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Abstract

Background. Psychosis spectrum disorder is a heterogeneous, multifactorial clinical pheno-
type, known to have a high heritability, only a minor portion of which can be explained by
molecular measures of genetic variation. This study proposes that the identification of genetic
variation underlying psychotic disorder may have suffered due to issues in the psychometric
conceptualization of the phenotype. Here we aim to open a new line of research into the gen-
etics of mental disorders by explicitly incorporating genes into symptom networks.
Specifically, we investigate whether links between a polygenic risk score (PRS) for schizophre-
nia and measures of psychosis proneness can be identified in a network model.
Methods. We analyzed data from n = 2180 subjects (controls, patients diagnosed with a non-
affective psychotic disorder, and the first-degree relatives of the patients). A network structure
was computed to examine associations between the 42 symptoms of the Community
Assessment of Psychic Experiences (CAPE) and the PRS for schizophrenia.
Results. The resulting network shows that the PRS is directly connected to the spectrum of
positive and depressive symptoms, with the items conspiracy and no future being more
often located on predictive pathways from PRS to other symptoms.
Conclusions. To our knowledge, the current exploratory study provides a first application of
the network framework to the field of behavior genetics research. This allows for a novel out-
look on the investigation of the relations between genome-wide association study-based PRSs
and symptoms of mental disorders, by focusing on the dependencies among variables.

Introduction

Psychosis spectrum disorder is a potentially severe, heterogeneous, and multifactorial disorder
(Keshavan et al., 2011; Guloksuz and van Os, 2017). Although twin and family studies indicate
substantial heritability, few genetic variants are consistently linked to psychotic disorder
(Pardiñas et al., 2018). The difficulty in identifying genes specific to psychosis has been
explained in several ways (Sullivan, 2008). One possibility that has received scant attention
is that the conceptualization of the phenotype may be suboptimal: typically, genetic studies
use symptom counts (e.g. total scores defined on questionnaire data) or case–control designs
that define cases and controls as polythetic functions of symptom data (i.e. the definition of
cases corresponds to many distinct symptom profiles), thus defining the phenotype in a highly
simplified fashion. Essentially, these approaches assume that such compound scores are esti-
mates of a single underlying dimension (e.g. a liability spectrum) that partly stands under gen-
etic control (Franić et al., 2013). Additionally, genetic research uses clear-cut diagnostic
categories, even though dominant liability spectrum theories are more consistent with a
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spectrum of related phenotypes (van Os and Linscott, 2012),
which feature no single set of necessary and sufficient properties
(e.g. a disease entity or common pathogenic pathway).

Several recent papers have argued that this conceptualization
of mental disorders may be too simplistic. Instead of reflecting
a single disease entity, pathogenic pathway, or unidimensional
liability spectrum, disorders may result from causal interactions
between symptoms (e.g. delusions→paranoia→social isolation),
which constitute a network of symptoms and other components
(Cramer et al., 2010; Borsboom and Cramer, 2013; Borsboom,
2017). Within this network conceptualization, the focus shifts
from investigating mental disorders – such as schizophrenia –
as disease entities to investigating interactions between symp-
toms (Borsboom and Cramer, 2013; Borsboom, 2017). Thus,
mental disorders do not result from one central dysfunction (e.g.
a brain dysfunction) that causally produces symptoms, but from
a complex interplay between symptoms, psychological, biological,
and sociological components (Epskamp, 2017; Isvoranu et al.,
2019).

For psychosis spectrum disorders, which feature a clear genetic
signal, this raises the question of how genetic factors could relate
to symptom–symptom interactions in a network structure. In our
view, genetic risk could plausibly influence symptom networks in
two ways. First, genetic risk could act as a direct main effect on
symptoms. In this case, genetic risk would be conductive to the
liability to develop certain symptoms of schizophrenia; this liabil-
ity could be thought of in terms of genetic make-up laying the
foundations for symptoms to develop. For instance, one’s genetic
make-up could have an effect on the likelihood that the symptom
‘hallucinations’ occurs, so that higher genetic risk influences the
liability of developing the symptom, which in turn would activate
other neighboring symptoms in a network. Second, genetic risk
could function as a moderator of the network structure: genetic
risk may involve genetic factors that increase the strength of a cau-
sal connection between symptoms. For instance, genetics may
predispose a person to experience (more) anxiety in response to
hallucinations. In this scenario, genetic factors control part of
the structure of a network, such that a genetic risk would be
expressed as the likelihood that one symptom activates another.
Analyses that would optimally represent the moderation hypoth-
esis are not yet fully developed, and therefore the current manu-
script is focused on the first approach.

To the extent that the above scenarios are plausible, current
genetic studies using total scores defined by these symptoms
may rest on an inadequate definition of the phenotype. In particu-
lar, genetic markers or polygenic risk scores (PRSs) may be more
profitably analyzed in relation to a network phenotype, instead of
to a total score or case–control status. The current paper aims to
introduce methodology suited to incorporate genetic risk scores –
in particular, genome-wide association study (GWAS)-based
PRSs for schizophrenia – into symptom networks, thus opening
new lines of research into the genetics of mental disorders. PRS
is commonly used to summarize genetic effects and represents
the sum of trait-associated alleles across many genetic loci,
weighted by effect sizes estimated from GWAS (Euesden et al.,
2015). PRS is generally used to identify genetic basis of pheno-
types and to construct risk prediction models (Dudbridge,
2013). Specifically, here we investigate whether links between
PRS for schizophrenia and measures of psychosis proneness
can be identified in a network model, by including the PRS as
a variable in the symptom network for psychosis spectrum
disorder.

Method

Participants

The sample analyzed was part of the longitudinal observational
cohort study ‘Genetic Risk and Outcome of Psychosis Project’
(GROUP), release database 7.0 (Korver et al., 2012). At baseline,
the GROUP sample consisted of 1119 patients diagnosed with a
non-affective psychotic disorder, 1059 siblings of these patients,
920 parents, and 586 unrelated healthy controls. The patients
were recruited from mental health care institutions across The
Netherlands and Belgium and the control subjects were recruited
through random mailing. Inclusion criteria for patients were age
16–50 years, Diagnostic and Statistical Manual of Mental
Disorders (American Psychiatric Association, 2000) criteria for
a non-affective psychotic disorder, maximum duration of illness
of 10 years, and estimated level of intelligence quotient (IQ)
above 70. For full details on the GROUP sample please refer to
the cited paper (Korver et al., 2012).

The current study used baseline data, restricted to the
European white ethnic group, as there is evidence for a differential
impact of PRS in different ethnic groups (Marden et al., 2014; van
Os et al., 2017). Only subjects for which a PRS was available were
included in the analysis. Overall, a baseline sample of n = 2180
individuals was analyzed here (patients, siblings, parents, and
controls).

Symptomatology

We used baseline data from the Community Assessment of
Psychic Experiences (CAPE; Konings et al., 2006), a self-report
measure of lifetime psychotic experiences. All items, measuring
frequency of positive (20 items), negative (14 items), and depres-
sive symptoms (8 items) were included in the analyses and were
scored on a 4-point Likert scale.

Genotyping, imputation, and PRS

A standard procedure for genotyping, imputation, and PRS was
used. For a detailed procedure refer to online Supplementary
Appendix S1.

Network construction

We fitted a Gaussian graphical model (GGM; Lauritzen and
Wermuth, 1989) to the data (i.e. an undirected network). All
items of the CAPE and the PRS were represented as nodes. An
edge between any two nodes indicates a partial correlation
between the two variables, after conditioning on all other vari-
ables in the dataset. To account for the ordinal nature of the
CAPE data, we used Spearman correlations when estimating the
network structure, as recommended by Epskamp and Fried
(2018). Due to the high sample size, we used unregularized
model selection rather than regularization techniques commonly
used in estimating GGMs1 (Williams and Rast, 2018). All analyses
were performed using R-statistical software, version 3.4.3
(R Development Core Team, 2014). The networks were con-
structed and visualized using the R-package qgraph version
1.4.5 (Epskamp et al., 2012).

Blue (red) edges in the network indicate positive (negative)
partial correlations, and the wider and more saturated the edge,
the stronger the partial correlation (Epskamp et al., 2012).
Because the current paper specifically focuses on edges between
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the PRS and symptoms, edges representing associations between
PRS and symptoms have been manually unfaded.2 For construct-
ing the layout of the network, we used a manually specified layout
where the PRS is positioned at the center of the network, while
allowing the rest of the nodes in the network to cluster based
on their associations.

To display how the connectivity of edges is related across gen-
etic and symptomatic levels of analysis, we computed a predictive
path diagram (Fig. 2). A predictive path diagram takes one node (in
our case PRS) as a source node and then lists (i) the nodes that have
an edge with PRS; (ii) the nodes to which the nodes that have an
edge with PRS are connected; (iii) the nodes to which the latter
are connected – and so forth. Within the so constructed diagram,
the shortest predictive pathway can be defined as the pathway that
results from traveling the edges that, in each step, maximize the
quality of the prediction of the target node from the source node,
while controlling for all other variables in the network. To investi-
gate which nodes more often lie on the shortest predictive pathways
from PRS to other nodes we computed node-specific predictive
betweenness as a centrality measure (Fig. 3). Because betweenness
is generally not a very stable centrality measure (Epskamp et al.,
2018), we used both nonparametric and case-drop bootstraps to
investigate the extent of its variability (Epskamp et al., 2017).

Network stability

As recommended in the literature (Borsboom et al., 2018), to
investigate robustness and replicability of results we performed
accuracy and stability checks using the R package bootnet
(Epskamp et al., 2017). In addition, we included a stability ana-
lysis to investigate the average node-specific predictive between-
ness under case-dropping. For these results we refer the reader
to online Supplementary Appendix S2.

Results

The study sample at baseline consisted of 2180 subjects (335 con-
trol subjects, 640 siblings, 630 parents, and 575 patients), of which
47% female and 53% male. Within the patient sample, the main
diagnosis was schizophrenia, paranoid type (53%), followed by
psychotic disorder NOS (11%), schizoaffective disorder (10%) and
schizophreniform disorder (6%). The mean age of the subjects
was 35.97 (14.61) years and the mean IQ was 103.48 (16.17). In
the current analyses a GWAS p value threshold of 0.05 was
used. In total, 194 665 single-nucleotide polymorphisms (SNPs)
were included in the PRS.

Network analysis

Figure 1 presents the network depicting positive, negative, and
depressive symptoms of the CAPE, as well as the PRS. Results
show that the PRS is directly connected to several individual
symptoms of the CAPE, but especially related to the spectrum
of positive psychotic symptoms. Network analysis identified rela-
tions between the PRS and the positive psychotic symptoms C10
(conspiracy), C30 (thought echo), and C41 (Capgras). In addition,
we identified positive relations between the PRS and the depres-
sive symptom C12 (no future).3 Stability analyses show that the
network and identified edges are generally stable (see online
Supplementary Appendix S2).

Second, the predictive path diagram (Fig. 2) highlights second-
ary levels of connectivity within the network – level two

connections show strong relations between symptoms C10 (con-
spiracy), C7 (persecution) and C41 (Capgras), as well as between
symptoms C12 (no future) and C14 (suicidal). Level three connec-
tions display the strongest relations between symptoms C33 (hal-
lucinations) and C34 (voices conversing), C32 (blunted emotions)
and C27 (blunted affect), C20 (voodoo) and C15 (telepathy), and
C11 (important person) and C13 (special person). Within this
level, most symptoms were connected to most of the other symp-
toms. Notably, both in level two and three, most items that had
strong links with other items were in fact linked to an item
from the same dimension. Level three of connectivity was formed
mostly of the positive symptoms, while level four of connectivity
was formed mostly of the negative symptoms and the relations
between these. Overall, the predictive path diagram shows that
it becomes possible to reach any other symptom in the network
from the PRS in no more than four steps. Nonetheless, these
results should be interpreted with caution considering the large
variability in edge weights and the presence of negative edges.

Bootstrapping showed that the estimation of node-specific pre-
dictive betweenness (i.e. items that more often lie on the shortest
pathways from PRS to other nodes; Fig. 3) was considerably less
precise than that of other features of the network. In particular,
Fig. 3 shows that several nodes featured high node-specific pre-
dictive betweenness in bootstrap samples but not in the centrality
of the estimated network structure based on the sample, indicat-
ing that the shortest paths from PRS to other nodes can take vari-
ous forms. A potentially important result that was robustly
present across case-drop bootstraps (online Supplementary
Fig. S4) is that the most central symptoms in the current sample
in terms of node-specific predictive betweenness are symptoms
C12 (no future) and C10 (conspiracy). Other central symptoms –
even though to a much lesser degree and possibly as secondary
items on the pathway between PRS and other nodes – were
items C25 (lack of activity), C30 (thought echo), and C39 (failure).
Additionally, the nonparametric bootstrapped networks showed
items C9 (feeling pessimistic), C21 (lack of energy), and C36
(unable to terminate) as further potentially important nodes,
even though these were not specifically captured as high node-
specific predictive betweenness items in the current network
structure (Fig. 3, black lines).

Discussion

The current study provides, to the best of our knowledge, a first
application of the network framework (Borsboom and Cramer,
2013) to the field of behavior genetics research. This allows for
a novel outlook on the investigation of the relations between
GWAS-based PRSs and symptoms of mental disorders, by focus-
ing on the dependencies among variables.

Most links we identified in our data are links between the PRS
and positive psychotic symptoms, especially symptoms related to
notions of conspiracy and paranoia. This can be especially of
interest as studies including risk factors in network models of
psychosis (e.g. cannabis use, childhood trauma, urbanization)
did not identify direct relations between any of these risk factors
and positive or negative psychotic symptoms (Isvoranu et al.,
2016a, 2016b). In addition, positive psychotic symptoms are gen-
erally found to have few connections to other nodes, especially
nodes related to real life functioning (Galderisi et al., 2018). In
light of this, a plausible hypothesis to put forward would be
that different types of risk factors may lead to different pathways
to the onset (and development) of psychotic disorders: genetic
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risk factors may have more of a main effect on the liability to
develop positive psychotic symptomatology, while environmental
risk factors may have more of a secondary effect on general psy-
chopathology symptoms. This may partly explain why environ-
mental factors are often shared between distinct mental disorder
categories and is in line with previous findings which argued
that symptoms can have different risk factors (Fried et al., 2014,
2015a, 2015b; Isvoranu et al., 2016a, 2016b).

To further investigate symptom associations at different levels
of connectivity, the current study constructed for the first time a
predictive path diagram. To a certain degree, the predictive path
diagram aims to point out toward potential mediating items.
Here, the second level of symptom–symptom interactions con-
sisted of mostly positive psychotic symptoms, while the third
level of symptom–symptom interactions had a predominance of
negative psychotic symptoms. Most of the symptoms connected
to other symptoms from the same domain, suggesting that node
activation may first spread within the same domain. In addition,
since most links were identified between the PRS and positive
psychotic symptoms, the second level included most of the posi-
tive psychotic symptoms. The few negative symptoms identified at
the second level of symptom–symptom interactions are items
related to lack of enthusiasm, energy, and (social) activities. The
only two positive psychotic symptoms identified at the third
level of interaction are telepathy and special person. Depressive
symptoms are shared between the two levels and generally have
less strong relations within and between domains. It should be
noted that the symptoms with the strongest relations between dif-
ferent levels of connectivity are highly similar in content to each
other (e.g. strong relations between items C10: Do you ever feel as

if there is a conspiracy against you? and C7: Do you ever feel as if
you are being persecuted in some way? or between items C32: Do
you ever feel that your emotions are blunted? and C27: Do you ever
feel that your feelings are lacking in intensity?). This result may
therefore be an artifact of the scale used to measure symptomatol-
ogy, in which many of the items are contextually similar and
therefore are likely highly correlated with each other. Further
research using different measurement scales is warranted before
drawing strong conclusions based on this methodology.

Finally, for the current study we developed a measure of node-
specific predictive betweenness, which allows for the investigation
of items that more often lie on the shortest pathway from PRS
to other nodes in the network. We identified the items conspiracy
and no future as central items and hypothesize that these may be
important hubs in the network.

Methodological notes

Several qualifications of the network methodology are in order
here. First, the statistical approach of incorporating PRS in a net-
work is suited to pick up direct links between the PRS and psych-
otic symptoms. As such, this methodology is best interpreted as
incorporating the hypothesis that PRS contains genetic factors
that increase the liability to develop certain symptoms (i.e. acts
through main effects on the symptom thresholds in a network).
This is because PRS is modeled as a predictive node from the cau-
sal background.

Second, predictive nodes from the causal background are of
course unlikely to operate on the same timescale as symptoms
in a symptom network. However, the nature of statistical control

Fig. 1. Network of the 42 CAPE (Konings et al., 2006) symptoms and the PRS for psychosis (n = 2180). Blue (red) lines represent positive (negative) associations
between variables and the wider and more saturated the edge, the stronger the association (Epskamp et al., 2012). Please note that since the focus of the
paper was to investigate the relations between the PRS and symptoms, the edges between the PRS and symptoms have been manually un-faded, while the
edges between the other nodes in the network retain transparency. Symptom groups are differentiated by color.
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in a partial correlation network which includes PRS as a node is
likely not that different from that of a network that exclusively
contains symptoms. If, for instance, PRS was a common cause
for two symptoms within a network structure (e.g. increased
PRS leads to increased liability to develop symptoms sadness
and conspiracy) but not included in the network (and thus not
controlled for), a spurious edge between the two symptoms
would be induced. If PRS was indeed linked to symptoms, such
spurious associations would then be eliminated due to the inclu-
sion of PRS as a node in the network. Of note, a node only
induces spurious connections if it is a common effect in a net-
work (Epskamp et al., 2018), but PRS cannot be a common effect,
because it is not caused by symptoms. Therefore, to the extent
that stable edges arise between PRS and symptomatology, such
edges are consistent with the hypothesis that PRS impinges at
the symptom level.

Third, it is widely known that genetic influences account for a
small proportion of the explained variance in a mental disorder
and even though this proportion is larger for psychosis, the effect

is still modest (Greenwood et al., 2007). Naturally, symptoms tend
to cluster together and have a stronger influence on each other,
while variables from the external field of a disorder, such as envir-
onmental and genetic factors also better cluster together within
their domain. Networks therefore often display weaker between-
domain links (Isvoranu et al., 2016b; Santos et al., 2017), and
may have missed between-domain links due to a lack of statistical
power. In addition, recent studies showed that when using estima-
tion techniques relying on the lasso regularization (Tibshirani,
1994) – which many prior network studies have been based on
– specificity can be lower than expected in dense networks with
many small edges, leading to an increase in false positives
(Williams and Rast, 2018). To this end, we chose a different
and more conservative estimation technique here based on unre-
gularized model search, as recently recommended by Epskamp
(2018). For low-dimensional settings with high sample size, simu-
lation studies using this technique have shown good sensitivity as
well as high specificity. We compared this method with the classic
lasso regularization method, as well as with a method based on

Fig. 2. Predictive path diagram of the 42 CAPE (Konings et al., 2006) symptoms and the PRS for psychosis (n = 2180). A predictive path diagram is based on shortest
pathway analysis (Brandes, 2008; Opsahl et al., 2010) and represents the first three levels of connectivity between variables. Specifically, here we visualize (1) the
immediate nodes to which the PRS is connected; (2) the immediate nodes to which the nodes that are connected to the PRS are connected; and (3) the nodes to
which the latter are connected. Blue (red) lines represent positive (negative) associations between variables and the wider and more saturated the edge, the stron-
ger the association (Epskamp et al., 2012). Please note that since the focus of the paper was to investigate the relations between the PRS and symptoms, the edges
between the PRS and symptoms have been manually un-faded (i.e. within the first level of connectivity), while the edges between the other nodes retained default
plotting functions. Symptom groups are differentiated by color.
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thresholded partial correlations. The unregularized model search
performed best in terms of goodness-of-fit measures. In addition,
the edges from PRS to conspiracy and no future were identified by
two of the three methods, while the edges from PRS to thought
echo and capgras were identified by all three methods (see online
Supplementary Fig. S5 and Table S1). Overall, based on these
results, the effects identified in this study are unlikely to be simply
a result of noise and may hold etiological significance. In addition,
bootstrap analyses (see online Supplementary Fig. S2) show the
edges from PRS to C41: capgras and C30: thought echo are the
most robust (i.e. showing up in 67% of the bootstraps and 75%
of the bootstraps respectively). Notably, all edges from the PRS
are identified in at least 50% of the bootstraps. Since the network
was not constructed using p values but was based on a model fitting
approach, which has been shown to be highly effective in type-I
error control, multiple testing should not pose as an issue here.

Limitations

The findings of this study need to be considered in light of several
limitations. First, a PRS itself can be considered an important
limitation. The signal between a PRS and symptoms is generally
weak (Greenwood et al., 2007), also resulting in weak network
connections, which are not overly consistent across different esti-
mation techniques. In addition, by adding up SNPs to construct
the PRS we may obscure details in the same way in which adding
up items into sum-scores may obscure the different symptoms –
investigating individual SNPs in relation to symptoms may
therefore be a promising new avenue. It is further possible that
the predictive power of the PRS also becomes weaker in broader
mixed samples across the spectrum. The sample analyzed in
this paper is a heterogeneous sample, which includes controls,
siblings, parents and patients; in addition, as the CAPE is not
designed for measuring symptomatology in patients, ceiling
effects may occur when applying the CAPE to the patient popu-
lation. However, given that the strong phenotypic manifestation of
the PRS can often be identified in healthy relatives of patients
(van Os et al., 2017), we chose to include the whole sample rather
than focus on one group only. Ideally it would be possible to carry
out analyses and direct network comparisons between different

population groups; this was not possible in the current study
due to limited data. Second, it is difficult to investigate to what
degree any PRS effect would be reducible to group membership
(i.e. patients have much more psychopathology and higher PRS
scores). Including a group membership variable in a network
would be problematic (Fried and Cramer, 2017) due to the cat-
egorical nature of the variable and therefore investigating to
what extent there would be overlap between the two variables
was not possible. A future extension for network modeling of gen-
etic data may be modeling the multilevel structure of the data.
Third, the negative association between PRS and thought echo
is a puzzling finding, which could be related to some form of
measurement bias or rarity, but could also be a true effect given
a fixed level of other symptoms. Further investigation showed
that, even though the expectation would be that PRS would posi-
tively correlate with all other variables, PRS and though echo were
actually also weakly marginally negatively correlated (r = −0.004),
thus ruling out that the result is paradoxical (i.e. a marginal posi-
tive correlation was not made negative upon conditioning). One
possible alternative explanation to the stronger negative associ-
ation in the network is that it may be due to the presence of a col-
lider in the data (i.e. both PRS and thought echo cause a third
variable in the dataset; Pearl, 2000). Another explanation may
be that this is a spurious effect, resulting from the violation of
the normality assumption (i.e. the variable ‘thought echo’ is rela-
tively skewed to the left). Future research should focus on if the
link between PRS and thought echo is a genuine negative effect
that can be replicated. Finally, the current analyses were based
on cross-sectional data and conclusions regarding direction or
causality should be drawn with caution. In addition, it may be
argued that results from cross-sectional networks may not be gen-
eralizable to within-person dynamics (Bos et al., 2017). It should
however be noted that longitudinally investigating variables from
the external field of a network, such as environmental or genetic
risk factors, is methodologically infeasible as these background
variables may not change themselves; in addition, as we argued
in this manuscript, if such variables act to facilitate the ease
with which nodes in the network are activated, the current ana-
lysis may in fact be more informative than a within-subject ana-
lysis of dynamically changing factors would by itself be. Future

Fig. 3. Node-specific predictive betweenness (i.e. how often a node lies on the pathways between two other nodes, of which one is always the PRS). The white dots
represent the node-specific predictive betweenness in the current sample, while the black lines represent the variability of node-specific betweenness when using
nonparametric bootstrapping over 1000 iterations.
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research could expand on our analyses by investigating whether
PRS might further have an effect on the interactions between
symptoms, using network moderation techniques (Haslbeck
et al., 2018) or by relating PRS to parameters of networks that
govern dynamic changes in symptomatology.

Conclusion

Overall, the results of our study indicate that investigating path-
ways within a network structure through which genetic compo-
nents may affect the liability to develop a mental disorder may
be promising and may open new research avenues. Here we
have taken a first step toward introducing this methodology.
Further investigating how (and whether) other PRSs are related
to (other) symptoms, as well as whether we can identify certain
genetic segments for specific symptoms could lead to biological
informative structures. The current study is exploratory in nature;
in light of this, we discuss methodological considerations and lim-
itations of the approach and argue further research replicating
these results is essential. Ultimately, we aim to provide a first
means toward bringing together the field of behavior genetics
and the network framework, and provide preliminary results for
symptom-specific biological pathways to psychosis.

Note
1 The estimation procedure first runs the glasso algorithm (Friedman et al.,
2008) for 100 different tuning parameters to obtain 100 different network
structures (ranging from sparse networks with few edges to dense networks
with many edges). Next, the algorithm refits all those networks without regu-
larization and selects the model that minimizes the Bayesian information cri-
terion (BIC). Subsequently, the algorithm adds and removes edges until BIC
can no longer be improved. It has been shown that BIC selection of GGMs
selects the true model as N grows to infinity (Foygel & Drton, 2011). In add-
ition, the stepwise procedure ensures that no single edge can be removed or
added in the final model to improve fit.
2 This is because the software used for constructing the networks automatic-
ally fades edges with a smaller effect – an effect between a variable from the
external field of a symptom (such as an environmental variable or a genetic
risk score; Borsboom, 2017) will likely almost always be smaller than the effect
of the variables within the network (e.g. the relations between the symptoms
themselves).
3 Of note, when running the same analysis within the subsample of patients
and relatives only, the relations between the PRS and C10 (Conspiracy), and
C41 (Capgras) are retained and no other edges emerge. It is likely that edges
between PRS and C12 (No future) and C30 (Thought echo) do not withhold
due to a loss in power.
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