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Abstract: Contamination of groundwater with fluoride represents a significant global issue, with
high concentrations posing serious public health threats. While fluoride is a critical element in water,
excessive levels can be detrimental to human health and potentially life-threatening. Addressing the
challenge of removing fluoride from underground water sources via nanotechnological approaches
is a pressing concern in environmental science. To collate relevant information, extensive literature
searches were conducted across multiple databases, including Google Scholar, PubMed, Scopus, Web
of Science, the American Chemical Society, Elsevier, Springer, and the Royal Society of Chemistry.
VOS Viewer software version 1.6.20 was employed for a systematic review. This article delivers
an exhaustive evaluation of various groundwater fluoride removal techniques, such as adsorption,
membrane filtration, electrocoagulation, photocatalysis, and ion exchange. Among these, the ap-
plication of nanoparticles emerges as a notable method. The article delves into nano-compounds,
optimizing conditions for the fluoride removal process and benchmarking their efficacy against other
techniques. Studies demonstrate that advanced nanotechnologies—owing to their rapid reaction
times and potent oxidation capabilities—can remove fluoride effectively. The implementation of
nanotechnologies in fluoride removal not only enhances water quality but also contributes to the
safeguarding of human health.

Keywords: human health; VOS Viewer; groundwater remediation; advanced oxidation process

1. Introduction

Groundwater serves as the primary source of drinking water and is utilized by a
significant portion of the global population [1]. The contamination of groundwater with
fluoride poses a serious issue that impacts millions of people around the world [2,3].
Moreover, the consumption of fluoride-laden groundwater can lead to fluorosis, which is
highly dangerous [4]. It is acknowledged that the removal of fluoride from groundwater
yields positive outcomes, such as improved dental health, decreased risk of bone diseases,
and the prevention of conditions like fluorosis, while also mitigating environmental impacts.
However, despite these benefits, the extraction of fluoride can sometimes trigger a series
of adverse effects on both human health and the environment [5]. For instance, while
diminishing fluoride levels in water can lessen dental diseases, it may conversely lower the
resistance of teeth to decay. The consumption of water with low fluoride content can impair
the absorption of calcium and phosphorus in the bones, potentially leading to bone-related
ailments such as osteoporosis, which is characterized by a decrease in bone density [6].
Furthermore, a reduction in fluoride levels can weaken resistance to bacterial infections.
In certain cases, drinking water with insufficient fluoride may lead to the emergence of
fluoride-associated diseases, including fluorosis, periodontitis, and even cancer [7].
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Removing fluoride groundwater could lead to an increase in other contaminants,
causing the water to become highly polluted. The use of methods to remove fluoride from
water may cause the production of dangerous waste, which, if not disposed of properly, can
harm the environment and animal life [8]. Removing fluoride from water can cause changes
in the physical and chemical balance of water, which can be harmful to local organisms and
plants. In some cases, the removal of fluoride from water may cause changes in the pH and
electro-conductivity of water, which can lead to a decrease in biodiversity and negative
effects on aquatic ecosystems. Since fluoride is an important element in the regulation of
dental and bone health, its removal from groundwater must be conducted accurately and
in compliance with health and environmental standards. To avoid adverse consequences,
sustainable and effective fluoride removal methods can be used, and as an alternative,
fluoride conservation methods can be used in groundwater. In general, it can be said
that the removal of fluoride from underground water should be performed with full care
and consideration due to the various consequences that may occur to human health and
the environment.

The main issues in removing fluoride from groundwater are its high concentration in
water sources and the presence of other mineral compounds [9]. Economical and efficient
techniques are needed to remove fluoride at high levels in the presence of other minerals
acting as interfering substances [10]. Advanced nanotechnology methods have created the
promise of being able to remove fluoride from groundwater under natural conditions with
high efficiency, selectivity, rapid action rates, cost-effectiveness, and minimal side effects.

The advantages of utilizing nanotechniques to eliminate fluoride from underground
water are articulated; Nano-enhanced methods are effective at removing fluoride from
water and reducing its concentration [11]. The removal process is significantly faster
with the implementation of these techniques, which reduces the overall time required
for purification [12]. The long-term life span of nanotechnology methods often requires
the reconstruction of components and equipment, and sometimes their replacement [13].
Simpler equipment that costs less to install and operate is commonly needed for the
use of advanced nano-methods [14]. The use of nanometer materials in nano-enhanced
methods typically results in fewer side effects on the environment and human health [15].
Considering these advantages, the use of nanotechnology can be considered as a good
option to remove fluoride from underground water.

Adsorption or separation are the main mechanisms for fluoride removal by nanotech-
nology methods [16]. First, in the absorption method, nanomaterials with a high surface
area are able to absorb fluoride [17]. This adsorption is usually carried out by electrostatic
forces and chemical dissociation [18]. Some common nanomaterials used for fluoride
absorption include activated carbon, silica nanoparticles, iron nanoparticles, and zirconium
nanoparticles [19]. In the second separation method, active nanoparticles are used as filters
to separate fluoride from water [20]. These nanoparticles are usually composed of materials
such as iron nanoparticles, alumina nanoparticles, and zirconium nanoparticles [21]. The
interaction between fluoride and nanomaterials is usually carried out by electrostatic forces,
surface attraction, chemical dissociation, or hydrogen interactions. These interactions cause
the adsorption of fluoride by nanomaterials and the separation of the fluoride from the
water [22].

Fluoride removal from groundwater requires cost-effective and efficient methods.
Various nanotechnologies, including adsorption, membrane filtration, electrocoagulation,
photocatalysis, and ion exchange, have been developed over the years [23]. Adsorption,
which includes the use of activated carbon, alumina, and other adsorbents, is widely used
for fluoride removal [24]. This technique is effective, cost-effective, and does not produce
any dangerous by-products [25]. However, adsorption suffers from adsorbent saturation
and requires frequent regeneration or replacement [26]. Another method is ion exchange,
which is an attractive option for the selective removal of fluoride ions due to its efficiency,
high capacity, and ease of operation. Ion-exchange resins are another method that can be
used to remove various types of elements from the environment. However, this process is
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expensive, requires careful maintenance, and produces significant waste. Membrane filtra-
tion methods such as reverse osmosis, nanofiltration, and ultrafiltration are very effective
in removing fluoride from water. However, these methods are expensive and require high
energy input and maintenance [27]. In recent years, nano-methods have been considered
as a potential solution to remove fluoride from groundwater [28]. Another promising
method for fluoride removal is electrocoagulation. Unlike conventional coagulation meth-
ods, electrocoagulation uses a low-voltage direct current to remove fluoride from water.
This process is economical, environmentally friendly, and could be applied in a wide range
of water systems.

This article conducted a systematic review of different methods for removing fluoride
from underground water sources. The researchers utilized databases such as Google
Scholar, PubMed, Scopus, Web of Science, American Chemical Society, Elsevier, Springer,
and Royal Society of Chemistry for their investigation. VOS Viewer software was applied
to analyze and organize the collected data. The effectiveness of various techniques, like
adsorption, membrane filtration, electrocoagulation, photocatalysis, and ion exchange,
was assessed through systematic studies. The PRISMA flow diagram can be found in
Supplementary Materials.

2. Adsorption

When the fluoride level in water exceeds the permissible limit (<1.5 mg/L), water
pollution becomes a major concern for humans. A co-occurrence analysis of fluoride
absorption using VOS Viewer is displayed in Figure 1 through an overlay visualization. As
Figure 1 shows, previous studies have made noteworthy contributions to the removal of
fluoride from groundwater by surface adsorption techniques. In this method, an adsorbent
(for example, natural adsorbents such as zeolite, activated carbon, clay, polymer mixtures,
etc.) comes into contact with water containing metals, and the metals are absorbed on the
surface of the adsorbent. Then, the adsorbent containing the adsorbed metals is separated
from the water, and the metals are used separately for recovery and reuse or proper waste
disposal. Various factors, such as the adsorbent type, amount of fluoride, pH, temperature,
contact time, and intensity of mixing, affect the absorption efficiency. The adsorption
method is widely used as one of the primary methods for removing metals from water and
wastewater. It is favored for its simplicity, high operational capability, and productivity.
Adsorption can effectively remove metals by utilizing various adsorbents and their affinity
for metal ions. This method has been extensively studied and applied in water treatment to
address fluoride contamination issues [29].

The sorption technique could be a recommended method for treating fluoridated
water because it is inexpensive, has readily available adsorbent, can purify water without
polluting it, and is environmentally friendly [30]. Historically, alumina- and aluminum-
based sorbents, biosorbents, ion-exchange resins, calcium-based materials, carbon-based
sorbents, and polymer-based sorbents have all been studied for the removal of fluoride
ions from water/wastewater. Polymer-based composites have recently received much
attention due to their simplicity of synthesis and biocompatibility, and they can be used to
separate fluoride ions. The sorption method includes the use of a material that has a high
affinity for fluoride, such as activated alumina, bone charcoal, etc. The working method
is that the underground water passes through a column containing absorbent materials
that selectively remove fluoride from the water. The absorbent material can be regenerated
by washing it with a strong acid solution, allowing it to be reused for multiple cycles.
Especially in areas where fluorosis is a common problem, the absorption method is a useful
method to remove this pollution. The nature of fluoride adsorption on some adsorbents,
especially clays containing iron, aluminum, and silicon oxides, has been investigated as a
background for experimental studies to improve the understanding of fluoride–adsorbent
interactions. The adsorbed fluoride ions are likely to be exchanged with structural elements
within the adsorbent particles, depending on the chemistry of the solids, or the adsorbed
fluoride ions are transported to the internal surfaces of porous materials [31].



Toxics 2024, 12, 306 4 of 19
Toxics 2024, 12, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Keyword and overlay visualization of co-occurrence analysis of fluoride adsorption  using 
VOS Viewer. 

The sorption technique could be a recommended method for treating fluoridated wa-
ter because it is inexpensive, has readily available adsorbent, can purify water without 
polluting it, and is environmentally friendly [30]. Historically, alumina- and aluminum-
based sorbents, biosorbents, ion-exchange resins, calcium-based materials, carbon-based 
sorbents, and polymer-based sorbents have all been studied for the removal of fluoride 
ions from water/wastewater. Polymer-based composites have recently received much at-
tention due to their simplicity of synthesis and biocompatibility, and they can be used to 
separate fluoride ions. The sorption method includes the use of a material that has a high 
affinity for fluoride, such as activated alumina, bone charcoal, etc. The working method is 
that the underground water passes through a column containing absorbent materials that 
selectively remove fluoride from the water. The absorbent material can be regenerated by 
washing it with a strong acid solution, allowing it to be reused for multiple cycles. Espe-
cially in areas where fluorosis is a common problem, the absorption method is a useful 
method to remove this pollution. The nature of fluoride adsorption on some adsorbents, 
especially clays containing iron, aluminum, and silicon oxides, has been investigated as a 
background for experimental studies to improve the understanding of fluoride–adsorbent 
interactions. The adsorbed fluoride ions are likely to be exchanged with structural ele-
ments within the adsorbent particles, depending on the chemistry of the solids, or the 
adsorbed fluoride ions are transported to the internal surfaces of porous materials [31]. 

Graphene is one of the new materials that has been studied as a fluoride absorber in 
water. Graphene is a type of carbon material that is formed as a thin sheet of carbon core. 
This material has unique physical and chemical properties and is known as a strong ab-
sorbent for polluting elements such as fluoride in water [32]. It has been modified with 
methyl and nitrogen atoms to investigate its defluorination properties [33]. Vibrational 
mode analysis for vacancy-induced coronene has been performed to understand its mo-
lecular structure and behavior. On the other hand, graphene is a material that has been 
studied for its potential use as an adsorbent to remove fluoride from water [34]. This ma-
terial is synthesized and used in the form of a composite with CeO2 nanoparticles sup-
ported on activated carbon for efficient removal of fluoride from polluted water [35]. Due 
to the structure of graphene, its upper surface is very large and can act as a very strong 
adsorbent surface for fluoride. Also, graphene has good chemical properties that make it 

Figure 1. Keyword and overlay visualization of co-occurrence analysis of fluoride adsorption using
VOS Viewer.

Graphene is one of the new materials that has been studied as a fluoride absorber
in water. Graphene is a type of carbon material that is formed as a thin sheet of carbon
core. This material has unique physical and chemical properties and is known as a strong
absorbent for polluting elements such as fluoride in water [32]. It has been modified with
methyl and nitrogen atoms to investigate its defluorination properties [33]. Vibrational
mode analysis for vacancy-induced coronene has been performed to understand its molecu-
lar structure and behavior. On the other hand, graphene is a material that has been studied
for its potential use as an adsorbent to remove fluoride from water [34]. This material
is synthesized and used in the form of a composite with CeO2 nanoparticles supported
on activated carbon for efficient removal of fluoride from polluted water [35]. Due to
the structure of graphene, its upper surface is very large and can act as a very strong
adsorbent surface for fluoride. Also, graphene has good chemical properties that make it
selectively absorb fluoride from water and reject other ions and substances in the water.
To use graphene as a fluoride adsorbent, it is usually dissolved in water in the form of
nanoparticles, and then, using special processes such as filtration, the fluoride adsorbent is
separated from the water [36]. Using graphene as a fluoride absorber has advantages and
disadvantages. As an advantage, we can point out the extremely high absorption power of
graphene. Also, graphene has very high chemical and thermal stability, which makes it
able to remove fluoride from water. In addition, graphene is a very light and thin material
that can easily be moved, and it also reduces installation and maintenance costs [37]. But as
disadvantages, one could mention the high price of graphene production and the need for
advanced technology to produce graphene. Sometimes, it can also absorb other elements,
such as calcium and magnesium. In addition, if graphene is dissolved in water in the form
of nanoparticles, it may cause problems for the environment and human health due to
health risks such as toxicity and axiomatization [35–37].

The interaction mechanism between ionic liquids–iron oxide and fluoride ions is de-
picted in Figure 2. The magnetic properties facilitate the binding of iron oxide and F− ions.
The ionic liquids rely on electrostatic attraction to bind with iron oxide. Additionally, tri-
hexyl(tetradecyl)phosphonium chloride contributes to fluoride adsorption through ion-pair
attraction, ion exchange, protonated hydroxyl groups, and hydrogen bonding. The OH
and carboxyl groups, as well as their electrostatic properties, are crucial in accelerating the
absorption of ionic liquids, such as iron oxide [38].
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Recently, studies in nanotechnology using nanomaterials as adsorbents in wastewater
treatment have received attention [39]. Pure adsorbents have many applications but have
limiting properties, such as non-selective adsorption and recycling problems. To expand the
scope of application of absorbent materials, the structure is improved and the absorption
sites are increased by combining two different absorbent materials with a synergistic
effect. In theory, the process of fluoride adsorption onto solid particles comprises three
primary stages: initial migration of fluoride from the solution to the external surface of the
absorbent, subsequent attachment of fluoride onto the surface of the particle, and eventual
ion exchange or diffusion into the particle [40]. To evaluate the possibility of using an
adsorbent in practice, one should consider its adsorption capacity in dilute solutions, its
pH, the contact time, the stability of the adsorbent, its regeneration, the effect of other
anions and cations, and the total costs [41]. The adsorption process provides satisfactory
results and is a promising method for fluoride removal from groundwater.

The most popular method for removing fluoride from water is adsorption, and the
development of adsorbents is the key to the advancement of adsorption technology [42].
The common fluoride removal adsorbents are categorized into four categories in this
review: carbon-based, biopolymers, metal oxides/hydroxides, and other adsorbents. Two
approaches to creating new adsorbents are the synthesis of composite materials and the
utilization of novel materials. Research on the composite synthesis of many types of
conventional adsorbents has increased recently, but not as much as that on the discovery
of novel adsorbents for fluoride adsorption. Metal oxides, which were initially used as
adsorbents, can be used as active centers in a variety of applications for changing and
combining with other types of adsorbents [43].

The current problem of excess fluoride in drinking water around the world makes
people look toward low-cost but efficient adsorbents. Recent studies have looked into
creating materials that can effectively remove fluoride. So, researchers have developed
various adsorbents for this purpose, which are presented in Table 1.



Toxics 2024, 12, 306 6 of 19

Table 1. Recent adsorbents and their respective fluoride removal capacities.

Adsorbent Fluoride Removal Capacity (mg/g) Reference

Mg-Fe-La 112.17 [44]

Polygonum orientale Linn. (Al2(SO4)3 modification) 0.77 [45]

Fe-Al-La 8.17 [46]

CeO2/Al2O3 50 [47]

Fe3O4/CS/Al(OH)3 76.63 [48]

MIL-24(Al)-NH2 1070.6 [49]

Al-Cu oxide nanoparticles supported on steel slag 89.5 [50]

LaP-POT(lanthanum phosphate and poly-otoluidine) 10.94 [51]

Iron ore 1.45 [52]

Dolomite 0.011 [53]

Acid-modified pyrolusite (PA-2) 0.58 [54]

Li/Al-LDH 35.4 [55]

Fe-La-Ce 303.03 [56]

3. Membrane Filtration

Membrane filtration is a method that can be used to remove fluoride from groundwater.
This method involves passing water through a semi-permeable membrane that allows
water molecules to pass through while trapping fluoride ions. Several membrane filtration
methods can be used to remove fluoride, including reverse osmosis, nanofiltration, and
ultrafiltration. Each method has different pore sizes and molecular weight cutoffs that
determine the size and type of particles that can be removed. A co-occurrence analysis
of fluoride membrane filtration using VOS Viewer is displayed in Figure 3 through an
overlay visualization.
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The most common method for removing fluoride ions from groundwater and surface
water is the membrane filtration method. This method uses a high-pressure pump to pass
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water through a semi-permeable membrane that removes fluoride ions and other contami-
nants. Reverse osmosis membranes have pores of about 0.1 nm and can remove up to 99%
of fluoride ions from water. Nanofiltration is another membrane filtration method that can
be used to remove fluoride. In this method, a membrane with larger pores than reverse
osmosis membranes is used, which enables the removal of larger particles and molecules.
Nanofiltration can remove up to 80% of fluoride ions from water [57]. Nanofiltration is
broadly divided into two categories: organic solvent nanofiltration and solvent-resistant
nanofiltration. Typically, these nanofiltration membranes are composed of cellulose-based
and polyamide composite materials, with hollow fiber and spiral wound configurations
being common. The operational parameters and longevity of these membranes vary de-
pending on the fabrication techniques. The quality of water obtained from membrane
purification depends on factors such as pore size and applied pressure. Reverse osmosis
(RO) is a physical separation process where pre-treated water is pressurized and passed
through a semi-permeable membrane. In RO, the semi-permeable membrane separates
two solutions, with pressure applied to reverse the natural flow of the water. This pressure
drives the water from a high concentration compartment to a low concentration compart-
ment. Consequently, impurities and contaminants are excluded and accumulate on one side
of the semi-permeable membrane, while pure water is collected on the other side [58]. This
process is illustrated in Figure 4. Reverse osmosis is a water purification process based on
selectively allowing water molecules to pass through a semi-permeable membrane under
pressure while excluding dissolved solutes and contaminants. This selective permeability
ensures the production of clean and potable water.
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Ultrafiltration is a membrane filtration method with even larger pores that allow
the removal of particles such as bacteria and viruses. While ultrafiltration is not usually
used solely for fluoride removal, it can be used in combination with other methods
to achieve optimal results. Filtering methods may be expensive and require regular
maintenance and replacement of membranes, but due to their high efficiency, they are
used more than other methods. One of the disadvantages of this type of method is that
the membranes can become contaminated over time, and their efficiency decreases, so
they need to be cleaned or replaced. As a study, the required pressures are much lower,
the energy required is lower, the solute removal is much lower, and the flow is faster [59].
Various studies have been conducted concerning the mechanism of solute retention and
the optimization of conditions related to nanofiltration membranes. Solute retention is
attributed to steric and charge effects [60]. The subsequent steric effect leads to more
retention of fluoride on nanofiltration membranes than competing monovalent anions
such as chloride or nitrate [61]. Using hydrogel filters to absorb fluoride from water is one
of the methods used in membrane filtration [62]. Hydrogel filters containing zinc oxide
nanoparticles are made and used to remove fluoride from groundwater. These filters
have removed 97% of the fluoride from water, while only 40% of fluoride is removed in
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conventional filters. In addition, hydrogel filters containing ZnO nanoparticles remove
other chemical pollutants, such as lead, cadmium, and zinc, from water. This method
uses membrane filtration with a combination of adsorption and membrane processes.
In this method, the groundwater is first filtered through a membrane system to remove
large particles and create high pressure. Then, the water is directed to the hydrogel
filters containing ZnO nanoparticles. In these filters, ZnO nanoparticles absorb fluoride
from the water, and the treated water is re-passed through a membrane filter to remove
smaller particles and other chemical contaminants.

4. Electrocoagulation

Electrocoagulation (EC) is another method to remove fluoride ions. EC is an electro-
chemical technique used to remove contaminants from water through physicochemical
processes driven by an electrical current. As Figure 5 shows, in a basic EC setup, two
metal electrodes, an anode, and a cathode are employed. Oxidation occurs at the anode,
producing metallic cations, while reduction takes place at the cathode, forming hydrogen
gas bubbles and hydroxide ions. This leads to the neutralization of pollutants and the
formation of larger flocs for easier removal. Subsequently, physical separation methods
like flotation and filtration are employed to separate the flocs from the water. Inorganic
pollutants are attracted to working electrodes due to electrophoresis, aiding in their re-
moval. Despite its advantages, such as simplicity and minimal chemical usage, EC also
has drawbacks, like the need for electrode replacement and the formation of passivated
films [63]. Figure 5 shows an overlay visualization of a co-occurrence analysis of the elec-
trocoagulation method for the removal of fluoride from underground water. As shown in
Figure 6, the electrocoagulation method has made a great contribution to fluoride removal
research. The electrocoagulation process involves passing an electric current through two
or more metal electrodes, usually made of iron or aluminum, and placing it in water. The
electric current causes the corrosion of the metal electrodes and the release of metal ions
in the water. These metal ions then react with fluoride ions in the water to form insoluble
metal fluoride complexes that can be removed by sedimentation or filtration. The effec-
tiveness of electrocoagulation for fluoride removal depends on various factors, including
the type and concentration of metal electrodes used, current density, and water pH. In
general, higher current density and lower pH values increase fluoride removal efficiency.
Electrocoagulation has several advantages over other fluoride removal methods, including
low cost, ease of operation, and the ability to treat a large volume of water. It also produces
less sludge than other coagulation methods and reduces production waste.

Fluoride elimination from contaminated groundwater or wastewater can be achieved
through the formation of Al(OH)3−xFx precipitate via chemical substitution between hy-
droxide and fluoride ions, provided that there are not enough OH- ions to neutralize the
positive charge of the aluminum cation. Studies have shown that employing aluminum
electrodes in the EC process is more efficient for fluoride removal compared to iron elec-
trodes. Research on electrode configurations revealed that employing solely aluminum
electrodes resulted in the highest efficiency for fluoride removal, reaching 89%. However,
this efficiency declined by 8% upon substituting a single working electrode from aluminum
to iron. Conversely, utilizing only iron electrodes yielded a notably lower elimination
efficiency of 8.1% [64].
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However, electrocoagulation also has disadvantages, such as the potential for corrosion
of the metal electrodes and the release of other pollutants into the water, the need for
regular maintenance and replacement of electrodes, and the potential for high energy
consumption if the process is not optimized. Overall, electrocoagulation is a promising
method for fluoride removal from groundwater, but it must be optimized and monitored
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to ensure effective and efficient treatment [65]. Recently, there has been a growing interest
in the application of electrocoagulation for the treatment of wastewater containing organic
pollutants, heavy metals, and fluoride [66]. Electrocoagulation is a favorable technique in
terms of process conditions; usable components in the water could be separated and reused.
Electrocoagulation is a technique that uses anode oxidation to produce the coagulant in
situ, typically using aluminum or iron. A typical electrocoagulation reactor consists of
several electrolytic cells, each containing a cathode and an anode, which can be made of the
same or different materials [67]. The electric current (flow of electrons) causes aluminum
or iron to be transferred from an anode material to a solution, leading to the formation of
Al3+ or Fe2+. Simultaneously, the evolution of hydrogen gas and the release of hydroxide
anions occur in a cathode. The hydroxide anions move towards an anode and form ion
pairs with metal cations. These pairs form polymeric hydroxides of the aluminum or iron,
i.e., compounds responsible for coagulation [66]. In this process, metal electrodes (such
as aluminum) are placed in water, and by applying an electric current, electrocoagulation
activity is created, which leads to the formation of flocculants (solids called flocs). These
flocculants are deposited on the fluoride in the water, and by using filtration, the fluoride is
removed from the water [68]. Aluminum electrodes were used in underground water with
high fluoride concentrations, which showed that fluoride removal increases with increasing
electric current and pH, and at pH 7 and an electric current of 1.5 ampere/square meter,
the fluoride concentration decreased from 3.2 mg/L to below 1.5 mg/L [69]. Various metal
electrodes, such as aluminum, iron, and steel, have been used, and the results have shown
that the electrocoagulation process can be used as one of the effective and reliable methods
to remove fluoride from groundwater [70].

5. Photocatalysis

Figure 7 shows an overlay visualization of a co-occurrence analysis of photocatalysis
using VOS Viewer software, which shows the contribution of different studied parameters
related to the study of fluoride removal from water through photocatalysis techniques.
This method involves the use of a photocatalyst to remove fluoride ions from water. The
photocatalytic process involves the absorption of light by the photocatalyst, which creates
electron-hole pairs that react with water molecules to produce OH [71].

The effectiveness of photocatalysis for fluoride removal depends on various factors,
such as the type and concentration of photocatalyst used, light intensity and wavelength,
and water pH. In general, higher light intensity and lower pH values increase fluoride
removal efficiency [72]. Photocatalysis has several advantages over other fluoride removal
methods, including its ability to decompose other pollutants in addition to fluoride, its low
cost, and its ability to treat a large volume of water. It also does not require the addition
of any chemicals, and this method is environmentally friendly. However, photocatalysis
also has disadvantages, such as the need for a continuous supply of light, which is difficult
to maintain in some settings. In addition, the catalyst can become inactive over time, and
its efficiency decreases, so it needs to be replaced. Overall, photocatalysis is a promising
method for fluoride removal from groundwater but must be carefully optimized and
monitored to ensure effective and efficient treatment [73].

The photocatalytic mechanism in the g-C3N4/TiO2 system involves several key steps
to enhance catalytic efficiency. Initially, due to rapid electron-hole pair recombination,
g-C3N4 alone exhibits low catalytic activity. However, when TiO2 composite is loaded
onto the g-C3N4, additional active sites for hydrogen evolution are provided, accelerating
electron transfer and enhancing the overall catalytic activity. Under visible light irradi-
ation, heterogeneous g-C3N4/TiO2 absorbs photon energy, generating photogenerated
electron-hole pairs more efficiently due to its large specific surface area. This prevents the
recombination of electron-hole pairs and facilitates their involvement in catalytic reactions.
The conduction band and valence band potentials of g-C3N4 and TiO2 play crucial roles in
electron transfer. Electrons readily transfer from the conduction band of g-C3N4 to that of
TiO2. These electrons then react with adsorbed oxygen, producing highly reactive superox-
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ide radicals (O2−•), which combine with water to form hydroxyl radicals (OH•). Although
the valence band of g-C3N4 lacks sufficient H+ to react with water molecules, the valence
band of TiO2 readily combines with water to generate active hydroxyl radicals. Ultimately,
these active oxygen groups can adsorb fluoride ions and oxidize them to form F2, con-
tributing to fluoride elimination (Figure 8). Overall, the g-C3N4/TiO2 system demonstrates
improved photocatalytic efficiency through enhanced electron transfer, increased active
sites, and efficient generation of reactive oxygen species under visible light irradiation,
facilitating fluoride removal from contaminated water sources [72].
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In this process, the interaction of the light and the catalyst is used to produce oxygen
free radicals that act as strong oxidizers and remove fluoride from the water by destroying
it. A TiO2 catalyst was used to remove fluoride from groundwater. The results showed
that the fluoride removal increases with increasing time and light intensity, and in optimal
conditions, the fluoride concentration decreased from 2.5 mg/L to below 1.5 mg/L. Various
catalysts, such as Fe, ZnO, and CdS, have been used, and the results have shown that
the photocatalysis process can be used as an effective and reliable method to remove
fluoride from groundwater. ZnO and Fe2O3 catalysts are not sufficient to remove fluoride,
but the efficiency of fluoride removal was enhanced when they were combined into a
nanocomposite [73,74].

6. Ion Exchange

Ion exchange involves using a resin that exchanges the fluoride ions in the water
with other ions, usually chloride or hydroxide ions, which are less harmful [75]. The
ion-exchange process involves passing water through a column packed with resin with a
high affinity for fluoride ions. As the water passes through the column, fluoride ions are
absorbed into the resin and exchanged with other ions. The resin becomes saturated with
fluoride ions over time and must be regenerated or replaced to continue removing fluoride
from the water [76]. Figure 9 shows an overlay visualization of a co-occurrence analysis of
ion exchange using VOS Viewer. As Figure 5 shows, the contribution of the ion-exchange
method in studies related to fluoride removal from water was lower than other methods.
The effectiveness of ion exchange for fluoride removal depends on various factors, such as
the type and concentration of resin used, water flow rate, and water pH [77].
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Ion exchange has several advantages over other fluoride removal methods, including
its ability to remove fluoride to very low levels, its low operating costs, and its ability to
treat large volumes of water [78]. However, ion exchange also has disadvantages, such as
the need for regular regeneration or resin replacement, which can be expensive and time-
consuming. In addition, the ion-exchange process can be affected by other ions in water that
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can compete with fluoride ions for exchange sites on the resin [79]. Ion-exchange columns
have been used to remove fluoride from groundwater. In this example, Diacon ion-exchange
resin is used to absorb fluoride ions in water. Water with fluoride is injected from the top
of the column, and the fluoride ions are replaced by other ions in the resin to separate the
fluoride from the water. Then, the outlet water from the ion-exchange column is obtained
with a lower concentration of fluoride [78–80]. Yu and colleagues attempted to synthesize
sulfate-type zirconium alginate hydrogel beads with a 3D network structure by introducing
sulfate groups to zirconium sites on the surface. As Figure 10 shows, this modification
resulted in a porous structure with abundant macropores and mesopores. The sulfate-
type zirconium alginate hydrogel beads with a 3D network structure exhibited improved
defluorination capability across a wide pH range of 3–9 compared to the synthesized
material. Remarkably, these beads demonstrated a maximum adsorption capacity of
101.3 mg/g, surpassing that of other millimeter-scale and some nano-scale adsorbents [79].
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Table 2 lists the materials used, treatment capacity, efficiency, and treatment method.
It shows that the different removal methods have different efficiencies depending on their
conditions, but in general, all these methods show remarkable efficiency for removing
fluoride from underground water.

Table 2. Comparative evaluation of removal efficiency of various processes to remove fluoride from
underground water.

Purification Method Purification Efficiency Removal Capacity Materials Used Process Description

Adsorption

Efficiency varies with
materials and

parameters. Modified
diatomite with

aluminum hydroxide
can remove up to 98%

of fluoride [80].

Maximizing the
adsorption capacity of

substances in the
solution enhances

purification
potential [81].

Activated carbon,
zeolites, ion-exchange

resins, membranes [82].

Adsorbent materials
attract and sequester
organic substances,
chemicals, and ions

from the solution [83].
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Table 2. Cont.

Purification Method Purification Efficiency Removal Capacity Materials Used Process Description

Electrocoagulation

Efficiency depends on
the current type,

electrodes, and other
factors. Up to 99%

fluoride removal with
alternating current and
polarity inverter [84].

Successful reduction in
fluoride to less than 1.5
mg/L, meeting WHO

and TBS standards,
with operational

expenses between 0.20
and 0.26 EUR per cubic

meter [85].

Metal electrodes,
semiconductor

electrodes, polymer
electrodes [86].

Application of electric
current removes ions

and chemicals from the
solution [87].

Membrane Filtration

Up to 99% fluoride
removal with reverse

osmosis, 95% with
electrodialysis, and 90%
with nanofiltration [88].

Suitable membranes
can treat several

hundred to thousand
gallons of water

daily [89].

Nanofiltration
membranes, stomatal
membranes, reverse

osmosis
membranes [88].

Pressure-driven
process through

membranes isolates
and purifies dissolved

substances [90].

Photocatalysis

Modified zeolite and
Al3+ amended mine

waste, removing up to
98% and 80% of

fluoride, respectively.
Zirconium-based

substances and 2D
MIL-53(Al) are also

effective [84,91].

Efficacy influenced by
materials used, with
compliance to EPA’s
limit of less than 4

mg/L of fluoride in
treated water [7].

Photocatalytic
nanoparticles, like

titanium dioxide, zinc
oxide, and zinc

sulfide [92].

Activation by
visible/ultraviolet light
triggers photocatalysts

to refine
substances [93].

Ion Exchange

Strong-base
anion-exchange resins

with quaternary
ammonium groups
remove 90–95% of

fluoride but may alter
pH and chloride

levels [94].

Activated alumina has
superior selectivity in
fluoride removal, with

a capacity of up to 2
kg/cubic foot and an
optimal service flow

rate of 1 gallon/minute
per cubic foot [95].

Ion-exchange
resins [96].

Ion-exchange resin
assimilates ions from

the solution, producing
a clear, refined

liquid [94].

7. Conclusions

Recent research has indicated that employing nanotechnology for the removal of
fluoride from subterranean water constitutes a novel and effective approach to water pu-
rification. In these methods, nanoparticles such as iron, titanium dioxide, activated carbon,
and graphene serve as absorbents for fluoride. Owing to their expansive surface area, these
nanoparticles are capable of entirely adsorbing fluoride from the water. Given that fluoride
may occur naturally in underground water and pose risks to human health, the adoption
of nanotechnology for its removal is of significant importance. These methods are not
limited to fluoride absorption; they can also eliminate a variety of other chemical pollutants.
Furthermore, the small size of nanoparticles and their propensity for uniform distribution
in nanotechnologies contribute to enhanced efficiency and performance improvement.
Nonetheless, the application of nanotechnologies necessitates further comprehensive re-
search and extensive physical and chemical testing to unequivocally confirm their efficacy.
This article also examined the positive and negative impacts of fluoride’s presence or
absence in subterranean water, revealing that fluctuations in fluoride levels can adversely
affect both the earth and human health. Given the potent capabilities of nanotechnologies
in fluoride removal, it is conceivable that these methods will play a crucial role in the future
of underground water purification and quality enhancement.

8. Future Scope and Research

The future looks bright for using nanotechnology to remove fluoride from groundwa-
ter, but more research is needed. Advanced nanomaterials could be further explored for
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the targeted removal of fluoride. This involves investigating new methods of synthesis,
surface modifications, and composite materials to enhance adsorption capacity, selectivity,
and reusability. Further investigation is required to enhance the operational parameters
of nanotechnology-driven water treatment systems, including flow rates, contact times,
and pH conditions. Understanding the kinetics and mechanisms of fluoride adsorption
onto nanoparticles can lead to more efficient and cost-effective purification processes.
Investigating the long-term stability and performance of nanomaterials under various
environmental conditions is crucial for assessing their practical applicability. Research
on nanoparticle-based adsorbents will provide insights for sustainability. To ensure their
sustainability, it is crucial to assess the potential environmental impact of nanotechnology-
based water purification methods. Research in the near future focus on examining the
fate, transport, and ecological consequences of nanomaterials in aquatic environments, as
well as their potential interactions with other pollutants and organisms. To move from
laboratory-scale experiments to real-world applications, it is necessary to collaborate across
disciplines and innovate technologically to scale up nanotechnology-based water treatment
processes. Research efforts could focus on developing scalable manufacturing methods,
modular treatment units, and integration strategies with existing water infrastructure. To
ensure widespread adoption, it is crucial to address the cost-effectiveness and accessibility
of nanotechnology-based water purification technologies, especially in resource-limited
settings. The use of low-cost precursors, the recycling of nanomaterials, and decentralized
treatment approaches can all be explored as cost-reduction strategies in future research.
To ensure safety, efficacy, and compliance with regulatory requirements, it is necessary to
establish regulatory frameworks and quality standards for nanotechnology-based water
purification technologies. Addressing regulatory gaps, standardizing testing protocols,
and facilitating technology transfer and commercialization could be the focus of future
research. Nanotechnology research for fluoride removal from groundwater should focus
on innovation, sustainability, and scaling in order to effectively address global water chal-
lenges. The field will only progress if scientists, engineers, policymakers, and stakeholders
collaborate across disciplines to translate research findings into practical solutions for water
purification and quality enhancement.
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