarded as
a valuable addition to the ECGmeasurements that are used to select pa-
tients for CRT [9,11], though the specific analysis required until now
may discourage investigators and clinicians from using it. Once QRS
area can be used easily, it may also become feasible to include it in the
guidelines for the selection of CRT patients.
Limitations

Several limitations should be mentioned. First of all, 4 recordings
could not be automatically processed (the criteria for stating QRS
onset and/or end were not met) and, therefore, were excluded from
the analysis. In the present study, we only analyzed pre-implantation
recordings without pacemaker activity. However, looking into other
conditions, we have found that the pacing artefact can confuse the de-
tection of onset of the QRS complex. Therefore, an algorithm to remove
this artefact should be appliedwhen paced beats are analyzed.We have
also found that delay between QRS onset and end using the automated
approach is different from conventionally determined QRS duration.
The implications of this should be further investigated.
Conclusion

We have presented an algorithm for fully automated assessment of
QRS area. It was shown that QRS area values produced with the pre-
sented method are as useful as manually assessed values, as demon-
strated by the survival stratification of CRT patients. Therefore, the
presented QRS area analysis may be fully automated which facilitates
both analysis of large cohorts of patients and continuous remote moni-
toring. The presented algorithm is publicly available as a plugin for
SignalPlant processing software (www.signalplant.org).
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