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1 Introduction

The study of power corrections in scattering processes at hadron colliders has received
increasing attention in the past few years due to its importance for precision physics. Power
corrections become relevant every time a scattering process involves two, or more, widely
separated scales. This is a very common situation at hadron colliders: different scales arise
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not only due to the presence of particles with very different masses. Often, different scales
have a dynamical origin, related to the physical cuts necessary to select a given observable, or
follow from the value of kinematic observables. Consider for instance a n-particle scattering
process in QED, with the emission of an additional soft photon with momentum k, and denote
the corresponding amplitude Mn+1. This kinematic configuration is typical of processes
occurring near threshold, where almost all the energy of the initial state particles goes into
the required final state, such that extra radiation is constrained to be soft. The amplitude is
conveniently described as a power expansion in the ratio ξ ∼ E/Q≪ 1, where E represents
the energy of the soft photon, and Q is the invariant mass of the final state

Mn+1 = MLP
n+1 +MNLP

n+1 +O(ξ) , (1.1)

where the leading power (LP) term scales as MLP
n+1 ∼ 1/ξ, and the next-to-leading power

(NLP) contribution is of order MNLP
n+1 ∼ ξ0. In perturbation theory each coefficient of the

power expansion contains large logarithms of the type αn
s logm ξ ∼ 1, with m up to 2n− 1,

which need to be resummed to obtain precise predictions.
Key to the resummation program is the determination of how the scattering amplitude

factorizes into simpler (single scale) objects, involving the corresponding non-radiative
amplitude Mn as well as collinear and soft matrix elements describing soft and collinear
radiation. Factorization analyses can be developed within the original theory (i.e., QED
or QCD), see e.g. [1–5] for seminal papers. Alternatively this can be done by means of an
effective theory, such as the soft-collinear effective field theory (SCET) [6–8], constructed
to correctly reproduce soft and collinear modes in the scattering process. The factorization
structure of the LP amplitude in eq. (1.1) has been known for a long time, while the study of
MNLP

n+1 is more recent. Within QCD, factorization theorems have been developed for specific
cases, such as the case n = 2 corresponding to Drell-Yan like processes [9–12] (see also [13, 14]
for factorization studies at NLP in Λ2

QCD/Q
2); the study of MNLP

n+1 for general n has been
initiated in [15] (see also [16]). Within SCET we refer to [17] for studies of the factorization
structure of Drell-Yan at general subleading power, and to [18–21] for various aspects of the
factorization properties of the scattering amplitude MNLP

n+1 .
As discussed in [15], when studying the factorization of MNLP

n+1 , it is useful to distinguish
two contributions: one in which the radiation is emitted from the external legs, and another
in which the radiation is emitted internally, from a particle within the hard scattering kernel.
Schematically, this corresponds to separating the amplitude into two parts

Mn+1 = Mext
n+1 +Mint

n+1 . (1.2)

This decomposition is useful, because the amplitude Mint
n+1 can actually be obtained by

means of the Ward identity from Mext
n+1. In turn, it was shown that understanding the

factorization properties of Mext
n+1 requires one to understand the factorization properties of

the corresponding non-radiative amplitude, Mn. This is best seen by considering for instance
a soft photon emission from an outgoing fermion i. In this case Mext

n+1 takes the form

Mext
n+1 = ū(pi)(ieqiγ

µ)
i(/pi

+ /k +m)
(pi + k)2 −m2 Mn(p1, . . . , pi + k, . . . pn) , (1.3)
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where Mn represents the elastic amplitude (with the spinor ū(pi) stripped off). Understanding
the factorization of Mext

n+1 requires the expansion of the non-radiative amplitude Mn for
small k, but such expansion become non-trivial in presence of massless external particles, or
external particles whose mass m is much smaller compared to the other momentum invariants
in the scattering, m2 ≪ sij with sij = (pi + pj)2. In this case, one needs to take into account
that the non-radiative amplitude factorizes into non-trivial functions involving configurations
of virtual soft and collinear momenta. According to the power counting analysis developed
in [15], focusing only on the configurations which involve non-trivial collinear matrix elements,
up to NLP the elastic amplitude factorizes according to

Mn

∣∣LP+NLP
coll =

( n∏
i=1

J i
(f)

)
⊗H S +

n∑
i=1

(∏
j ̸=i

J j
(f)

)[
J i

(fγ) ⊗H i
(fγ) + J i

(f∂γ) ⊗H i
(f∂γ)

]
S

+
n∑

i=1

(∏
j ̸=i

J j
(f)

)
J i

(fγγ) ⊗H i
(fγγ) S +

n∑
i=1

(∏
j ̸=i

J j
(f)

)
J i

(fff) ⊗H i
(fff) S

+
∑

1≤i≤j≤n

( ∏
k ̸=i,j

Jk
(f)

)
J i

(fγ)J
j
(fγ) ⊗H ij

(fγ)(fγ) S , (1.4)

where the functions JI and S describe long-distance collinear and soft virtual radiation in Mn,
and HI are hard functions, representing the contribution due to hard momenta configurations.
In eq. (1.4) the first term represents the LP contribution, while the second term in the first
line starts at “

√
NLP”, and the contributions in the second and third line start at NLP.

eq. (1.4) is expected to be valid to all orders in perturbation theory. In [15] some explicit
checks have been provided at one loop, however, a more thorough test of the factorization
formula requires at least a two-loop computation, since the functions in the second and third
lines of eq. (1.4) appear for the first time at NNLO.

The purpose of this paper is to provide data that can be used to validate eq. (1.4). To
this end we consider the simplest QED process that gives non-trivial contributions to all the
jet functions appearing in eq. (1.4), namely, the annihilation of a massive fermion anti-fermion
pair of mass m into an off-shell photon of invariant mass Q (or the time-reversed process
of photon decay). More specifically, we consider the matrix element of the QED massive
vector current ψ̄γµψ, which in turn is expressed in terms of two form factors F1(Q2,m2) and
F2(Q2,m2). The two-loop result is known [22, 24], (See also [25] for an earlier calculation of
the corresponding contribution to the e+e− → γ∗/Z0∗ cross section.) and in recent years a
lot of effort has been devoted to the calculation of the three loop correction [26–37], although
no complete analytic result as yet exists.

For our purposes we need the two-loop small mass expansion of the form factors, i.e.
m≪ Q, which is also given in [22, 24]. However, the small mass expansion alone does not
provide enough information to compare with the corresponding factorized expression that
one would obtain evaluating the form factor according to eq. (1.4). Indeed, in the small mass
limit it is possible to calculate the form factors with the method of expansion by momentum
regions, [38, 39]. Within this approach, one assigns to the loop momentum a specific scaling,
which can be hard, collinear, soft, etc, with respect to the scaling of the external particle
momenta. Each term defines a momentum region, and it is then possible to expand the form
factors directly at the level of the integrand in the small parameters appearing in each region.
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The full result is recovered by summing over all regions. This approach is particularly useful
because we expect the jet functions in eq. (1.4) to be directly related with the collinear and
anti-collinear region contributions. (See [40, 41] for previous applications of the method of
regions to study the correspondence between collinear regions and jet functions.)

To this end, we present in this paper the calculation of the two-loop massive form factors
evaluated within the method of regions. To the best of our knowledge this is the first time
that the two-loop result is evaluated entirely within this method. Thus far in literature only
single integrals involved in the two-loop massive form factors have been evaluated within the
method of regions, see e.g. [39, 42, 43].1 Besides providing more data for the comparison
with eq. (1.4) (which will be considered in a forthcoming work), this calculation actually
has intrinsic value of its own.

For instance, one feature of the region expansion, which was found in [39, 42, 43], is
that, at the level of single integrals, more regions appear at two loop, that were not present
in the calculation at one loop. This is problematic from the point of view of an effective
field theory description, and in general for the derivation of factorization theorems valid at
all orders in perturbation theory. It is clear that if new momentum modes appear at each
order in perturbation theory, no factorization theorem can be expected to be valid to all
orders in perturbation theory. However, it was already observed in [45] that, although new
regions appear in single integrals at two loops, their contribution cancels when summing all
diagrams, i.e. at the level of the form factors. The analysis in [45] considered only the LP
terms in the small mass expansion; our calculation shows that the ultra-collinear regions
cancel also at NLP, at the level of the form factors. This result restores confidence in the
all-order validity of factorization formulae such as eq. (1.4), whose derivation is based on
power counting arguments [15] using the momentum modes appearing at one loop.

Another well-known feature of the method of regions is that expansion of the integrand
in certain regions may render the integral divergent, even in dimensional regularization, such
that additional analytic regulators are necessary in order to make the integral calculable. We
check that this is indeed the case for the massive form factor, starting at two loops. Analytic
regulators were already applied in the past to the calculation of single integrals. In this work
we need to apply analytic regulators to the calculation of different diagrams, which gives us
the opportunity to discuss a few different regulators in detail and verify their consistency by
checking that the dependence on the analytic regulator cancel at the level of single integrals,
given that the full result does not require analytic regulators.

The paper is structured as follows. In section 2, we set up our notation, introduce the
momentum region expansion and present the result for the regions contributing at one loop.
We move then to considering the calculation at two loops. Section 3 describes the general
approach we adopt for its expansion by regions, while section 4 presents the corresponding
technical details. As will be discussed there, we compute diagrams categorized into three
different topologies depending on the flow of the internal momenta, which we denote by A,
B and X. The main results are provided in section 5, where we list explicit expressions
of the form factor specified per region, up to NLP. We conclude and discuss our results

1Let us notice that a similar regional analysis involving the heavy-to-light form factor has been considered
at two loops in [44].
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p1

p2

(a)

p1

p2

(b)

Figure 1. Tree and one loop diagrams contributing to the massive quark form factor in QED.

in section 6, pointing to several interesting subtleties we encountered and which can be
relevant for future developments.

In appendix A and B, we present further technical details related to the use of rapidity
regulators and the regional analysis performed in topology X, which is the most challenging
of the three topologies.

2 Massive form factors

In this paper we consider the quark-antiquark annihilation process

q(p1) + q̄(p2) → γ∗(q), (2.1)

whose tree and one loop contribution in QED is given respectively in figure 1 (a) and (b).
Following [22], the corresponding vertex function V µ(p1, p2) is expressed in terms of two
form factors, F1 and F2, as follows:

V µ(p1, p2) = v̄(p2) Γµ(p1, p2)u(p1), (2.2)

Γµ(p1, p2) = −i e eq

[
F1
(
s,m2)γµ + 1

2mF2
(
s,m2) i σµνqν

]
, (2.3)

where σµν = i
2 [γ

µ, γν ]; furthermore, s = (p1 + p2)2 represents the center of mass energy,
and m is the quark mass. The form factors Fi, i = 1, 2 can be extracted by applying
projection operators:

Fi
(
s,m2) = Tr

[
Pµ

i (m, p1, p2) Γµ(p1, p2)
]
, (2.4)

where
Pµ

i (m, p1, p2) =
/p1 +m

m

[
i g

(i)
1 γµ + i

2mg
(i)
2
(
pµ

2 − pµ
1
)]/p2 −m

m
, (2.5)

and2

g
(1)
1 = − 1

eNc

1
4(1− ϵ)

1
(s/m2 − 4) ,

g
(1)
2 = 1

eNc

3− 2ϵ
(1− ϵ)

1
(s/m2 − 4)2 ,

g
(2)
1 = 1

eNc

1
(1− ϵ)

1
s/m2(s/m2 − 4) ,

g
(2)
2 = − 1

eNc

1
(1− ϵ)

1
(s/m2 − 4)2

[4m2

s
+ 2− 2ϵ

]
. (2.6)

2The definition of g
(2)
2 in [22] has a typo; here we follow the definition given in eq. (2.7) of [28].
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In this paper we work in d = 4 − 2ϵ dimensions, compute the unsubtracted form factor
and omit counterterm insertions, which makes the mass m the unrenormalized mass. The
form factors have the perturbative expansion

Fi

(
s,m2, µ2

)
= F

(0)
i

(
s,m2

)
+
e2

q αEM

4π F
(1)
i

(
s,m2, µ2

)
+
(
e2

q αEM

4π

)2
F

(2)
i

(
s,m2, µ2

)
+O

(
α3

EM

)
, (2.7)

where
F

(0)
1

(
s,m2

)
= 1, F

(0)
2

(
s,m2

)
= 0. (2.8)

We are interested in computing the higher order corrections in the small mass (or high-energy)
limit m2/s ∼ λ2 ≪ 1. We assume the center of mass frame, with the incoming quark moving
along the positive z-axis. The momenta of the quark and anti-quark can then be decomposed
along two light-like directions, n± = (1, 0, 0,∓1) as follows:

pµ
1 =

(√
p2 +m2, 0, 0, p

)
= p+

1
nµ
−
2 + p−1

nµ
+
2 ,

pµ
2 =

(√
p2 +m2, 0, 0,−p

)
= p+

2
nµ
−
2 + p−2

nµ
+
2 . (2.9)

In the small mass limit the p±i components have the scaling properties

p+
1 = n+ · p1 = p−2 = n− · p2 =

√
p2 +m2 + p ∼

√
s,

p−1 = n− · p1 = p+
2 = n+ · p2 =

√
p2 +m2 − p ∼ λ2√s. (2.10)

In what follows it will prove useful to define a variable

ŝ ≡ p+
1 p

−
2 =

(√
m2 + p2 + p

)2
, (2.11)

such that

s = 2m2 + p+
1 p

−
2 + p−1 p

+
2 = 2m2 + ŝ+ m4

ŝ
. (2.12)

We calculate the higher order corrections to the form factor in dimensional regularization,
and use the method of expansion by regions [38, 39, 46] to evaluate the loop integrals in
the limit m2 ≪ s. In general one expects several regions to contribute. It is possible to
use geometric methods (see e.g. [47–49]) to reveal all regions contributing to an integral. In
case of the problem at hand we find it is still possible to find all regions contributing up to
two loops by straightforward inspection of the propagators in the loops. One advantage of
this method is that the regions are directly associated to the scaling of the loop momenta,
rather than to the scaling of Feynman parameters, as when geometric methods are used. This
will allow us to relate more easily our results to the construction of an effective field theory
description of the quark form factor, as effective field theories are typically constructed to
reproduce the momentum regions of the present problem.
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In what follows we decompose a generic momentum k along the light-like directions n±:

kµ = k+n
µ
−
2 + k−

nµ
+
2 + kµ

⊥, kµ = (k+, k−, k⊥), (2.13)

where k± = n± · k. The second identity in the equation above provides a compact notation
to indicate scaling relations. Up to one loop the following loop momentum modes contribute:

Hard (h): k ∼
√
ŝ (λ0, λ0, λ0) ,

Collinear (c): k ∼
√
ŝ (λ0, λ2, λ1) , (2.14)

anti-Collinear (c̄): k ∼
√
ŝ (λ2, λ0, λ1) .

As we will see in what follows, beyond one loop we find that two additional momentum
modes are necessary, which scale as

Ultra-Collinear (uc): k ∼
√
ŝ (λ2, λ4, λ3) ,

Ultra-anti-Collinear (uc): k ∼
√
ŝ (λ4, λ2, λ3) . (2.15)

One might also expect the following modes to contribute:3

Semi-Hard (sh): k ∼
√
ŝ (λ1, λ1, λ1) ,

Soft (s): k ∼
√
ŝ (λ2, λ2, λ2) , (2.16)

however, these turn out to give rise to scaleless loop integrals and therefore do not contribute
up to two-loop level.4

Throughout the paper we define the loop integration measure in dimensional regularization
as follows: ∫

[dk] ≡
(
µ2eγE

4π

)ϵ ∫ d4−2ϵk

(2π)4−2ϵ
. (2.17)

In the limit m2 ≪ s we express the form factors as a power expansion in m2/ŝ, and calculate
the first two terms in the expansion. In general, the form factor is given as a sum over the
contributing regions. At one loop we have for instance

F
(1l)
i

(
µ2

ŝ
,
µ2

m2 , ϵ

)
= F

(1l)
i

∣∣∣
h

(
µ2

ŝ
, ϵ

)
+ F

(1l)
i

∣∣∣
c

(
µ2

m2 , ϵ

)
+ F

(1l)
i

∣∣∣
c̄

(
µ2

m2 , ϵ

)
. (2.18)

Each region is expected to depend non-analytically (logarithmically) on a single scale, which
is dictated by the kinematics of the process. We find that the non-analytic dependence of the
hard region is conveniently given in terms of the factor ŝ, while the non-analytic structure of
the collinear and anti-collinear regions is given in terms of the mass m. At one loop only
the single diagram of figure 1(b) contributes to the form factors and the region expansion
is easy. The expansion of the corresponding scalar integral has been discussed at length in

3In literature the modes of eq. (2.16) are sometimes referred to as soft and ultra-soft respectively [8].
4In the presence of rapidity divergences this depends on the type of rapidity regulator, which we discuss in

detail in section 4 and appendix A.
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appendix A of [15], to which we refer for further details. Here we simply report the result,
and postpone a more technical discussion concerning the region expansion for the two-loop
calculation to section 3. For the form factor F1 we have

F
(1l)
1

∣∣∣
h
=
(

µ2

−ŝ− i0+

)ϵ{
− 2
ϵ2

− 3
ϵ
− 8 + ζ2 + ϵ

(
− 16 + 3ζ2

2 + 14ζ3
3

)
+ m2

ŝ

[
− 2
ϵ
− 6 + ϵ

(
− 16 + ζ2

)]
+O(ϵ2) +O(λ4)

}
, (2.19)

for the hard region, and

F
(1l)
1

∣∣∣
c
=
(

µ2

m2 − i0+

)ϵ{ 1
ϵ2

+ 2
ϵ
+ 4 + ζ2

2 + ϵ

(
8 + ζ2 −

ζ3
3

)
+ m2

ŝ

[1
ϵ
+ 5 + ϵ

(
13 + ζ2

2

)]
+O(ϵ2) +O(λ4)

}
, (2.20)

for the collinear region, and

F
(1l)
1

∣∣∣
c̄
= F

(1l)
1

∣∣∣
c
. (2.21)

In the prefactors in eqs. (2.19) and (2.20), we have explicitly written the Feynman prescription
i0+, which upon expanding in ϵ give logarithms log(µ2/(−ŝ−i0+)) and log(µ2/(m2−i0+)). For
µ2 > 0,m2 > 0 and ŝ > 0 these can be rewritten using log(µ2/(−ŝ−i0+)) → log(µ2/ŝ)+iπ and
log(µ2/(m2 − i0+)) → log(µ2/m2) to obtain the imaginary parts. For notational convenience,
we will drop the Feynman prescription in what follows and note that these can always be
reinstated by ŝ → ŝ + i0+ and m2 → m2 − i0+ after which the imaginary parts can be
retrieved adopting the rule described above.

The form factor F2 starts at NLP. We have

F
(1l)
2

∣∣∣
h
=
(
µ2

−ŝ

)ϵ{m2

ŝ

[4
ϵ
+ 16 + ϵ

(
32− 2ζ2

)]
+O(ϵ2) +O(λ4)

}
, (2.22)

and

F
(1l)
2

∣∣∣
c
=
(
µ2

m2

)ϵ{m2

ŝ

[
− 2
ϵ
− 8 + ϵ

(
− 16− ζ2

)]
+O(ϵ2) +O(λ4)

}
, (2.23)

and
F

(1l)
2

∣∣∣
c̄
= F

(1l)
2

∣∣∣
c
. (2.24)

These results can be compared directly with [22] by extracting the coefficients F (1)
i (s, µ)

as defined in eq. (18) there, as follows

F (1)
i (s, µ) = e−ϵγE

Γ(1 + ϵ)

(
µ2

m2

)−ϵ

F
(1)
i (s, µ). (2.25)

Summing over the regions and expanding also the scale factors in powers of ϵ we find

F (1)
1 (s, µ) =

{1
ϵ

[
1− 2 ln

(
− m2

ŝ

)]
− 3 ln

(
− m2

ŝ

)
− ln2

(
− m2

ŝ

)
+ 2ζ2

+ m2

ŝ

[
4− 2 ln

(
− m2

ŝ

)]
+O(ϵ) +O(λ4)

}
, (2.26)

– 8 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

p1

p2

(d)

p1

p2

(e)

p1

p2p2p2

(f)

p1

p2

(g)

p1

p2

(h)

Figure 2. Diagrams that contribute to the massive form factor at two-loop in QED. Dashed lines
represent massless fermions.

and

F (1)
2 (s, µ) = 4m

2

ŝ
ln
(
− m2

ŝ

)
+O(ϵ) +O(λ4),

in agreement with the high-energy expansion s ≫ m2 of eqs. (19) and (20) of [22].
The massive form factor at two-loop was first computed in QED in [50], followed by [22],

which considered its generalization to QCD. The former provides the full result at the level
of the individual diagrams, while the latter presents results with all diagrams combined, see
eqs. (22) and (23) in [22] for F1 and F2 respectively for more details.

3 Calculational steps

Here we describe the general approach that we adopt throughout the rest of this work,
deferring a discussion of technical details to section 4. In section 3.1, we present the diagrams
that contribute to the two-loop massive form factor, followed by a discussion of their associated
integrals and their classification into three different topologies5 denoted by A, B and X in
section 3.2. We conclude the section with a brief summary in section 3.3 where we preview
various subtleties that we shall encounter in section 4.

3.1 Diagrams contributing to the two-loop form factor

The diagrams that contribute to the massive form factor at two-loop are displayed in figure 2.
There are eight diagrams in total, labeled (a) - (h), with p1 and p2 denoting the external
momenta of the two incoming fermions. Solid and dashed lines are used to represent massive
and massless fermions respectively. Figure 3 suggests there are two additional diagrams to
account for, but these diagrams cancel by Furry’s theorem [51]. Concerning diagram (e), note
that the fermion running inside the loop does not need to correspond to those on the external
lines, but here we ignore this possibility for simplicity as it would introduce an additional
hierarchy of scales that makes the power counting much more involved. Diagrams (b) and

5We adopt the definition of topology as given in [23] in the context of IBP reductions for Feynman integrals.
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p1

p2

p1

p2

Figure 3. Diagrams with a closed fermion loop that cancel in QED by Furry’s theorem [51].

(c), as well as (f) and (g), are related by exchanging p1 and p2 and therefore we expect this
symmetry to be present also during an expansion by regions.

In anticipation of our regional analysis, it is convenient to classify diagrams (a) to (h)
into three different topologies labeled A, B and X which are distinguished by the flow of
their internal momenta.

3.2 Topology classification

Starting with diagrams (a)-(d), we note that the Feynman integrals contributing to these
diagrams share the following parameterization

IA;{ni} ≡
∫
[dk1][dk2]

1
k2n1

1

1
k2n2

2

1
[(k1 − k2)2]n3

1
[(k1 + p1)2 −m2]n4

1
[(k2 + p1)2 −m2]n5

× 1
[(k1 − p2)2 −m2]n6

1
[(k2 − p2)2 −m2]n7

, (3.1)

which we define as topology A. In Eq. (3.1), k1 and k2 denote the internal loop momenta
and the integer ni represents the generic power associated to the ith propagator.

In a similar way, the integrals associated to diagrams (e), (f) and (g) in figure 2 can
be parameterized by

Ib3,b4,b5,b6
B;{ni} ≡

∫
[dk1][dk2]

1
[k2

1 −m2]n1

1
[k2

2 −m2]n2

µ2b3
3

[(k1 − p1)2]n3+b3
(3.2)

× µ2b4
4

[(k1 + k2 − p1)2 −m2]n4+b4

µ2b5
5

[(k1 + p2)2]n5+b5

µ2b6
6

[(k1 + k2 + p2)2 −m2]n6+b6

1
[(k1 + k2)2]n7

,

and this defines topology B. An important distinction compared to topology A is the
appearance of the complex numbers bi associated to propagators 3, 4, 5 and 6, where artificial
scales µi with unit mass dimensions have been introduced on dimensional grounds. The
need for the powers bi can be seen as follows. When expanding in momentum regions, one
finds eikonal propagators that contain only the k+

i or k−i momentum components. As a
result, additional divergences may arise from the k+

i and k−i integrals because the dimensional
parameter ϵ regulates only the transverse momentum components ki,⊥. Various regulators
have been introduced in the literature to tame these rapidity divergences, e.g. space-like
Wilson-lines [52], δ regulators [53–57], η regulators [58, 59], exponential regulators [60],
analytic regulators [61–64] and pure rapidity regulators [65]. In this work, we adopt the
analytic regulator [61], meaning that we raise the relevant propagators to complex powers
bi. The rapidity divergences then manifest themselves as poles in bi, similar to poles in ϵ
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that one encounters in dimensional regularization. As will be described in greater detail in
section 4.2, one does not need to add all four regulators bi simultaneously to regulate the
rapidity divergences present in diagrams (e), (f) and (g). However, we do need to make
different choices per diagram, and therefore the parameterization in eq. (3.2) captures all
three diagrams at once. Furthermore, we point out that the bi’s do not need to be different;
in fact, we will see that only a single regulator is sufficient in topology B. We refer to
appendix A for more details, as well as for a study on the use of other rapidity regulators.
Note that the rapidity divergences show up only as a result of the expansion by regions, since
the corresponding full Feynman integral gets fully regularized by the dimensional regulator
ϵ alone. This observation provides us with a valuable cross-check: all dependence on bi

must cancel once all regions are combined.
Finally, we come to topology X, which corresponds to diagram (h) and is characterized

by the parameterization

Ib3,b4,b5,b6
X;{ni} =

∫
[dk1][dk2]

1
k2n1

1

1
k2n2

2

µ2b3
3

[(k2 − p1)2 −m2]n3+b3

µ2b4
4

[(k1 + k2 − p1)2 −m2]n4+b4

× µ2b5
5

[(k1 + p2)2 −m2]n5+b5

µ2b6
6

[(k1 + k2 + p2)2 −m2]n6+b6

1
[(k1 + k2)2]n7

, (3.3)

where again we need bi ̸= 0 in order to regulate rapidity divergences that show up once
we expand by region.

3.3 Summary of technical details

A common approach in the computation of higher order loop diagrams is to reduce the many
Feynman integrals to master integrals using integration by parts (IBP) identities. When it
comes to calculating these integrals following the method of regions one has two alternative
options. Either one first reduces the large number of integrals in each topology, eqs. (3.1)–
(3.3), to master integrals before expanding by regions. However, as we are interested in
an expansion up to NLP, the expansion of a master integral into its momentum regions
might lead to many additional integrals, so that again a new reduction to master integrals is
recommended per momentum region. Therefore, one might as well first expand by regions
and only perform an IBP reduction at the very end of the calculational steps. Ultimately,
these two ways are equivalent and cannot lead to different final results. We will discuss these
alternative approaches further in section 4.1, where we also point out the subtleties that
enter while expanding the topologies in different momentum regions.

Another difficulty we encountered concerns the analytic regulators that we added to
topologies B and X, eqs. (3.2) and (3.3). Although the analytic regulator is a convenient
regulator when computing Feynman integrals, it has the downside that the usual IBP reduction
programs cannot handle non-integer powers of the propagators. To the best of our knowledge,
only Kira [66] is suitable for this, which we therefore adopt as our standard IBP reduction
program. In topology A, which does not require rapidity regulators, we also use LiteRed [67]
as an independent crosscheck of our results.

As discussed in section 2, the one-loop form factor contains just three momentum regions:
hard, collinear and anti-collinear. However, the number of momentum regions is much larger
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Two-loop massive form factor

Topo BTopo A Topo X

ϵ regulated ϵ + ν regulated ϵ+ν1+ν2 regulated

hh · · · cc

Expansion
by regions +
IBP (Kira)

Expansion
by regions +
IBP (Kira)

Solve master integrals and collect results

IBP IBP IBP (Kira)

Figure 4. Flow diagram displaying the pipeline of our NLP region analysis of the QED massive
form factor. The diagrams in figure 2 are classified into either topology A, B or X depending on
their momentum flow. We regulate each topology using dimensional regularization, denoted by ϵ, plus
additional rapidity regulators, denoted ν, in case of topology B, and ν1, ν2 in case of topology X, as
it turns out to need two rapidity regulators. For each topology, we expand the relevant integrals by
regions and then reduce the result into a simpler set of master integrals with IBP reduction using
Kira [66].

at the two-loop level. First, the two loop momenta k1 and k2 can have different scalings, which
gives already nine possibilities that combine the hard, collinear and anti-collinear momentum
regions. Second, we find the appearance of two new momenta scalings: ultra-collinear and
ultra-anti-collinear; the contribution from such regions was already observed in [43]. Finally
for topology B and X, new regions might appear when one shifts the loop momenta before
expanding in regions. Although such a shift leaves the full integral invariant, it can lead
to additional regions when expanding.

A summary of our work flow is given in figure 4, which shows the steps we have discussed
so far. Not shown is the final step, which consists of verifying whether the small mass limit
as given in [22, 50] is reproduced after collecting all regions.

4 Region expansions

Having presented the computational scheme in section 3, we now move to the technical details
of the calculation of the integrals in topology A, B and X using the method of regions. An
important remark from the outset concerns the distinction between the regions present at
the level of the diagrams in figure 2 on the one hand, and the integral level on the other
hand; these do not necessarily coincide as non-vanishing regions at the integral level can
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k2 k+p−1 k−p+
1 k+p−2 k−p+

2

(h) 1 λ2 1 1 λ2

(c) λ2 λ2 λ2 1 λ4

(c̄) λ2 λ4 1 λ2 λ2

(uc) λ6 λ4 λ4 λ2 λ6

(uc) λ6 λ6 λ2 λ4 λ4

Table 1. Scaling associated to the different momentum regions.

cancel when combined to constitute the diagrams. The results presented in this section
should be understood at the integral level.

We shall now discuss topology A, B and X in turn. For each topology, we analyze first
the associated regions (at the integral level), followed by a discussion of its IBP relations.
At the end of each topology subsection, we provide a brief summary of the aspects that
enter its computation.

4.1 Region expansion of topology A

As explained in section 2, it is convenient to use light-cone coordinates, eq. (2.13), to identify
the various momentum regions that lead to non-vanishing contributions. At one-loop we
found that only momentum modes h, c and c̄ contributed. This picture changes as soon as we
move to the two-loop level where we receive additional contributions coming from momentum
modes such as uc and uc, as defined in eq. (2.15). In total, there are 25 possible combinations
of momentum modes at the two-loop level. However, many combinations vanish because they
lead to scaleless integrals. For the Feynman integrals contributing to diagrams (a)-(d) we find
11 non-vanishing regions: hh, cc, c̄c̄, cc̄, c̄c, ch, hc, c̄h, hc̄, ucc̄ and ucc, with the momentum
flow as indicated in table 2 on page 23. Even though the power expansion for the momentum
modes is straightforward using e.g. table 1, the resulting integrals can in general become
quite involved. Let us illustrate this by highlighting several subtleties that enter here.

The first subtlety we want to discuss concerns the interplay between the usual IBP
reduction and the region expansion. To this end, we consider as an example the hh region
of topology A, eq. (3.1), which up to LP reads

IA

∣∣∣
hh

=
∫
[dk1][dk2]

1
k2n1

1

1
k2n2

2

1
[(k1 − k2)2]n3

1
[k2

1 + k−1 p
+
1 ]n4

1
[k2

2 + k−2 p
+
1 ]n5

1
[k2

1 − k+
1 p

−
2 ]n6

1
[k2

2 − k+
2 p

−
2 ]n7

+O
(
λ2
)
, (4.1)

while many additional terms occur beyond LP. To see this, we expand the fourth propagator
of eq. (3.1) in the hh-region up to NLP

1
(k1 + p1)−m2 = 1

k2
1 + k−1 p

+
1
− k+

1 p
−
1

[k2
1 + k−1 p

+
1 ]2

+O
(
λ4
)

= 1
k2

1 + k−1 p
+
1
− m2

ŝ

k2
1 − [k2

1 − k+
1 p

−
2 ]

[k2
1 + k−1 p

+
1 ]2

+O
(
λ4
)
. (4.2)
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On the last line of eq. (4.2) we used the identity p−1 =
(
m2/ŝ

)
p−2 to rewrite the power

expansion in terms of the first, fourth and sixth LP (inverse) propagators appearing in
eq. (4.1). Typically, one can perform an IBP reduction on the full integrals for a given
diagram and then expand by regions. However, eq. (4.2) shows that after the regions
expansion, the number of integrals increases considerably again beyond LP. Therefore, a
new IBP reduction applied to the hh-region is called for. Instead, one might just as well
expand the full integrals in the momentum region, and perform a single IBP-reduction on
region integrals at the end.

As a second subtlety, note that, in order to set up the IBP reduction for the expanded
topology, the LP propagators of eq. (4.1) appear in the last line of eq. (4.2). Similarly, as
shown for the fourth propagator in eq. (4.2), we can rewrite the power expansion of the
fifth, sixth and seventh propagator in terms of the corresponding LP propagators, where
we can use the identity p+

2 =
(
m2/ŝ

)
p+

1 for the sixth and seventh propagator. This implies
that eq. (4.1) defines a closed topology for the hh-region up to arbitrary order in the power
expansion. This is particularly useful when applying IBP relations, because it leads to the
least number of master integrals to solve. Along similar lines, the full power expansion of
the cc and c̄c̄ region can also be written in terms LP propagators only.

Another subtlety concerns regions where the loop momenta k1 and k2 scale according to
different momentum modes, which requires extending the expanded topology by an additional
propagator. For example, consider the expansion of the denominator of the third propagator
in eq. (3.1) in the c̄c region

(k1 − k2)2 = k2
1 − 2k1,⊥ · k2,⊥ + k2

2︸ ︷︷ ︸
∼λ2

− k−1 k
+
2︸ ︷︷ ︸

∼1

− k+
1 k

−
2︸ ︷︷ ︸

∼λ4

. (4.3)

The perpendicular components in eq. (4.3) cannot be rewritten in terms of the LP propagators
from eq. (3.1). Rather than adding −2k1,⊥ · k2,⊥ to the c̄c topology, we instead rewrite this as

−2k1,⊥ · k2,⊥ = −2k1 · k2 + k+
1 k

−
2 + k−1 k

+
2 , (4.4)

and add [−2k1 · k2]−n8 as an additional propagator to the c̄c topology. The same logic can
be applied to other regions where k1 and k2 scale differently. Eq. (4.4) shows that standard
propagators may turn into non-standard propagators of the form k−1 k

+
2 which cannot be given

as input to the current IBP programs directly. We treat these in the following way, which we
will refer to as a loop-by-loop approach. First, we rewrite k−1 k

+
2 as k1 · (k+

2 n
−) and perform

an IBP reduction over k1 while considering k2 and k+
2 n

− as external momenta similar to p1
and p2. By doing so, the integrals over k1 get reduced to a smaller set of integrals. Next,
we repeat the first step but now switching the roles of k2 and k1, i.e. we perform IBP over
k2 rewriting k−1 k

+
2 as (k−1 n+) · k2, while considering k1 and k−1 n

+ as external momentum.
Again, the number of integrals over k2 gets reduced. The combination of both IBP reductions
over k1 and k2 leaves us with a smaller set of (two-loop) integrals to solve.

Finally, one must be careful when dealing with regions where one of the loop momenta
has hard scaling and the other has (anti-)collinear scaling. As discussed above, one can define
a closed topology containing the LP propagators and the addition of an eighth propagator
[−2k1 · k2]−n8 . However, because a loop-by-loop IBP reduction may lead to new propagators
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that are not part of the (expanded) topology, adding these propagators to the topology does
not work as this leads to an over-determined topology. A possible solution, which we used for
topology A, is to perform the IBP reduction over the loop with hard loop momentum and
then compute the masters. After that, the left-over one-loop integrals with (anti-)collinear
loop momentum will be simple enough to calculate directly.

Let us summarize our strategy for topology A:

1. Expand eq. (3.1) in a given momentum region and rewrite subleading corrections in
terms of the LP propagators.

2. Use IBP relations that can either handle both loops over k1 and k2 at the same time or
adopt a loop-by-loop approach by introducing a non-standard additional propagator
[−2k1 · k2]−n8 .

3. Solve the resulting master integrals and repeat steps 1-3 for the remaining momentum
regions.

4.2 Region expansion of topology B

As we already stated in section 3, the Feynman integrals needed to calculate diagrams (e),
(f) and (g) in figure 2 can be classified as part of topology B, defined in eq. (3.2). More
specifically, all integrals obtained from diagram (e) have the form Ib3,b4,b5,b6

B;{ni} with both n3 ≤ 0
and n5 ≤ 0, the integrals of diagrams (f) satisfy n3 ≤ 0, while the integrals of diagrams (g)
correspond to n5 ≤ 0. The integrals of diagrams (e) thus belong to a subclass of the integrals
associated to diagrams (f) and (g). Consequently, the regions contributing to diagram (e) form
a subset of those contributing to diagram (f) and (g). In addition, the integrals of diagram (f)
and diagram (g) can be related to each other by the transformation p1 ↔ p2, k1 ↔ −k1 and
k2 ↔ −k2. In the following we will discuss the regions obtained in diagrams (e), (f) and (g).

Diagram (e). Starting with the integrals of diagram (e), we find that the regions hh, hc,
c̄h, cc and c̄c̄ contribute.6 Of these, the first three regions are free of rapidity divergences, so
that we can set the analytic regulators bi = 0 in eq. (3.2) either at the beginning or at the end
of the calculation (both leading to the same results). Taking bi = 0 from the start, we can
treat these three regions similar to the corresponding regions in topology A, as we discussed in
section 4.1. However, there are two other regions, the cc and c̄c̄ regions, that do have rapidity
divergences, so that here the regulators bi must be kept. However, we do not need to include
four regulators bi in the calculation. Because n3 ≤ 0 and n5 ≤ 0 we can safely take b3 = 0
and b5 = 0 at the beginning of the calculation. Interestingly, we find that we cannot take
b4 = b6 to regulate the rapidity divergences of all integrals,7 although taking either b4 = 0 or
b6 = 0 is possible. We therefore choose b6 = ν and b3 = b4 = b5 = 0 with corresponding scale
µ6 = µ̃ as our scheme to regulate the rapidity divergences in both the cc and c̄c̄ regions of

6Note that the hc̄-region and hc-region, as well as the c̄h-region and ch-region are equivalent for this
diagram. Furthermore, these two regions only appear at the Feynman integral level, but cancel at the form
factor level as will become clear in section 5. Similar cancellations occur for diagrams (f), (g) and (h).

7Indeed if we take b4 ̸= b6, the integrals are proportional to Γ(b4 − b6). A similar situation was encountered
in ref. [68].
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diagram (e). Note that this particular choice breaks the symmetry between the cc and c̄c̄

regions. Nevertheless, after combining all of the above five regions, our result up to NLP for
each integral, has no rapidity divergence. Moreover we find agreement with the corresponding
result obtained by expanding the full result in refs. [24, 69] in the small mass limit.

Diagram (f). The regions needed to calculate the integrals of diagram (f) are more
complicated. First, the integrals of diagram (f) satisfy n3 ≤ 0. Similar to diagram (e), we
encounter rapidity divergences in the cc and c̄c̄ regions, and in order to handle those we take
b3 = b4 = 0 and b5 = b6 = ν with corresponding scale µ5 = µ6 = µ̃. However, we find that
the rapidity divergences do not cancel after summing the cc and c̄c̄ regions. We therefore
expect that there is at least one more region with rapidity divergences.

Indeed, in addition to the five regions for diagram (e) (hh, hc, c̄h, cc and c̄c̄), we find
three additional contributing regions, although it is not straightforward to define these three
regions in momentum space using the definition for Ib3,b4,b5,b6

B;{ni} in eq. (3.2). We exploit the
freedom to shift k2 → −k1 − k2 to redefine topology B as

I ′
b3,b4,b5,b6
B;{ni} =

∫
[dk1][dk2]

1
[k2

1 −m2]n1

1
[(k1 + k2)2 −m2]n2

µ2b3
3

[(k1 − p1)2]n3+b3
(4.5)

× µ2b4
4

[(k2 + p1)2 −m2]n4+b4

µ2b5
5

[(k1 + p2)2]n5+b5

µ2b6
6

[(k2 − p2)2 −m2]n6+b6

1
k2n7

2
.

We stress that Ib3,b4,b5,b6
B;{ni} and I ′ b3,b4,b5,b6

B;{ni} are equivalent before region expansion due to the
Lorentz invariance, but this is not always the case for a given region, i.e. after expansion. For
example, in the cc-region, the loop momenta k1 and k2 have the same momentum mode and
as a result, the shift k2 → −k1 − k2 does not change the scale of the propagators nor the
results of the integrals. However, in the hc-region, the shift k2 → −k1−k2 changes the leading
behavior of the second, fourth, sixth and seventh propagator of Ib3,b4,b5,b6

B;{ni} and as a result we
find a different hc-region through this shift. In general, one must be aware that different
momentum flows can lead to a different scaling of the leading term in the propagator and
uncover additional regions as a result. This illustrates the alternative viewpoint that regions
correspond to the scaling of the leading term in the propagators rather than the loop momenta
itself, a reasoning which connects also to the geometric approach in parameter space. However,
in view of factorization, it is more convenient to still think about the scaling of the momentum
modes of the loop momenta, rather than the scaling of the leading term in the propagators.

Based on the new definition I ′ b3,b4,b5,b6
B;{ni} , we find three additional regions: c̄c′, hc′ and

c̄uc′, as illustrated in figure 5. Besides a modified hc-region, we also find c̄c′ and c̄uc′ as
complete new regions. Apart from these three regions, we do not need other regions based
on I ′ b3,b4,b5,b6

B;{ni} , as these are the same as the corresponding regions given based on Ib3,b4,b5,b6
B;{ni} .

The appearance of the c̄uc′-region for example can be understood as follows (the c̄c′-region
following similarly). First, note that the last propagator, 1/k2

2, in eq. (4.5) has ultra-collinear
scaling in the c̄uc′-region. Having found this region in this way, it is also clear that we
could not have found it in the original momentum routing. First, it is not possible to select
scalings of both loop momenta such that the last momentum factor is ultra-collinear. Second,
it is only possible to make the last propagator have an ultra-collinear scaling unless one
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hc hh c̄h cc c̄c̄

I ′f

If

hh c̄h cc c̄c̄ hc′ c̄c′ c̄uc′

k
2
→

−
k
1
−
k
2

Figure 5. Momentum regions that contribute to the integrals of diagram (f) before and after applying
the transformation k2 → −k1 − k2, corresponding to If and I ′f respectively. The dashed arrows
represent how the regions in If transform accordingly, e.g. the original hc-region maps onto a new
hh-region after the collinear mode k2 mixes with the dominant hard scale associated to k1. Note how
two previously uncovered regions, c̄c′ and c̄uc′, and a different hc-region appear after the shift, where
the c̄c′-region removes the rapidity divergences present in the cc and c̄c̄ regions. Regions that remain
invariant are displayed on top of each other, while additional regions are shifted outwards such that
all regions are found by collapsing the top row onto its base If .

considers the ucuc-region, which leads to scaleless integrals. This is because the masses and
external momenta in the propagators of eq. (3.2) have harder scales than the loop momentum
with an ultra-(anti-)collinear mode, thus kinematic configurations where one of the loop
momenta is ultra-(anti-)collinear are always scaleless. In other words, in the parametrization
of eq. (3.2), the propagator (k1 + k2)2 can produce a leading term with uc scaling only
if k1 and k2 are large and opposite, such as to almost cancel. Thus this ultra-collinear
kinematic configuration can only be revealed by the shift leading to the parametrization
in eq. (4.5). A similar circumstance has been discussed in ref. [41] at one-loop, where a
soft region arises in the kinematic configuration in which the loop momentum is large and
opposite to an external momentum, such that their sum is soft. In general, revealing such
regions by means of momentum shifts in order to find the scaling of the leading term may
become ever more intricate at higher loops, due to an increasing number of loop momenta
that can conspire to yield new regions. We can still validate our results in another way
though. Combining the new c̄c′-region with the cc-region and c̄c̄-region from before the shift,
we remove all the rapidity divergences belonging to the integrals of diagram (f). Furthermore,
combining all of the above eight regions, we obtain the result up to NLP for each integral
of diagram (f), reproducing the corresponding result found by expanding the exact result
in refs. [24, 69] in the small mass limit.

Diagram (g). All the Feynman integrals for diagram (g) fall in the category of eq. (3.2) with
n5 ≤ 0. Diagram (g) is related to diagram (f) by the transformation p1 ↔ p2, k1 ↔ −k1 and
k2 ↔ −k2. Naturally the rapidity regulators should also be exchanged: b3 ↔ b5 and b4 ↔ b6.
Thus we choose as rapidity regulators b3 = b4 = ν and b5 = b6 = 0 with corresponding
scales µ3 = µ4 = µ̃. All the regions from diagram (f), corresponding to the hh, hc̄, ch, cc
and c̄c̄, cc̄′, hc̄′ and cuc′ regions can then be copied.

Remarks. Above we discussed how one can apply the rapidity regulators and find all the
contributing regions per diagram. However, the calculation of the integrals in each region
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is not always straightforward and we therefore finish the discussion of topology B with a
few technical remarks on these calculations.

First, regarding regions without rapidity divergences, such as the hh, hc and cuc′ regions,
we can safely set ν = 0 and calculate the resulting integrals in each region following the same
methods as for topology A. We emphasize however that in topology B (and also in topology
X below) for the region including a hard loop momentum and a (anti-)collinear momentum,
one should be quite careful when calculating the expanded integrals. Specifically, one should
first expand the full integral Ib3,b4,b5,b6

B;{ni} into regions, e.g. the hc-region, and only then perform
IBP reduction on the part with hard loop momentum. Then Ib3,b4,b5,b6

B;{ni} will be expressed as a
linear combination of one-loop integrals, which we generically denote by Ic

i , which include only
the collinear-mode loop momentum. Although in the hc-region Ib3,b4,b5,b6

B;{ni} is free of rapidity
divergences and the bi have been set to zero, we find that rapidity divergences reappear in
some of these Ic

i . The rapidity divergences are however expected to cancel among different Ic
i

leading to a finite Ib3,b4,b5,b6
B;{ni} . In this particular case, one should choose an auxiliary regulator

to regulate Ic
i . The poles in this auxiliary regulator will then cancel to yet yield a finite

Ib3,b4,b5,b6
B;{ni} . Alternatively one can rearrange the integrands of Ic

i at the level of Feynman
parametrization such that the integrations over the Feynman parameters are well-defined
and finite without introducing extra regulators.

We use the first method to calculate the integrals in the region including a hard loop
momentum and a (anti-)collinear momentum, which is more convenient than the second
one when dealing with a large number of such integrals. We also use the second method to
calculate several integrals, always leading to the same results. Note that such complexity
does not appear in topology A.

Then, for regions with rapidity divergences, we first expand the integrals with the rapidity
regulator ν and perform IBP reduction using Kira to obtain a set of master integrals in
each region. As a result, we only need to calculate the master integrals with up to 2-fold
Mellin-Barnes (MB) representations after expanding in the rapidity regulator ν and the
dimensional regulator ϵ to the required order.

Before moving to the last topology, we summarise the subtleties we have encountered
in topology B:

1. Shifts in the loop momenta that leave the full integral invariant, can lead to additional
regions nonetheless. These are needed to find all regions, and remove all rapidity
divergences in a consistent manner.

2. The introduction of rapidity regulators requires detailed inspection on a case by case
basis depending on the given diagram.

3. One must expand in ν before ϵ as the rapidity regulator is a secondary regulator.

4.3 Region expansion of topology X

The Feynman integrals needed for the last diagram in figure 2, diagram (h), belong to a new
topology we denote as X, reflecting the shape of (h) defined in eq. (3.3) with n7 ≤ 0. Due
to a new pattern of rapidity divergences, which we will see when analysing the cc and c̄c̄

regions, X is the most complicated of the three topologies.

– 18 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

Focusing on the c̄c̄-region first, it suffices to set b3 = b4 = ν1 and b5 = b6 = 0 in order
to regulate the corresponding rapidity divergence, but this choice does not regulate the
rapidity divergence in the cc-region. However, we note that the integrand in eq. (3.3) is
invariant under exchanging p1 ↔ p2, k1 ↔ −k1 and k2 ↔ −k2, which leads to a symmetry
between the cc and c̄c̄-regions. Motivated by this symmetry one may thus set b3 = b4 = 0
and b5 = b6 = ν2 to regulate the rapidity divergence in the cc-region. So in order to
regulate simultaneously the rapidity divergences in the cc-region and the c̄c̄-region, we choose
b3 = b4 = ν1 and b5 = b6 = ν2. The associated scales we shall denote by µ̃1 and µ̃2 for
ν1 and ν2 respectively. Note that ν1 = ν2 leads to an unregulated divergence, similar to
what we saw in topology B for diagram (e).

According to the definition of topology X as given in eq. (3.3), together with the choice
of rapidity regulators ν1 and ν2 as argued above, we find 8 regions in total: hh, hc, c̄h, ucc,
c̄uc, cc, c̄c̄ and c̄c. The rapidity divergences only appear in the last three regions. However,
their sum does not yet lead to a finite result in the rapidity regulators ν1 and ν2, as can for
example be checked for the integral with ni = 1 for i ≤ 6 and n7 = 0, which is discussed
in more detail in appendix B.1. This requires us to look for other regions with rapidity
divergences, and this we do again by redefining the loop momenta. Let us adopt the shifts
k1 → −k1 − p2 and k2 → −k2 + p1 to redefine topology X as

I ′
ν1,ν1,ν2,ν2
X;{ni} =

∫
[dk1][dk2]

1
(k1 + p2)2n1

1
(k2 − p1)2n2

1
[k2

2 −m2]n3+ν1
(4.6)

× µ2ν1
1

[(k1 + k2 + p2)2 −m2]n4+ν1

µ2ν1
1

[k2
1 −m2]n5+ν2

µ2ν2
2

[(k1 + k2 − p1)2 −m2]n6+ν2

µ2ν2
2

[(k1 + k2)2]n7
.

Note that the momentum in the last propagator should be (k1 + k2 − p1 + p2) rather than
(k1 + k2) according to the above shifts k1 → −k1 − p2 and k2 → −k2 + p1. However, this does
not affect the analysis of the regions in diagram (h) as all the integrals associated to diagram (h)
satisfy n7 ≤ 0, meaning that (k1 +k2 −p1 +p2)2 appears in the numerator. After shifting, the
integral Iν1,ν1,ν2,ν2

X;{ni} with n7 < 0 can always be rewritten as a linear combination of I ′ ν1,ν1,ν2,ν2
X;{n′

i}
.

Adopting definition I ′ ν1,ν1,ν2,ν2
X;{ni} , we find two new regions: the cc′-region and the c̄c̄′-region,

as shown in figure 6. In these momentum regions, (k1 + k2)2 scales homogeneously, while
(k1 + k2 − p1 + p2)2 does not, which provides another reason to choose the last propagator in
the form of eq. (4.6). We have checked that the rapidity divergences cancel after combining
the cc c̄c̄, c̄c, cc′ and c̄c̄′ regions. However, to obtain the correct result after combining all
regions, we find that we need yet another two regions. As it turns out these are the ch′′-region
and the c̄h′′-region, without rapidity divergences. These can be revealed by adopting the
following parametrization

I ′′
ν1,ν1,ν2,ν2
X;{ni} =

∫
[dk1][dk2]

1
(k1 − k2)2n1

1
k2n2

2

µ2ν1
1

[(k2 − p1)2 −m2]n3+ν1

µ2ν1
1

[(k1 − p1)2 −m2]n4+ν1

× µ2ν2
2

[(k1 − k2 + p2)2 −m2]n5+ν2

µ2ν2
2

[(k1 + p2)2 −m2]n6+ν2

1
k2n7

1
, (4.7)

as obtained from Iν1,ν1,ν2,ν2
X;{ni} after shifting k1 → k1 − k2, as also shown in figure 6. Combining

all of the above 12 regions (hh, hc, c̄h, uc̄c, c̄uc, cc, c̄c̄, c̄c, cc′, c̄c̄′, ch′′ and c̄h′′) we indeed
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hh hc c̄h ucc c̄uc

I ′h

Ih

c̄c′ c̄c̄′

k
2
→

−
k
2
+

p
1

cc c̄c̄ c̄c

ch′′ c̄h′′

k
1
→

−
k
1
−

p
2

I ′′h

k
1
→

k
1
−

k
2

I ′′h

Ih

Figure 6. Similar to figure 5, now displaying the momentum shifts performed in diagram (h) of
topology X. Two shifts starting from Ih are needed, to I ′h and I ′′h , in order to uncover all regions. In
contrast to figure 5, we only display new regions with respect to parametrization Ih.

obtain the result up to NLP for each integral of diagram (h), consistent with expanding the
full result in refs. [24, 69] in the small mass limit8.

Compared to the topology A and B, the calculation of the integrals in topology X is more
involved due to the appearance of two different rapidity regulators ν1 and ν2. As remarked
already at the end of section 5.2, one should expand the integrals first in the rapidity
regulator(s) followed by the dimensional regulator ϵ, as the νi are secondary regulators.
However, in the case of more than one rapidity regulator, we need to further fix the expansion
order in the νi. Here we choose to expand in ν1 before expanding in ν2. We emphasize that
the expansion order in νi does not affect the final results once all regions are combined as
the rapidity divergences cancel after all. Of course, additional rapidity regulators make the
IBP reduction more complex. Even though the rapidity divergences are fully regularized by
ν1 (ν2) in the c̄c̄-region (cc-region), meaning that we can choose ν2 = 0 (ν1 = 0), this is not
the case in the cc′-region and c̄c̄′-region, where both ν1 and ν2 are necessary.9

Summarising the subtleties we encountered in topology X, we find that

8The identification of the missing contribution may depend on the momentum shift considered. In the
case at hand, the shift k1 → k1 − k2 applied onto Iν1,ν1,ν2,ν2

X;{ni} leads to the missing contribution being identified
with the ch′′- and the c̄h′′-regions. Note, however, that we always have the freedom to apply two further
shifts k1 → k1 + p1 and k2 → k2 − p2 onto I ′′ ν1,ν1,ν2,ν2

X;{ni} which make the contribution due to the ch′′- and c̄h′′

region unchanged, respectively. However, in this case, the ch′′ and c̄h′′ can also be regarded as two sh h′′

regions (where by sh we indicate the semi-hard scaling introduced in eq. (2.16)) without changing the scaling
of each propagator and the final results of the integrals. From the point of view of a factorization analysis, the
second shift is more meaningful: this is because interpreting the new regions as ch′′- and c̄h′′-regions, one
has a momentum configuration in which there is a lightlike edge with both endpoints in the hard subgraph,
which does not conform with the Coleman-Norton interpretation, which is instead consistent with the sh h′′

regions interpretation. We refer to section 2.3 of [49] for further discussions. Here we do not explore this issue
further, because, as indicated in table 4, these additional regions (either identified as ch′′- and c̄h′′-regions or
sh h′′-regions) do not contribute at the form factor level. From the point of view of a factorization analysis,
this indicates that the relevant regions at two loops are still just the hard, collinear and anticollinear regions
identified at one loop, which is consistent with the Coleman-Norton analysis developed in section II of [15].

9The integrals in these two regions were among the most challenging to calculate.
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1. In contrast to topology B, topology X requires two unique rapidity regulators ν1 and
ν2. One must adopt a consistent order with respect expanding in ν1 and ν2.

2. We find altogether 12 regions, some of which only show up after rerouting the internal
momenta.

5 Results

We now present the main results of this work and list the various momentum regions that
contribute to the two-loop massive form factors F1 and F2. We switch viewpoint from section 4
and emphasize that the results here are at the level of the diagrams rather than integrals.
Recall that some momentum regions may not contribute at the diagrammatic level even
though they contribute at the integral level. An overview of the various regions that contribute
to each diagram is provided below in tables 2–4 for topologies A, B and X respectively.

As discussed in section 4, diagrams belonging to topology B and X may require the
introduction of rapidity regulators. Consequently, the corresponding diagrams acquire poles
in 1/ν (in case of topology B), and poles in 1/ν1 and 1/ν2 (in case of topology X). Because
the full form factor is independent of any rapidity divergences, the regulator dependence
must cancel after combining all regions; we check this explicitly in the results we provide
below. In this respect, two remarks are in order.

First, as we already observed in the one-loop result given by eqs. (2.19) and (2.20), it is
natural to factor out the overall scaling per momentum region, i.e.

(
−µ2/ŝ

)ϵ and
(
µ2/m2)ϵ

for each hard and (anti-)collinear loop respectively. In contrast to the one-loop case, we now
receive an additional contribution coming from the ultra-(anti-)collinear region which appear
with a factor

(
µ2ŝ2/m6)ϵ. Note that these scales also appear as powers of ν depending on

the specific momentum region and as a result of regulated propagators. For example, in
case of collinear scaling in k2, one expands

[k2
2 − 2k2p2]ν = [−2k2p

−
2 ]ν +O(λ2),

which has hard scaling and thus leads to an overall factor
(
µ̃2/ŝ

)ν .
Secondly, it is important to note that any power of ν that we factor out is irrelevant

for carrying out the check whether the rapidity regulators cancel in the full result. This
is due to the fact that except for the leading order term, all terms lead to finite terms in
ν and thus vanish upon setting ν to zero, e.g.(

µ̃2

ŝ

)ν 1
ν
−
(

µ̃2

−m2

)ν 1
ν
= ln

(
−m

2

ŝ

)
+O (ν) , (5.1)

which shows how the regulator dependence indeed cancels. A side remark concerns the
opposite behavior of the signs associated to the hard and collinear scales in case of rapidity
regulators, i.e.

(
µ2/ŝ

)ϵ and
(
−µ2/m2)ϵ, as compared to the scenario in which the rapidity

regulator is absent, i.e.
(
−µ2/ŝ

)ϵ and
(
µ2/m2)ϵ. This is purely an automatic consequence of

a Wick rotation, as we explain in more detail in appendix A.2. In topology X, we have two
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independent rapidity regulators, ν1 and ν2, and therefore double poles may arise. Similar to
the single pole case, these cancel as can for example be seen by considering(

µ̃2
2

−m2

)ν2 1
ν2

2
−
(
µ̃2

2
ŝ

)ν2 ( 1
ν2

2

)

= − 1
ν2

ln
(
−m

2

ŝ

)
+ 1

2 ln2
(
−m

2

ŝ

)
− ln

(
−m

2

ŝ

)
ln
(
µ̃2

2
ŝ

)
+O (ν2) (5.2)

where the remaining single pole in ν2 cancels against terms that have simultaneous poles
in ν1 and ν2,(

µ̃1
2

ŝ

)ν1 (
µ̃2

2
ŝ

)ν2 1
ν1ν2

−
(
µ̃1

2

−m2

)ν1 (
µ̃2

2
ŝ

)ν2 1
ν1ν2

= 1
ν2

ln
(
−m

2

ŝ

)
+ ln

(
−m

2

ŝ

)
ln
(
µ̃2

2
ŝ

)
+O (ν1, ν2) , (5.3)

while the finite terms in eq. (5.2) and eq. (5.3) combine to a double logarithm of (−m2/ŝ).
The rest of this section is structured as follows. First, we provide in section 5.1 our

results for F1 and F2 for all diagrams contributing to topology A, split by the various regions
as specified in table 2. Section 5.2 then contains results for topology B with diagrams and
regions provided in table 3. Results of topology X are presented in section 5.3, corresponding
to the diagrams and regions given in table 4. For further checks and in anticipation for a
QCD generalization, we also list the QCD color factor for each diagram, which would follow
if the virtual photons were gluons. Finally, in section 5.4 we comment on the series of checks
we have performed to validate our results against existing results in the literature.

5.1 Topology A

Diagram (a). QCD color factor: CFTRNf , with Nf the number of light flavors. For the
QED massive form factors, we can also allow for multiple light flavors, with different charges,
and therefore we add an overall factor to diagram (a)

C = Nf

e2
q

Nf∑
l=1

e2
q,l , (5.4)

with eq,l the fractional charges of the light flavors. We divided out the factor e2
q as it was

explicitly extracted from the form factors in eq. (2.7).
We get the following results for diagram (a):

F
(2l,a)
1

∣∣∣
hh

=C

(
µ2

−ŝ

)2ϵ [ 2
3ϵ3 + 28

9ϵ2 + 18ζ2 + 353
27ϵ + 28ζ2

9 − 52ζ3
9 + 7541

162

+ m2

ŝ

( 4
3ϵ2 + 110

9ϵ + 4ζ2
3 + 1615

27

)]
, (5.5)

F
(2l,a)
1

∣∣∣
cc
=C

(
µ2

m2

)2ϵ [
− 1

3ϵ3 − 17
9ϵ2 + −45ζ2 − 196

27ϵ − 85ζ2
9 − 22ζ3

9 − 2012
81

+ m2

ŝ

(
− 2
3ϵ2 − 79

9ϵ −
10ζ2
3 − 2575

54

)]
. (5.6)
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topology A hh cc c̄c̄ ch c̄h ucc̄ ucc

(a)
p1

p2

k2

k1 + p1

✓ ✓ ✓

(b)
p1

p2 k2 − p2

k1 ✓ ✓ ✓ ✓

(c)
p1

p2

k2 + p1

k1 ✓ ✓ ✓ ✓

(d)
p1

p2

k1

k2 + p1

✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Overview of the regions that contribute up to NLP per diagram in topology A.

By symmetry, we have

F
(2l,a)
1

∣∣∣
c̄c̄
= F

(2l,a)
1

∣∣∣
cc
. (5.7)

For F2 we get

F
(2l,a)
2

∣∣∣
hh

= C

(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 8

3ϵ2 − 196
9ϵ − 8ζ2

3 − 2498
27

]
, (5.8)

F
(2l,a)
2

∣∣∣
cc
= C

(
µ2

m2

)2ϵ
m2

ŝ

[
4
3ϵ2 + 98

9ϵ +
20ζ2
3 + 1249

27

]
. (5.9)

By symmetry, we have

F
(2l,a)
2

∣∣∣
c̄c̄
= F

(2l,a)
2

∣∣∣
cc
. (5.10)
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topology B hh cc c̄c̄ cc̄′ c̄c′ ch c̄h hc̄′ hc′ cuc′ c̄uc′

(e)
p2

p1 − k1 − k2

k2

 p1 

k1

k2 − p2

✓ ν ν

(f)

p1

p2p2

p1 − k1 − k2

p2

 k2 
k1

k1 + p2

✓ ν ν ν ✓ ✓ ✓

(g)
p1

p2

p1 − k1 − k2

k1 − p1

k1 

k2

✓ ν ν ν ✓ ✓ ✓

Table 3. Overview of the regions that contribute up to NLP per diagram in topology B. We denote
with ν regions that require a rapidity regulator. In black (blue) we show the flow of loop momenta k1,
k2 corresponding to the parametrization IB (I ′B).

topology X hh cc c̄c̄ c̄c hc c̄h c̄uc ucc cc′ c̄c̄′

(h)

p1

p2

k1 + p2

p1 − k2

p1 − k2

k1 + p2

✓ ν2 ν1 ν1, ν2 ✓ ✓ ✓ ✓ ν1, ν2 ν1, ν2

Table 4. Overview of the regions that contribute up to NLP in the topology X. Note the presence of
only one diagram here. As opposed to the topology B, two rapidity regulators are needed to make all
regions well-defined. Regions to which this applies are denoted by ν1 and/or ν2. In black (blue) we
show the flow of loop momenta k1, k2 corresponding to the parametrization IX (I ′X). We omit the
momentum flow of I ′′X as it does not contribute at the level of the form factor.
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Diagram (b). QCD color factor: C2
F

F
(2l,b)
1

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [ 1
ϵ3

+ 7
2ϵ2 + 53− 4ζ2

4ϵ − 7ζ2
2 − 32ζ3

3 + 355
8

+ m2

ŝ

( 9
ϵ3

+ 55
2ϵ2 − 36ζ2 − 513

4ϵ − 55ζ2
2 − 96ζ3 +

3171
8

)]
, (5.11)

F
(2l,b)
1

∣∣∣
c̄c̄
=
(
µ2

m2

)2ϵ [ 1
ϵ3

+ 6
ϵ2

+ 17ζ2 − 6
ϵ

+ 46ζ2 +
94ζ3
3 + 14

+ m2

ŝ

(
− 5
2ϵ2 + 144ζ2 − 63

4ϵ + 191ζ2
2 + 72ζ3 −

629
8

)]
, (5.12)

F
(2l,b)
1

∣∣∣
ch

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ [
− 2

3ϵ3 − 8
3ϵ2 − 28

3ϵ +
16ζ3
9 − 92

3

+ m2

ŝ

(
− 6
ϵ3

− 31
3ϵ2 − 575

6ϵ + 16ζ3 −
1997
12

)]
, (5.13)

F
(2l,b)
1

∣∣∣
ucc̄

=
(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ [
− 4

3ϵ3 − 4
3ϵ2 − 60ζ2 + 8

3ϵ − 20ζ2 −
112ζ3
9 − 16

3

+ m2

ŝ

(
− 3
ϵ3

− 8
3ϵ2 + −135ζ2 − 14

3ϵ − 40ζ2 − 28ζ3 −
22
3

)]
. (5.14)

For F2 we get

F
(2l,b)
2

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 6
ϵ3

− 31
ϵ2

+ 12ζ2 − 235
2ϵ + 31ζ2 + 64ζ3 −

1593
4

]
, (5.15)

F
(2l,b)
2

∣∣∣
c̄c̄
=
(
µ2

m2

)2ϵ
m2

ŝ

[
− 3
ϵ2

− 48ζ2 + 15
2ϵ − 71ζ2 − 48ζ3 +

27
4

]
, (5.16)

F
(2l,b)
2

∣∣∣
ch

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
4
ϵ3

+ 62
3ϵ2 + 247

3ϵ + 1705
6 − 32ζ3

3

]
, (5.17)

F
(2l,b)
2

∣∣∣
ucc̄

=
(
µ2ŝ2

m6

)ϵ(
µ2ŝ

m2

)ϵ
m2

ŝ

[
2
ϵ3

+ 4
3ϵ2 + 90ζ2 + 8

3ϵ + 20ζ2 +
56ζ3
3 + 16

3

]
. (5.18)

Diagram (c). Diagram (c) is related to diagram (b) via the symmetry c ↔ c̄.

Diagram (d). QCD color factor: C2
F

F
(2l,d)
1

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [ 1
ϵ4

+ 2
ϵ3

+ 2ζ2 + 17
2ϵ2 + −24ζ2 + 184ζ3 + 303

12ϵ + 103ζ2
2

10 − 35ζ2
2

+ 152ζ3
3 + 631

8 + m2

ŝ

( 2
ϵ3

− 16ζ2 − 32
ϵ2

+ −6ζ2 − 16ζ3 + 73
ϵ

−64ζ2
2

5 − 174ζ2 +
68ζ3
3 + 893

2

)]
, (5.19)
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F
(2l,d)
1

∣∣∣
cc
=
(
µ2

m2

)2ϵ [2− 3ζ2
ϵ2

+ −8ζ2 − 13ζ3 + 10
ϵ

− 163ζ2
2

5 − 22ζ2 − 16ζ3 + 38

+ m2

ŝ

(12− 8ζ2
ϵ2

+ 12ζ2 − 72ζ3 + 60
ϵ

− 712ζ2
2

5 − 44ζ2 + 136ζ3 + 228
)]

, (5.20)

F
(2l,d)
1

∣∣∣
ch

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ [
− 2

3ϵ4 − 5
3ϵ3 − 22

3ϵ2 + 2 (8ζ3 − 111)
9ϵ + 4ζ2

2
5 + 40ζ3

9 − 238
3

+ m2

ŝ

(
− 4
3ϵ3 + 16ζ2 − 31

ϵ2
+ −84ζ2 + 480ζ3 − 613

6ϵ

+ 608ζ2
2

5 + 20ζ2 −
598ζ3
9 − 4411

12

)]
, (5.21)

F
(2l,d)
1

∣∣∣
ucc̄

=
(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ [ 1
6ϵ4 + 2

3ϵ3 + 15ζ2 + 8
6ϵ2 + 90ζ2 + 14ζ3 + 24

9ϵ

+ 493ζ2
2

20 + 20ζ2 +
56ζ3
9 + 16

3 + m2

ŝ

( 1
3ϵ3 + 3

ϵ2
+ 15ζ2 + 23

3ϵ

+45ζ2 +
28ζ3
9 + 61

3

)]
. (5.22)

By symmetry, we have

F
(2l,d)
1

∣∣∣
c̄c̄
= F

(2l,d)
1

∣∣∣
cc
, F

(2l,d)
1

∣∣∣
c̄h

= F
(2l,d)
1

∣∣∣
ch
, F

(2l,d)
1

∣∣∣
ucc

= F
(2l,d)
1

∣∣∣
ucc̄

. (5.23)

For F2 we get

F
(2l,d)
2

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 4
ϵ3

− 20
ϵ2

+ 4ζ2 − 70
ϵ

+ 48ζ2 −
160ζ3
3 − 249

]
, (5.24)

F
(2l,d)
2

∣∣∣
cc
=
(
µ2

m2

)2ϵ
m2

ŝ

[
8ζ2 − 8

ϵ
+ 48ζ2 + 16ζ3 − 40

]
, (5.25)

F
(2l,d)
2

∣∣∣
ch

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
8
3ϵ3 + 14

ϵ2
+ 51

ϵ
+ 8ζ2 −

64ζ3
9 + 349

2

]
, (5.26)

F
(2l,d)
2

∣∣∣
ucc̄

=
(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ
m2

ŝ

[
− 2

3ϵ3 − 4
ϵ2

− 10ζ2 + 8
ϵ

− 60ζ2 −
56ζ3
9 − 16

]
. (5.27)

By symmetry, we have

F
(2l,d)
2

∣∣∣
c̄c̄
= F

(2l,d)
2

∣∣∣
cc
, F

(2l,d)
2

∣∣∣
c̄h

= F
(2l,d)
2

∣∣∣
ch
, F

(2l,d)
2

∣∣∣
ucc

= F
(2l,d)
2

∣∣∣
ucc̄

. (5.28)

5.2 Topology B

Diagram (e). QCD color factor: CFTR

F
(2l,e)
1

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [ 2
3ϵ3 + 28

9ϵ2 + 18ζ2 + 353
27ϵ + 28ζ2

9 − 52ζ3
9 + 7541

162

+ m2

ŝ

( 28
3ϵ2 + 254

9ϵ + 28ζ2
3 + 3775

27

)]
, (5.29)
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F
(2l,e)
1

∣∣∣
cc
=
(
µ2

m2

)2ϵ(
µ̃2

ŝ

)ν [
− 4

3ϵ3 + 1
ϵ2

( 4
3ν − 4

3

)
− 1
ϵ

(20
9ν + 8ζ2

3 + 56
9

)

+ 36ζ2 + 112
27ν + 32ζ2

3 + 20ζ3
9 − 2144

81

+ m2

ŝ

(
− 2
3ϵ2 − 1

ϵ

(16
ν

+ 151
9

)
+ 42ζ2 −

3511
54

)]
, (5.30)

F
(2l,e)
1

∣∣∣
c̄c̄
=
(
µ2

m2

)2ϵ(
µ̃2

−m2

)ν [ 2
3ϵ3 − 1

ϵ2

( 4
3ν + 28

9

)
+ 1
ϵ

(20
9ν − 2ζ2

3 − 212
27

)

− 36ζ2 + 112
27ν + 80ζ2

9 − 16ζ3
9 − 1292

81

+ m2

ŝ

(
− 26
3ϵ2 + 1

ϵ

(16
ν

− 151
9

)
+ 34ζ2 −

55
54

)]
. (5.31)

Notice that the LP contribution of the hh region is the same as for diagram (a), eq. (5.5).
For F2 we get

F
(2l,e)
2

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 8

3ϵ2 − 196
9ϵ − 8ζ2

3 − 2498
27

]
, (5.32)

F
(2l,e)
2

∣∣∣
cc
=
(
µ2

m2

)2ϵ
m2

ŝ

[
4
3ϵ2 + 98

9ϵ + 12ζ2 +
25
27

]
. (5.33)

By symmetry, we have

F
(2l,e)
2

∣∣∣
c̄c̄
= F

(2l,e)
2

∣∣∣
cc
. (5.34)

Diagram (f). QCD color factor: C2
F − 1

2CFCA

F
(2l,f)
1

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [
− 1
ϵ3

+ 4ζ2 − 11
2ϵ2 + 40ζ2 + 8ζ3 − 109

4ϵ + 8ζ2
2
5 + 91ζ2

2 + 59ζ3
3 − 911

8

+ m2

ŝ

(
− 7
ϵ3

− 59
2ϵ2 + 108ζ2 − 695

4ϵ + 231ζ2
2 + 284ζ3

3 − 5129
8

)]
, (5.35)

F
(2l,f)
1

∣∣∣
cc
=
(
µ2

m2

)2ϵ(
µ̃2

ŝ

)2ν [
m2

ŝ

( 2
ϵ3

+ 1
ϵ2

(2
ν
− 4

)
+ 6
ϵ
+ 2ζ2 + 6

ν

−10ζ3
3 − 20ζ2 + 22

)]
, (5.36)

F
(2l,f)
1

∣∣∣
c̄c̄
=
(
µ2

m2

)2ϵ(
µ̃2

−m2

)2ν [
− 1
ϵ3

+ 2 (ζ2 − 1)
ϵ2

− 2 (6ζ2 − 5ζ3 + 5)
ϵ

+ 32ζ2
2

5 + 24ζ2 −
19ζ3
3 − 72ζ2 log(2)− 42 + m2

ŝ

(
− 5
ϵ3

− 1
ϵ2

(2
ν
+ 35

2

)

−92ζ2 + 279
4ϵ − 2ζ2 + 2

ν
+ 133ζ2

2 + 16ζ3
3 − 144ζ2 log(2)−

2281
8

)]
, (5.37)

– 27 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

F
(2l,f)
1

∣∣∣
c̄h

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ [
− 4ζ2 − 4

ϵ2
− 14ζ2 + 12ζ3 − 26

ϵ
− 44ζ2

2
5 − 52ζ2 − 42ζ3 + 122

+ m2

ŝ

(10
ϵ3

+ 50
ϵ2

+ 207− 40ζ2
ϵ

− 200ζ2 −
440ζ3
3 + 1633

2

)]
, (5.38)

F
(2l,f)
1

∣∣∣
c̄c′

=
(
µ2

m2

)2ϵ(
µ̃2

−m2

)ν (
µ̃2

ŝ

)ν [
m2

ŝ

(
− 9
ϵ3

− 14
ϵ2

− 3 (3ζ2 + 22)
ϵ

− 4
ν

− 14ζ2 + 6ζ3 − 82
)]

, (5.39)

F
(2l,f)
1

∣∣∣
hc′

=
(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ [ 2
3ϵ3 + 8

3ϵ2 + 28
3ϵ +

92
3 − 16ζ3

9

+ m2

ŝ

( 6
ϵ3

+ 37
3ϵ2 + 575

6ϵ + 1637
12 − 16ζ3

)]
, (5.40)

F
(2l,f)
1

∣∣∣
c̄uc′

=
(
µ2

m2

)ϵ(
µ2ŝ2

m6

)ϵ [ 4
3ϵ3 + 4

3ϵ2 + 60ζ2 + 8
3ϵ + 20ζ2 +

112ζ3
9 + 16

3

+ m2

ŝ

( 3
ϵ3

+ 8
3ϵ2 + 135ζ2 + 14

3ϵ + 40ζ2 + 28ζ3 +
22
3

)]
. (5.41)

For F2 we get

F
(2l,f)
2

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ
m2

ŝ

[
6
ϵ3

+ 39
ϵ2

+ 377− 44ζ2
2ϵ − 151ζ2 − 80ζ3 +

3075
4

]
, (5.42)

F
(2l,f)
2

∣∣∣
c̄c̄
=
(
µ2

m2

)2ϵ
m2

ŝ

[
6
ϵ3

+ 15
ϵ2

+ 133− 4ζ2
2ϵ

− 61ζ2 − 68ζ3 + 96ζ2 log(2) +
1135
4

]
, (5.43)

F
(2l,f)
2

∣∣∣
c̄h

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
− 12
ϵ3

− 52
ϵ2

+ 48ζ2 − 222
ϵ

+ 232ζ2 + 176ζ3 − 869
]
, (5.44)

F
(2l,f)
2

∣∣∣
c̄c′

=
(
µ2

m2

)2ϵ
m2

ŝ

[
6
ϵ3

+ 24
ϵ2

+ 6ζ2 + 64
ϵ

+ 24ζ2 − 4ζ3 + 160
]
, (5.45)

F
(2l,f)
2

∣∣∣
hc′

=
(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ
m2

ŝ

[
− 4
ϵ3

− 74
3ϵ2 − 283

3ϵ + 32ζ3
3 − 1873

6

]
, (5.46)

F
(2l,f)
2

∣∣∣
c̄uc′

=
(
µ2

m2

)ϵ(
µ2ŝ2

m6

)ϵ
m2

ŝ

[
− 2
ϵ3

− 4
3ϵ2 − 90ζ2 + 8

3ϵ − 20ζ2 −
56ζ3
3 − 16

3

]
. (5.47)

Diagram (g). QCD color factor: C2
F − 1

2CFCA. Diagram (g) is related to diagram (f)
via the symmetry c ↔ c̄.

– 28 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

5.3 Topology X

Diagram (h). QCD color factor: C2
F − 1

2CFCA

F
(2l,h)
1

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [ 1
ϵ4

+ 4
ϵ3

+ 16− 7ζ2
ϵ2

− 48ζ2 + 122ζ3 − 174
3ϵ

− 53ζ2
2

2 − 58ζ2 −
380ζ3
3 + 204 + m2

ŝ

( 1
ϵ4

+ 5
ϵ3

+ ζ2 + 18
ϵ2

−186ζ2 + 196ζ3 − 843
6ϵ − 201ζ2

2
10 − 64ζ2 −

382ζ3
3 + 1491

4

)]
, (5.48)

F
(2l,h)
1

∣∣∣
hc

=
(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ [
− 4

3ϵ4 − 16
3ϵ3 + 12ζ2 − 56

3ϵ2 + 126ζ2 + 140ζ3 − 552
9ϵ

+ 52ζ2
2

5 + 52ζ2 +
506ζ3
9 − 584

3 + m2

ŝ

(
− 4
ϵ4

− 20
3ϵ3 + 4ζ2 − 29

ϵ2

+144ζ2 + 88ζ3 − 761
6ϵ − 8ζ2

2 + 88ζ2 +
952ζ3
9 − 4955

12

)]
, (5.49)

F
(2l,h)
1

∣∣∣
ucc

=
(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ [
− 1

6ϵ4 − 2
3ϵ3 − 15ζ2 + 8

6ϵ2 − 90ζ2 + 14ζ3 + 24
9ϵ

− 493ζ2
2

20 − 20ζ2 −
56ζ3
9 − 16

3 + m2

ŝ

(
− 1
3ϵ3 − 3

ϵ2
− 15ζ2 + 23

3ϵ

−45ζ2 −
28ζ3
9 − 61

3

)]
, (5.50)

F
(2l,h)
1

∣∣∣
cc
=
(
µ2

m2

)2ϵ(
µ̃2

2
ŝ

)2ν2 [ 1
2ϵ4 + 2

ϵ3
+ 3ζ2 + 12

2ϵ2 + 6ζ2 + 26ζ3 + 54
3ϵ

+ 363ζ2
2

20 + 14ζ2 −
4ζ3
3 + 54 + m2

ŝ

( 1
ϵ3

+ 8ζ2 − 5
2ϵ2

+1
ϵ

( 4
ν2

− 3ζ2 + 36ζ3 −
27
4

)
+ 8
ν2

+ 356ζ2
2

5 + 7ζ2
2 − 110ζ3

3 − 177
8

)]
, (5.51)

F
(2l,h)
1

∣∣∣
c̄c
=
(
µ2

m2

)2ϵ(
µ̃2

1
−m2

)ν1 (
µ̃2

1
ŝ

)ν1 (
µ̃2

2
−m2

)ν2 (
µ̃2

2
ŝ

)ν2 [ 1
ϵ4

+ 4
ϵ3

+ ζ2 + 12
ϵ2

+ 12ζ2 − 2ζ3 + 96
3ϵ + 7ζ2

2
10 + 12ζ2 −

8ζ3
3 + 80

+ m2

ŝ

( 4
ϵ4

− 1
ϵ3

( 4
ν2

+ 4
ν1

+ 10
)
+ 1
ϵ2

( 8
ν1

+ 4
ν1ν2

+ 8
ν2

+ 4ζ2 + 30
)

+ 1
ϵ

(8− 8ζ2
ν1

+ 8− 8ζ2
ν2

− 4
ν1ν2

− 18ζ2 +
16ζ3
3 + 110

)
+ 12 + 36ζ2 − 52ζ3

3ν1
+ 4ζ2 − 4

ν1ν2
+ 12 + 36ζ2 − 52ζ3

3ν2

− 46ζ2
2

5 − 124ζ3
3 + 22ζ2 + 278

)]
, (5.52)
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F
(2l,h)
1

∣∣∣
cc′

=
(
µ2

m2

)2ϵ(
µ̃2

1
−m2

)ν1 (
µ̃2

1
ŝ

)ν1 (
µ̃2

2
−m2

)2ν2 [
m2

ŝ

(20
ϵ4

− 1
ϵ3

(10
ν2

+ 10
)

+ 1
ϵ2

( 4
ν2

2
+ 6
ν2

− 8ζ2 − 8
)
+ 1
ϵ

(
− 4
ν2

2
+ 2ζ2 + 6

ν2
− 4
ν1

+ 6ζ2 −
112ζ3
3 + 16

)

+4ζ2 − 4
ν2

2
+ 80ζ3 − 18ζ2 − 12

3ν2
− 8
ν1

− 46ζ2
2 + 32ζ3

3 + 4ζ2 + 46
)]

, (5.53)

F
(2l,h)
1

∣∣∣
c̄c̄′

=
(
µ2

m2

)2ϵ(
µ̃2

1
−m2

)2ν1 (
µ̃2

2
−m2

)ν2 (
µ̃2

2
ŝ

)ν2 [
m2

ŝ

(
−17
ϵ4

+ 1
ϵ3

(14
ν2

+ 4
ν1

+ 27
)

+ 1
ϵ2

(
− 4
ν2

2
− 14
ν2

− 8
ν1

− 4
ν1ν2

− 13ζ2 + 29
)

+ 1
ϵ

( 4
ν2

2
+ 6ζ2 − 18

ν2
+ 8ζ2 − 8

ν1
+ 4
ν1ν2

− 110ζ3
3 + 11ζ2 + 16

)
+ 4− 4ζ2

ν2
2

− 28ζ3 + 18 + 24
3ν2

+ 52ζ3 − 36ζ2 − 12
3ν1

+ 4− 4ζ2
ν1ν2

−223ζ2
2

10 + 10ζ3 + 9ζ2 + 46
)]

. (5.54)

By symmetry, we have

F
(2l,h)
1

∣∣∣
c̄h

= F
(2l,h)
1

∣∣∣
hc
, F

(2l,h)
1

∣∣∣
c̄uc

= F
(2l,h)
1

∣∣∣
ucc

, F
(2l,h)
1

∣∣∣
c̄c̄
= F

(2l,h)
1

∣∣∣
cc
(ν2 ↔ ν1) . (5.55)

For F2 we get

F
(2l,h)
2

∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 4
ϵ3

− 26
ϵ2

+ 5 (4ζ2 − 23)
ϵ

+ 114ζ2 +
320ζ3
3 − 977

2

]
, (5.56)

F
(2l,h)
2

∣∣∣
hc

=
(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ
m2

ŝ

[
16
3ϵ3 + 34

ϵ2
+ 127− 16ζ2

ϵ
− 104ζ2 −

560ζ3
9 + 885

2

]
, (5.57)

F
(2l,h)
2

∣∣∣
uc̄c

=
(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ
m2

ŝ

[
2
3ϵ3 + 4

ϵ2
+ 2 (5ζ2 + 4)

ϵ
+ 60ζ2 +

56ζ3
9 + 16

]
, (5.58)

F
(2l,h)
2

∣∣∣
cc
=
(
µ2

m2

)2ϵ
m2

ŝ

[
− 2
ϵ3

− 9
ϵ2

+ −4ζ2 − 59
2ϵ − 29ζ2 +

4ζ3
3 − 369

4

]
, (5.59)

F
(2l,h)
2

∣∣∣
c̄c
=
(
µ2

m2

)2ϵ
m2

ŝ

[
− 4
ϵ3

− 32
ϵ2

− 4 (ζ2 + 24)
ϵ

− 32ζ2 +
8ζ3
3 − 256

]
. (5.60)

By symmetry, we have

F
(2l,h)
2

∣∣∣
c̄h

= F
(2l,h)
2

∣∣∣
hc
, F

(2l,h)
2

∣∣∣
c̄uc

= F
(2l,h)
2

∣∣∣
ucc

, F
(2l,h)
2

∣∣∣
c̄c̄
= F

(2l,h)
2

∣∣∣
cc
. (5.61)

5.4 Cross-checks

In the previous sections, we have listed all contributions to the massive form factor at two
loop at NLP per momentum region. To validate our results and to make sure no region has
been left unaccounted for, we have performed several cross-checks with results presented
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in [50] and [22]. The former presents the full result of the two-loop QED massive form factor
at the level of the individual diagrams, while the latter provides the corresponding QCD
result for all diagrams combined, see eqs. (22) and (23) in [22] for F1 and F2 respectively.

In order to compare our results with [50] and [22], one needs to keep the following in
mind. To begin with, one must define

F (2l)
i (ϵ, s) = e−2ϵγE

Γ(1 + ϵ)2

(
µ2

m2

)−2ϵ

F
(2l)
i

(
ϵ,
m2

ŝ

)
, (5.62)

as defined in eq. (21) in [22], and second, expand the variable x as defined in eq. (14) in [22]
in powers of m2/ŝ to match our conventions. Finally, we also remark that one must reinstate
the QCD color factors in the QED diagrams in figure 2 before comparing against ref. [22].
With these conventions in mind, we now compare the sum of the momentum regions as given
in section 4.1–4.3 to the expansion in m2/ŝ up to NLP of the full result of [50] and [22]. We
have made use of the Mathematica package HPL [70, 71] to expand the polylogs.

First, we have checked that diagram (a), which is absent in [50], reproduces the CFTRNf

term in [22], while diagram (e) can be checked either directly against the result of [50]
or against the CFTR term in [22]. Similarly, one can verify the result of the remaining
diagrams (b)-(d) and (f)-(h) by checking directly with [50], which we reproduce up to some
small verified typos.

In addition to an inspection at the individual diagram level, we have also performed
checks at the level of the form factor itself. The sum of our results of diagrams (b)-(d)
and (f)-(h) reproduces the term proportional to C2

F in [22]. Additional diagrams appearing
only in QCD do not contribute at C2

F .
As a final check we remark that the LP part of the hh region corresponds to the massless

limit and we have verified this with the massless form factors at two loops as given in [72, 73].

6 Discussion of results

The previous section contains the main result of this paper, namely, the two-loop massive
form factors F1 and F2, in the limit ŝ ≫ m2, written as the sum of contributions arising
from all momentum regions. It may be useful to elaborate on this result a bit more, focusing
in particular on what can be learnt in light of the computational technique itself, and of
factorization.

The first issue one encounters within the expansion by regions is of course identifying all
contributing regions. To this end, geometric methods have been developed, which identify
the regions by associating them to certain scaling vectors in the parameter representation of
a given Feynman graph G [47–49, 74–77]. From the perspective of exploiting the expansion
by regions to reveal the underlying factorization structure of a given physical observable, it is
important to be able to associate a given region to the (hard, collinear, soft, etc) scaling of
the loop momenta, in order to reinterpret a given region as originating from the exchange of a
(hard, collinear, soft, etc) particle. Identifying all regions by assigning all possible momentum
scalings to the loop momentum is however non-trivial; because loop momenta can be routed
in many different ways. As discussed in the literature (see e.g. [38, 41]), starting from a given
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integral representation it may be necessary to shift the loop momenta one or more times
in order to reveal all regions. In case of the two-loop calculation considered here, we found
it was necessary to perform such shifts in topologies B and X, as discussed in section 4.2
and 4.3 respectively. An obvious question is whether loop momentum shifts are sufficient
to reveal all regions. The answer is positive for the two-loop problem at hand. In general,
finding all regions by means of loop momentum shifts becomes increasingly involved as the
loop order grows; it remains an open question whether this approach can be effective at to
all loop orders. Let us also mention that shifting the loop momenta does not provide per se a
criterion to establish whether all regions have been taken into account. In case the result
of the exact integral is unknown, we find it useful to consider other constraints, such as the
requirement that rapidity divergences cancel in the sum of all regions, which is a strong
constraint on whether all regions have been correctly considered. Another criterion that we
have found quite useful is to determine, given a certain loop momentum parametrization,
whether all possible scalings of the leading term in a given propagator can be obtained, as
explained in section 4.2. If not, this gives a good indication that some momentum regions
are missing, and a momentum shift is needed to reveal them.

Once all regions have been found, the next question concerns their significance for a
factorization approach. In this respect, one of the relevant results of our analysis is the
observation that new momentum regions appearing at the two-loop level cancel in the physical
observable, i.e. the form factors F1 and F2 in this case. Indeed, it was observed already some
time ago [42, 43] that at higher-loop order new regions may appear, compared to the one
already present at lower loops. From a factorization viewpoint this may be problematic,
because it could imply that an all-order factorization cannot be obtained. Indeed, one would
have to add new contributions to the factorization theorem at each subsequent order in
perturbation theory. For our case we find new ultra-(anti-)collinear regions appearing at two
loops, both at the level of master integrals and single diagrams, but these cancel in the form
factors, such that only the regions already appearing at one loop contribute. More specifically,
we find that the sum of the ucc̄, ucc regions of diagrams (b) and (c) cancels against the sum
of the regions c̄uc′, cuc′ in diagrams (f) and (g); similarly, the sum of the ucc, ucc̄ regions in
diagrams (d) cancels against the sum of the c̄uc, ucc regions in diagram (h).

Focusing now on the calculation of the loop integrals in a given region, as usual one has to
deal with standard UV and IR singularities, which we regulate in dimensional regularization,
as well as rapidity divergences. In this work we consider massive form factors, which means
that collinear singularities are regulated by the masses on the external legs, and one is left
with soft singularities, which give a single pole per loop, proportional to 1/ϵ in dimensional
regularization. As is well-known, the expansion into regions generates additional poles in
each region. For instance, the hard region at one loop and the hard-hard region at two loop
correspond to the massless form factor, because masses are neglected when the momentum
is hard and proportional to the large scale ŝ; as such, in the hard region we find double
poles per loop, generated when the loop momentum becomes soft and collinear to one of
the external momenta. The double poles cancel against additional UV singularities arising
in the collinear momentum regions; indeed, the cancellation of spurious singularities, i.e.,
the fact that the two loop massive form factors contain at most 1/ϵ2 poles, provides another
check that all regions have been correctly taken into account.
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As mentioned above, the expansion by regions generates also rapidity singularities, which
we observe in topology B and X. We discussed in section 3 that the original master integrals
do not have rapidity divergences, and we observed their cancellation at the integral level,
when summing all regions of a given integral (details have been given in section 4). In the
context of the present discussion, it may be more interesting to note that rapidity divergences
cancel per region for the form factor F1 at LP, and at NLP for the form factor F2 (which
is probably a consequence of the fact that F2 starts at NLP). With the calculation at hand
we are however not able to determine whether this is a general feature, valid at arbitrary
order. We leave such questions for further research.

Concerning the specific structure of the rapidity divergences per diagram, we saw that
for topology B it was enough to use a single rapidity regulator, while for topology X we
needed up to two rapidity regulators. In general the addition of a rapidity regulator breaks
the symmetry p1 ↔ p2: for instance, in case of topology B the cc region ceases to be equal
to the c̄c̄ region. In case of more than one rapidity regulator, symmetry between regions
can also be broken by expanding the integral in the regulators in a given order. This is
what happens in case of topology X: even if we choose the rapidity regulators ν1 and ν2
such that the symmetry between the cc and c̄c̄ regions is respected, expanding in ν1 and
ν2 in a chosen order breaks this symmetry.

7 Conclusion

In this paper we performed a region analysis of the two-loop massive quark form factor in
QED. We categorized all contributions per region up to next-to-leading power in the quark
mass, paving the way towards factorization tests beyond LP. The calculation itself required
the introduction of three topologies of master integrals and up to 12 different regions per
topology, with rapidity divergences appearing in two out of three topologies, thus revealing
the richness and subtle aspects that entered our analysis. We demonstrated how the rapidity
divergences canceled in the sum of all regions and subsequently validated our result by
reproducing the form factor at NLP as known in literature. Topology A was the least complex
and could be solved by rewriting subleading corrections in terms of LP propagators. Topology
B introduced for the first time rapidity regulators in our analysis and this required a detailed
inspection on a case by case basis depending on the given diagram. In case of topology
X, we had to introduce two unique rapidity regulators, which we labeled ν1 and ν2, and
we found that its expansion order did not affect the form factor provided that order was
kept fixed. Our method also revealed the need of multiple momentum routings in topologies
B and X to cancel not only all rapidity divergences, and uncover additional regions that
would otherwise have remained hidden.

To conclude, we found that the calculation of the massive form factors in the limit
ŝ ≫ m2 by means of the method of regions provides useful data in light of developing a
factorization framework for scattering amplitudes beyond leading power. It gave us the
additional opportunity to test features of the region expansion of complete form factors,
giving new perspectives with respect to cases where the method is applied to single integrals.
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A Rapidity regulators

In this appendix, we consider the following one-loop integral

R =
∫
[dk] 1

[k2 −m2]
1

[(k + p1)2]
1

[(k − p2)2] , (A.1)

with p2
i = m2 and study three different regulators that can be used to regulate the rapidity

divergences that show up once eq. (A.1) is expanded in momentum regions. Before we discuss
these regulators, let us briefly discuss how rapidity divergences appear. For reasons that
will become clear in a moment, let us put the mass of the first propagator in eq. (A.1) to
M2 for now and consider the collinear expansion

R
∣∣∣
c
=
∫
[dk] 1

[k2 −M2]
1

[(k + p1)2]
1

[−k+p−2 ]

= iµ2ϵeϵγE

(4π)2
Γ(ϵ)
ŝ

∫ 1

0
dxx−1(1− x)−ϵ

(
−m2x+M2

)−ϵ
, (A.2)

where we performed the loop integral. One can obtain the remaining x-integral after a
standard Feynman parametrization. In the limit M2 → m2 that we are interested in, the
remaining x-integral ∫ 1

0
dxx−1 (1− x)−2ϵ (A.3)

diverges for x→ 0.10 To be precise, we see that the dimensional regulator ϵ does not regulate
all divergences present in the integral in eq. (A.2). This so-called rapidity divergence can
be traced back to the fact that the eikonal propagator only contains the k+ component and

10In fact, the x-integral diverges for all M ̸= 0.
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therefore new divergences may arise from the k+-integral as ϵ only regulates the transverse
momentum component k⊥.

Eq. (A.2) also shows that in the limit M2 → 0, the divergence of the remaining x-integral∫ 1

0
dxx−1−ϵ (1− x)−ϵ = Γ(−ϵ)Γ(1− ϵ)

Γ(1− 2ϵ) , (A.4)

is fully regulated by ϵ alone. In other words, the presence of rapidity divergences in a
Feynman integral is sensitive to propagator masses. This example reflects therefore why
topology A, being free of rapidity divergences, is so different fromtopology B and X, which
do have rapidity divergences.

A.1 Full result

To validate that rapidity regulators work, we need to calculate the full integral eq. (A.1). A
straightforward calculation (using e.g. the Schwinger parameterisation followed by one-fold
Melin-Barnes integral) yields

R(full) = ieϵγE

(4π)2

(
µ2

m2

)ϵ [(
1− 4m2

s

)− 1
2 +ϵ

π2

s

Γ(1− 2ϵ)Γ(1 + 2ϵ)
Γ2(1− ϵ)Γ(1 + ϵ)

− Γ(−1− 2ϵ)Γ(1 + ϵ)
m2Γ(1− 2ϵ) 2F1

(
1, 1, 32 + ϵ,

s

4m2

)

+
(−s
m2

)−ϵ Γ2(1− ϵ)Γ(ϵ)
2m2Γ(1− 2ϵ) 2F1

(
1, 1− ϵ,

3
2 ,

s

4m2

)]
, (A.5)

where we recall that s = (p1 + p2)2 = 2m2 + ŝ +m4/ŝ. In the small mass limit m2 ≪ ŝ,
we expand eq. (A.5) up to NNLP as

R(full)
∣∣∣
NNLP

= i

(4π)2ŝ

{[
4ζ2 +

1
2 ln2

(
−m

2

ŝ

)]
− 2m2

ŝ

+
(
m2

ŝ

)2 [1
2 + 4ζ2 +

1
2 ln2

(
−m

2

ŝ

)]}
+O (ϵ) . (A.6)

This expansion can now be compared to the region expansion of eq. (A.1).

A.2 Analytic regulator

As this is the regulator used throughout the main body of this work, we first discuss the
analytic regulator, which is implemented by raising the last propagator to a fractional power
ν such that eq. (A.1) is rewritten as [61]

R(a.r.) =
∫
[dk] 1

[k2 −m2]
1

[(k + p1)2]

(
µ̃2)ν

[(k − p2)2]1+ν
. (A.7)

For simplicity, we only consider the LP contribution in the remainder of this appendix. The
hard contribution is given by

R(a.r.)
∣∣∣
h
=
∫
[dk] 1

[k2]
1

[k2 + k−p+
1 ]

(
µ̃2)ν

[k2 − k+p−2 ]1+ν

= i

(4π)2ŝ

(
µ2

−ŝ

)ϵ [ 1
ϵ2

− ζ2
2 +O(ϵ, ν)

]
. (A.8)
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We note there is no rapidity divergence in the hard region, so we can safely set ν = 0 either
at the beginning or at the end of the calculation. In the collinear region, we have

R(a.r.)
∣∣∣
c
=
∫
[dk] 1

[k2 −m2]
1

[(k + p1)2]

(
µ̃2)ν

[−k+p−2 ]1+ν

= ieϵγE

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

ŝ

)ν

Γ(ϵ)
∫ 1

0
dxx−1−ν(1− x)−2ϵ . (A.9)

Comparing to eq. (A.3) we explicitly see how the power ν regulates the rapidity divergence
in a similar manner as how ϵ regulates the IR and UV divergences in eq. (A.4). Carrying
out the integral over x yields

R(a.r.)
∣∣∣
c
= i

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

ŝ

)ν [
− 1
ϵ ν

+ 2ζ2 +O(ϵ, ν)
]
. (A.10)

Similarly, after expanding eq. (A.7) in the anti-collinear region, we obtain

R(a.r.)
∣∣∣
c̄
=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 ]

(
µ̃2)ν

[(k − p2)2]1+ν

= i

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

−m2

)ν [
− 1
ϵ2

+ 1
ϵ ν

+ 5ζ2
2 +O(ϵ, ν)

]
. (A.11)

Note that the symmetry of the collinear and anti-collinear gets broken due to the fact that
we added the analytic regulator to the last propagator only.11 Here, we remark that the
natural overall scales for a hard or collinear loop are (µ2/m2)ϵ and (µ2/(−ŝ))ϵ respectively.
However, with the analytic regulator, we get slightly different overall factors (µ̃2/ŝ)ν and
(µ̃2/(−m2))ν , see eqs. (A.10) and (A.11) respectively. This is an effect of the usual Wick
rotation to Euclidean space, which produces an additional factor (−1)ν .

Other regions do not contribute. For example, the semi-hard region leads to a scaleless
integral and thus a vanishing contribution

R(a.r.)
∣∣∣
sh

=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 ]

(
µ̃2)ν

[−k+p−2 ]1+ν
= 0. (A.12)

Now, after combining all contributing regions we find that

R(a.r.)
∣∣∣
LP

= R(a.r.)
∣∣∣
h
+R(a.r.)

∣∣∣
c
+R(a.r.)

∣∣∣
c̄

= i

(4π)2ŝ

[
4ζ2 +

1
2 ln2

(
−m

2

ŝ

)]
+O (ϵ) , (A.13)

which is the same as the LP result in eq. (A.6) and we notice that all rapidity divergences
have cancelled in the final result, as they should.

11This is similar to diagram (e) as is discussed in section 4.2: adding a power ν in a symmetric way, i.e. to
both the second and third propagator, does not regulate the rapidity divergences.
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A.3 Modified analytic regulator

Instead of raising the power of a propagator by ν, the analytic regulator can also be used
to modify the phase space measure as [64]∫

ddk δ
(
k2
)
θ
(
k0
)

→
∫
ddk δ

(
k2
)
θ
(
k0
)( µ̃

k−

)ν

. (A.14)

Here the amplitude itself does not need to be modified. This has the advantage that
fundamental properties such as gauge invariance and the eikonal form of the soft and collinear
emissions are maintained. The modified analytic regulator is therefore convenient to construct
factorization theorems to all orders. In this work, although we deal with loop integrals, it
is possible to apply a similar scheme to regulate the rapidity divergence. To this end, we
can modify the measure [dk] as follows [78]∫

[dk] →
∫
[dk]

(
µ̃2

−k+p−2 + i0+

)ν

, (A.15)

and define

R(m.a.r.) =
∫
[dk] 1

[k2 −m2]
1

[(k + p1)2]
1

[(k − p2)2]

(
µ̃2

−k+p−2 + i0+

)ν

. (A.16)

Note that the chosen regulator on the right hand side of eq. (A.15) leads to R(m.a.r.)|h =
R(a.r.)|h, R(m.a.r.)|c = R(a.r.)|c and R(m.a.r.)|sh = R(a.r.)|sh. After a direct calculation of
R

(m.a.r.)
c̄ , we have

R(m.a.r.)
∣∣∣
c̄
=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 ]

1
[(k − p2)2]

(µ̃)2

[−k+p−2 ]ν

= ieϵγE

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

−m2

)ν [Γ(ϵ)
ν

− Γ(ϵ) (ψ(1− 2ϵ)− ψ(ϵ)) +O(ν)
]
. (A.17)

Comparing R(m.a.r.)|c̄ with R(a.r.)|′c̄, we find that

R(m.a.r.)
∣∣∣
c̄
−R(a.r.)

∣∣∣
c̄
= O(ν). (A.18)

which means that this regulator is also sufficient to reproduce the result of eq. (A.6).

A.4 δ-regulator

The final regulator we want to discuss is the so-called δ-regulator [79]. It is implemented
by adding a small mass to the propagator denominators,

R(δ) =
∫
[dk] 1

[k2 −m2 − δ1]
1

[(k + p1)2]− δ2]
1

[(k − p2)2 − δ3]]
. (A.19)

The δi are regulator parameters that are set to zero unless they are needed to regulate any
divergences. Following the discussion below eq. (A.2), we see that we can immediately put
δ1 = 0 from the beginning as eq. (A.2) is divergent for all M ̸= 0. This means that the
rapidity divergences have to be regulated by δ2 and/or δ3.
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We recall from section A.2 that the hard region is free of rapidity divergences, so δ2 and
δ3 can be set to zero in this region as well, which reproduces eq. (A.8)

R(δ)
∣∣∣
h
= i

(4π)2ŝ

(
µ2

−ŝ

)ϵ [ 1
ϵ2

− ζ2
2 +O(ϵ)

]
. (A.20)

Next, we consider the collinear expansion

R(δ)
∣∣∣
c
=
∫
[dk] 1

[k2 −m2]
1

[(k + p1)2 − δ2]
1

[−k+p−2 − δ3]

= iµ2ϵeϵγE

(4π)2
Γ(ϵ)
ŝ

∫ 1

0
dx (x− δ3/ŝ)−1

(
m2(1− x)2 + δ2x

)−ϵ
. (A.21)

Comparing eq. (A.21) to eq. (A.3) we see that δ3 regulates the rapidity divergence in the
remaining x-integral. Furthermore, we notice that δ2 is not needed to regulate the divergence
and can therefore be set to zero. Carrying out the remaining x-integral and performing
the ϵ-expansion yields

R(δ)
∣∣∣
c
= i

(4π)2ŝ

(
µ2

m2

)ϵ[1
ϵ
ln
(
1− ŝ

δ3

)
+ 2Li2

( 1
1− δ3/ŝ

)
+O(ϵ)

]
. (A.22)

Similarly for the anti-collinear region we now need to keep δ2 to regulate the rapidity
divergence and can set δ3 = 0. This yields

R(δ)
∣∣∣
c̄
=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 − δ2]

1
[(k − p2)2] = R(δ)

∣∣∣
c
(δ2 ↔ δ3) . (A.23)

Next, we take the semi-hard expansion, where both δ2 and δ3 need to be kept to regulate
the rapidity divergences. Because of the mass-like terms δ2 and δ3, this does not lead to a
scaleless integral like for the analytic regulator, eq. (A.12). We get

R(δ)
∣∣∣
sh

=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 − δ2]

1
[−k+p−2 − δ3]

= i

(4π)2ŝ

(
µ2

m2

)ϵ [ 1
ϵ2

+ 1
ϵ
ln
(
−m

2ŝ

δ2δ3

)
+ ζ2

2 − Li2
(
1 + δ2δ3

m2ŝ

)
+O(ϵ)

]
, (A.24)

where we performed the ϵ-expansion.
Unfortunately, taking the h, c, c̄ and sh regions together does not reproduce the LP part of

the full result as given in eq. (A.6) and in particular, the rapidity divergences are not canceled.
The reason is that the semi-hard region has overlap with the collinear and anti-collinear
regions. To be precise, taking the soft limit of the collinear region, eq. (A.21) yields

R(δ)
∣∣∣
c,∅

=
∫
[dk] 1

[k2 −m2]
1

[k−p+
1 − δ2]

1
[−k+p−2 − δ3]

= R(δ)
∣∣∣
sh
, (A.25)

where we recognize the semi-hard region R(δ)|sh of eq. (A.24). To get the full result, we have
to perform a so-called zero-bin subtraction where one subtracts the overlapping semi-hard
region from the collinear region. Similarly, for the anti-collinear region one has to subtract

R(δ)
∣∣∣
c̄,∅

= R(δ)
∣∣∣
sh
. (A.26)
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Indeed, adding all regions together and including the zero-bin subtractions yields the correct
full result of eq. (A.6)

R(δ)
∣∣∣
LP

= R(δ)
∣∣∣
h
+R(δ)

∣∣∣
c
+R(δ)

∣∣∣
c̄
−R(δ)

∣∣∣
sh

= i

(4π)2ŝ

[
4ζ2 +

1
2 ln2

(
−m

2

ŝ

)]
+O (ϵ, δi) , (A.27)

where in the last line we were able to take the δ2 → 0 and δ3 → 0 limits as the rapidity
divergences cancel.

A.5 Choosing a rapidity regulator

We found that all three regulators can be used to regulate the rapidity divergence that shows
up in the region expansion of the Feynman integral of eq. (A.1). However, from a calculation
point of view, the δ-regulator given in section A.4 is the most complicated one as it leads to
additional scales in the integral. Furthermore, it introduces an additional semi-hard region
compared to the analytic and modified analytic regulators as discussed in sections A.2 and A.3.
Regarding the δ-regulator, we showed that a zero-bin subtraction was necessary to avoid
double counting momentum regions, which complicated the region analysis even further.

The analytic regulator and the modified analytic regulator are similar to each other.
Neither of them increase the number of scales present in the Feynman integral and in case of
the example discussed in this appendix, both lead to the same regions. With the specific
choice we made for the analytic and modified analytic regulator, the only difference between
the two at the integrand level comes from the anti-collinear region, eq. (A.17). As a result,
due to the additional propagator, the calculation of R(m.a.r.)|c̄ is more complex than R(a.r.)|c̄.
This additional complexity that arises from the modified analytic regulator would make the
two-loop calculation of the form factor much more difficult as compared to when one would
adopt the analytic regulator instead. In this work, we therefore used the analytic regulator
whenever rapidity divergences showed up.

B Regions in topology X

As discussed in detail in section 4, finding all momentum regions for a given Feynman integral
can be a subtle process. To supplement the discussion given in section 4, we provide in
this appendix some details about the momentum region analysis for one of the Feynman
integrals needed in the calculation of diagram (h), which belongs to topology X. Topology X
in particular is difficult because of the complexity of the integrals - we needed two different
rapidity regulators and had to route the momenta in three different ways in order to find
all regions. The example we consider is Iν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0, which according to the momentum
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routing given in eq. (3.3) reads

IX = 1
C
Iν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0

= 1
C

∫
[dk1][dk2]

1
k2

1

1
k2

2

µ̃2ν1
1

[(k2 − p1)2 −m2]1+ν1

µ̃2ν1
1

[(k1 + k2 − p1)2 −m2]1+ν1

× µ̃2ν2
2

[(k1 + p2)2 −m2]1+ν2

µ̃2ν2
2

[(k1 + k2 + p2)2 −m2]1+ν2
, (B.1)

where for convenience we factored out

C = 1
(4π)4ŝ2 . (B.2)

As discussed in section 4.3, both regulators ν1 and ν2 are needed to regulate the rapidity
divergences once IX is expanded in different momentum regions. The full unexpanded
integral on the contrary is free of rapidity divergences and therefore ν1 and ν2 can be set to
zero, and the result can be found in refs. [24, 69]. In order to compare with the momentum
region approach, we expand the full result in the small mass limit up to NLP:

IX
full

∣∣∣
NLP

=
(
µ2

m2

)2ϵ [
−1
ϵ

(1
3L

3 + ζ2L+ ζ3

)
− 1

2L
4 + ζ2L

2 − ζ3L− 37ζ2
2

10

−m
2

ŝ

(
4L2 − 8L+ 4ζ2

)
+O (ϵ)

]
, (B.3)

where we defined

L = ln
(
−m

2

ŝ

)
. (B.4)

In the remainder of this appendix we first present in appendix B.1 all the momentum regions
which contribute to the full result of eq. (B.3) up to NLP. In appendix B.2, we then compare
these regions to the output of the software package Asy.m, which uses a geometric approach
to reveal all the relevant regions for a given Feynman integral in parameter space. We
finish this appendix with a discussion on a method that can be used to find all regions
in momentum space.

B.1 Regions in momentum space

As we have shown in section 4.3, there are 12 regions needed for the integrals of topology
X.12 To cover all these regions in momentum space, the region expansion given by the
momentum routing of eq. (3.3) is not sufficient, and one also needs to consider the routings
as given in eqs. (4.6) and (4.7). In what follows, we will show that indeed all three different
momenta routings are needed in the region expansion of IX , eq. (B.1), to get all the 12
regions that make up the full result of eq. (B.3).

12Note that we can safely limit ourselves to the Feynman integrals with n7 ≤ 0 as only these are needed in
the computation of F1 and F2 for diagram (h).
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We first present all the eight different momentum regions given by the first parameter-
isation of topology X defined by eq. (3.3). Up to NLP we get

IX
∣∣∣
hh

=
(
µ2

−ŝ

)2ϵ [
− 1
ϵ4

+ 6ζ2
ϵ2

+ 83ζ3
3ϵ + 177ζ2

2
10 + m2

ŝ

(
− 3
ϵ2

− 6
ϵ
+ 9ζ2 + 12

)]
(B.5)

IX
∣∣∣
cc
=
(
µ2

m2

)2ϵ(
µ̃2

2
ŝ

)2ν2 [ 3
8ϵ4 − 1

2ϵ3ν2
+ 21ζ2

8ϵ2 + 1
ϵ

(
6ζ3 −

ζ2
2ν2

)
+ ζ3

3ν2
+ 1177ζ2

2
80

+ m2

ŝ

(1
ϵ

( 2
ν2

+ 7
)
− 14ζ2 +

10
ν2

+ 21
)]

(B.6)

IX
∣∣∣
c̄c
=
(
µ2

m2

)2ϵ(
µ̃2

1
−m2

)ν1 (
µ̃2

1
ŝ

)ν1 (
µ̃2

2
−m2

)ν2 (
µ̃2

2
ŝ

)ν2 [ 1
4ϵ4 + 1

ϵ3

( 1
2ν2

+ 1
2ν1

)

+ 1
ϵ2

(5ζ2
4 − 1

ν1ν2

)
+ 1
ϵ

(3ζ2
2ν1

+ 3ζ2
2ν2

+ 17ζ3
6

)
− ζ2
ν1ν2

+ 14ζ3
3ν1

+ 14ζ3
3ν2

+ 279ζ2
2

40

+ m2

ŝ

(1
ϵ

( 2
ν2

+ 2
ν1

+ 4
)
− 4ζ2 +

2
ν1

+ 2
ν2

− 4
)]

(B.7)

IX
∣∣∣
hc

=
(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ [ 8
3ϵ4 − 8ζ2

ϵ2
− 316ζ3

9ϵ − 158ζ2
2

5

+ m2

ŝ

(
− 4
3ϵ2 + 4

3ϵ + 4ζ2 −
40
3

)]
(B.8)

IX
∣∣∣
c̄uc

=
(
µ2

m2

)ϵ(
µ2ŝ2

m6

)ϵ [
− 1

24ϵ4 − 5ζ2
8ϵ2 − 7ζ3

18ϵ −
493ζ2

2
80

+ m2

ŝ

( 1
3ϵ2 + 5

3ϵ + 5ζ2 +
19
3

)]
(B.9)

Note that the LP of IX |hh can be found in [42, 80]. By symmetry, we have

IX
∣∣∣
c̄c̄
= IX

∣∣∣
cc
(ν1 ↔ ν2) , IX

∣∣∣
c̄h

= IX
∣∣∣
hc
, and IX

∣∣∣
ucc

= IX
∣∣∣
c̄uc

. (B.10)

The second parameterisation of topology X, eq. (4.6), gives two new regions: the cc′-region
and the c̄c̄′-region. By defining13

I ′X = 1
C
I ′

ν1,ν1,ν2,ν2
X;1,1,1,1,1,1,0 , (B.11)

the NLP results of these two new regions read

I ′X
∣∣∣
cc′

=
(
µ2

m2

)2ϵ(
µ̃2

1
−m2

)ν1 (
µ̃2

1
ŝ

)ν1 (
µ̃2

2
−m2

)2ν2 [
− 29

4ϵ4 + 1
ϵ3

( 3
ν2

+ 1
2ν1

)

+ 1
ϵ2

(7ζ2
4 − 1

ν2
2

)
+ 1
ϵ

(
ζ2
2ν1

+ 83ζ3
6

)
− ζ2
ν2

2
− ζ3

3ν1
− 7ζ3

ν2
+ 473ζ2

2
40

+ m2

ŝ

(
− 3
ϵ2

+ 1
ϵ

(
− 2
ν1

− 14
)
− ζ2 −

10
ν1

− 2
ν2

− 42
)]

(B.12)

13Recall that the difference between I′X and IX only arises in the momentum region expansion. The
unexpanded integrals are the same.

– 41 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

I ′X
∣∣∣
c̄c̄′

=
(
µ2

m2

)2ϵ(
µ̃2

2
−m2

)2ν1 (
µ̃2

1
−m2

)ν2 (
µ̃2

1
ŝ

)ν2 [ 2
ϵ4

+ 1
ϵ3

(
− 3
ν2

− 1
2ν1

)

+ 1
ϵ2

(
3ζ2 +

1
ν1ν2

+ 1
ν2

2

)
+ 1
ϵ

(
−3ζ2
2ν1

− ζ2
ν2

+ 41ζ3
3

)
+ ζ2
ν1ν2

+ ζ2
ν2

2
− 14ζ3

3ν1
+ 2ζ3

ν2
+ 59ζ2

2
10

+ m2

ŝ

( 4
ϵ2

+ 1
ϵ

(
− 4
ν2

− 2
ν1

− 4
)
+ 2ζ2 −

2
ν1

− 10
ν2

+ 2
)]

. (B.13)

Finally, to get the full NLP result, two more regions are needed and can be found using
the third parametersisation. Recalling eq. (4.7), we define

I ′′X = 1
C
I ′′

ν1,ν1,ν2,ν2
X;1,1,1,1,1,1,0 . (B.14)

These last two missing momentum regions are the ch′′ and c̄h′′ regions and their expressions
are given by

I ′′X
∣∣∣
ch′′

=
(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ [
m2

ŝ

( 2
ϵ2

+ 2
)]

, (B.15)

and by symmetry

I ′′X
∣∣∣
c̄h

= I ′′X
∣∣∣
ch′′

. (B.16)

Note that the ch′′ and c̄h′′ regions do not contribute at LP.
For notational simplicity, we denote IX

∣∣
• as IX

• from now on. Combining all of the
above 12 regions, we obtain the result of the integral eq. (B.1) up to NLP. That is,

IX
hh + IX

cc + IX
c̄c̄ + IX

c̄c + IX
hc + IX

c̄h + IX
c̄uc + IX

ucc + I ′X
cc′ + I ′X

c̄c̄′ + I ′′X
ch′′ + I ′′X

c̄h′′

=
(
µ2

m2

)2ϵ [
−1
ϵ

(1
3L

3 + ζ2L+ ζ3

)
− 1

2L
4 + ζ2L

2 − ζ3L− 37ζ2
2

10

−m
2

ŝ

(
4L2 − 8L+ 4ζ2

3

)
+O(ν1, ν2, ϵ)

]
, (B.17)

which is the same as eq. (B.3). We notice that all rapidity divergences have canceled.

B.2 Regions in parameter space

To find all the above 12 regions for IX , we can also use the Mathematica package Asy.m [47,
48], which implements a geometric approach to reveal the relevant regions for a given
Feynman integral and a given limit of momenta and masses. The program relies on the
alpha-representation of IX in eq. (B.1), which can be written in the following form

IX = C1

∫ ∞

0
[dy] (y3y4)ν1(y5y6)ν2A3ϵ+2ν1+2ν2

3

(
m2A1 − s12A2 − iη

)−2−2ϵ−2ν1−2ν2
, (B.18)
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where yi are the so-called alpha parameters and

[dy] =
6∏

i=1
dyiδ(1− y1 − y2 − y3 − y4 − y5 − y6) . (B.19)

For notational convenience, we defined

C1 = ŝ2µ4ϵµ̃4ν1
1 µ̃4ν2

2 e2ϵγEe−2i(ν1+ν2)πΓ(2 + 2ϵ+ 2ν1 + 2ν2)
Γ2(1 + ν1)Γ2(1 + ν2)

, (B.20)

and

A1 = y4y5(y4 + y5) + y5y6(y5 + y6) + y2
3(y5 + y6) + y1(y3 + y4)2 + (y2 + y3)(y5 + y6)2

+ y3y4(y4 + y5) + y3y4(y3 + y5) + y1y
2
6 + y2y

2
4 ,

A2 = y1y6(y3 + y4) + y4y6(y3 + y5) + y2y4(y5 + y6) ,
A3 = y5(y4 + y6) + (y2 + y3)(y4 + y5 + y6) + y1(y2 + y3 + y4 + y6) . (B.21)

The package Asy.m formulates the expansion by regions of a Feynman integral by studying
the scaling of each alpha-parameter yi, as opposed to the method used in this work where we
defined the regions by studying the scaling behaviour of loop momentum components. The
two methods are closely related, as the scaling of each parameter yi corresponds directly to
the scale of the i-th denominator factor of the original Feynman integral. To find the possible
scalings of the parameters yi that lead to non-vanishing integrals, Asy.m uses a geometrical
method based on convex hulls [47]. Using the package Asy.m for IX , we get 12 regions listed as

R =
(
{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 2, 2}, {0, 0, 2, 2, 0, 0}, {0, 0, 0, 2, 0, 2}, {0,−4,−2, 2, 0, 0},
{0, 4, 4, 4, 2, 6}, {0,−2,−2, 0,−2,−2}, {0, 2, 0, 0, 0, 2}, {0, 0, 0,−2, 0, 0},
{0, 0, 0, 0, 0,−2}, {0,−2,−2, 0, 0, 0}, {0, 2, 2, 2, 0, 2}

)
. (B.22)

The j-th region of IX is now denoted by the vector Rj , which specifies the scales of the alpha
parameters. To be precise, one scales yi → yiλ

Ri
j with λ≪ 1 and expands eq. (B.18) around

λ = 0. This yields the alpha representation of IX in the j-th region which we denote as IX
j .

We have checked that the regions as listed by Asy.m lead to the same regions as we found
in momentum space and listed in appendix B.1. For simplicity, we only calculated the LP
term of IX

j , except for IX
9 and IX

10 as these start at NLP. We find that IX
1 -IX

12 are the same
as IX

hh, IX
cc , IX

c̄c̄ , IX
c̄c , IX

c̄uc, IX
uc̄c, I ′X

cc′ , I ′X
c̄c̄′ , I ′′X

ch′′ , I ′′X
c̄h′′ , IX

hc and IX
c̄h, respectively.

B.3 Finding regions in momentum space

We finish this appendix by presenting a method that can be used to find all the regions in
momentum space of a Feynman integral. In principle, we can use Asy.m to find the scale of
each propagator in a given region and then obtain the corresponding modes of loop momenta.
However, in our case, it is important to apply an independent cross-check to find the regions
in momentum space. To illustrate our method, we focus again on the integral IX , eq. (B.1),
and use the collinear-type region — which means the loop momenta k1 and k2 are both
collinear or anti-collinear — as an example.

– 43 –



J
H
E
P
0
2
(
2
0
2
4
)
0
2
4

p1

p2

3

α
2

δ
6

µ
4

τ
1

β

5

(a)

p1

α 2

3

c, c̄, h

c, h, c̄

c

(b)

p2

β 5

1
c̄, c, h

c̄, h, c

c̄

(c)

Figure 7. We show diagram (h) including labels for the vertices and propagators in figure 7(a).
The vertices α and β are shown in figures 7(b) and 7(c) with possible momentum modes for each
propagator when the loop momenta are regarded as (anti-)collinear.

Regardless of whether we perform expansion by region or not, the momentum flowing
into a vertex of a Feynman diagram is conserved. We can use this fact to constrain the
possible scales of the propagators connected to the same vertex. To make this precise, we
labeled the vertices and propagators of IX in figure 7(a). Vertex α, shown again in figure 7(b),
includes three lines with one of them being the external fermion line with momentum p1
which is regarded as the collinear momentum. At present, we only focus on the collinear-type
regions such that the momentum of one of the remaining two lines should be collinear or
anti-collinear. By momentum conservation, the momentum of the third line is now fixed.
That is, if the photon line — labeled by 2 — has momentum with collinear scaling, then by
momentum conservation the fermion line — labeled by 3 — has also collinear momentum.
However, if the photon line has anti-collinear scaling, then the momentum of the fermion line
should be hard.14 The only case left for the collinear-type region is when the fermion line
has anti-collinear scaling, which leads to a hard momentum scaling for the photon line. In
figure 7(c), all possibilities are listed for vertex β, which attaches to the fermion line with
momentum p2, regarded as the anti-collinear momentum.

We notice that once we determine the modes of the momenta that flow into the vertices
α and β, the momentum scaling of every line in the diagram can be extracted.15 As discussed
above, the momenta of the lines labelled 2 and 3 can have the modes cc, c̄h and hc̄ and the

14Notice that hard here and h in the following refer to the scaling
√

ŝ(λ0, λ0, λ1) as it is the sum of collinear,
which scales as

√
ŝ(λ0, λ2, λ1), and anti-collinear, which scales as

√
ŝ(λ2, λ0, λ1). This is slightly different

compared to the hard mode defined in eq. (2.14).
15In fact, one can also pick the vertices α and µ or β and µ.
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momenta of the lines labelled 1 and 5 can have modes c̄c̄, ch and hc. Naively, we have 9
different configurations after considering these two vertices. We divide these 9 configurations
into 3 categories, which are given by

Rc
1 = (c̄ccc̄, c̄c̄hc̄, ccch, cc̄hh) ,

Rc
2 = (c̄hc̄c̄, hccc, hhc̄c) ,

Rc
3 = (chc̄h, hc̄hc) . (B.23)

Each configuration, e.g. c̄ccc̄ in Rc
1, represents the momentum modes of the lines labelled 1,

2, 3 and 5 respectively. Note that the regions determined by the configurations in Rc
1 can

be given using the definition of eq. (3.3), while those in Rc
2 can be given using eq. (4.6). We

did not show the definitions of the propagators that can be used to give the configurations
in Rc

3. The reason is that these two configurations in Rc
3 only give scaleless integrals and

hence do not contribute. It is also straightforward to check that the integrals in both
configurations cc̄hh and hhc̄c are scaleless. Finally, we find 5 contributing configurations,
c̄ccc̄, c̄c̄hc̄, ccch, c̄hc̄c̄ and hccc which indeed correspond to the c̄c, c̄c̄, cc, c̄c̄′ and cc′ regions
given in section 5.3, respectively. In principle, one can also choose vertices α and µ or β
and µ to analyze the possible collinear-type regions in topology X. However, we did not
find any additional collinear-type regions that contributed up to NLP. The other regions
in topology X, where the loop momenta have hard or ultra-(anti-)collinear scaling, can be
found following a similar procedure.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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