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Sound propagation in a Bose-Einstein condensate at finite temperatures
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We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite
temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the
two-fluid model. A phase-contrast imaging technique is used to image the cloud of atoms and allows us to
observe small density excitations. The propagation of the density wave in the condensate is used to determine
the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with

calculations based on the Landau two-fluid model.
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I. INTRODUCTION

Long wavelength excitations of a Bose-Einstein conden-
sate (BEC) with repulsive interactions exhibit a phononlike,
linear dispersion, causing these excitations to move at a finite
speed c, the speed of sound. Excitations with a wavelength
comparable to the size of the cloud result in collective shape
oscillations of the system [1]. The dispersion relation is lin-
ear up to wave vectors of the order of the inverse of the
healing length. Perturbations with a wavelength much
shorter than the axial size of the cloud and larger than the
healing length therefore give rise to the excitation of a hy-
drodynamic mode propagating at the speed of sound.

In the case of liquid helium sound excitations have been
extensively studied below the A-point, where a superfluid
and a normal fluid coexist. In this regime two sound modes
can be distinguished: the first mode, first sound, consists of
an in-phase oscillation of the superfluid and normal fluid
component, while the second mode, second sound, consists
of an out-of-phase oscillation of the superfluid and normal
fluid component. The occurrence of two distinct modes is
caused by the presence of both a superfluid density and nor-
mal fluid density, which are coupled. One of the drawbacks
of liquid helium is that the interactions are so strong that a
clear distinction between the two components is difficult,
which complicates the interpretation of the phenomena.

In the dilute gaseous BEC studied here a two-fluid system
exists below T, analogous to the case of liquid helium. In
our setup the thermal cloud is in the hydrodynamic regime,
where collisions between atoms are rapid enough to establish
a state of dynamic local equilibrium in the noncondensed
atoms. In contrast to Bose-condensed liquid helium, the su-
perfluid in the gaseous BEC corresponds directly to the
Bose-condensed atoms and the normal component directly to
the thermal, noncondensed atoms, since the interactions are
much weaker.

First and second sound in a Bose gas exhibit different
features than those in a Bose liquid [2]. In liquid helium, the
coupling between the density and temperature is weak, since
C,=C,, with C, , the specific heat for constant pressure and
constant volume, respectively. As a result, in liquid helium
first sound is mainly a density wave, while second sound is
an almost pure temperature wave. In contrast, in a Bose gas,
the density and temperature fluctuations are strongly
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coupled, since C,,/ C,#1. The first sound mode in a Bose gas
is largely an oscillation of the density of the thermal cloud
(the normal fluid) and second sound is largely an oscillation
of the density of the condensate (the superfluid) [3]. In su-
perfluid helium, only the first sound mode can be excited by
a density perturbation. In contrast, second sound has a sig-
nificant weight in the density response function in superfluid
Bose gases at finite temperatures and can be excited by a
local perturbation of the density.

Since we can directly image BECs and make a clear dis-
tinction between both components, it allows for a direct
comparison with theoretical descriptions of the two-fluid sys-
tem modeling the interactions between both components.
Thus, the research using weakly interacting Bose gases
promises results that will go beyond the results obtained us-
ing liquid helium.

In a pioneering paper by Lee and Yang the speed of first
and second sound is derived for a dilute Bose gas, although
there is no coupling between both sound modes [4]. This
interaction is taken into account in the two-fluid model de-
veloped by Landau for liquid helium [5] and in a hydrody-
namic model developed by Zaremba, Griffin, and Nikuni for
trapped Bose gases [6]. In these papers, it is shown that the
hydrodynamic second sound mode at finite temperature ex-
trapolates to the 7=0 Bogoliubov phonon mode.

The propagation of sound in a harmonically trapped, al-
most pure BEC in the collisionless regime has been observed
experimentally in a pioneering experiment by the Andersen
et al. [7,8] and studied theoretically by various authors
[4,5,9-12]. After the first experiment, sound propagation has
been observed for a BEC in an optical lattice, the excitation
spectrum of a BEC has been measured and the excitation of
shock waves is observed [13-15].

The work presented here describes the experimental ob-
servation of a propagating sound wave in an elongated BEC
at finite temperatures and extends the study by the MIT
group in two ways. First, in the work presented here, the
propagation of a sound wave is observed at finite tempera-
tures. The thermal cloud is in the hydrodynamic regime
above T, and the cloud is therefore a two-fluid system below
T.: a superfluid BEC coexists with a normal fluid of thermal
atoms. If the thermal cloud is already close to the hydrody-
namic regime above T, it will be deeply in the hydrody-
namic regime when the BEC forms, since the collision rate y
is dominated by the collisions between the condensed and
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the thermal atoms determined by the rate y,, [16]. In the
two-fluid system interactions between the superfluid and the
normal component are expected to play an important role.
Second, the large signal-to-noise ratio of our imaging tech-
nique allows us to make smaller excitations than is used in
the MIT experiments, thereby limiting nonlinear effects. The
large atom number BECs in combination with the weak axial
confinement results in typical axial BEC lengths of more
than 2 mm. This allows for the determination of the speed of
sound with a high accuracy, since the propagation distance
can be large before the sound wave reaches the edge of the
BEC.

II. SOUND PROPAGATION IN A DILUTE BOSE-
CONDENSED GAS

Since second sound at finite temperatures extrapolates to
the 7=0 Bogoliubov phonon mode, we start this discussion
in the 7=0 limit. The speed of second sound in the absence
of a thermal cloud can be derived using the Gross-Pitaevskii
equation (GPE). Reformulated as a pair of hydrodynamic
equations, neglecting the quantum pressure and after linear-
ization, the GPE can be written in the simplified, hydrody-
namic form [12]

7 on =V[c* (P V én], (1)

where the departure of the density from its equilibrium den-
sity neq is given by on(7,1)=n(7,t)—n(7) and the local
speed of sound c¢(7) is defined by

mCZ(},-:) =M Vext(F) > (2)

where u is the chemical potential, V, is the external con-
finement and m is the mass. In a uniform Bose gas, V=0,
the speed of second sound is given by c=\u/m=\gn./m,
with n. the condensate density. This result was first derived
by Lee and Yang [4] based on theory developed by Bogoliu-
bov [17] and is therefore often referred to as the Bogoliubov
speed of sound, which we will refer to as cg in this paper. cg
only depends on temperature through the BEC density and is
independent of the thermal density.

The experiments are conducted in an elongated three-
dimensional (3D) trap where the external confinement in the
radial (subscript rad) and axial (subscript ax) direction is
given by

1
Vext(x’y’z) = Em(["’rzadx2 + wrzady2 + wzztxzz) ’ (3)

with w, 4> w,,, and the density depends on the position. Al-
though the confinement is highly anisotropic, the BEC is not
fully in the one-dimensional (1D) regime, since u=7hw.,.
For the radial average density we use the Thomas-Fermi
(TF) value 1(z)=n(0,0,z)/2, where n(0,0,z) is the central
axial density. The local Bogoliubov speed of sound is given
in terms of the radial average density by
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n 0,0,
ca(a) = \/g (@) _ \/gn( z), @
m 2m

a result confirmed using different methods [8,10-12]. In our
experiment the axial confinement is weak and the density
varies slowly along the axial direction.

To our knowledge two theoretical descriptions are avail-
able in which the effect of the interaction between the normal
and the superfluid component on the speed of sound is taken
into account. Zaremba, Griffin, and Nikuni have derived the
two-fluid hydrodynamic equations for weakly interacting
Bose gases [6] and use them to discuss first and second
sound for a uniform Bose gas [18]. We refer to this descrip-
tion as the ZGN model. In the same paper, they derive the
Landau two-fluid equations for a dilute gas in a complete
local equilibrium and use these equations to calculate the
first and second sound velocities. We refer to this description
as the Landau model. In Ref. [9] it is shown the ZGN model
is valid in the limit, in which collisions between the con-
densed and the noncondensed atoms are ignored on the time
scale of the collective excitation 7y,/w—0. The Landau
model developed for dense fluids such as superfluid helium
is valid for dilute Bose gases in the opposite limit of com-
plete local equilibrium y,/w— > [9]. Here, vy, is the relax-
ation rate for chemical potential differences between the con-
densate and the thermal cloud as given in Ref. [9] and w is
the excitation frequency.

We present a measure for the hydrodynamicity of the ther-
mal cloud in the axial direction Y= y,,/ w,,, where the col-
lision rate 7y, =n.¢0v, is the average number of collisions
in the thermal cloud. Here, the relative velocity v,o=120,,,
where 0., =\8kgT/mr is the thermal velocity at temperature
T and m is the mass and o=8ma’ is the isotropic cross-
section of two bosons with s-wave scattering length a. Fur-
thermore, nee=[n2 (r)dV/ [n(r)dV=n0/\8 for an equilib-
rium distribution in a harmonic potential, where n0,, is the
peak density. Written in terms of the number of thermal at-
oms N, =n04,[27kg T/ (m@*)]*? and the geometric mean of
the angular trap frequencies @’ = wrzadwax, this results in y,,
=N mow’/(2m%kgT) =90 s~! for the highest number of at-
oms and corresponds to a hydrodynamicity of y=<10 in the
axial direction. We have observed the transition from the
collisionless regime to the hydrodynamic regime by studying
a thermal dipole mode above T, [19]. Furthermore, it is
noted in Ref. [16] that the thermal cloud is deeper in the
hydrodynamic regime when a BEC forms due to collisions
with condensed atoms. As a result, the thermal cloud is even
more hydrodynamic below T, than it is above the transition
temperature.

Both models are used to calculate the speed of first and
second sound as solutions of an equation of the form u*
—Au?+B=0, where A and B are coefficients which are given
for both models in Ref. [9]. These coefficients depend on the
condensate density n., the noncondensate density 7., and the
temperature 7. In Ref. [9] the differences between both mod-
els for constant density n=n.+n,, are found to be very small
in the case of a weakly interacting Bose gas. As a result, the
transfer of atoms required to equilibrate the condensed and
noncondensed atoms is found to play a minor role in the
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FIG. 1. (Color online) The speed of first (I) and second (II)
sound calculated in the Landau model (solid lines) and the ZGN
model (dashed lines), normalized to cg(0) [Eq. (4)] as a function of
the reduced temperature 7/7.. The inset shows the same tempera-
ture range on a larger vertical scale. The densities and temperature
used for the calculations for 0.2<7/T.<0.9 correspond to the in-
trapolated experimental values. For 7/T.<0.2n, is kept constant,
and n,, is extrapolated to n.,=0 for 7=0.

determination of the speed of first and second sound [18].
The speed of first and second sound for both models is
shown in Fig. 1, where close to T, the first (second) sound
mode mainly corresponds to the density wave in the thermal
(condensed) fraction. The figure shows the coupling between
both sound modes cause the speed of second sound to be
smaller than the Bogoliubov speed of sound. Around T
=0.15T, this coupling results in an avoided crossing. Note
that the position of the avoided crossing in Fig. 1 is outside
the region of validity of the model, which is valid for kgT

>u [9].

III. EXPERIMENT

The experimental setup used to create large number BECs
is described in Ref. [20]. In short, >*Na atoms are cooled and
trapped in a dark-spot MOT and transferred to a magnetic
trap (MT) after being spin polarized [21]. Forced evaporative
cooling on these atoms yields roughly 1 X 10° thermal atoms
around 7=T7,. In order to prevent three-body losses, which
limit the density, as well as to increase the collision rate with
respect to the axial trap frequency, we work with axially
decompressed traps and have reached the hydrodynamic re-
gime in the thermal cloud [22]. The resulting elongated,
cigar-shaped clouds used for the experiments described here
have an aspect ratio w,q/ .= 065.

The experiments are conducted on clouds at various tem-
peratures below 7. The number of condensed atoms, slightly
depending on the temperature, is roughly N.=1.7 X 10% and
the BEC density is about 2.5% 10?2 m=3. At the lowest tem-
peratures, the BEC has a radial TF radius of roughly 22 um
and an axial TF radius of 1.4 mm.

The clouds are imaged using phase-contrast imaging, the
details of which are described in Ref. [23]. Briefly, the atoms
are imaged in sifu and in contrast to other implementations
of the phase-contrast imaging technique [24], our implemen-
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tation does not aim at nondestructive imaging, but uses the
periodicity of the intensity of the phase contrast imaging
technique as a function of the accumulated phase of a probe
beam that propagates through a cloud of atoms. Therefore,
the intensity signal for large enough accumulated phase show
rings in the intensity profile. The number of rings is a sensi-
tive measure for the atomic density and allows us to deter-
mine the BEC density, the thermal density and the tempera-
ture within a few percent. The lens setup used results in a
diffraction limited resolution of roughly 4 um.

For the experiments we evaporatively cool the atoms in
the presence of a blue-detuned focused laser beam aimed at
the center of the trap, which acts as a repulsive optical dipole
trap. The beam is focused using a cylindrical lens yielding a
sheet of light with a (l1/e)-width of the intensity of
127 =20 um. The nonfocused direction has a (1/e)-width of
roughly 5 mm. The light of the dipole beam is detuned
20 nm below the **Na D, transition and the power adjusted
in such a way that the repulsive potential has a height of
(0.24 +0.04) u, where w is the chemical potential. Due to the
large detuning heating caused by light scattering is negli-
gible. The laser power of the dipole beam is continuously
measured and used in an electronic feedback circuit control-
ling the efficiency of the acousto-optical modulator (AOM)
that deflects laser light into an optical fiber whose output is
used for the dipole beam. Using this procedure the stabilized
intensity has a RMS fluctuation of 0.1%. Typically, the
power is adjusted on the order of milliseconds and the power
is therefore not stabilized instantaneously, mainly due to
heating of the optical fibers. However, the height of the po-
tential is not critical during the first stages of the evaporation
(tens of seconds), where the thermal energy kg7 is large with
respect to the dipole potential, ensuring the stability of the
height of the potential long before the BEC is formed. An
alternative way of exciting a sound wave is by turning on the
repulsive potential after the BEC is formed. Since this pro-
cedure is immediately sensitive to the height of the potential
this alternative results in less reproducible excitations than
the procedure used in our experiments. Turning the dipole
beam suddenly off [(1/e)-time ~250 ns] causes a local dip
of the BEC density. This perturbation splits up in two waves
propagating symmetrically outward, both with half the am-
plitude of the initial perturbation. A schematic representation
of the excitation procedure is shown in Fig. 2.

Clouds are imaged at about ten different times after the
dipole beam is switched off, where for each shot a new cloud
is prepared, since the imaging scheme used is destructive.
The initial conditions of the newly prepared clouds show
only a small variation, since the density in the final stage of
the evaporative cooling process is limited by three-body
losses. The density as a function of the axial position is de-
termined by making 1D fits of the radial profile for all axial
positions. The fit function used is a bimodal distribution
which is the sum of a Maxwell-Bose distribution describing
the thermal cloud and a TF distribution describing the BEC.
Each propagation time for a series is mostly measured twice.
The total accumulated phase as well as the radial width of
the BEC can be used as a measure for the local density,
although the width is expected to yield inferior results due
to lensing effects and the limited resolution in the radial
direction.
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FIG. 2. Schematic representation of the excitation of a sound
wave, where the trapping potential, height and width of the pertur-
bation are roughly on scale. At r<<0 a BEC is formed in the pres-
ence of a blue-detuned repulsive dipole beam which adjusts the
trapping potential. At r=0 the dipole beam is suddenly turned off
and the inflicted density perturbation causes two density dips to
move outward for >0, propagating at the speed of sound.

IV. RESULTS & DISCUSSION

The resulting axial density profiles of the condensate,
shown in Fig. 3 for various propagation times, clearly shows
the outward traveling density dips. In the density profiles of
the thermal cloud these dips are absent, and no propagation
is observed. The propagation of sound in the thermal cloud is
discussed at the end of this section and for now we consider
only the density perturbation of the condensed fraction of the

cloud.
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FIG. 3. Density profiles showing the peak density of the BEC as
a function of the axial position for seven different propagation
times. The unperturbed density profile is subtracted from perturbed
ones to increase the visibility of the density dips. The dotted line is
a guide to the eye following the trailing edge of the dip. The hori-
zontal scale is given in terms of the axial TF radius R, where
Ry=~1.4 mm.
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The density profiles shown in Fig. 3 show that the shape
of the perturbation, which is initially approximately Gauss-
ian, deforms during the propagation. The deformation is
caused by the dependence of the speed of sound on the den-
sity and its effect will be estimated using Eq. (4). The esti-
mated change in the sound velocity corresponding to a
change in density An is approximated by Ac=(c/2)An/n.
The dependence of the sound velocity on the density causes
the center of the dip to move slower than the edges. Further-
more, this effects results in the trailing edge to “overtake”
the center, while the leading edge outruns the center part.
The resulting high-density gradient leads to the formation of
shock waves when the density gradient is of the order of 1/&,
where £ is the healing length [15]. Formation of shock waves
complicates the propagation due to strong nonlinear behav-
ior. The typical time for the formation of shock waves is
estimated by considering the difference in traveled distance
Az of the tailing edge (density n) with respect to the center
(density n—An) after 7 propagation time, yielding Az=
—(c7/2)An/n [11]. The edge will reach the center when Az
~ o, where o is the width of the perturbation, resulting in
7= on/(Anc) which is the time for shock waves to form. For
our typical parameters this yields 7=200 ms. In the experi-
ments propagation times are less than 110 ms.

For times less than 7 we already see that the propagating
wave deforms. We have made a simulation of the GPE,
which describes the BEC at 7=0 to analyze the effect, the
deformation has on the propagation of the condensate den-
sity wave. The GPE is numerically solved using the time-
splitting spectral method described in Ref. [25]. Since the
experiments are done on very elongated, cigar-shaped BECs
and all effects are found in the axial directions, the calcula-
tion time can be reduced by solving an effective 1D equation
in the limit of strong coupling [26]. Many experiments on
both the statics and dynamics of BECs have shown that ex-
periments can be modeled accurately by numerically solving
the GPE, for example in experiments on interferometry [27]
and superfluidity [28]. Note that we assume that the tempera-
ture dependence on the deformation of the condensate den-
sity wave can be neglected.

The simulated density profiles are shown in Fig. 4, where
the perturbation is excited by growing the BEC in the pres-
ence of an additional Gaussian shaped potential. At =0 this
extra potential is suddenly switched off, but the harmonic
confinement remains. Two situations are shown; a small ini-
tial perturbation and a perturbation corresponding to the situ-
ation in the experiments. The simulations show the deforma-
tion of the initial shape of the perturbation and the
steepening of the trailing edge of the condensate density
wave under the experimental conditions. After about 200 ms
the simulations indeed show the formation of shock waves.

We have run simulations for larger perturbations An/n
~(.5 and find shock waves to form within a few tens of
milliseconds. Comparing these results to the sound propaga-
tion experiments by the MIT group [7,8], where applied per-
turbations are reported as large as An/n=1, suggests shock
waves have formed in their experiments shortly after the
sound wave is excited. The MIT group has measured the
condensate density wave to propagate at cg(0), even though
strong nonlinear effects are expected to influence the propa-
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FIG. 4. Simulation of the normalized density profiles An/n
along the axial axis in terms of the axial TF radius R for different
times ¢ after the sound wave is excited. The left column corresponds
to a weak perturbation An/n=10"%, the right column corresponds to
the perturbation applied in the experiment, An/n=0.25 and there-
fore both columns are on a different vertical scale. Note that the ¢
=0 figures (top row) have a vertical scale twice as large as the other
figures in the same column. The dashed lines in the figures indicate
An/n=0.

gation, as already remarked by Kavoulakis er al. [11].

In our experiment sound waves are excited in elongated
cigar-shaped BECs allowing us to make a perturbation much
longer than the radial size to ensure the excitation of a one-
dimensional motion, while it remains small with respect to
the axial size. In the experiment reported by the MIT group
the size of the excitation is of the order of the radial size of
the BEC.

The simulations for small density perturbations (An/n
=10"%) confirm the minimum of the density dip moves with
cg(0) as given by Eq. (4) and shows the validity of the simu-
lation. For the perturbation used in the experiment the simu-
lations show the minimum of the dip propagates about 8%
slower than the speed of sound, in agreement with the esti-
mate Ac=—(c/2)An/n. This is disadvantageous for the de-
termination of the speed of sound from the measured density
profiles, since the position of the minimum of the dip is the
easiest parameter to derive. In order to derive the appropriate
speed of sound from the density profiles, not only the posi-
tion of minimum is determined, but also the amount of de-
formation is taken into account by determining the asymme-
try of the propagating wave.

The simulations suggest the density at the (1/e)-height of
the dips is a good approximation of the unperturbed density
(cf. Fig. 4). We therefore use the deformation at (1/e)-height
in addition to the position of the center of the perturbation in
these simulations as the measure of the distance the pertur-
bation has traveled. The speed of sound is now found to
remain constant within 2% for a broad range of perturbation
amplitudes (107°-0.3), only to show larger deviations when
shock waves are formed. For typical propagation time used
in the experiment, the simulations show the decrease in the
propagation speed due to the axial density dependence re-
mains below 2% as well.

Returning to the results of the experiment, the measured
density profiles are fitted to an asymmetric function, yielding
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FIG. 5. The normalized speed of sound as a function of the
thermal density. The upper axis gives the reduced temperature 7/7,
for the corresponding data point. Figure (a) shows the speed of
sound normalized to cg(0) [Eq. (4)] based on the measured BEC
density. Figure (b) shows the same measurements normalized to the
speed of sound based on the Landau model (diamonds) and ZGN
model (squares) based on the measured BEC and thermal densities.
The main contribution to the error bars is the uncertainty in the
measured densities.

both the deformation and position of the propagating con-
densate density wave. Taking the same combined measure
for the traveled distance as used in the simulations, the
propagation distance varies linear with the propagation time,
the slope of which is used to determine the speed of sound.

This procedure is repeated for different temperatures,
which are created by adjusting the final rf-field frequency.
Each series, consisting of about ten shots, is used to deter-
mine the propagation speed for that temperature. Rf-induced
evaporative cooling does not allow to cool to temperatures
below kgT= p, since around this temperature both thermal
atoms and condensed atoms are removed from the trap by
the rf-field, setting a lower limit to the temperature reached
in the experiment. The highest temperature used in the mea-
surements corresponds to 7/7,=0.72 = 0.04. For higher tem-
peratures the axial length of the BEC becomes more than
15% shorter than the typical BEC length. By choosing this
upper limit for the temperature prevents the need to account
for the axial density dependence.
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An unperturbed cloud in each series is used to derive the
temperature, thermal density and BEC density for that series.
In these measurements the chemical potential based on the
axial size of the BEC and the total accumulated phase agree
within 5%. The measured speeds are normalized to cg(0)
based on the measured BEC density. The resulting normal-
ized speed of sound as a function of reduced temperature and
thermal density is shown in Fig. 5(a). From these measure-
ments we conclude that, even though the thermal density is
varied over more than an order of magnitude, the effect of
the thermal cloud appears to be constant within the accuracy
of the measurement. Furthermore, the measured speeds are
found to be approximately 7% lower than c5(0) given by Eq.
(4). Note that since the condensate density is limited by
three-body losses, the variation in n. as a function of the
temperature is modest.

In Fig. 5(b) the measured speeds are normalized using the
speed of second sound calculated using the Landau and ZGN
model. We find the measured propagation speed to be in
excellent agreement with the speed of second sound given by
both the Landau and ZGN model within the accuracy of the
measurements. This result shows we have measured the ef-
fect of the thermal cloud on the propagation of a sound wave
in the BEC. However, the dependence of the speed of second
sound on the temperature is modest in the experimentally
accessible temperature range. Furthermore, since the differ-
ence between the Landau and the ZGN model is smaller than
the experimental uncertainty we cannot distinguish between
both models in the current experiment.

We have not been able to observe a sound wave in the
thermal cloud (first sound) in this experiment. For the higher
temperatures this can be explained by the moderate pertur-
bation depth with respect to the thermal energy. At the lowest
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temperatures, still above kgT= ., the thermal density is small
and the thermal cloud spatially barely extends further than
the BEC, causing the signal-to-noise to be insufficient to see
small density perturbations in the thermal cloud in this re-
gime. Above T, we are able to observe a density perturbation
when the excitation is of the order kg7, but the excited wave
damps too fast to be able to observe its propagation.

V. CONCLUSION

In conclusion, we have excited a hydrodynamic mode in a
BEC: a propagating sound wave. We measure its propagation
speed, which is used to determine the speed of sound in the
BEC as a function of the temperature. The combination of
the phase-contrast imaging technique and elongated large
atom number BECs allows us to make a moderate density
excitation in the BEC and observe the propagation of a
sound wave. Numerical simulations are conducted to model
the nonlinear propagation. We find the speed of sound to be
in good agreement with both the Landau model and ZGN
model in which the coupling between the first and second
sound modes is incorporated and thus we have observed the
effect of the thermal cloud on the speed of sound in the BEC.
However, the effect does not vary within the accuracy of the
measurements with the temperature for our experimental
conditions. The Bogoliubov speed of sound, in which this
coupling between the two sound modes is absent, deviates
significantly from the measured speeds reported in this paper.
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