
International Journal of Approximate Reasoning 168 (2024) 109143

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Minimality, necessity and sufficiency for argumentation and

explanation

AnneMarie Borg a,∗, Floris Bex a,b,∗

a Department of Information and Computing Sciences, Utrecht University, The Netherlands
b Tilburg Institute for Law, Technology, and Society, Tilburg University, The Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Formal argumentation

Structured argumentation frameworks

Explainable artificial intelligence

AI and law

We discuss explanations for formal (abstract and structured) argumentation – the question
whether and why a certain argument or claim can be accepted (or not) under various extension-

based semantics. We introduce a flexible framework, which can act as the basis for many different
types of explanations. For example, we can have simple or comprehensive explanations in terms
of arguments for or against a claim, arguments that (indirectly) defend a claim, the evidence
(knowledge base) that supports or is incompatible with a claim, and so on. We show how selection
based on necessity and sufficiency can be captured in our basic framework and discuss a real-life
application.

1. Introduction

Explainable Artificial Intelligence (XAI) is an important and fast growing research area, which now also incorporates findings from
the humanities and social sciences on how humans request, generate, interpret and evaluate explanations – see, for example, [42]

and [4], and [46] for an extensive survey. Argumentation, more specifically formal argumentation [8,30], plays an important role
in XAI, in various different ways. For example, there is a conceptual link between argumentation and explanation as different forms
of reasoning [1,11]. Furthermore, formal argumentation has been used to explain the output of other, less interpretable AI models
(see [24] for a recent overview). Finally, with formal argumentation increasingly being used in real-world applications [3], there
has also been an increase in work on explaining the output of the argument-based systems themselves [16,17,33,34,36,40,61,63].
In this paper, we focus on the latter connection between argumentation and XAI: how can we explain the conclusions of formal
argumentation systems, taking into account some of the ideas from the literature on how humans select and evaluate explanations
[46]?

A central concept in formal argumentation is that of abstract argumentation frameworks [30], sets of arguments and the attack
relations between them. For such an abstract argumentation framework we can determine extensions, sets of arguments that can
collectively be considered as accepted under different semantics [30]. What we are interested in here is explaining the (non-)accep-

tance of a particular argument in an argumentation framework, in other words, an answer to the question ‘why is argument 𝐴 (not)
accepted given the set of arguments and attacks in the argumentation framework?’ Using just the basic extensions of Dung [30] we
could answer this question with ‘because 𝐴 belongs to (does not belong to) a set of accepted arguments, an extension’. However, as

* Corresponding authors.
Available online 12 February 2024
0888-613X/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: a.borg@uu.nl (A. Borg), f.j.bex@uu.nl (F. Bex).

https://doi.org/10.1016/j.ijar.2024.109143

Received 5 September 2023; Received in revised form 22 December 2023; Accepted 7 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:a.borg@uu.nl
mailto:f.j.bex@uu.nl
https://doi.org/10.1016/j.ijar.2024.109143
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2024.109143&domain=pdf
https://doi.org/10.1016/j.ijar.2024.109143
http://creativecommons.org/licenses/by/4.0/

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

already noted by Fan and Toni [33], this answer does not explain which arguments are relevant for the (non-)acceptance of argument
𝐴, as the extensions that contain 𝐴 may (partly) consist of arguments that have no influence on the acceptability of 𝐴 at all. Rather,
we would like to have an explanation in terms of relevant arguments, that is, arguments that influence the acceptability of 𝐴 by
attacking 𝐴 or defending 𝐴 (i.e., attacking attackers of 𝐴). For example, as an explanation for the acceptance of 𝐴 we could have ‘𝐴
is accepted because argument 𝐶 defends 𝐴 against its only attacking argument 𝐵’, and as an explanation for the non-acceptance of
𝐴 we could have ‘𝐴 is not accepted because it is attacked by 𝐵 and 𝐶 , which are both accepted’.

In addition to the abstract argumentation frameworks of Dung [30], formal argumentation is also about structured or logical
argumentation frameworks [9], where arguments are constructed from a knowledge base and a set of rules, and the attack relation is
based on the individual elements in the arguments (e.g., an argument with conclusion 𝑝 attacks an argument with conclusion ¬𝑝 and
vice versa). With respect to explanations, the explanandum (that which must be explained) then becomes the (non-)acceptance of
a formula, that is, the conclusion of some argument instead of the (non-)acceptance of an abstract argument. That explanations for
arguments and explanations for formulas can differ is clear if we consider that, for example, some formula 𝜙 may be the conclusion of
multiple different arguments, some of which may be accepted and some of which may not. Furthermore, in structured argumentation
frameworks we can also give explanations in terms of formulas - for example, ‘formula 𝜙 is accepted because it is the conclusion of
an accepted argument with premises 𝜓 and 𝜒 ’.

The first main aim of this paper is then to provide a generic, flexible formal framework for determining and computing argument-

based explanations for arguments and their conclusions. Such an explanation provides the relevant reasons for (not) accepting an
argument or conclusion under different semantics and for different types of reasoners (e.g., credulous or skeptical reasoners). Though
work on such explanations exists in the literature (see e.g., [16,33,34,36,40,61,63]), our framework is generic in that the underlying
argumentation framework does not have to be adjusted and the definitions are semantics-independent. For example, the explanations
based on the new semantics of Fan and Toni [33] are a special case of our framework. Building on our earlier work in [16], we provide
new results on the properties of explanations in Section 3.3, add an algorithm for computing explanations in Section 3.4, and show
in Section 4.2 how explanations can be adjusted to account for naïve semantics, stage semantics, and special cases under admissible
and stable semantics. The framework is also flexible, as the contents of explanations can be varied according to different definitions
of relevance and taking into account different elements of arguments. Again building on [16], we expand the discussion of different
types of explanations in this paper by investigating formal properties in Section 4.3 and providing a realistic example based on an
argumentation system in use at the Netherlands Police [54] in Section 7.

Our second aim is to take into account how humans select relevant explanations based on minimality, necessity and sufficiency
[46]. Simpler explanations that contain fewer elements (in our case: relevant arguments) are usually preferred [62], and one way
to ensure this is to select the most (subset-)minimal explanation. For example, in the case of the above explanation for the non-

acceptance of 𝐴, we could also say ‘𝐴 is not accepted because it is attacked by 𝐵, which is accepted’, providing a more minimal
explanation than the one mentioning both attackers 𝐵 and 𝐶 . Two other important criteria for explanation selection are necessity

and sufficiency [42]. In the context of (abstract) argumentation, an argument 𝐵 is sufficient for the (non-)acceptance of 𝐴 if no other
arguments than 𝐵 are needed for 𝐴 to (not) be accepted, and 𝐵 is necessary for the (non-)acceptance of 𝐴 if 𝐵 is always needed
for the (non-)acceptance of 𝐴. Again returning to our example explanation for not accepting 𝐴, we can say that both 𝐵 and 𝐶
individually are sufficient for the non-acceptance of 𝐴 (if 𝐴 is attacked by only 𝐵 or 𝐶 it is still not accepted), and neither 𝐵 nor 𝐶
is necessary (if either 𝐵 or 𝐶 is not there, the other argument still attacks 𝐴). For structured argumentation, the explanations can
again be given in terms of formulas. It may, for example, be the case that in our example both 𝐵 and 𝐶 have the formula 𝜓 as a
premise, making 𝜓 necessary for the non-acceptance of 𝐴.

In this paper we will study how the above minimal, necessary and sufficient explanations can be constructed, given an argu-

mentation framework under different semantics. We will show in Section 6 how minimal explanations can be selected from the
explanations recalled in Section 3 and show how selection based on necessity and sufficiency can be integrated. This discussion is
more elaborate and general than in [17]: we will provide more formal details (i.e., we formally define minimal explanations, provide
extensive motivation for our definitions of necessity and sufficiency, especially in the ASPIC+ setting where we also add existence
explanations and we make a distinction between credulous and skeptical (non-)acceptance) and in our extended example of the po-

lice argumentation system in Section 7 show how necessity and sufficiency are especially useful to reduce the size of an explanation
to the core reason(s) for a conclusion.

The paper is structured as follows. In Section 2 we provide the preliminaries on abstract argumentation and some of the used
notions after which we present the basic framework of explanations in Section 3, which also contains a polynomial time algorithm to
compute the explanations from an argumentation framework and its extensions. Then, in Section 4, we discuss several variations of
the basic explanations and properties of the resulting explanations. In Section 5 explanations for structured argumentation settings
are introduced. Necessary and sufficient explanations for both the abstract and structured setting are studied in Section 6 and the
real-life example is studied in Section 7. Section 8 contains an extensive discussion on related literature and we conclude in Section 9.

2. Preliminaries: abstract argumentation

In this section we recall the most important notions from abstract argumentation [30] and introduce some additional notions
necessary for the basic framework for explanations. The preliminaries on structured argumentation will be provided in Section 5.1.

An abstract argumentation framework (AF) [30] is a pair  = ⟨Args,Att⟩, where Args is a set of arguments and Att ⊆ Args×Args is
an attack relation on these arguments. An argumentation framework can be viewed as a directed graph, in which the nodes represent
2

arguments and the arrows represent attacks between arguments. See Fig. 1 for an example.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵

𝐶 𝐷

𝐸 𝐹

Fig. 1. Graphical representation of the argumentation framework 1 .

Example 1. Fig. 1 represents the argumentation framework 1 = ⟨Args1,Att1⟩ where Args1 = {𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 } and Att1 = {(𝐵, 𝐴),
(𝐶, 𝐵), (𝐶, 𝐷), (𝐷, 𝐶), (𝐸, 𝐵), (𝐸, 𝐹), (𝐹 , 𝐸)}.

Given an argumentation framework  , Dung-style semantics [30] can be applied to it, to determine what combinations of
arguments (called extensions) can collectively be accepted. We consider here many of the most applied semantics, see [5] for a
detailed discussion and additional semantics.

Definition 1. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝖲 ⊆ Args a set of arguments and let 𝐴 ∈ Args. Then:

• 𝖲 attacks 𝐴 if there is an 𝐴′ ∈ 𝖲 such that (𝐴′, 𝐴) ∈ Att, let 𝖲+ denote the set of arguments attacked by 𝖲;

• 𝖲 defends 𝐴 if 𝖲 attacks every attacker of 𝐴;

• 𝖲 is conflict-free if there are no 𝐴1, 𝐴2 ∈ 𝖲 such that (𝐴1, 𝐴2) ∈ Att;
• 𝖲 is a naïve extension (𝖭𝖺𝗏) if it is a maximal (with respect to ⊆) conflict-free set;

• 𝖲 is a stage extension (𝖲𝗍𝗀) of  if 𝖲 ∪ 𝖲+ is maximal (with respect to ⊆) among the conflict-free sets; and

• 𝖲 is an admissible extension (𝖠𝖽𝗆) if it is conflict-free and it defends all of its elements.

• An admissible extension that contains all the arguments that it defends is a complete extension (𝖢𝗆𝗉).

• The grounded extension (𝖦𝗋𝖽) is the minimal (with respect to ⊆) complete extension;

• A preferred extension (𝖯𝗋𝖿) is a maximal (with respect to ⊆) complete extension;

• An ideal extension (𝖨𝖽𝗅) is the maximal (with respect to ⊆) admissible set that is included in each preferred extension;

• A stable extension (𝖲𝗍𝖻) is a complete extension that attacks every argument not in it;
• A semi-stable extension (𝖲𝗌𝗍𝖻) is a complete extension for which 𝖲 ∪ 𝖲+ is maximal (with respect to ⊆); and

• An eager extension (𝖤𝗀𝗋) is the maximal (with respect to ⊆) admissible set that is included in every semi-stable extension.

𝖲𝖾𝗆() denotes the set of all the extensions of  under the semantics 𝖲𝖾𝗆 ∈ {𝖭𝖺𝗏, 𝖲𝗍𝗀, 𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}. For
single extension semantics (i.e., 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖨𝖽𝗅, 𝖤𝗀𝗋}) we will sometimes identify 𝖲𝖾𝗆() with its single element.

Example 2. For the argumentation framework 1 from Example 1 and shown in Fig. 1 we have that the grounded extension is
empty (i.e., 𝖦𝗋𝖽(1) = {∅}) and there are four preferred, stable and semi-stable extensions: {𝐴, 𝐶, 𝐸}, {𝐴, 𝐶, 𝐹 }, {𝐴, 𝐷, 𝐸} and
{𝐵, 𝐷, 𝐹 } (i.e., 𝖲𝖾𝗆(1) = {1, 2, 3, 4} = {{𝐴, 𝐶, 𝐸},{𝐴, 𝐶, 𝐹 },{𝐴, 𝐷, 𝐸}, {𝐵, 𝐷, 𝐹 }} for 𝖲𝖾𝗆 ∈ {𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}).

With the following notation we can collect all the extensions that (do not) contain a certain argument under a given semantics.

Notation 1. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and 𝖲 ⊆ Args. Then, for some 𝖲𝖾𝗆 ∈ {𝖭𝖺𝗏, 𝖲𝗍𝗀, 𝖠𝖽𝗆, 𝖢𝗆𝗉,
𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻,𝖤𝗀𝗋}:

• 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) = { ∈ 𝖲𝖾𝗆() ∣𝐴 ∈ } denotes the set of 𝖲𝖾𝗆-extensions of  that contain 𝐴;

• 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) = { ∈ 𝖲𝖾𝗆() ∣𝐴 ∉ } denotes the set of 𝖲𝖾𝗆-extensions of  that do not contain 𝐴.

Example 3. For the argumentation framework 1 from Example 1 we have that 𝖯𝗋𝖿𝖶𝗂𝗍𝗁(𝐴) = {{𝐴,𝐶,𝐸},{𝐴, 𝐶, 𝐹 }, {𝐴, 𝐷, 𝐸}}
and 𝖯𝗋𝖿𝖶𝗂𝗍𝗁(𝐵) = {{𝐵,𝐷,𝐹 }} while 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐷) = {{𝐴,𝐶,𝐸},{𝐴, 𝐶, 𝐹 }} and 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐸) = {{𝐴,𝐶,𝐹 }, {𝐵, 𝐷, 𝐹 }}.

The next definition introduces the acceptance strategies. In addition to choosing a semantics with which an argumentation frame-

work is evaluated, a user can choose how to (not) accept an argument: skeptically (i.e., only accepting arguments that are always
accepted) or credulously (i.e., accepting arguments as soon as this is possible).1

Definition 2. Where  = ⟨Args,Att⟩ is an argumentation framework and 𝖲𝖾𝗆 a semantics with 𝖲𝖾𝗆() ≠ ∅, it is said that
𝐴 ∈ Args is:

1 In e.g., [16] arguments that are not accepted could be skeptically non-accepted or credulously non-accepted. Since this causes some confusion on the intuition of
3

what skeptical [resp. credulous] non-acceptance means, we will use here the notions not skeptically [resp. credulously] accepted.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

• skeptically accepted if 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) = 𝖲𝖾𝗆(), that is: 𝐴 is part of all 𝖲𝖾𝗆-extensions;

• credulously accepted if 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) ≠ ∅, that is: 𝐴 is part of at least one 𝖲𝖾𝗆-extension.

We will denote by ∩ the skeptical acceptance strategy and by ∪ the credulous acceptance strategy. When the strategy is arbitrary,
results in the same (i.e., there is no difference between ∩ and ∪, such as when 𝖲𝖾𝗆∈ {𝖦𝗋𝖽, 𝖨𝖽𝗅, 𝖤𝗀𝗋}) or is clear from the context, we
will refer to accepted arguments, leaving out the exact acceptance strategy.

In what follows we will often refer to arguments that are not skeptically or not credulously accepted: arguments that are not part
of all 𝖲𝖾𝗆-extensions (not skeptically accepted) or arguments that are not part of any 𝖲𝖾𝗆-extension (not credulously accepted). Like
for accepted arguments, when clear from the context we will refer to non-accepted arguments.

Example 4. Recall that 𝖲𝖾𝗆(1) = {{𝐴, 𝐶, 𝐸}, {𝐴, 𝐶, 𝐹 }, {𝐴, 𝐷, 𝐸}, {𝐵,𝐷,𝐹 }} for 𝖲𝖾𝗆 ∈ {𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}. It follows that none of
the arguments are skeptically accepted, but all arguments are credulously accepted for admissible, complete, preferred, stable and
semi-stable semantics.

3. Basic explanations

Given an argumentation framework and some argument that is (not) (skeptically/credulously) accepted under some semantics,
we are now looking for meaningful explanations of why an argument is (not) (skeptically/credulously) accepted under the relevant
semantics. The first possibility would be to provide the extensions of which the argument is part. For example, if we ask ‘Given
1, why is argument 𝐴 credulously accepted under 𝖯𝗋𝖿?’ One answer could be ‘Because it is part of three of the four preferred
extensions (see Example 2)’. However, this explanation does not tell us the reasons for why 𝐴 is credulously accepted, rather it
clarifies how Definitions 1 and 2 lead to credulous acceptance of 𝐴 in 1. More specifically, it does not tell us exactly which
arguments influenced or caused 𝐴’s acceptance.

One of the core ideas of explanations is that they point to a relevant cause2 𝐶 of the explanandum 𝐸: if in some hypothetical
counterfactual case 𝐶 is not the case, then the explanandum E will also not be the case [39]. In the case of formal argumentation, we
would like to know which arguments in the argumentation framework influenced (or caused) the (non-)acceptance of the argument
that makes up the explanandum. This interpretation of explanations in argumentation has become common in the literature [16,17,

33,34,36,40,61,63], as it is closely related to explanations for other AI models (e.g., which features caused the model to classify this
picture as a spider [46]), and hence lends itself well to a broader discussion on types of explanations and selecting them.

In formal argumentation, arguments are connected to each other via the attack relation. Based on this relation, there are two
ways for an argument 𝐵 to influence the acceptability of another argument 𝐴 in an argumentation framework: 𝐵 can attack or defend

(attack an attacker of 𝐴). Note that attack or defense does not have to be direct: for example, in 1 the acceptance of argument
𝐷 can also influence that of 𝐴, since 𝐷 attacks 𝐶 , which defends 𝐴 against its (direct) attacker 𝐵. So in the context of explanations
we are interested in both direct and indirect attack and defense between arguments. In Definition 1, only direct attack was defined
(i.e., Att), and defense was only defined between a set of arguments and an argument. Below, we therefore define direct and indirect
attack and defense between arguments.

Definition 3. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴, 𝐵 ∈ Args and  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆.

We say that 𝐴 defends 𝐵 if 𝐴 directly or indirectly defends 𝐵, where: 𝐴 directly defends 𝐵 if there is some 𝐶 ∈ Args such that
(𝐶, 𝐵) ∈ Att and (𝐴, 𝐶) ∈ Att, and 𝐴 indirectly defends 𝐵 if 𝐴 (directly or indirectly) defends 𝐶 ∈ Args and 𝐶 (directly or indirectly)
defends 𝐵. Similarly, we say that 𝐴 attacks 𝐵 if 𝐴 directly or indirectly attacks 𝐵, where: 𝐴 directly attacks 𝐵 if (𝐴, 𝐵) ∈ Att and
𝐴 indirectly attacks 𝐵 if 𝐴 (directly or indirectly) attacks some 𝐶 ∈ Args and 𝐶 (directly or indirectly) defends 𝐵. It is said that 𝐴
defends 𝐵 in  if 𝐴 (directly or indirectly) defends 𝐵 and 𝐴 ∈  .

Now, direct and indirect attack and defense are used to define when one argument is relevant for another argument.

Definition 4. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴, 𝐵 ∈ Args. It is said that 𝐴 is relevant for 𝐵 if 𝐴
(in)directly attacks or defends 𝐵 and it does not attack itself. A set 𝖲 ⊆ Args is relevant for 𝐵 if all of its arguments are relevant for
𝐵.

Example 5. In the argumentation framework 1 from Example 1, the argument 𝐹 attacks 𝐸 directly and 𝐴 indirectly, and defends
both 𝐵 and 𝐹 directly. The arguments 𝐷 and 𝐹 are relevant for 𝐴 and 𝐵 but not relevant for each other.

The intuition behind relevance is that for an argument 𝐵 to be relevant to 𝐴, changing the acceptance of 𝐵 can (potentially)
influence the (non-)acceptability of argument 𝐴.3 In our example 1, all of the arguments in Args1 ⧵ {𝐴} are relevant for 𝐴, since

2 Note that here we are not talking about any kind of physical causation or causation in the real world. Rather, as is fairly common in XAI, we consider there to be
a causal influence relation between the input and output of an AI model.
4

3 Taking as an analogy traditional accounts of explanation [46], one could say that the status of 𝐵 can (potentially) cause a change in the status of 𝐴.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

changing the acceptance of any of them could influence the acceptability of 𝐴. On the other hand, changing the acceptability of 𝐴
or 𝐷 will never influence the acceptability of 𝐹 , so they are not relevant for 𝐹 . For an even clearer example, consider 1 with
one argument 𝐺 added to Args1 and no further new attacks. Since 𝐺 is not connected to any of the other arguments via attacks,
changing the acceptance of 𝐺 will never influence the acceptance of any of the other arguments, and thus 𝐺 is not relevant for any
of the other arguments.

Note that the notions of attack and defense, and hence the notion of relevance, are defined independently of semantics, that
is, of the extensions of an argumentation framework. So, for example, in 1 arguments 𝐹 and 𝐴 are both part of the preferred
extension {𝐴, 𝐶, 𝐹 } even though 𝐹 indirectly attacks 𝐴. Similarly, an argument having defenders does not mean that the argument
is in some extension, or that the argument and its defenders will always be in the same extension(s). For example, consider the
argumentation framework  = ⟨{𝐴, 𝐵, 𝐶}, {(𝐴, 𝐵), (𝐵, 𝐶), (𝐶, 𝐴)}⟩. Even though 𝐴 is defended by arguments 𝐴, 𝐵 and 𝐶 , 𝐴 is not
in any complete extension of  . This is why we say that for relevance, an argument could potentially influence the acceptability of
another argument – whether it actually influences the acceptability depends on the semantics used and the possible extensions under
these semantics. In the following sections, this will become more clear when we relate relevance to particular extensions in order to
construct explanations for (non-)acceptance.

In the rest of this section the basic explanations for accepted (Section 3.1) and non-accepted arguments (Section 3.2) are intro-

duced. Properties of these explanations are then discussed in Section 3.3 and an algorithm to compute the explanations is presented
in Section 3.4. Once these basic explanations are formally defined, we will discuss variations in Section 4, their application in ASPIC+

in Section 5 and ways to select smaller sets of arguments in terms of the notions of minimality, necessity and sufficiency in Section 6.

3.1. Basic explanations for acceptance

Now that we have introduced a basic notion of relevance, we can start answering the question for acceptance explanations: given
an argumentation framework  and some argument 𝐴 that is (skeptically/credulously) accepted under semantics 𝖲𝖾𝗆, what are
the relevant arguments that explain why 𝐴 is (skeptically/credulously) accepted under 𝖲𝖾𝗆?

Admissibility-based semantics (i.e., 𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻 and 𝖤𝗀𝗋) are all based on a notion of defense (cf. Defini-

tion 1). It therefore makes sense for explanations to consider as the relevant arguments those arguments that successfully defend
𝐴 against its attackers in the extension(s) under these semantics. For this, we need to collect all defenders of an argument (cf.
Definition 3), and all defenders of an argument that are in a particular extension, as per the following definition.

Definition 5. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆() an extension for some semantics
𝖲𝖾𝗆.

• 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) = {𝐵 ∈ Args ∣𝐵 defends 𝐴};

• 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) ∩  . This denotes the set of arguments that defend 𝐴 in  ;

We now define two types of acceptance explanations for each semantics 𝖲𝖾𝗆, based on the skeptical (∩) and credulous (∪)
acceptance strategies.4 The ∩-explanations provide all the reasons why an argument can be accepted by a skeptical reasoner: for
each extension it contains the set of arguments that defend the argument.5 The ∪-explanations provide one reason why an argument
can be accepted by a credulous reasoner: for a given extension it contains the set of arguments that defend the argument.6

Definition 6 (Acceptance argument explanation). Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴, 𝐵 ∈ Args and 𝖲𝖾𝗆 ∈
{𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} a semantics. Suppose that 𝐵 is skeptically accepted and that 𝐵 is credulously accepted. More-

over, let 𝐴 ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) be some 𝖲𝖾𝗆-extension containing 𝐴. Then:

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐵) = {𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵,) ∣  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)};

𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴,𝐴) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴,𝐴).

Thus, 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐵) is a set that contains for each 𝖲𝖾𝗆-extension the set of arguments that defend the skeptically accepted argument
𝐵 in that extension (why is 𝐵 skeptically accepted under 𝖲𝖾𝗆 or, in other words, which arguments defend 𝐵 in each extension?),
and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, 𝐴) provides the set of arguments that defend 𝐴 in the 𝖲𝖾𝗆-extension 𝐴 (why is 𝐴 credulously accepted under
𝖲𝖾𝗆 or, in other words, which arguments defend 𝐴 in extension 𝐴?). Since the grounded extension is unique we will often identify
𝖦𝗋𝖽𝖠𝖼𝖼∩ with its single element and we will not distinguish between ∩ and ∪. Note that a skeptical acceptance explanation for an

4 We assume the explanandum is true, that is, an explanation for the acceptance of an argument 𝐴 is only requested when 𝐴 is accepted with respect to the
considered semantics and acceptance strategy.

5 In [16], the ∩-explanation was the union of all these sets. In this paper, we define it as a set of sets. This makes the defenders of 𝐴 for all the different
𝖲𝖾𝗆-extensions explicit.

6 In [16], the extension in the ∪-explanation was not explicit, but random. In this paper, we make the extension explicit. This gives a user the possibility to further
5

specify the scenario of the explanation while in an implementation it would still be possible to provide a random extension.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵 𝐶

𝐷𝐸

Fig. 2. Graphical representation of the argumentation framework 2 .

argument 𝐴 can only be requested when 𝐴 is skeptically accepted, while a credulous acceptance explanation for an argument 𝐵 can
be requested when 𝐵 is credulously accepted.

Example 6. Consider the argumentation framework 1 from Example 1. From Example 4 it is known that none of the arguments
from Args1 are skeptically accepted, thus 𝖲𝖾𝗆𝖠𝖼𝖼∩ cannot be requested for any of the considered semantics. However, we do have
that:

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = {𝐶, 𝐸}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = {𝐶} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 3) = {𝐸};

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐵, 4) = {𝐷, 𝐹 }.

So 𝐴 is credulously accepted under 𝖯𝗋𝖿 because it is defended by 𝐶 and 𝐸 in extension 1 = {𝐴, 𝐶, 𝐸}, by 𝐶 in extension 2 =
{𝐴, 𝐶, 𝐹 } and by 𝐸 in extension 3 = {𝐴, 𝐷, 𝐸}. 𝐵 is credulously accepted under 𝖯𝗋𝖿 because it is defended by 𝐷 and 𝐹 in extension
4 = {𝐵, 𝐷, 𝐹 }.

In order to illustrate the 𝖲𝖾𝗆𝖠𝖼𝖼∩-explanation, we introduce the following example.

Example 7. Let 2 be the argumentation framework as shown in Fig. 2. In this framework we have that 𝖲𝖾𝗆(2) = {1, 2} =
{{𝐴, 𝐶, 𝐷}, {𝐴, 𝐶, 𝐸}} for 𝖲𝖾𝗆 ∈ {𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻} and 𝖲𝖾𝗆(2) = {3} = {{𝐴, 𝐶}} for 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖨𝖽𝗅, 𝖤𝗀𝗋}. Here, we have the
following explanations:

• 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴) = {𝐶};

• 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) = {{𝐶}, {𝐶, 𝐷}};

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = {𝐶, 𝐷} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = {𝐶}.

So 𝐴 is skeptically accepted under 𝖦𝗋𝖽 because it is defended by 𝐶 in the single grounded extension 3, and 𝐴 is skeptically and
credulously accepted under 𝖯𝗋𝖿 because it is defended by either 𝐶 (in extension 2 = {𝐴, 𝐶, 𝐸}) or by 𝐶 and 𝐷 (in extension
1 = {𝐴, 𝐷, 𝐸}).

3.2. Basic explanations for non-acceptance

In addition to acceptance explanations, we also want to be able to explain non-acceptance: given an argumentation framework
 and some argument 𝐴 that is not (skeptically/credulously) accepted under semantics 𝖲𝖾𝗆, what are the relevant arguments that
explain why 𝐴 is not (skeptically/credulously) accepted under 𝖲𝖾𝗆?

In any completeness-based semantics (e.g., 𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 or 𝖲𝗌𝗍𝖻), an argument is not accepted if it is attacked and it is not
defended by an accepted argument. Hence, intuitively, the explanation for the non-acceptance of an argument is the set of attacking
arguments for which no defense exists. For this, we need to collect all attackers of an argument (cf. Definition 3) for which there is
no defender in a particular extension.

Definition 7. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆() an extension for some semantics
𝖲𝖾𝗆.

• 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) = {𝐵 ∈ Args ∣ 𝐵 attacks 𝐴 and  does not attack 𝐵}. This denotes the set of all attackers of 𝐴 for which no
defense exists from  .

We can then define two types of non-acceptance explanations. The ∩-explanation provides one reason for why an argument
cannot be accepted by a skeptical reasoner: for a given extension it contains the set of arguments against which there is no defense.
The ∪-explanations provide all the reasons for why an argument cannot be accepted by a credulous reasoner: for each extension it
contains the set of arguments against which there is no defense.

Definition 8 (Non-acceptance argument explanation). Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴, 𝐵 ∈ Args and
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} a semantics. Suppose that 𝐵 is not credulously accepted and that 𝐴 is not skeptically accepted.
6

Moreover, let 𝐴 ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Then:

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴,𝐴) = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴,𝐴);

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐵) = {𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵,) ∣  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐵)}.

So 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴) provides a set of arguments that attack 𝐴 and for which no defense exists in the 𝖲𝖾𝗆-extension 𝐴 of which
𝐴 is not a member (why is 𝐴 not skeptically accepted under 𝖲𝖾𝗆 or, in other words, against which attackers of 𝐴 is there no defense
in extension 𝐴?). 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐵) contains for each 𝖲𝖾𝗆-extension the set of arguments that attack 𝐵 and for which no defense
exists (why is 𝐵 not credulously accepted under 𝖲𝖾𝗆 or, in other words, against which attackers of 𝐵 is there no defense in all
extensions?). That for ∩ only one extension has to be considered follows since 𝐴 is not skeptically accepted as soon as there is at least
one extension of which 𝐴 is not a member, while 𝐵 is not credulously accepted when 𝐵 is not a member of any extension. Since the
grounded extension is unique we will identify 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼∪ with its single element and make no distinction between ∩ and ∪.7 Note
that, like in the acceptance case, a credulous non-acceptance explanation for an argument 𝐵 can only be requested when 𝐵 is not
credulously accepted, while a skeptical non-acceptance explanation for an argument 𝐴 can be requested when 𝐴 is not skeptically
accepted.

Example 8. For the argumentation framework 1 it is known (recall Example 4) that none of the arguments is not credulously
accepted for 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖲𝗌𝗍𝖻} (i.e., all arguments are credulously accepted for these semantics). Therefore, 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪ cannot
be requested. However, we do have that:

• 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) = 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {𝐵, 𝐷, 𝐹 } this follows since 𝖦𝗋𝖽𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) = {∅} and 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) = {{𝐵, 𝐷, 𝐹 }};

• 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐵) = {𝐶, 𝐸} since 𝖦𝗋𝖽𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐵) = {∅};

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 1) = {𝐶, 𝐸}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 2) = {𝐶} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 3) = {𝐸} since 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐵) = {1, 2, 3} =
{{𝐴, 𝐶, 𝐸},{𝐴, 𝐶, 𝐹 }, {𝐴, 𝐷, 𝐸}}

So 𝐴 is not accepted under 𝖦𝗋𝖽 and not skeptically accepted under 𝖯𝗋𝖿 because it is not defended against 𝐵, 𝐷 and 𝐹 in the extensions
∅ and 4 = {𝐵, 𝐷, 𝐹 }, respectively. Similarly, 𝐵 is not accepted under 𝖦𝗋𝖽 because it is not defended against both 𝐶 and 𝐸 in the
grounded extension ∅, while 𝐵 is not skeptically accepted under 𝖯𝗋𝖿 because it is not defended against 𝐶 , 𝐸 or 𝐶 and 𝐸 in the
extensions 2 = {𝐴, 𝐶, 𝐹 }, 3 = {𝐴, 𝐷, 𝐸} and 1 = {𝐴, 𝐶, 𝐸}, respectively.

Example 9. For the argumentation framework 2 from Example 7, we have that 𝐵 is not skeptically or credulously accepted, and
𝐷 is not skeptically accepted:

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐵) = {{𝐶}, {𝐶, 𝐷}} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 1) = {𝐶, 𝐷} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 2) = {𝐶};

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐷, 2) = {𝐸}.

𝐵 is not (skeptically or credulously) accepted under 𝖯𝗋𝖿 because in extension 2 = {𝐴, 𝐶, 𝐸} it is not defended against 𝐶 and in
extension 1 = {𝐴, 𝐶, 𝐷} it is not defended against 𝐶 and 𝐷. 𝐷 is not skeptically accepted under 𝖯𝗋𝖿 because there is the extension
2 = {𝐴, 𝐶, 𝐸} in which it is not defended against 𝐸. There is no explanation 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐷) (why is 𝐷 not credulously accepted?)
because 𝐷 is credulously accepted (Definition 8).

Remark 1. Non-acceptance explanations under 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖲𝗍𝖻} are not discussed here. To see why, consider an argumentation
framework with arguments 𝐴 and 𝐵. Then {𝐴} is an admissible set, so 𝐵 is not skeptically accepted, but not attacked. Now suppose
that there is one attack: (𝐵, 𝐵). Then {𝐴} is the only 𝖲𝖾𝗆-extension for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}, however, there is
no 𝖲𝗍𝖻-extension. This cannot be explained with the here presented explanations, since 𝐴 does not attack 𝐵 but is not attacked itself
either. A solution will be discussed in Section 4.2.

3.3. Properties of the basic explanations

It is well-known (see, e.g., [5,30]) that the extensions are related to each other under different semantics. For example, every
stable extension is a preferred extension and all stable and preferred extensions as well as the grounded extension are part of the set
of complete extensions. Moreover, by their definition, choosing a particular semantics results in a particular type of extension. For
example, by choosing the grounded semantics, one obtains an extension with arguments that very skeptical reasoners could accept,
but by choosing the preferred semantics, one can obtain several extensions, some of which might include arguments that only very
credulous reasoners would accept and that can be in conflict with arguments from other extensions.8

In this section we show how explanations under various semantics are related to each other and how acceptance and non-

acceptance explanations are related. The proofs of the properties in this section can be found in A.1.

7 In [16] the non-acceptance explanation was defined as the union of all the explanations as defined here. Here we provide different explanations that correspond
to the different extensions, similar to the definition for 𝖲𝖾𝗆𝖠𝖼𝖼∩ , to better capture the notion of not skeptically accepted and not credulously accepted and their relation
to each other. Similarly, we make the extension in 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩ explicit, to allow the user to be more specific about the required explanation.
7

8 For a detailed overview of how the extensions of different semantics are related we refer the reader to [5].

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

3.3.1. Properties concerning acceptance explanations

This first proposition shows how acceptance explanations are related to each other under various semantics. This is useful to
know, since the type of explanation obtained from the basic framework might guide the choice of the semantics when implementing
the explanations in an application.

Proposition 1. Let  = ⟨Args,Att⟩ be an argumentation framework where 𝐴 ∈ Args. Then:

1. 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) for all 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻,𝖤𝗀𝗋}.

2. 𝖲𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖲𝗌𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) ⊆ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴).
3. For each 𝖲 ∈ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) such that 𝖲 ⊆ 𝖲′

Intuitively, the explanations obtained from the basic framework behave in a similar way as the extensions obtained under various
semantics. The explanation under the grounded extension is contained in every explanation for 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}
(item 1). The ∩-explanation for 𝖲𝗍𝖻 is contained in the ∩-explanation for 𝖲𝗌𝗍𝖻 and 𝖯𝗋𝖿 , which are in turn contained in the ∩-

explanation for 𝖢𝗆𝗉 (item 2). As a result, all possible ∪-explanations for 𝖲𝗍𝖻 are also possible ∪-explanations for 𝖲𝗌𝗍𝖻 and 𝖯𝗋𝖿 , which
are in turn possible ∪-explanations for 𝖢𝗆𝗉. Finally, for each set in a ∩-explanation for 𝖢𝗆𝗉 there is a set in the ∩-explanation under
𝖯𝗋𝖿 that contains the 𝖢𝗆𝗉-explanation (item 3).

The next proposition shows how the 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀-sets of defending and defended arguments are related. This provides insight into
the role of direct and indirect defenders, which will be useful when the content of the explanations is varied, as proposed in Section 4.

Proposition 2. Let  = ⟨Args,Att⟩ be an argumentation framework,  ∈ 𝖲𝖾𝗆() for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}
and let 𝐴, 𝐵 ∈ Args. Then:

• if 𝐴 ∈𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ), then 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, );
• if 𝐴 ∈𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ) and 𝐵 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ), then 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ).

So if 𝐴 is a defender of 𝐵, then the defenders of 𝐴 will be a subset of the defenders of 𝐵 (item 1). Furthermore, if 𝐴 is a defender
of 𝐵 and vice versa, then the defenders of 𝐴 and 𝐵 are the same (item 2).

One could say that an explanation is only meaningful when it is not empty (i.e., when it actually contains something to explain
the acceptance of an argument with). Otherwise, the receiver of the explanation might not be helped with their explanation-seeking
question. The next proposition shows that only when an argument is not attacked its acceptance explanation will be empty.

Proposition 3. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,
𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) = {∅} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆() iff there is no
𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att.

In view of the above proposition, if the explanations are implemented into an application, the explanation method should be
extended with an explanation for cases in which there are no attacks. For example, by pointing out that there are no conflicts and
that, therefore, there is no defense necessary. What this explanation should look like depends on the application and the choice of
the explanation (e.g., on which semantics it is based, or which explanation type (see also Section 4)).

3.3.2. Properties concerning non-acceptance explanations

Some of the properties shown above for acceptance explanations have non-acceptance counterparts as well. Recall from Remark 1

that non-acceptance explanations were not defined for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖲𝗍𝖻} in Section 3.2, these are therefore not included in the results.
First the counterpart of Proposition 1, which shows that non-acceptance explanations behave predictable with respect to the chosen
semantics as well. Thus, explanations under a certain semantics are related to explanations under another semantics in a similar
ways as extensions under the first semantics are related to extensions under the other semantics.

Proposition 4. Let  = ⟨Args,Att⟩ be an argumentation framework where 𝐴 ∈ Args. Then:

1. 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
2. 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
3. Let  ∈ 𝖲𝗌𝗍𝖻𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Then 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ), for 𝖲𝖾𝗆∈ {𝖢𝗆𝗉,𝖯𝗋𝖿}.

In words, the explanation for the grounded semantics is part of every 𝖢𝗆𝗉-explanation (item 1) and the ∪-explanation for 𝖲𝗌𝗍𝖻
is contained in the ∪-explanation for 𝖯𝗋𝖿 and 𝖢𝗆𝗉 (item 2). Based on this, given a 𝖲𝗌𝗍𝖻-extension  , the 𝖲𝗌𝗍𝖻-explanation is also the
𝖯𝗋𝖿 - and 𝖢𝗆𝗉-explanation.

Remark 2. There is no non-acceptance counterpart of Proposition 2. Note that, for all arguments 𝐴 and 𝐵 and extension  , 𝐴 ∈
8

𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵, ) entails that 𝐴 (in)directly attacks 𝐵. Now consider the situation in which 𝐴 is not accepted either. Then the

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵 𝐶 𝐷

𝐸𝐹

Fig. 3. Graphical representations of the argumentation framework 3 from Example 10.

arguments in 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) (in)directly defend 𝐵 (i.e., because they attack 𝐴 and 𝐴 attacks 𝐵). To see that such a situation can
occur, take for example an argumentation framework consisting of the arguments 𝐴 and 𝐵, which attack each other (i.e., (𝐴, 𝐵) and
(𝐵, 𝐴)). Then the grounded extension is empty, 𝐴 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵, ∅) and 𝐵 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ∅), but neither argument causes its
own non-acceptance.

The next proposition, the non-acceptance counterpart of Proposition 3, shows that a non-acceptance explanation is never empty.
Intuitively this is the case since there has to be some reason (i.e., attacking argument) for the non-acceptance of an argument.

Proposition 5. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆 ∈
{𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}.

Remark 3. Proposition 5 does not hold for 𝖠𝖽𝗆 since not every admissible extension contains all the arguments that it defends.
Take for example an argumentation framework with arguments 𝐴 and 𝐵 and no attacks between them (Remark 1). Then {𝐵} is an
admissible extension, thus 𝐴 is not skeptically accepted, yet 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, {𝐵}) = ∅. In fact, depending on the extension, it could
be that 𝖠𝖽𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴) = ∅ and 𝖠𝖽𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵) = ∅.

3.3.3. Comparing acceptance and non-acceptance

Recall from Examples 6 and 8 that acceptance and non-acceptance explanations might sometimes be very similar. In the case
of these particular examples we have that 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 1) = {𝐶, 𝐸}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 2) = {𝐶}
and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 3) = 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 3) = {𝐸}. The next proposition shows that this is no coincidence. We show how 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 for attacking and attacked arguments are related when either the attacked or the attacking argument(s) are part of an
extension.

Proposition 6. Let  = ⟨Args,Att⟩ be an argumentation framework, let  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,
𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and let 𝐴,𝐵1,… ,𝐵𝑛,𝐶1,… ,𝐶𝑘 ∈ Args such that (𝐵1, 𝐴), … , (𝐵𝑛, 𝐴) ∈ Att and 𝐴 indirectly attacks 𝐶1, … , 𝐶𝑘. Then:

• where 𝐵1, … , 𝐵𝑚 ∈  , for 𝑚 ≤ 𝑛 it holds that: 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ⊇ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵1, ) ∪… ∪𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵𝑚, );
• when 𝐴 ∈  we have: 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵1, ) ∪… ∪𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵𝑛,);
• where 𝐴 ∈  and 𝐶1, … , 𝐶𝑗 ∉  , for 𝑗 ≤ 𝑘 it holds that: 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶𝑖, ) for all 𝑖 ∈ {1, … , 𝑗}.

The above proposition shows that the set of arguments to which an extension  provides no defense for 𝐴 contains at least all
the arguments defending the direct attackers of 𝐴 in  (item 1). The other way around also holds: when 𝐴 is part of an extension  ,
it will be defended by arguments that attack its direct attackers and to which  provides no defense (item 2). Finally, again for an
argument 𝐴 part of an extension  , the arguments that defend 𝐴 contain arguments to which  provides no defense for arguments
indirectly attacked by 𝐴 (item 3).

To see that 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ⊈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵1, ) ∪… ∪𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵𝑛, ), take a look at the following example. Intuitively this
is the case since, in terms of labeling semantics [5], an argument can be in the extension, attacked by the extension (i.e., out) or
attacked by an argument that is not in or out (i.e., undecided).

Example 10. Let 3 = ⟨Args3,Att3⟩ be the argumentation framework where Args3 = {𝐴, 𝐵,𝐶,𝐷,𝐸,𝐹 } and Att3 as shown in Fig. 3.
There are two preferred extensions: 𝖯𝗋𝖿 (3) = {{𝐴},{𝐵}}. Here 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶, {𝐵}) = {𝐵,𝐷,𝐸, 𝐹 }, since 𝐵, 𝐷 and 𝐸 all attack
𝐶 (in)directly but only (𝐵, 𝐶) ∈ Att3 such that 𝐵 ∈  and 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, {𝐵}) = {𝐵}.

To see that acceptance and non-acceptance explanations are not necessarily exclusive, take a look at the following example.

Example 11. Let 4 = ⟨Args4,Att4⟩ be the argumentation framework where Args4 = {𝐴, 𝐵,𝐶,𝐷,𝐸,𝐹 } and Att4 as shown in Fig. 4.
There are two preferred extensions: 𝖯𝗋𝖿 (4) = {1, 2} = {{𝐴, 𝐵, 𝐹 }, {𝐵, 𝐷}}. Note that both the ∪-acceptance and the ∩-non-

acceptance explanations for 𝐴 contain the argument 𝐵: 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, {𝐴, 𝐵, 𝐹 }) = {𝐵, 𝐹 }, here 𝐵 directly defends
𝐴 against the attack from 𝐶 and for non-acceptance: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 2) = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, {𝐵, 𝐷}) = {𝐵, 𝐷}, here 𝐴 is not defended
9

against the indirect attack from 𝐵.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴

𝐶

𝐷

𝐸𝐵

𝐹

Fig. 4. Graphical representation of the argumentation framework 4 from Example 11.

3.4. Computing the explanations

In order to implement the basic explanations it will be useful to have an algorithm with which the attacking and defending
arguments of every argument can be determined. In this section we discuss such an algorithm. It will be shown that the algorithm is
sound and complete and that, when the extensions of an argumentation framework are known (i.e., that the acceptability status of
an argument is known), the algorithm runs in polynomial time.

Since an (abstract) argumentation framework can be seen as a directed graph, one can determine whether argument 𝐵 is reachable

(i.e., relevant) from argument 𝐴 and if so, what the distance between the two arguments is. If 𝐵 is reachable from 𝐴, it can be
determined, based on the distance, whether 𝐴 (in)directly attacks or (in)directly defends 𝐵.

Definition 9. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴, 𝐵 ∈ Args. There is an attack-path from 𝐴 to 𝐵 if
(𝐴, 𝐵) ∈ Att or there are 𝐶1, … , 𝐶𝑛−1 ∈ Args, such that (𝐴, 𝐶1), (𝐶1, 𝐶2),… , (𝐶𝑛−2, 𝐶𝑛−1), (𝐶𝑛−1, 𝐵) ∈ Att and no attack appears twice
in this sequence. It is said that this attack-path has length 𝑛 and is along the attacks (𝐴, 𝐶1), (𝐶1, 𝐶2), … , (𝐶𝑛−1, 𝐵), if (𝐴, 𝐵) ∈ Att, the
path has length 1 and if 𝐴 = 𝐵 the attack-path has length 0.9

Example 12. In the argumentation framework 1, there are two attack-paths from 𝐶 to 𝐴: (𝐶, 𝐵), (𝐵, 𝐴) has length 2 and
(𝐶, 𝐷), (𝐷, 𝐶), (𝐶, 𝐵), (𝐵, 𝐴) has length 4.

Intuitively, if the length of an attack-path between arguments 𝐴 and 𝐵 is odd [resp. even], 𝐴 (in)directly attacks [resp. defends]
𝐵. Indeed, in the example above, 𝐶 directly and indirectly defends 𝐴. If we now have an algorithm to compute attack paths and
their length, we can determine 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, and thus construct our acceptance and non-acceptance explanations.

Algorithm 1 presents a method to calculate the length of all existing attack-paths in an argumentation framework (𝖣𝗂𝗌𝗍) and for
each argument 𝐴 the set of arguments from which a path to 𝐴 exists (𝖱𝖾𝖺𝖼𝗁(𝐴)). The algorithm is based on Procedure ReReach

(Recursive Reach), a depth-first search algorithm.

Algorithm 1: Computing 𝖱𝖾𝖺𝖼𝗁 and 𝖣𝗂𝗌𝗍.
Input :  = ⟨Args,Att⟩
Output : For each 𝐴, 𝐵 ∈ Args: 𝖱𝖾𝖺𝖼𝗁(𝐴) and 𝖣𝗂𝗌𝗍(𝐴, 𝐵)
for 𝐴 ∈ Args do

𝖱𝖾𝖺𝖼𝗁(𝐴) = {𝐴} and 𝖣𝗂𝗌𝗍(𝐴, 𝐴) = {0};

for 𝐵 ∈ Args ⧵ {𝐴} do

𝖣𝗂𝗌𝗍(𝐴, 𝐵) = ∅;

for 𝐴 ∈ Args do

ReReach(𝐴, 𝐴, 0, ∅);

Procedure ReReach(𝐴, 𝐴′, 𝑛, 𝖲).

Input :  = ⟨Args,Att⟩, 𝐴, 𝐴′ ∈ Args, 𝑛 ∈ℕ0 , 𝖲 ⊆ Args × Args
Output : For each 𝐵 ∈ Args with an attack path to 𝐴′ : 𝖱𝖾𝖺𝖼𝗁(𝐴) and 𝖣𝗂𝗌𝗍(𝐴, 𝐵)
Visited0 = 𝖲;

for 𝐴⋆ ∈ Args s.t. (𝐴⋆, 𝐴′) ∈ Att and (𝐴⋆, 𝐴′) ∉ Visited do

𝖱𝖾𝖺𝖼𝗁(𝐴) = 𝖱𝖾𝖺𝖼𝗁(𝐴) ∪ 𝖱𝖾𝖺𝖼𝗁(𝐴⋆);
𝖣𝗂𝗌𝗍(𝐴⋆, 𝐴) = 𝖣𝗂𝗌𝗍(𝐴⋆, 𝐴) ∪ {𝑛 + 1};

Visited = Visited ∪ {(𝐴⋆, 𝐴′)};

ReReach(𝐴, 𝐴⋆ , 𝑛 + 1, Visited);

Visited = Visited0 ;
10

9 Note that an attack-path is known as a trail in graph theory.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Algorithm 1 has some desirable properties. In particular, it is sound and complete (i.e., for the requested argument 𝐴 it finds all
the arguments from which 𝐴 can be reached and the length of the attack-paths between those arguments), Theorem 1 and it runs
in polynomial time, Theorem 2. The latter is useful since it shows that the computational complexity of computing the explanations
for a certain semantics is not more complex than computing the acceptance of an argument and/or the extensions under that
semantics [32]. See for the proofs of the results in this section Appendix A.2.

Theorem 1. Let  = ⟨Args,Att⟩ be an argumentation framework. Then:

1. there is an attack-path from 𝐴 to 𝐵 of length 𝑛 iff 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵);
2. 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵) iff there is an attack-path from 𝐴 to 𝐵;

By their definition, in order to request an explanation, the acceptability status of the argument or formula has to be known
(i.e., whether it is skeptically or credulously (non-)acceptable). The presented algorithm does not compute this status. However,
once it is known whether an explanation can be requested, the algorithm provides the necessary information to construct the basic
explanations in polynomial time:

Theorem 2. Algorithm 1 runs in polynomial time. In particular the time complexity is (|Args| ⋅ |Att|2).
Note that the run time of the algorithm is finite when Args and Att are finite. This is the case since for each 𝐴 ∈ Args at most all

attacks in Att are considered |Att| times.

Algorithm 1 determines for each argument the set of arguments from which it is reachable, as well as the distance between the
arguments. From this we can define the notions from Definitions 5 and 7. We will denote by 𝖱𝖾𝖺𝖼𝗁odd [resp. 𝖱𝖾𝖺𝖼𝗁even] the arguments
with odd [resp. even] distance to the considered argument (i.e., 𝖱𝖾𝖺𝖼𝗁odd(𝐴) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐴) ∣ ∃𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐵, 𝐴) s.t. 𝑛 is odd} [resp.
𝖱𝖾𝖺𝖼𝗁even(𝐴) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐴) ∣ ∃𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐵, 𝐴) s.t. 𝑛 is even}]).

The next definition shows how 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 can be defined in terms of the notions calculated by the algorithm.

Definition 10. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆() an extension for some semantics
𝖲𝖾𝗆. Suppose that Algorithm 1 was run on  . Then:

• 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁even(𝐴)} denotes the set of arguments in Args that (in)directly defend 𝐴;

• 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) ∩  denotes the set of arguments that (in)directly defend 𝐴 in  ;

• 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁odd(𝐴) ∣  ∩ 𝖱𝖾𝖺𝖼𝗁odd(𝐵) = ∅}, denotes the set of all (in)direct attackers of 𝐴 for which no
defense exists from  .

Example 13 (Example 12 continued). For the running example with the argumentation framework 1, we have that 𝖱𝖾𝖺𝖼𝗁(𝐴) =
{𝐵, 𝐶, 𝐷, 𝐸, 𝐹 }, with 𝖱𝖾𝖺𝖼𝗁even(𝐴) = {𝐶, 𝐸} and 𝖱𝖾𝖺𝖼𝗁odd(𝐴) = {𝐵, 𝐷, 𝐹 }. Moreover, 𝖣𝗂𝗌𝗍(𝐶, 𝐴) = {2, 4} and 𝖣𝗂𝗌𝗍(𝐸, 𝐵) = {1, 3}.
Indeed, 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) = {𝐶, 𝐸}, 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴,{𝐴,𝐶, 𝐹 }) = {𝐶} and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, {𝐵, 𝐷, 𝐹 }) = {𝐵, 𝐷, 𝐹 }.

4. Varying the basic explanations

The basic explanations in the previous section were defined in terms of 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, from Definition 5 and 7.
Intuitively, in the context of admissibility-based semantics, explanations based on these functions provide maximally relevant expla-

nations for a (non-)accepted argument, that is, all the relevant attacking or defending arguments in the argumentation framework.
However, depending on the domain and the specific arguments or types of argument, a user might prefer arguments that are directly
relevant, that is, only direct attackers and defenders. For example, in 1 (Fig. 1), we could answer the explanation-seeking question
‘why is 𝐴 not accepted?’ by giving an explanation only in terms of a direct attacker: ‘because there is no defense against attacker
𝐵’. Particularly in cases where there is a long chain of arguments that attack each other, considering only the direct attackers (or
defenders) makes sense, as these will be most topically relevant to the explanandum.10

Another reason for varying what the relevant arguments in an explanation are, is that there are also semantics that are not based
on the notion of defense like admissibility- or completeness-based semantics. For example, semantics based on naïve semantics from
Definition 1 (e.g., stage, stage2 and CF2 semantics [5]) are about conflict rather than defense. So, for example, an explanation would
then be ‘𝐵 is not accepted because it attacks 𝐴 and is attacked by 𝐶 ’. Furthermore, as we discussed in Remark 1, the notion of
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 from Definition 7 does not work for all admissibility-based semantics.

In order to allow for different types of explanations, we need to be able to vary the functions 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 in the
definition of explanations (i.e., Definition 6 and 8). To this end the generic function 𝔻 was employed in [16]. This function takes,
like 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, as input an argument and a set of arguments and, in most cases, it returns a set of arguments. So
for, for example, the credulous explanations we then have:

10 This is similar to the idea of a direct cause in the literature on explanations and causation (e.g. [39,42]), where we might not always want to consider causes
11

further down the causal chain of events for an explanation.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴,) =𝔻(𝐴,) for a given 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴);

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) = {𝔻(𝐴,) ∣  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)}.

Where 𝔻 can be 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, or some other function that returns the arguments that can be seen as a reason for
the (non-)acceptance of 𝐴. In the rest of this section, we will propose some variations of 𝔻 to (non-exhaustively) demonstrate the
possibilities for the proposed framework. Note that, the variations discussed in this section are not the only possibilities. In Section 5

we will show how the content of explanations can be varied in ASPIC+ and in Section 6 we introduce three notions for selecting the
arguments in an explanation: minimality, necessity and sufficiency.

In examples, definitions, etc., where we treat acceptance and non-acceptance simultaneously, we will sometimes use the su-

perscripts 𝖺𝖼𝖼 (for acceptance) and 𝗇𝖺𝖼𝖼 (for non-acceptance) to specify the function 𝔻. We do this to distinguish between the
instantiations for acceptance and non-acceptance explanations.

4.1. Other notions of defense

In admissible and completeness-based semantics the notion of defense is fundamental in determining the arguments that can be
accepted. The choice of 𝔻 in the previous section (i.e., 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍) was aimed at providing all relevant arguments
for the (non-)acceptance of an argument, but there are also variations that still result in relevant sets of arguments, but that are
not necessarily maximal. In order to keep the illustrations of variations of 𝔻 simple we will provide small examples with abstract
argumentation frameworks.

Acceptance and non-acceptance are mostly determined by direct conflicts. When an argument is defended against all its direct
attackers, it is defended against all its attackers and can therefore be accepted. While, when an argument is not defended against
a direct attacker it cannot be accepted given a completeness-based semantics. We introduce here variations to 𝔻 that only consider
the direct conflicts. In the context of acceptance, the explanations contain the direct defenders, while for non-acceptance such
explanations result in sets of direct attackers to which the argument is not defended within some extension.

Definition 11. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆() an extension for some semantics
𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}. Then:

• 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = {𝐵 ∈  ∣ 𝐵 directly defends 𝐴} denotes the set of arguments that directly defend 𝐴 in  ;

• 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) = {𝐵 ∈ Args ∣ (𝐵, 𝐴) ∈ Att and ∄𝐶 ∈  such that (𝐶, 𝐵) ∈ Att} denotes the set of arguments that directly
attack 𝐴 and to which  has no defense.

Remark 4. Algorithm 1 from Section 3.4 can be applied to calculate explanations with 𝔻 ∈ {𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾} as well:

• 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁even(𝐴) ∣ 2 ∈𝖣𝗂𝗌𝗍(𝐵, 𝐴)}
• 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁odd(𝐴) ∣ 1 ∈𝖣𝗂𝗌𝗍(𝐵, 𝐴) and ∄𝐶 ∈  such that (𝐶, 𝐵) ∈ Att}.

By definition it follows that 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) and 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

Example 14 (Examples 6 and 8 continued). Recall that, for the argumentation framework 1 from Example 1 and Fig. 1, where
with 𝔻𝖺𝖼𝖼 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 we had:

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = {𝐶, 𝐸}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = {𝐶} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 3) = {𝐸} as acceptance explanations for 𝐴 and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐵, 4) =
{𝐷, 𝐹 } as the acceptance explanation for 𝐵; and

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {𝐵, 𝐷, 𝐹 } as a non-acceptance explanation for 𝐴.

Now, when 𝔻𝖺𝖼𝖼 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾:

• We still have that 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = {𝐶, 𝐸}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = {𝐶} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 3) = {𝐸} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐵, 4) = {𝐷, 𝐹 }, since
both 𝐶 and 𝐸 are direct defenders of 𝐴 and 𝐷 and 𝐹 are direct defenders of 𝐵;

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {𝐵}, since out of {𝐵, 𝐷, 𝐹 } only 𝐵 directly attacks 𝐴.

Another way to consider defense is by only mentioning attackers against which the argument cannot defend itself, leading to the
following variation of 𝔻.

Definition 12. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴, 𝐵 ∈ Args and let  ∈ 𝖲𝖾𝗆() be an extension for some
semantics 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}. Then:
12

• 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) = {𝐵 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ∣𝐴 does not (in)directly attack 𝐵}

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵

5

𝐵 𝐴 𝐶 𝐷

 ′
5

Fig. 5. Graphical representation of 5 and  ′
5 .

denotes the set of arguments that attack 𝐴 but for which no defense exists in  and that are not attacked by 𝐴 itself.

Intuitively, a 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) explanations returns attackers of 𝐴 to which there is no defense, and to defend 𝐴 against these
attacks other arguments than 𝐴 itself are necessary.

Remark 5. Like for 𝔻 ∈ {𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾}, Algorithm 1 can be applied to calculate explana-

tions with 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾:

• 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) = {𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁odd(𝐴) ∣  ∩ 𝖱𝖾𝖺𝖼𝗁odd(𝐵) = ∅ and 𝐴 ∉ 𝖱𝖾𝖺𝖼𝗁odd(𝐵)}.

As was the case with 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾, we have that 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

Example 15. Let 5 = ⟨Args5,Att5}⟩ with Args5 = {𝐴, 𝐵} and Att5 = {(𝐴, 𝐵), (𝐵, 𝐴)} as in Fig. 5. Here 𝖯𝗋𝖿 (5) = {1, 2} =
{{𝐴}, {𝐵}}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 2) = {𝐵} for 𝔻 ∈ {𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾} since 𝐵 (directly) attacks 𝐴 but 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 2) = ∅
for 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 since by accepting 𝐴, 𝐴 can indeed be concluded.

Now let  ′
5 as in Fig. 5. Then 𝖯𝗋𝖿 ( ′

5) = { ′
1, 

′
2, 

′
3} = {{𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴,  ′

2) = {𝐵, 𝐶} and

𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴,  ′
3) = {𝐵} for 𝔻 ∈ {𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍,𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾} since 𝐴 is not defended against 𝐵 in  ′

3 = {𝐵, 𝐷} and not de-

fended against 𝐵 and 𝐶 in  ′
2 = {𝐵, 𝐶} and for 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 we have that 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴,  ′

2) = {𝐶}, since in order to defend
𝐴, just accepting 𝐴 is not enough, 𝐷 is needed to defend against the attack from 𝐶 .

4.2. Explanations under other semantics

The choice of the semantics is essential when reasoning with argumentation frameworks. Above we mainly focus on completeness-

based semantics. However, even for some of the most applied completeness-based semantics (i.e., admissible and stable semantics)
not all our results are applicable, as Remark 1 shows. We therefore propose here variations to 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 that also see to the
special cases of admissible and stable semantics. First, we introduce the following notation:

Notation 2. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args be an argument and 𝖲 ⊆ Args be a set of arguments.
Then:

• Relevant(𝐴, 𝖲) = {𝐵 ∈ 𝖲 ∣ 𝐵 is relevant for 𝐴 (Definition 4)}.

With this notation the relevant arguments from a set of arguments can be determined.

Definition 13. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args be non-accepted and let  ∈ 𝖲𝖾𝗆() for 𝖲𝖾𝗆 as
stated below. Then:

• 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖠𝖽𝗆(𝐴, ) =⎧⎪⎪⎨⎪⎪⎩
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴,) if 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴,) ≠ ∅
{Relevant(𝐴, ′ ⧵ ) ∣  ′ ∈ 𝖠𝖽𝗆𝖶𝗂𝗍𝗁(𝐴) s.t.  ⊂  ′ and otherwise

Relevant(𝐴, ′ ⧵ ) ≠ ∅ and ∄ ′′ ∈ 𝖠𝖽𝗆𝖶𝗂𝗍𝗁(𝐴) s.t.

 ⊂  ′′ ⊂  ′ and Relevant(𝐴, ′′ ⧵ ) ≠ ∅}
• 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖲𝗍𝖻(𝐴, ) = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ∪ {𝖲 ⊆ Args ∣ there is an attack-path from 𝐴 to 𝐴 of odd length along the

arguments in 𝖲 and  does not attack 𝖲}.

For admissibility, when 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 is not empty, it contains a reason for the non-acceptance of 𝐴, but if 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 is
empty, 𝐴 might still be accepted given  (i.e.,  might not be complete). This is formalized in the second case. In particular, when
the second case is applied, 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖠𝖽𝗆(𝐴, ) contains the relevant arguments for 𝐴 that are part of a minimal but strict
superset of  . This way, explanations based on this variation will collect the arguments that influence the acceptance of 𝐴, even
though these are not part of the current admissible extension. In contrast, for stable semantics, the existence of an odd cycle can
provide additional information on the non-acceptance of argument rather than a different reason for the non-acceptance. Therefore,
13

an odd cycle containing 𝐴 and no arguments attacked by  is added.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Remark 6. Calculating explanations with Algorithm 1 from Section 3.4 for the variations 𝔻 ∈ {𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖠𝖽𝗆,𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖲𝗍𝖻}
is less straightforward than it was for the variations in the previous section. The reason for this is that the above definition requires
additional notions (e.g., Relevant and the collection of arguments along an attack-path). We therefore do not provide definitions and
leave a precise calculation up to the reader.

Example 16. In Remark 1 we had an argumentation framework with arguments 𝐴 and 𝐵 and no attacks. Then 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, {𝐵})
= ∅. With the new variation of 𝔻 we have now: 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖠𝖽𝗆(𝐴, {𝐵}) = {𝐴}, since {𝐴, 𝐵} is also admissible.

In the same remark, the attack (𝐵, 𝐵) was added. While we had that 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵, {𝐴}) = ∅, with the new definition
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍𝖲𝗍𝖻(𝐵, {𝐴}) = {𝐵}, since 𝐵 attacks itself.

Up until now the variations to 𝔻 were based on the notion of defense which is particularly important for semantics that are based
on admissibility and completeness. However, there are other types of semantics as well. An important family of semantics is based on
naïve semantics (recall Definition 1), which are not about defense but rather about conflict-freeness. In addition to naïve semantics,
other semantics based on conflict-freeness (that result in specific naïve extensions) are stage, stage2 and CF2 semantics [5].

Since naïve semantics is not about defended arguments but only about conflict-free sets of arguments, 𝔻 can be defined in terms
of conflict between argument. For this consider the following definition:

Definition 14. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and  ∈ 𝖲𝖾𝗆() an extension for some 𝖲𝖾𝗆 ∈
{𝖭𝖺𝗏, 𝖲𝗍𝗀}. Then:

• 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀(𝐴, ) = {𝐵 ∈  ∣ (𝐴, 𝐵) ∈ Att or (𝐵, 𝐴) ∈ Att} denotes the set of arguments from  that attack 𝐴 or are attacked by
𝐴.

This set can be varied by selecting only the attacking or only the attacked arguments:

• 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀+(𝐴, ) = {𝐵 ∈ 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀(𝐴, ) ∣ (𝐴, 𝐵) ∈ Att} and 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀−(𝐴, ) = {𝐵 ∈ 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀(𝐴, ) ∣ (𝐵, 𝐴) ∈ Att}
denote the set of arguments from  that are directly attacked by resp. that directly attack 𝐴.

Remark 7. Given  = ⟨Args,Att⟩ and 𝐴 ∈ Args, let 𝖲𝖾𝗆 = 𝖭𝖺𝗏. By definition of naïeve semantics, 𝐴 is credulously accepted if
it does not attack itself and skeptically accepted if it is not attacked at all. There are therefore no relevant arguments for the
credulous/skeptical acceptance of argument 𝐴, and hence no explanations in terms of relevant arguments. We only consider non-

acceptance here, since these explanations do contain relevant arguments: those arguments that 𝐴 has a conflict with.

Remark 8. Although Algorithm 1 can be applied to calculate 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀 (i.e., by determining that 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁odd(𝐵) and 1 ∈
𝖣𝗂𝗌𝗍(𝐴, 𝐵) or vice versa), it is more efficient to search the attack relation of the argumentation framework.

Example 17. Consider 𝖲𝖾𝗆 = 𝖭𝖺𝗏 and 𝔻 = 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀. Note that, intuitively, an argument 𝐴 is not skeptically accepted if there is
some conflict-free set that would no longer be conflict-free if 𝐴 was added. For the argumentation framework 1 from Example 1

we have that:

• 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 1) = {𝐴, 𝐶, 𝐸}, 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 2) = {𝐴, 𝐶} and 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 3) = {𝐴, 𝐸}. Moreover, we also have
that 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 1) = {𝐶, 𝐸}, 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 2) = {𝐶} and 𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 3) = {𝐸} for 𝔻 = 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀− and
𝖭𝖺𝗏𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, ) = {𝐴} for  ∈ {1, 2, 3} and 𝔻 = 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀+. Thus, the argument 𝐵 is not skeptically accepted, because
there are extensions that contain 𝐴, 𝐶 and/or 𝐸, which attack or are attacked by 𝐵.

For a non-accepted argument 𝐴, explanations with 𝔻 = 𝖤𝗑𝗍𝖠𝗍𝗍𝖺𝖼𝗄𝗂𝗇𝗀 provide explanations in terms of the conflicts 𝐴 has in a specific
extension.

4.3. Some results for the variations of 𝔻

In Section 3.3 some properties of the explanations with 𝔻𝖺𝖼𝖼 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 were shown. In this section
we further investigate some of those properties for the variations of 𝔻. The proofs of the results in this section are provided in
Appendix A.3.

As was mentioned after their definition, the variations of 𝔻 based on the notion of defense are closely related to 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍:

Remark 9. Let  = ⟨Args,Att⟩ be an argumentation framework, let  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,
𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and let 𝐴 ∈ Args. Then:
14

• 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, );

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

• 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) and, similarly

𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

Note however that 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾 and 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 are not related, it might be the case that: 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴,) ∩𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴,
) = ∅ (recall Example 15).

The next corollary (as well as Corollary 3 below) shows that acceptance [resp. non-acceptance] explanations are still well-behaved
when the variations of 𝔻 introduced in this section are applied instead of 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 [resp. 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍]. Thus, like for the basic
explanations, explanations under one semantics are related to explanations under another semantics in the same way as extensions
under the first semantics are related to extensions under the other semantics.

Corollary 1. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and let 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. Then:

1. 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) for 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}.

2. 𝖲𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖲𝗌𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) ⊆ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴).
3. For each 𝖲 ∈ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) such that 𝖲 ⊆ 𝖲′.

A counterpart of Proposition 2 does not hold for 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. This is the case because direct defense might vary from
argument to argument, even if the arguments are part of the same attack path(s). However, we do have that acceptance explanations
for 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 are only empty when the argument is not attacked at all.

Corollary 2. Let  = ⟨Args,Att⟩ be an AF, let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈
{∩, ∪} and let 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. Then 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) = {∅} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) iff there is no 𝐵 ∈ Args such
that (𝐵, 𝐴) ∈ Att.

The next corollaries are on non-acceptance explanations for the variations 𝔻 ∈ {𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾,𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾} and the counter-

parts of Proposition 4 and 5. First, it is shown that the non-acceptance explanations with 𝔻 ∈ {𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾,𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾} also
behave predictable with respect to the chosen semantics.

Corollary 3. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args be non-accepted, ⋆ ∈ {∩, ∪} and let 𝔻 ∈ {𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾,
𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾}. Then:

• 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
• 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).

Unlike non-acceptance explanations with 𝔻 ∈ {𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍,𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾}, a non-acceptance explanation for 𝔻 =
𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 can be empty. This is the case since an argument might not be part of some extension even though it defends it-
self against all its attackers. Like for empty acceptance explanations, the implementation of these explanations into an application
needs to be extended to provide explanations when the explanation is empty.

Corollary 4. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆 ∈
{𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then:

• if 𝔻 = 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾 then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any extension  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}; and

• if 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = ∅ for any extension  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) or 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) = {∅} implies that for
all 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att, (𝐴, 𝐵) ∈ Att as well.

5. Explanations in structured argumentation settings

In the previous sections we discussed explanations in terms of abstract argumentation frameworks. However, it has been argued
that we should take the structure of the arguments and the nature of attacks into account, see, e.g., [2,20,48,57,58]. Most of the ideas
on explanations for abstract argumentation can be applied to any (structured) approach to argumentation that results in an abstract
argumentation framework. In this section we make this explicit. Moreover, we show that the explanations can be refined when the
structure of the arguments is taken into account.

To show the advantages of explanations for structured argumentation, we choose ASPIC+ [56], which allows for two types of
premises – axioms that cannot be questioned and ordinary premises that can be questioned – and two types of rules – strict rules that
cannot be questioned and defeasible rules. We choose ASPIC+ as the structured argumentation approach in this paper since, due to
the variety of input it can be given, it allows to vary the form of the explanations in many ways (see Section 5.3). After recalling the
most important notions from ASPIC+ (Section 5.1), we discuss how the basic explanations can be applied to the structured setting
15

(Section 5.2). We then show how these basic explanations can be varied (Section 5.3).

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

5.1. ASPIC+

ASPIC+ has extensively been studied in the literature, see e.g., [50,51] for surveys. Most of the definitions in this section are
based on [49,56]. An ASPIC+ setting starts from an argumentation system (AS). Arguments are then constructed in an argumentation
system from a knowledge based, which together form the argumentation theory. Based on the structure of the constructed arguments,
the attack relation is determined, with which argumentation frameworks can be defined.

Definition 15. An argumentation system is a tuple AS =
⟨
, ,, 𝑛

⟩
, where:

•  is a propositional language;

• is a function that assigns to each formula in  a set of formulas such that, for 𝜙, 𝜓 ∈:

– 𝜙 is a contrary of 𝜓 if 𝜙 ∈ 𝜓 but 𝜓 ∉ 𝜙;

– 𝜙 is a contradictory of 𝜓 if 𝜙 ∈ 𝜓 and 𝜓 ∈ 𝜙, this will be denoted by 𝜙 = −𝜓 ;

– each 𝜙 ∈ is assumed to have at least one contradictory.

•  =𝑠 ∪𝑑 is a set of strict (𝑠) and defeasible (𝑑) inference rules of the form 𝜙1, … , 𝜙𝑛 → 𝜙 resp. 𝜙1, … , 𝜙𝑛 ⇒ 𝜙, such that
{𝜙1, … , 𝜙𝑛, 𝜙} ⊆  and 𝑠 ∩𝑑 = ∅.

Where 𝑟 ∈, we denote by:

– 𝖠𝗇𝗍(𝑟) = {𝜙1, … , 𝜙𝑛} the antecedents of the rule;

– 𝖢𝗈𝗇𝗌(𝑟) = 𝜙 the consequent of the rule; and

– 𝖱𝗎𝗅𝖾𝗌(, 𝜙) = {𝑟 ∈ ∣ 𝖢𝗈𝗇𝗌(𝑟) = 𝜙} the set of rules with 𝜙 as consequent.

• 𝑛 ∶𝑑 →  is a naming convention for defeasible rules, where 𝑛(𝑟) is a well-formed formula in  which says that 𝑟 ∈𝑑 is
applicable.

A knowledge base in an argumentation system
⟨
, ,, 𝑛

⟩
is a set of formulas  ⊆  which contains two disjoint subsets:  =𝑝∪𝑛,

the set of axioms 𝑛 and the set of ordinary premises 𝑝.

The combination of an argumentation system and a knowledge base is called an argumentation theory:

Definition 16. An argumentation theory is a pair AT = ⟨AS,⟩, where AS is an argumentation system and  is a knowledge base.

Arguments in ASPIC+ are then defined relative to an argumentation theory AT = ⟨AS,⟩.
Definition 17. An argument 𝐴 on the basis of a knowledge base  in an argumentation system

⟨
, ,, 𝑛

⟩
is:

1. 𝜙 if 𝜙 ∈, where 𝖯𝗋𝖾𝗆(𝐴) = 𝖲𝗎𝖻(𝐴) = {𝜙}, 𝖢𝗈𝗇𝖼(𝐴) = 𝜙, 𝖱𝗎𝗅𝖾𝗌(𝑎) = ∅ and 𝖳𝗈𝗉𝖱𝗎𝗅𝖾(𝐴) = undefined;

2. 𝐴1, … , 𝐴𝑛 ⇝ 𝜓 , where ⇝∈ {→, ⇒}, if 𝐴1, … , 𝐴𝑛 are arguments such that there exists a rule 𝖢𝗈𝗇𝖼(𝐴1), … , 𝖢𝗈𝗇𝖼(𝐴𝑛) ⇝ 𝜓 in 𝑠

if ⇝ =→ and in 𝑑 if ⇝ = ⇒. We denote by:

• 𝖯𝗋𝖾𝗆(𝐴) = 𝖯𝗋𝖾𝗆(𝐴1) ∪… ∪ 𝖯𝗋𝖾𝗆(𝐴𝑛) the set of premises of 𝐴;

• 𝖢𝗈𝗇𝖼(𝐴) = 𝜓 the conclusion of 𝐴;

• 𝖲𝗎𝖻(𝐴) = 𝖲𝗎𝖻(𝐴1) ∪… ∪ 𝖲𝗎𝖻(𝐴𝑛) ∪ {𝐴} the set of subarguments of 𝐴;

• 𝖱𝗎𝗅𝖾𝗌(𝐴) = 𝖱𝗎𝗅𝖾𝗌(𝐴1) ∪… ∪ 𝖱𝗎𝗅𝖾𝗌(𝐴𝑛) ∪ {𝖢𝗈𝗇𝖼(𝐴1),… ,𝖢𝗈𝗇𝖼(𝐴𝑛) ⇝ 𝜓} the set of rules applied in the construction of 𝐴;

• 𝖣𝖾𝖿𝖱𝗎𝗅𝖾𝗌(𝐴) = {𝑟 ∈𝑑 ∣ 𝑟 ∈ 𝖱𝗎𝗅𝖾𝗌(𝐴)} the set of defeasible rules applied in the construction of 𝐴; and

• 𝖳𝗈𝗉𝖱𝗎𝗅𝖾(𝐴) = 𝖢𝗈𝗇𝖼(𝐴1), … , 𝖢𝗈𝗇𝖼(𝐴𝑛) ⇝ 𝜓 the top rule (i.e., the last rule applied in the construction) of 𝐴.

The above notations can be generalized to sets. For example, given a set 𝖲 of arguments 𝖯𝗋𝖾𝗆(𝖲) =
⋃
{𝖯𝗋𝖾𝗆(𝐴) ∣ 𝐴 ∈ 𝖲}, 𝖢𝗈𝗇𝖼(𝖲) =

{𝖢𝗈𝗇𝖼(𝐴) ∣𝐴 ∈ 𝖲} and 𝖣𝖾𝖿𝖱𝗎𝗅𝖾𝗌(𝖲) =
⋃
{𝖣𝖾𝖿𝖱𝗎𝗅𝖾𝗌(𝐴) ∣𝐴 ∈ 𝖲}.

Example 18. Let AS1 = ⟨1,¬,1, 𝑛⟩ be an argumentation system where ¬ denotes classical negation and where 1 contains six
defeasible rules such that, with 1 =1

𝑝 = {𝑟, 𝑠, 𝑡, 𝑣, 𝑤} the following arguments can be derived:

𝐴 ∶𝑤
𝑑1
⇒ 𝑢 𝐵 ∶𝐷,𝐹

𝑑2
⇒ ¬𝑛(𝑑1) 𝐶 ∶ 𝑟, 𝑠

𝑑3
⇒ 𝑞

𝐷 ∶𝑣
𝑑4
⇒ ¬𝑞 𝐸 ∶ 𝑟, 𝑡

𝑑5
⇒ ¬𝑝 𝐹 ∶ 𝑣

𝑑6
⇒ 𝑝.

The arguments based on the knowledge base only (i.e., without the application of any rule) are not mentioned here. This does not
cause problems since, as will become clear after the next definition, these arguments do not attack any argument, nor are they
attacked by another argument.
16

Attacks on an argument are based on the rules and premises applied in the construction of that argument.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Definition 18. Let 𝐴 and 𝐵 be two arguments. Then 𝐴 attacks an argument 𝐵 iff 𝐴 undercuts, rebuts or undermines 𝐵, where:

• 𝐴 undercuts 𝐵 (on 𝐵′) iff 𝖢𝗈𝗇𝖼(𝐴) = 𝑛(𝑟) for some 𝐵′ ∈ 𝖲𝗎𝖻(𝐵) such that 𝐵′’s top rule 𝑟 is defeasible;

• 𝐴 rebuts 𝐵 (on 𝐵′) iff 𝖢𝗈𝗇𝖼(𝐴) = 𝜙 for some 𝐵′ ∈ 𝖲𝗎𝖻(𝐵) of the form 𝐵′′
1 , … , 𝐵′′

𝑛 ⇒ 𝜙 and 𝐴 contrary-rebuts 𝐵 iff 𝖢𝗈𝗇𝖼(𝐴) is a
contrary of 𝜙;

• 𝐴 undermines 𝐵 (on 𝜙) iff 𝖢𝗈𝗇𝖼(𝐴) = 𝜙 for some 𝜙 ∈ 𝖯𝗋𝖾𝗆(𝐵) ⧵𝑛 and 𝐴 contrary-undermines 𝐵 iff 𝖢𝗈𝗇𝖼(𝐴) is a contrary of 𝜙.

Intuitively, when 𝐴 undercuts 𝐵, it attacks 𝐵 in the application of a defeasible rule used in the construction of 𝐵; when 𝐴 rebuts
𝐵, it attacks 𝐵 in (one of) its (sub)conclusions; and when 𝐴 undermines 𝐵 it attacks 𝐵 in one of the premises used in the construction
of 𝐵.

Example 19. For the arguments from Example 18, derived from AS1 and 1, we have that:

• 𝐵 undercuts 𝐴,

• 𝐶 and 𝐷 as well as 𝐸 and 𝐹 rebut each other.

Note that, because of our choice of contrariness relation (i.e., classical negation), the attacks are not contrary-rebuts or contrary-

undermines, since classical negation always results in contradictories.

Often, ASPIC+ comes equipped with a preference ordering (see, e.g., [49,56]). Since our explanations are based on the argumen-

tation framework constructed from an ASPIC+ setting, the explanations do not depend on a possible preference relation. For the sake
of conciseness we will therefore not introduce a preference relation here. The correspondence between argumentation theories and
Dung-style argumentation frameworks can then be defined as follows.

Definition 19. Given an argumentation theory AT = ⟨AS,⟩, the corresponding Dung-style abstract argumentation framework is
 (AT) = ⟨Args,Att⟩, where Args is the set of arguments that can be constructed from AT, (𝐴, 𝐵) ∈ Att iff 𝐴, 𝐵 ∈ Args and 𝐴 attacks
𝐵 as defined in Definition 18.

Example 20. From the argumentation system AS1 and the knowledge base 1 from Example 18 we obtain the argumentation theory
AT1 = ⟨AS1,1⟩. Note that we have that  (AT1) = ⟨Args1,1⟩ as in Example 1 and that Fig. 1 represents this argumentation
framework (again ignoring the arguments based on the knowledge base).

Dung-style semantics, as in Definition 1, can be applied in the same way as they are applied to abstract argumentation frameworks.
Recall Example 2 for a discussion. Note that, unlike the abstract framework, in the structured framework the grounded extension
is not empty: the arguments based on the knowledge base that we ignored so far are part of the grounded, as well as any other
completeness-based extension.

Like for abstract argumentation it can be determined which arguments are (not) skeptically or credulously accepted. Moreover,
the notions of (in)direct attack and defense (Definition 3) as well as relevance (Definition 4) can be applied to argumentation
frameworks derived from argumentation theories as well. In addition, acceptance and non-acceptance can be defined for formulas:

Definition 20. Let  (AT) = ⟨Args,Att⟩ be an argumentation framework, based on some argumentation theory AT, let 𝖲𝖾𝗆 be a
semantics and suppose that 𝖲𝖾𝗆() ≠ ∅ and let 𝜙 ∈. Then 𝜙 is:

• Credulously accepted: iff 𝜙 ∈
⋃

𝖢𝗈𝗇𝖼𝗌(𝖲𝖾𝗆( (AT))), that is: there is some 𝖲𝖾𝗆-extension with an argument 𝐴 such that
𝖢𝗈𝗇𝖼(𝐴) = 𝜙;

• Skeptically accepted: iff 𝜙 ∈
⋂

𝖢𝗈𝗇𝖼𝗌(𝖲𝖾𝗆( (AT))), that is: in each 𝖲𝖾𝗆-extension there is an argument with conclusion 𝜙;

• Not credulously accepted: iff 𝜙 ∉
⋃

𝖢𝗈𝗇𝖼𝗌(𝖲𝖾𝗆( (AT))), that is: there is no 𝖲𝖾𝗆-extension with an argument with conclusion 𝜙;

• Not skeptically accepted: iff 𝜙 ∉
⋂

𝖢𝗈𝗇𝖼𝗌(𝖲𝖾𝗆( (AT))), that is: there is some 𝖲𝖾𝗆-extension without an argument with conclu-

sion 𝜙.

When arbitrary or clear from the context (e.g., when 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖨𝖽𝗅, 𝖤𝗀𝗋}), we will write that the formula is (non-)accepted.
Otherwise, like before, we will indicate (not) skeptically [resp. credulously] accepted by ∩ [resp. ∪].

Example 21. For the argumentation framework  (AT1) from Example 20, with the arguments from Example 18, we have that:

1. 𝜙 ∈ {𝑟, 𝑠, 𝑡, 𝑣, 𝑤} are skeptically accepted for 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}; while

2. 𝜙 ∈ {𝑝, ¬𝑝, 𝑞, ¬𝑞, 𝑢} are credulously accepted but not skeptically accepted for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}; and

3. there is no formula that is not credulously accepted.

This follows since the arguments based on 1 (i.e., those not mentioned in Example 18) are part of every completeness-based
17

extension and all other arguments are part of at least one extension but not of all extensions (for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}).

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

5.2. Basic explanations for formulas

While Dung-style argumentation frameworks can be derived from argumentation theories (recall Definition 16), the acceptance
of arguments and formulas might differ. For example, there might be several arguments for a formula 𝜙 and although none of these
arguments is skeptically accepted, 𝜙 might be skeptically accepted because in each extension there is at least one argument for
𝜙 (Definition 20). Similarly, explanations for the (non-)acceptance of arguments and formulas can differ. In order to define these
explanations, we introduce the following notation.

Notation 3. Let  (AT) = ⟨Args,Att⟩ be an argumentation framework, 𝜙 ∈  and let 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖦𝗋𝖽,𝖢𝗆𝗉,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}.
Then:

• AllArgs(𝜙) = {𝐴 ∈ Args ∣ 𝖢𝗈𝗇𝖼(𝐴) = 𝜙} denotes the set of all arguments of  (AT) with conclusion 𝜙;

• 𝖲𝖾𝗆Accept(𝜙) = AllArgs(𝜙) ∩
⋃

𝖲𝖾𝗆( (𝐴𝑇)) denotes the set of all arguments of  (AT) with conclusion 𝜙 that are part of at
least one 𝖲𝖾𝗆-extension (i.e., that are credulously accepted);

• 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝜙) =
⋃
{𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) ∣ 𝐴 ∈ AllArgs(𝜙)} denotes the set of 𝖲𝖾𝗆-extensions that contain an argument with conclusion 𝜙;

and

• 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝜙) =
⋂
{𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) ∣𝐴 ∈ AllArgs(𝜙)} denotes the set of 𝖲𝖾𝗆-extensions that do not contain any argument with

conclusion 𝜙.

Example 22. For the argumentation framework  (AT1) with the arguments from Example 18 and 𝖲𝖾𝗆( (AT1)) = {1, 2, 3, 4}
= {{𝐴, 𝐶, 𝐸}, {𝐴, 𝐶, 𝐹 }, {𝐴, 𝐷, 𝐸},{𝐵,𝐷, 𝐹 }}, we have that: AllArgs(𝑝) = {𝐹 }, 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝑝) = {{𝐴, 𝐶, 𝐹 },{𝐵, 𝐷, 𝐹 }} and

𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝑝) = {{𝐴, 𝐶, 𝐸},{𝐴,𝐷, 𝐸}} for 𝖲𝖾𝗆 ∈ {𝖯𝗋𝖿 ,𝖲𝗍𝖻,𝖲𝗌𝗍𝖻}.

One important difference in formula explanations is that for a formula 𝜙 it makes sense to also consider existence explanations.
After all, an intuitive answer to the question ‘why is 𝜙 accepted?’ is to provide (all the) arguments that have 𝜙 as their conclusion as
reasons for why the formula can be derived in the first place.

Definition 21 (Existence explanation). Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumentation theory
AT and let 𝜙 ∈ be such that 𝜙 is ⋆-accepted for 𝖲𝖾𝗆 ∈ {𝖭𝖺𝗏, 𝖲𝗍𝗀, 𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}.

𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍⋆(𝜙) = 𝖲𝖾𝗆Accept(𝜙).

For the considered formula 𝜙, these existence explanations collect all the arguments for 𝜙 that are part of some 𝖲𝖾𝗆-extension.
It is important to note that the definition adds an essential condition to the notation 𝖲𝖾𝗆Accept: 𝜙 should be accepted w.r.t. 𝖲𝖾𝗆
and ⋆. Thus, 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∪(𝜙) returns all the arguments for 𝜙 that are part of some 𝖲𝖾𝗆-extension and could therefore be reasons for
the credulous acceptance of 𝜙. 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) returns for each 𝖲𝖾𝗆-extension at least one arguments for 𝜙 (since 𝜙 is skeptically
accepted).

Example 23. For the argumentation framework  (AT1), we have that only the formulas in 1 are skeptically accepted. Addition-

ally, we have explanations for why, for example, 𝑢 and ¬𝑛(𝑑1) are credulously accepted under 𝖯𝗋𝖿 :

• 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(𝑢) = {𝐴} since 𝐴 is the only argument for 𝑢 in Args1;

• 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(¬𝑛(𝑑1)) = {𝐵} since 𝐵 is the only argument for ¬𝑛(𝑑1) in Args1.

5.2.1. Explanations for accepted formulas

Formula explanations are very similar to the basic argument explanations introduced in Section 3, but in addition to accounting
for all the extensions, now the possible existence of several arguments for one formula has to be taken into account as well. Thus,
the question why some formula 𝜙 is accepted is then answered by an explanation of the form ‘because argument 𝐴 has 𝜙 as its
conclusion, and 𝐴 is accepted because it is defended against its attackers by arguments 𝐵1, … , 𝐵𝑛 ’. The definitions in this section use
the generic function 𝔻 as introduced in Section 4, in the examples we will take 𝔻𝖺𝖼𝖼 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍. In the
next section we will further extend this definition by allowing to vary the form of the explanation.

Definition 22 (Formula acceptance explanation). Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumenta-

tion theory AT, let 𝜙 ∈  be such that 𝜙 is ⋆-accepted and 𝜙 ∈ 𝖲𝖾𝗆() such that 𝜙 ∈ 𝖢𝗈𝗇𝖼𝗌(𝜙), for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 ,
𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}.

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝜙) = {⟨𝐴,𝔻(𝐴,)⟩ ∣𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)}⟨ ⟩

18

𝖲𝖾𝗆𝖠𝖼𝖼∪(𝜙,𝜙) = { 𝐴,𝔻(𝐴,𝜙) ∣𝐴 ∈ 𝜙 and 𝖢𝗈𝗇𝖼(𝐴) = 𝜙}.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴1 𝐴2 𝐴3 𝐴4

𝐵1 𝐵2 𝐵3

Fig. 6. Graphical representation of the argumentation framework  (AT6) from Example 25.

For the considered formula 𝜙, the (skeptical) ∩-explanation collects for each accepted argument 𝐴 with conclusion 𝜙 and each
𝖲𝖾𝗆-extension  that contains 𝐴 the set 𝔻(𝐴, ) and provides this as a pair with the argument 𝐴 (why is 𝜙 skeptically accepted under
𝖲𝖾𝗆 or, in other words, which arguments for 𝜙 exist and which arguments defend these arguments in each extension?). Compared to
Definition 6 for argument explanations, the main difference is that here explanations are pairs and all accepted arguments for 𝜙 are
part of the explanation. As a result it explains the existence of an argument for 𝜙 and the acceptance of all accepted arguments for
𝜙 for all extensions in which the arguments are accepted. The (credulous) ∪-explanation returns for each argument 𝐴 in the given
extension 𝜙 with conclusion 𝜙 the pair containing 𝐴 and 𝔻(𝐴, 𝜙) (why is 𝜙 credulously accepted under 𝖲𝖾𝗆 or, in other words,
which arguments for 𝜙 exist in the given extension 𝜙 and which arguments from 𝜙 defend these arguments?). It thus explains the
existence of arguments for 𝜙 and why these arguments are accepted in the given 𝖲𝖾𝗆-extension.

Example 24. Recall from Example 21 that, for the argumentation framework  (AT1) from Example 20, none of the arguments
from Example 18 were skeptically accepted, but all are credulously accepted. We therefore have, for 𝖲𝖾𝗆 ∈ {𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}:

• 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝑢, 1) = {⟨𝐴,{𝐶,𝐸}⟩}, 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝑢, 2) = {⟨𝐴,{𝐶}⟩} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝑢, 3) = {⟨𝐴,{𝐸}} since 𝐴 is the only argument for
𝑢 and the 𝖲𝖾𝗆-extensions with 𝐴 are 1 = {𝐴, 𝐶, 𝐸}, 2 = {𝐴, 𝐶, 𝐹 } and 3 = {𝐴, 𝐷, 𝐸};

• 𝖲𝖾𝗆𝖠𝖼𝖼∪(¬𝑛(𝑑1), 4) = {⟨𝐵,{𝐷,𝐹 }⟩} since 𝐵 is the only argument for ¬𝑛(𝑑1) and the only 𝖲𝖾𝗆-extension with 𝐵 is 4 =
{𝐵, 𝐷, 𝐹 }.

So 𝑢 is accepted because of the existence of argument 𝐴, which is defended by 𝐶 and 𝐸, 𝐶 or 𝐸 in the extensions 1, 2 and 3
respectively. Similarly, ¬𝑛(𝑑1) is accepted because of the existence of argument 𝐵, which is defended by 𝐷 and 𝐹 in the extension
4.

In order to show explanations when there are more arguments for one conclusion, we recall the following example, from [16,
Example 3].

Example 25. Let AS6 = ⟨6,¬,6, 𝑛⟩ be an argumentation system where ¬ denotes classical negation and where 6 contains five
defeasible rules such that, with 6 =6

𝑛 ∪6
𝑝 where 6

𝑛 = {𝑡} and 6
𝑝 = {𝑟} the following arguments can be derived:

𝐴1 ∶ 𝑡 𝐴2 ∶𝐴1
𝑑3
⇒ ¬𝑟 𝐴3 ∶𝐴1,𝐴2

𝑑4
⇒ 𝑞 𝐴4 ∶𝐴3

𝑑1
⇒ 𝑝

𝐵1 ∶ 𝑟 𝐵2 ∶𝐵1
𝑑2
⇒ 𝑝 𝐵3 ∶ 𝐵1

𝑑5
⇒ ¬𝑞.

See Fig. 6 for a graphical representation. Where AT6 = ⟨𝐴𝑆6,6⟩ is denoted by  (AT6). Note that 𝖯𝗋𝖿 ( (AT6)) = {1, 2} =
{{𝐴1, 𝐴2, 𝐴3, 𝐴4}, {𝐴1, 𝐵1, 𝐵2, 𝐵3}} and that AllArgs(𝑝) = {𝐴4, 𝐵2}. Then:

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 1) = {⟨𝐴4,{𝐴2,𝐴3}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 2) = {⟨𝐵2,{𝐵1}⟩}.

• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑞, 1) = {⟨𝐴3,{𝐴2,𝐴3}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑞, 2) = {⟨𝐵3,{𝐵1,𝐵3}⟩}.

So 𝑝 is credulously accepted under 𝖯𝗋𝖿 , because it is the conclusion of argument 𝐴4 and 𝐴4 is defended by 𝐴2 and 𝐴3 in extension
1 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝑝 is also the conclusion of argument 𝐵2, which is defended by 𝐵1 in the extension 2 = {𝐴1, 𝐵1, 𝐵2, 𝐵3}.
Moreover, 𝑞 is credulously accepted under 𝖯𝗋𝖿 because it is the conclusion of argument 𝐴3 which is defended by the arguments 𝐴2
and 𝐴3 in 1. Furthermore, ¬𝑞 is credulously accepted under 𝖯𝗋𝖿 because it is the conclusion of argument 𝐵3 which is defended by
𝐵1 and 𝐵3 in 2.

5.2.2. Explanations for non-accepted formulas

In [16] two types of non-acceptance explanations were considered: a non-derivability explanation and a non-acceptance expla-

nation. The first is aimed at formulas within the language that are not derivable given the argumentation theory. In particular, for a
formula 𝜙, this explanation collects the rules for 𝜙, the antecedents for these rules and the knowledge base elements that are missing
to derive 𝜙 with these rules [16, Definition 13]. We will not repeat that definition, but rather assume that some argument for 𝜙 exists
19

(i.e., AllArgs(𝜙) ≠ ∅) and focus on the second type of explanations.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

When a formula 𝜙 is not accepted even though it is derivable, the explanation contains the arguments for the formula and the
reasons why these are not accepted (i.e., the non-acceptance argument explanations from Section 3.2). Thus, the question why some
formula 𝜙 is not accepted is then answered by an explanation of the form ‘because even though argument 𝐴 has 𝜙 as its conclusion,
𝐴 is not accepted because it is not defended against attackers 𝐵1, … , 𝐵𝑛 ’.

11

Definition 23 (Non-acceptance formula explanation). Let  (AT) be an argumentation framework based on the argumentation theory
AT, let 𝜙 ∈  be such that 𝜙 is not ⋆-accepted and AllArgs(𝜙) ≠ ∅ and let 𝜙 ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝜙), given some 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 ,
𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then:

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝜙,𝜙) =
{⟨

𝐴,𝔻(𝐴,𝜙)
⟩
∣𝐴 ∈ AllArgs(𝜙) and 𝖢𝗈𝗇𝖼(𝐴) = 𝜙

}
𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙) = {⟨𝐴,𝔻(𝐴,)⟩ ∣𝐴 ∈ AllArgs(𝜙) and  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝜙)} .

Recall that a formula 𝜙 is not skeptically accepted if there is some 𝖲𝖾𝗆-extension without an argument for 𝜙, while 𝜙 is not
credulously accepted if no 𝖲𝖾𝗆-extension contains an argument for 𝜙. In the above definition, this is formulated by returning for the
(skeptical) ∩-explanation for the given extension 𝜙 for each argument 𝐴 with conclusion 𝜙 the pair consisting of 𝐴 and 𝔻(𝐴, 𝜙)
(why is 𝜙 not skeptically accepted under 𝖲𝖾𝗆 or, in other words, which arguments for 𝜙 exist and to which attacks on these
arguments does the given extension 𝜙 not provide a defense?). The (credulous) ∪-explanation collects all the pairs containing an
argument 𝐴 for 𝜙 and 𝔻(𝐴, ), where  is some 𝖲𝖾𝗆-extension why is 𝜙 not credulously accepted under 𝖲𝖾𝗆 or, in other words,
which arguments for 𝜙 exist and to which arguments is no defense provided for every extension?). Since no argument for 𝜙 is part
of any 𝖲𝖾𝗆-extension in the case of credulous non-acceptance, all pairs of 𝐴 and  are collected in the ∪-explanation.

Example 26. Recall from Example 21, that in the argumentation framework  (AT1) from Example 20, none of the argu-

ments from Example 18 are not credulously accepted, but all arguments shown in Fig. 1 are not skeptically accepted, for
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻}. Hence, for the same 𝖲𝖾𝗆:

• 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢, 4) = {⟨𝐴,{𝐵,𝐷,𝐹 }⟩} since 𝐴 is the only argument for 𝑢 and 𝐴 is not part of the 𝖲𝖾𝗆-extension 4 = {𝐵, 𝐷, 𝐹 };

• 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1), 1) = {⟨𝐵,{𝐶,𝐸}⟩}, 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1), 2) = {⟨𝐵,{𝐶}⟩} and

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1), 3) = {⟨𝐵,{𝐸}⟩} since 𝐵 is the only argument for ¬𝑛(𝑑1) and 𝐵 is not part of the 𝖲𝖾𝗆-extensions 1 =
{𝐴, 𝐶, 𝐸}, 2 = {𝐴, 𝐶, 𝐹 } and 3 = {𝐴, 𝐷, 𝐸}.

So 𝑢 is not accepted, even though argument 𝐴 for 𝑢 exists, because it is not defended against 𝐵, 𝐷 and 𝐹 in 4 = {𝐵, 𝐷, 𝐹 }).
Similarly, ¬𝑛(𝑑1) is not skeptically accepted, even though argument 𝐵 for ¬𝑛(𝑑1) exists, because it is not defended against 𝐶 , 𝐸 or
𝐶 and 𝐸 in 2 = {𝐴, 𝐶, 𝐹 }, 3 = {𝐴, 𝐷, 𝐸} and 1 = {𝐴, 𝐶, 𝐸} respectively).

Example 27. For the argumentation framework  (AT6) from Example 25, we have that all arguments, except for 𝐴1 are not
skeptically accepted. However, if we look at the conclusions, 𝑝 is skeptically accepted and therefore not non-accepted. We do
however, have:

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑞, 2) = {⟨𝐴3,{𝐵1,𝐵3}⟩};

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑞, 1) = {⟨𝐵3,{𝐴2,𝐴3⟩}.

So 𝑞 is not skeptically accepted, even though argument 𝐴3 exists, because it is not defended against the attacks by 𝐵1 and 𝐵3 in
2 = {𝐴1, 𝐵1, 𝐵2, 𝐵3}) and ¬𝑞 is not skeptically accepted, even though argument 𝐵3 exists, because it is not defended against the
attacks by 𝐴2 and 𝐴3 in 1 = {𝐴1, 𝐴2, 𝐴3, 𝐴4}.

5.3. Element explanations

In Section 5.2, explanations are still in terms of arguments. It is further possible to refine these explanations and provide them
in terms of elements of arguments – for example, ‘formula 𝜙 is accepted because it is the conclusion of an accepted argument with
premises 𝜓 and 𝜒 ’. To this end we introduce a second function 𝔽 , which determines the types of elements in the explanation. As
instantiations of 𝔽 some of the notations from Definition 17 will already be useful. For example, with 𝔽 = 𝖯𝗋𝖾𝗆, the explanations
will be in terms of the premises (i.e., the knowledge base elements) of the arguments from the basic explanations and with 𝔽 = 𝖱𝗎𝗅𝖾𝗌
the explanations will be in terms of the rules with which the arguments from the basic explanations were constructed. See [16] for
additional example instantiations.

The function 𝔽 is applied over the elements of the formula explanations from the previous section. For the existence explanation,
suppose that 𝜙 is ⋆-accepted for 𝖲𝖾𝗆 ∈ {𝖭𝖺𝗏, 𝖲𝗍𝗀, 𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}, then:
20

11 Note this is for the completeness-based semantics 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 interpretation of 𝔻, which we use as standard throughout the paper.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍⋆(𝜙) = {𝔽 (𝐴) ∣𝐴 ∈ 𝖲𝖾𝗆Accept(𝜙)} .

So in addition to returning the arguments for 𝜙 (Definition 21), the existence explanations can now also return the premises or rules
used in the construction of those arguments by varying 𝔽 .

Definition 24 (Element explanations). Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumentation theory
AT and let 𝜙 ∈ be such that AllArgs(𝜙) ≠ ∅. For the acceptance explanation, suppose that 𝜙 is ⋆-accepted for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽,
𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}, let 𝜙 ∈ 𝖲𝖾𝗆() such that 𝜙 ∈ 𝖢𝗈𝗇𝖼𝗌(𝜙) then:

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝔻(𝐴,))⟩ ∣𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)}

𝖲𝖾𝗆𝖠𝖼𝖼∪(𝜙,𝜙) =
{⟨

𝔽 (𝐴),𝔽 (𝔻(𝐴,𝜙))
⟩
∣𝐴 ∈ 𝜙 and 𝖢𝗈𝗇𝖼(𝐴) = 𝜙

}
.

Now, for the non-acceptance explanation, suppose that 𝜙 is ⋆-non-accepted for 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈
{∩, ∪} while AllArgs(𝜙) ≠ ∅ and let 𝜙 ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝜙) then:

𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝜙,𝜙) =
{⟨

𝔽 (𝐴),𝔽 (𝔻(𝐴,𝜙))
⟩
∣𝐴 ∈ AllArgs(𝜙) and 𝖢𝗈𝗇𝖼(𝐴) = 𝜙

}
𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝔻(𝐴,))⟩ ∣𝐴 ∈ AllArgs(𝜙) and  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝜙)}.

The above definition applies to each of the explanations from Definitions 22 and 23 the function 𝔽 .12 So, for example, in the case
of the credulous ∪-explanation, 𝔽 = 𝖯𝗋𝖾𝗆 and 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, it returns the premises of each argument 𝐴 for 𝜙 together with the
premises of the arguments that defend 𝐴 in the given extension 𝜙 (which knowledge base elements are required to infer and defend
𝜙 in 𝜙?). Intuitively, the explanations in the previous section can be understood as explanations as defined here, with 𝔽 = 𝗂𝖽, where
𝗂𝖽(𝖲) = 𝖲 for any set 𝖲. Note that, while in the above definition 𝔽 is the same for both elements, a user might decide to apply two
different instantiations of 𝔽 within the same explanation.

Remark 10. Algorithm 1 can again be applied to calculate formula explanations, if it can be applied for the chosen 𝔻 instantiation.
First, note that a formula explanation results in a pair ⟨𝔽 (𝐴),𝔽 (𝖲)⟩. Then the algorithm helps to determine 𝖲, in the same way as it
did in Sections 3.4 and 4. Applying 𝔽 to 𝖲 can then be done by extracting the argument information from the elements of 𝖲.

Example 28. For our running example with  (AT1), recall that 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 1) = {⟨𝑢,{𝐶,𝐸}⟩}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 2) = {⟨𝐴,{𝐶}⟩}
and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 3) = {⟨𝐴,{𝐸}⟩} as well as 𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑛(𝑑1), 4) = {⟨𝐵,{𝐷,𝐹 }⟩}, for the non-acceptance of 𝑢: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢, 4) =⟨𝐴,{𝐵,𝐷,𝐹 }⟩ and the non-acceptance of ¬𝑛(𝑑1): 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 1) = {⟨𝐵,{𝐶,𝐸}⟩}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 2) = {⟨𝐵,{𝐶}⟩} and
𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 3) = {⟨𝐵,{𝐸}⟩}, for 𝔻𝖺𝖼𝖼 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍. By varying 𝔽 we obtain:

1. 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(𝑢) = {𝑤} for 𝔽 = 𝖯𝗋𝖾𝗆;

2. 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(¬𝑛(𝑑1)) = {𝑑2, 𝑑3, 𝑑4} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌;
3. 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 1) = {⟨{𝑤},{𝑟, 𝑠, 𝑡}⟩}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 2) = {⟨{𝑤},{𝑟, 𝑠}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 3) = ⟨{𝑤},{𝑟, 𝑡}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆 and

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 1) = {⟨{𝑑1},{𝑑3, 𝑑5}⟩}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 2) = {⟨{𝑑1},{𝑑3}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 3) = {⟨{𝑑1},{𝑑3, 𝑑5}⟩} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌;
4. 𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑛(𝑑1), 4) = {⟨{𝑣},{𝑣}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆 and 𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑛(𝑑1), 4) = {⟨{𝑑2, 𝑑4, 𝑑6},{𝑑4, 𝑑6}⟩} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌;
5. 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢, 4) = {⟨{𝑤},{𝑣}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆 and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢, 4) = {⟨{𝑑1},{𝑑2, 𝑑4, 𝑑6}⟩} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌;
6. 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 1) = {⟨{𝑣}, {𝑟, 𝑠, 𝑡}⟩}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 2) = {⟨{𝑣}, {𝑟, 𝑠}⟩} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 3) = ⟨{𝑣},{𝑟, 𝑡}⟩}

for 𝔽 = 𝖯𝗋𝖾𝗆 and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 1) = {⟨{𝑑2, 𝑑4, 𝑑6}, {𝑑3, 𝑑5}⟩}, 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 2) = {⟨{𝑑2, 𝑑4, 𝑑6}, {𝑑3}⟩} and finally
for 3: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(¬𝑛(𝑑1), 3) = {⟨{𝑑2, 𝑑4, 𝑑6},{𝑑3, 𝑑5}⟩} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌.

The first item, 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(𝑢) with 𝔽 = 𝖯𝗋𝖾𝗆 can then be put into words as follows: ‘𝑢 is credulously accepted under 𝖯𝗋𝖿 because there
is an argument for 𝑢 with premise 𝑤.’ Explanation 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 1) from item 3 is one tuple which reads as ‘𝑢 is credulously accepted
under 𝖯𝗋𝖿 because there is an argument for 𝑢 with premise 𝑤, and this argument is defended against its attackers by one or more
arguments with premises 𝑟, 𝑠, 𝑡.’ Finally, the first explanation from item 5 can be read as ‘𝑢 is not skeptically accepted under 𝖯𝗋𝖿 in
4 because even though there is an argument for 𝑢 with premise 𝑤, this argument is not defended against one or more attacking
arguments with premise 𝑣.’

Example 29. For the argumentation framework  (AT6), introduced in Example 25, some of the element explanations, where
𝔻𝖺𝖼𝖼 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, are:

• 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(𝑝) = {𝑡, 𝑟} for 𝔽 = 𝖯𝗋𝖾𝗆 and 𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍∪(𝑝) = {𝑑1, 𝑑2, 𝑑3, 𝑑4} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌;
• 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 1) = {⟨{𝑡},{𝑡}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 2) = {⟨{𝑟},{𝑟}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆 and for 𝔽 = 𝖱𝗎𝗅𝖾𝗌: 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 1) = {⟨{𝑑1, 𝑑3,
𝑑4}, {𝑑3, 𝑑4}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑝, 2 = {⟨{𝑑2},∅⟩}.

12 We overload here the notation of the explanations from the previous section. We do so to avoid further notation and since the explanations from the previous
21

section can be seen as a special case of the definition here.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

• 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑞, 2) = {⟨{𝑡},{𝑡}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆 and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑞, 1) = {⟨{𝑑5},{𝑑3, 𝑑4}⟩} for 𝔽 = 𝖱𝗎𝗅𝖾𝗌.

An illustration of the possibilities for 𝔻 and 𝔽 in the context of a real-life application will be discussed in Section 7.

6. Minimality, necessity and sufficiency

We have now provided a flexible and generic framework for explaining the (non-)acceptance of an argument with relevant
arguments under different semantics. We have shown how the notion of relevance can be varied by taking different instantiations of
𝔻, and how the structure of arguments can be taken into account when selecting both the explanandum and the explanations. We
now turn to our second main contribution: taking into account how humans select relevant explanations. Miller [46] mentions many
possible selection criteria for explanations. We focus on three, namely minimality, necessity and sufficiency.

• Minimality selects explanations that contain fewer elements [62]. In the context of argumentation we interpret this as (sub-

set)minimality in Section 6.1.

• Necessity and sufficiency provide an explanation in terms of elements (e.g., causes) that are necessary or sufficient for the
explanandum [42,43,66]. In the context of argumentation: which arguments are necessary or sufficient for the (non-)acceptance
of the argument or formula that is to be explained? Necessity and sufficiency are approached differently for acceptance and
non-acceptance and we will hence discuss these separately in Section 6.2 and 6.3, respectively.

This section is an extension of [17]. In particular, we add the notion of minimality and study its relation to necessity and
sufficiency in more detail. Moreover, we consider both skeptical and credulous acceptance and discuss how formula explanations
can be refined with 𝔽 .

6.1. Minimality

Minimality is a common way of choosing between explanations in, for example, formal models of causal diagnosis (cf. [22]). As
was shown in the previous sections (i.e., Sections 3.3, 4 and 5.3), the size of an explanation can already be reduced with the choice of
the semantics and the functions 𝔻 and 𝔽 . For example, an explanation for grounded semantics never contains more arguments than
an explanation for any of the other semantics (Propositions 1 and 4 and Corollaries 1 and 3) and explanations with 𝔻 =𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀
can be smaller than explanations with 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 (Remark 9). In this section, we further focus on imposing explicit mimimality
constraints on specific explanations for (non-)acceptance.

Minimality can mean either minimal set size or subset minimality, and has been discussed for argumentation-based explanations
before [33,34,40]. The two notions of minimality were introduced in [33]: set size minimality ≤, where 𝖲1 ≤ 𝖲2 denotes |𝖲1| ≤ |𝖲2|,
and subset minimality ⊆, called compactness by Fan and Toni [33]. These notions of minimality can be integrated in our setting as
well. Below we define minimal explanations for the ∪-variations from Definitions 6, 8 and 24, the ∩-explanations are similar and left
to the reader:

Definition 25. Let  = ⟨Args,Att⟩ be an argumentation framework, possibly based on an argumentation theory AT. Let 𝐴 ∈ Args
and, in the case that  is based on AT, let 𝜙 ∈ . Moreover, let ⪯∈ {≤, ⊆}. First suppose that 𝐴 [resp. 𝜙] is credulously accepted
for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}. Then:

• 𝖲 ⊆ Args is a ⪯-minimal ∪-explanation for the acceptance of 𝐴 iff

𝖲 ∈min⪯
∈𝖲𝖾𝗆() 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, );

• 𝖲 ⊆ Args is a ⪯-minimal ∪-explanation for the acceptance of 𝜙 iff

𝖲 ∈min⪯
∈𝖲𝖾𝗆() 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝜙, );

Now suppose that 𝐴 [resp. 𝜙] is not credulously accepted for 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}, then:

• 𝖲 ⊆ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) is a ⪯-minimal ∪-explanation for the non-acceptance of 𝐴 iff 𝖲 = {𝖳 ∣ 𝖳 ∈min⪯ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴)};

• 𝖲 ⊆ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙) is a ⪯-minimal ∪-explanation for the non-acceptance of 𝜙 iff 𝖲 = {𝖳 ∣ 𝖳 ∈min⪯ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙)}.

The explanations in this definition only contain the ≤-minimal (if ⪯=≤) or ⊆-minimal (if ⪯=⊆) explanations from the basic
explanations presented earlier in the paper.

Example 30. Recall that for the argumentation framework 1 from Example 1 we had that 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 1) = {𝐶, 𝐸},
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 2) = {𝐶} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 3) = {𝐸} as described in Example 6. Of these possible explanations, the explanations for
2, i.e., {𝐶} and for 3, i.e., {𝐸} are both ⊆-minimal and ≤-minimal. The explanation for 1, i.e., {𝐶, 𝐸} cannot be considered a
22

minimal explanation for both ≤ and ⊆.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

In [16, Proposition 2] it was shown that the explanations from [33] correspond to the set of ∪-explanations from Definition 6

for 𝖲𝖾𝗆 = 𝖠𝖽𝗆 and 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. We do not repeat the result here, but rather note that, as a result, the minimal explanations as
presented here correspond to the minimal explanations in [33].

6.2. Necessity and sufficiency for acceptance

Two important criteria when selecting explanations are necessity and sufficiency (cf., e.g., [42,43,66]). A set of causes 𝐶 is
sufficient for the explanandum 𝐸 if no other causes are required, while 𝐶 is necessary for 𝐸 if, in order for 𝐸 to occur, 𝐶 has to
happen as well. In the context of logical implication →, one could model sufficiency by 𝐶 →𝐸 and necessity by 𝐸 → 𝐶 [41]. In the
context of (abstract) argumentation, we say that a set of defending arguments 𝖲 is sufficient for the acceptance of an argument 𝐴 if no
other arguments than those in 𝖲 need to be accepted for 𝐴 to be accepted, while 𝖲 is necessary for the acceptance of 𝐴 if 𝐴 can only
be accepted if 𝖲 is accepted as well. Sufficiency can be understood as a credulous property. For example, while 𝖲 might be sufficient
for the acceptance of 𝐴, there might be other 𝖲’s which would ensure the acceptance of 𝐴 as well. On the other hand, necessity can
be understood as a skeptical property. For example, when 𝖲 is necessary for the acceptance of 𝐴, it is impossible to accept 𝐴 without
accepting all the arguments in 𝖲.

Like for the basic framework, we will discuss argument and formula explanations separately. The reason for this will become
clear in the sections on formula explanations.

6.2.1. Necessity and sufficiency for accepted arguments

In abstract argumentation, we say that a (conflict-free) set of accepted arguments 𝖲 is sufficient for the acceptance of some
argument 𝐴 if 𝖲 guarantees, independent of the status of other arguments, that 𝐴 is accepted by defending 𝐴 against all its attackers.
An (accepted) argument 𝐵 is necessary for the acceptance of argument 𝐴 if 𝐵 defends 𝐴 and it is impossible to accept 𝐴 without
accepting 𝐵. In the following definition, as well as later on in this section, we will assume that the arguments in an explanation for
an argument 𝐴 are relevant for 𝐴. Recall from Definition 4 that this entails that all arguments in an explanation for 𝐴 (in)directly
attack or defend 𝐴 and that no argument attacks itself.

Definition 26. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted (w.r.t. 𝖲𝖾𝗆 and ∪ or ∩). Then:

• 𝖲 ⊆ Args is sufficient for the acceptance of 𝐴 if 𝖲 is relevant for 𝐴, 𝖲 is conflict-free and 𝖲 defends 𝖲 ∪{𝐴} against all its attackers;

• 𝐵 ∈ Args is necessary for the acceptance of 𝐴 if 𝐵 is relevant for 𝐴 and if 𝐵 ∉  for some  ∈ 𝖠𝖽𝗆(), then 𝐴 ∉  .

Remark 11. The above definition is aimed at admissibility-based semantics, hence that for sufficiency 𝖲 has to defend 𝐴 against all
its attackers. For other types of semantics (e.g., based on conflict-freeness), the definition can be adjusted (e.g., by removing the third
condition on 𝖲 from the definition of sufficiency).

Example 31. In the argumentation framework 1 both {𝐶} and {𝐸} are sufficient for the acceptance of 𝐴 but neither is necessary,
while for the acceptance of 𝐵, {𝐷, 𝐹 } is sufficient and both 𝐷 and 𝐹 are necessary.

The notions of minimality from Section 6.1 can also be applied to sufficient sets (note that an argument is either necessary for
the acceptance of some argument or not, therefore, minimality is not relevant for necessity).

Definition 27. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted (w.r.t. 𝖲𝖾𝗆 and ∪ or ∩). Then:

• 𝖲 ⊆ Args is ≤-minimally sufficient for the acceptance of 𝐴 if 𝖲 is sufficient for the acceptance of 𝐴 and there is no 𝖲′ ⊆ Args that is
sufficient for the acceptance of 𝐴 such that |𝖲′| ≤ |𝖲|;

• 𝖲 ⊆ Args is ⊆-minimally sufficient for the acceptance of 𝐴 if 𝖲 is sufficient for the acceptance of 𝐴 and there is no 𝖲′ ⊆ Args that is
sufficient for the acceptance of 𝐴 such that 𝖲′ ⊂ 𝖲.

We can now define the above notions of (minimal) sufficiency and necessity as variations of 𝔻.

Definition 28. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted (w.r.t. 𝖲𝖾𝗆 and ∪ or ∩). Then13:

• 𝖲𝗎𝖿𝖿 (𝐴, ∅) = {𝖲 ∪ {𝐴} ⊆ Args ∣ 𝖲 is sufficient for the acceptance of 𝐴} denotes the set of all sufficient sets of arguments for the
acceptance of 𝐴;

• 𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯(𝐴, ∅) = mima 𝖲𝗎𝖿𝖿(𝐴, ∅), where ⪯=≤ if mima = min≤ and ⪯=⊆ if mima = min⊆, denotes the set of all ⪯-minimally
sufficient sets of arguments for the acceptance of 𝐴;

13 𝖲𝗎𝖿𝖿 and 𝖭𝖾𝖼 are defined for an argument and some set of arguments, not referred to in the definition, therefore the second argument of the function is empty.
23

We do so because 𝔻 requires an argument and a set of arguments.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

• 𝖭𝖾𝖼(𝐴, ∅) = {𝐵 ∈ Args ∣𝐵 is necessary for the acceptance of 𝐴} ∪ {𝐴} denotes the set of all arguments that are necessary for the
acceptance of 𝐴.

Remark 12. When 𝔻 ∈ {𝖲𝗎𝖿𝖿 , 𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯, 𝖭𝖾𝖼}, 𝖲𝖾𝗆𝖠𝖼𝖼⋆ is the same for any semantics 𝖲𝖾𝗆. This is the case since the definition of
sufficiency and necessity is not defined w.r.t. 𝖲𝖾𝗆. Recall from Definition 5 that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) ∩  , this is possible
since 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴) contains all the arguments that defend 𝐴. If we would take some sufficient set and take the intersection with
an arbitrary extension, this might lead to meaningless explanations. For example, as argued in Example 31, {𝐸} is sufficient for the
acceptance of 𝐴, but if we would compare it with the preferred extension {𝐴, 𝐶, 𝐹 }, the explanation would not be relevant, as 𝐸 is
not relevant for the acceptance of 𝐴 in this extension.

Let  = ⟨Args,Att⟩ be an AF, 𝐴 ∈ Args be a credulously accepted argument and let  ∈ 𝖲𝖾𝗆() be any extension. When
implementing the above variations of 𝔻 in the credulous acceptance explanation from Definition 6 we obtain the following14:

• If 𝔻 = 𝖲𝗎𝖿𝖿 , then: 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = 𝖲𝗎𝖿𝖿(𝐴, ∅);
• If 𝔻 = 𝖭𝖾𝖼, then 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = 𝖭𝖾𝖼(𝐴, ∅).

The next two examples shows how necessary and sufficient explanations differ from basic explanations as discussed in Sections 3

and 4.

Example 32. For the running example with 1 we have that both 𝐴 and 𝐵 are credulously accepted when 𝖲𝖾𝗆 = 𝖯𝗋𝖿 .

• If 𝔻 = 𝖲𝗎𝖿𝖿 , then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 𝖲) = {{𝐴, 𝐶}, {𝐴, 𝐸}, {𝐴, 𝐶, 𝐸}}, while if 𝔻 = 𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 𝖲) = {{𝐴, 𝐶}, {𝐴, 𝐸}},
where 𝖲 ∈ {1, 2, 3}. That the extension does not influence the explanation follows since the functions from Definition 28 do
not rely on a specific extension. These explanations show that there are three sufficient sets for the acceptance of 𝐴, containing
at least 𝐴 and 𝐶 or 𝐸 and that two of these sets are also minimally sufficient.

• If 𝔻 = 𝖭𝖾𝖼, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 𝖲) = {𝐴} for 𝖲 ∈ {1, 2, 3}. For the acceptance of 𝐴 only 𝐴 is necessary. This is the case because
𝐴 is added to the set of necessary arguments.

• If 𝔻 ∈ {𝖲𝗎𝖿𝖿 , 𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯}, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐵, 4) = {{𝐵, 𝐷, 𝐹 }}. Thus, there is only one sufficient set for the acceptance of 𝐵
containing 𝐵, 𝐷 and 𝐹 , this set is also minimal.

• If 𝔻 = 𝖭𝖾𝖼, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐵, 4) = {𝐵, 𝐷, 𝐹 }. Thus, for the acceptance of 𝐵 all three arguments 𝐵, 𝐷 and 𝐹 are necessary.

Note that these explanations correspond to the intuitions in Example 31.

Example 33. Recall the argumentation framework 2 from Example 7, shown in Fig. 2. Recall that 𝖯𝗋𝖿(2) = {1, 2} =
{{𝐴, 𝐶, 𝐷}, {𝐴, 𝐶, 𝐸}}.

• If 𝔻 = 𝖲𝗎𝖿𝖿 , then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 𝖲) = {{𝐴, 𝐶}, {𝐴, 𝐷}, {𝐴, 𝐶, 𝐷}} for 𝖲 ∈ {1, 2}.

• If 𝔻 = 𝖭𝖾𝖼, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 𝖲) = ∅ for 𝖲 ∈ {1, 2}.

Thus, even though 𝐶 is always part of the extension under any completeness-based semantics, {𝐴, 𝐷} is sufficient for the acceptance
of 𝐴. Therefore, 𝐶 is not necessary for the acceptance of 𝐴 either, since the acceptance of 𝐷 is already sufficient.

6.2.2. Necessity and sufficiency for accepted formulas

In Section 5 we started by introducing explanations for formulas (Section 5.2) and then added the possibility to vary the content
of an explanation by introducing the function 𝔽 (Section 5.3). By taking 𝔽 = 𝗂𝖽, the explanations in both sections are equivalent.
Therefore, in this section we skip the first step and immediately add the function 𝔽 , where possibly 𝔽 = 𝗂𝖽.

For accepted formulas we start with existence explanations. In particular, we define necessary and sufficient existence explana-

tions for a given formula:

Definition 29. Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumentation theory AT and let 𝜙 ∈  be
such that 𝜙 is ⋆-accepted for 𝖲𝖾𝗆 ∈ {𝖭𝖺𝗏, 𝖲𝗍𝖻, 𝖠𝖽𝗆, 𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}:

𝖲𝗎𝖿𝖿𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍⋆(𝜙) ={𝔽 (𝐴) ∣𝐴 ∈ 𝖲𝖾𝗆Accept(𝜙)}

𝖭𝖾𝖼𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍⋆(𝜙) =
⋂

{𝔽 (𝐴) ∣𝐴 ∈ 𝖲𝖾𝗆Accept(𝜙)}.

These existence explanations are based on the ones introduced in Section 5. For the sufficient explanations all the elements based
on 𝔽 are collected, from all accepted arguments. For the necessary explanations the intersection of these elements is taken: if an
24

14 The ∩-explanations are similar and left to the reader.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

element is part of all the arguments in the existence explanations, it is necessary for the existence of an argument for 𝜙. Here it
is already interesting to consider other instantiations of 𝔽 than 𝗂𝖽. When 𝔽 is instantiated with, e.g., 𝖯𝗋𝖾𝗆 or 𝖱𝗎𝗅𝖾𝗌, the common
elements of all the arguments for 𝜙 can be collected. By varying 𝔽 the required elements for the existence of an argument for 𝜙
can be given as the explanation. Like in the existence explanation introduced in Section 5, the assumption that 𝜙 is ⋆-accepted is
essential.

Example 34. Take an argumentation system with 𝑝 = {𝑟, 𝑠, 𝑡} and  = {𝑑1, 𝑑2} such that in addition to the three arguments for 𝑟, 𝑠

and 𝑡 the following arguments can be derived: 𝐴 ∶ 𝑟, 𝑠
𝑑1
⇒ 𝑢 and 𝐵 ∶ 𝑠, 𝑡

𝑑2
⇒ 𝑢. Here, all arguments are skeptically/credulously accepted,

so:

• 𝖲𝗎𝖿𝖿𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍⋆(𝑢) = {𝐴, 𝐵} and 𝖭𝖾𝖼𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍⋆(𝑢) = ∅ for 𝔽 = 𝗂𝖽 since 𝐴 and 𝐵 are both arguments for 𝑢;

• 𝖲𝗎𝖿𝖿𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍⋆(𝑢) = {{𝑟, 𝑠}, {𝑠, 𝑡}} for 𝔽 = 𝖯𝗋𝖾𝗆 since argument 𝐴 is constructed with the premises 𝑟 and 𝑠 and argument 𝐵 is
constructed with the premises 𝑠 and 𝑡;

• 𝖭𝖾𝖼𝖯𝗋𝖿𝖤𝗑𝗂𝗌𝗍⋆(𝑢) = {𝑠} for 𝔽 = 𝖯𝗋𝖾𝗆 since both arguments for 𝑢 require the premise 𝑠.

We now turn to acceptance explanations. To start with, one can replace 𝔻 in Definition 24 with 𝖭𝖾𝖼 or 𝖲𝗎𝖿𝖿 (replacement
with 𝖬𝗂𝗇𝖲𝗎𝖿𝖿 is similar to replacement with 𝖲𝗎𝖿𝖿 and left to the reader). Note that 𝖭𝖾𝖼(𝐴, 𝖲) is unique for a given argumentation
framework  , there is therefore no difference between the ∩-explanation and the ∪-explanation. We then obtain, where 𝐴 ∈
𝖲𝖾𝗆Accept(𝜙) and 𝖲𝜙 ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅), for example:

𝖲𝖾𝗆𝖠𝖼𝖼(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and 𝖲 ∈ 𝖭𝖾𝖼(𝐴,∅)};

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴,∅)};

𝖲𝖾𝗆𝖠𝖼𝖼∪(𝜙,𝖲𝜙) =
{⟨

𝔽 (𝐴𝜙),𝔽 (𝖲𝜙)
⟩
∣𝐴𝜙 ∈ 𝖲𝜙 and 𝖢𝗈𝗇𝖼(𝐴𝜙) = 𝜙

}
.

These explanations thus provide pairs containing (elements of) an argument 𝐴 for 𝜙 and the (elements of) the arguments that are nec-

essary or sufficient for accepting 𝐴. This could be further tailored by, for example, replacing 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍 with the necessary/sufficient
existence explanations from Definition 29, thus providing for each pair a necessary/sufficient argument 𝐴 for 𝜙.

As we will show in the next example, instantiating 𝔻 with 𝖭𝖾𝖼 or 𝖲𝗎𝖿𝖿 might not result in the desirable explanations. This is
the case because first necessary/sufficient arguments are determined and only then is the structure of these arguments taken into
account by varying 𝔽 . However, as we already saw in Example 34, taking the structure of arguments into account before determining
what is necessary/sufficient can result in other explanations that highlight the necessary or sufficient elements for the acceptance of
a formula.

Example 35. For the running example with  (AT1) we have that 𝐴 is the only argument for 𝑢 and we had that 𝐶 , 𝐸 and 𝐶 and 𝐸
were sufficient for the acceptance of 𝐴 but no argument was necessary for the acceptance of 𝐴. Then:

• where 𝔻 = 𝖲𝗎𝖿𝖿 : 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, {𝐴, 𝐶}) = {⟨𝐴,{𝐴,𝐶}⟩}, 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, {𝐴, 𝐸}) = {⟨𝐴,{𝐴,𝐸}⟩} and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, {𝐴, 𝐶, 𝐸}) = {⟨𝐴, {𝐴,
𝐶,𝐸}⟩} for 𝔽 = 𝗂𝖽 and 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑢, 𝖲) = {⟨{𝑤},{𝑟, 𝑠, 𝑡}⟩}, for 𝖲 ∈ {{𝐴, 𝐶}, {𝐴, 𝐸}, {𝐴, 𝐶, 𝐸}} for 𝔽 = 𝖯𝗋𝖾𝗆; and

• where 𝔻 = 𝖭𝖾𝖼: 𝖯𝗋𝖿𝖠𝖼𝖼(𝑢) = {⟨𝐴,{𝐴}⟩} for 𝔽 = 𝗂𝖽 and 𝖯𝗋𝖿𝖠𝖼𝖼(𝑢) = {⟨{𝑤},{𝑤}⟩} for 𝔽 = 𝖯𝗋𝖾𝗆.

In this example, the necessary acceptance explanation for the formula 𝑢 is only based on the argument for 𝑢 itself: the choice for
𝔽 does not change this. Intuitively, this is the case because 𝐴 can be defended by 𝐶 or 𝐸 and both are sufficient for this defense. One
could argue, however, that the premise 𝑟 is necessary for the acceptance of 𝑢, since it is part of all the defending arguments of 𝑢.

Based on the observations in the above example, necessary and (minimally) sufficient explanations for formulas should take into
account the structure of the arguments before determining what elements are necessary/sufficient. For sufficiency (i.e., 𝔻 = 𝖲𝗎𝖿𝖿)
the explanation will be very similar to the one where 𝔻 was instantiated with 𝖲𝗎𝖿𝖿 . But for 𝖬𝗂𝗇𝖲𝗎𝖿𝖿 and 𝖭𝖾𝖼, the function 𝔽 is
applied (i.e., the structure of the arguments is taken into account) before minimal sufficiency resp. necessity is determined. This
way minimality is based on the elements of the arguments and not the number of arguments themselves and necessity concerns the
required elements, not the required arguments.

Definition 30. Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumentation theory AT and let 𝜙 ∈  be
such that 𝜙 is ⋆-accepted, for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻,𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Moreover, let 𝐴𝜙 ∈ 𝖲𝖾𝗆Accept(𝜙) and
𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴𝜙, ∅). First the basic sufficient explanations, based on Definition 24:

𝖲𝗎𝖿𝖿𝖠𝖼𝖼∩(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴,∅)};

𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪(𝜙,𝖲) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ 𝖲 and 𝖢𝗈𝗇𝖼(𝐴) = 𝜙}.

Now suppose that the explanations have to be minimal as well. Then, based on the above and the credulous explanation from
25

Definition 25, where ⪯∈ {≤, ⊆}:

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖲𝗎𝖿𝖿𝖠𝖼𝖼∩⪯(𝜙) =
{⟨

𝔽 (𝐴),𝖲′
⟩ ||||𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙) and 𝖲′ ∈ min⪯

𝖲∈𝖲𝗎𝖿𝖿 (𝐴,∅)
𝔽 (𝖲)

}
𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪⪯(𝜙,∅) =

{⟨
𝔽 (𝐴),𝖲′

⟩ |||| 𝖲′ ∈ min⪯
𝐴∈𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∪(𝜙)&𝖲∈𝖲𝗎𝖿𝖿 (𝐴,∅)

𝔽 (𝖲)
}
.

Finally, the explanations for 𝔻 = 𝖭𝖾𝖼 have to be defined:

𝖭𝖾𝖼𝖠𝖼𝖼∩(𝜙) =

{⟨
𝔽 (𝐴),

⋂
𝖲∈𝖲𝗎𝖿𝖿 (𝐴,∅)

𝔽 (𝖲)

⟩ |||||𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∩(𝜙)

}

𝖭𝖾𝖼𝖠𝖼𝖼∪(𝜙,∅) =

{⟨
𝔽 (𝐴),

⋂
𝖲∈𝖲𝗎𝖿𝖿 (𝐴,∅)

𝔽 (𝖲)

⟩ |||||𝐴 ∈ 𝖲𝖾𝗆𝖤𝗑𝗂𝗌𝗍∪(𝜙)

}
.

Note first that the basic sufficient explanations no longer rely on the extension, as was the case in Definitions 22 and 24, since
the extension is not relevant for determining sufficiency. The skeptical sufficient explanation consists therefore of a set with for each
argument 𝐴 for 𝜙 a pair with the elements of 𝐴 and a sufficient set for the acceptance of 𝐴 (which elements or arguments are
sufficient for the acceptance of an argument for 𝜙?). Thus, it gives for 𝜙 the sufficient reasons for its acceptance, by showing for each
accepted argument 𝐴 for 𝜙 a sufficient set for the acceptance of 𝐴 in terms of (the elements of) arguments. The credulous sufficient
explanation returns for each argument 𝐴 with conclusion 𝜙 in the given sufficient set 𝖲 the pair consisting of the elements of 𝐴 and
the elements of 𝖲, determined by 𝔽 (which (elements of) arguments are sufficient for the acceptance of 𝜙 in the given sufficient set?).
Thus, the explanation shows why 𝖲 is sufficient for the acceptance of 𝜙 by giving for each argument 𝐴 for 𝜙 in 𝖲 a pair, consisting
of 𝐴 as a reason for the existence of conclusion 𝜙 and 𝖲 in terms of (the elements of) the arguments.

The second set of explanations is similar to the basic sufficient explanations, but takes into account minimality in the second
element and rather than a set of sufficient arguments the empty set is provided, since minimality has to be determined. In the
skeptical explanation, the second element contains the elements of a sufficient set for the acceptance of an argument for 𝜙, such
that it is minimal among the set of elements of such sufficient sets (for all arguments of 𝜙 what are minimal sufficient reasons for
accepting this argument?). Thus, rather than minimality over the sets of sufficient arguments, 𝔽 is applied before minimality. While
for skeptical explanations all arguments for 𝜙 are considered and minimality is applied to the sufficient sets for these arguments,
for the credulous explanations minimality is applied to all accepted arguments for 𝜙 and the sufficient sets for these arguments
(what is a minimal sufficient set for the acceptance of 𝜙?). Thus, while both explanations still provide explanations in terms of pairs,
containing an existence and acceptance explanation, in the skeptical explanation the acceptance explanation is minimal with respect
to the sufficient sets for the argument for 𝜙, while in the credulous explanation the acceptance explanation is minimal with respect
to the sufficient sets for all the arguments for 𝜙.

For necessity for accepted formulas we use that 𝖭𝖾𝖼(𝐴, ∅) =
⋂

𝖲𝗎𝖿𝖿 (𝐴, ∅) for any accepted argument 𝐴, which will be shown in
Proposition 7. Note that, since necessity is a skeptical property, there is not much difference between the skeptical and credulous
explanation, except the requirement that 𝜙 is skeptically respectively credulously accepted. We cannot simply define a necessity
formula explanation by taking 𝔻 =

⋂
𝖲𝗎𝖿𝖿 . This follows since there might not be any necessary arguments, there might be necessary

premises or rules, as illustrated in Example 35. Therefore we applied:

• 𝖭𝖾𝖼(𝐴, ∅) =
⋂

𝖲∈𝖲𝗎𝖿𝖿 (𝐴,∅) 𝔽 (𝖲), which denotes the set of all elements (determined by 𝔽) of the intersection of the sufficient sets
for 𝐴.

Like before, the explanations are sets of pairs, the first element is an argument 𝐴 for 𝜙 and the second contains all the necessary
arguments or elements there of for the acceptance of 𝐴 (what elements are necessary for the acceptance of the accepted arguments
for 𝜙?).

Example 36. For the framework  (AT1) recall from Example 35 the explanations for 𝔽 = 𝗂𝖽. For 𝔽 = 𝖯𝗋𝖾𝗆 we have now the
following explanations:

• 𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪(𝑢) ∈ {⟨{𝑤},{𝑟, 𝑠,𝑤}⟩ , ⟨{𝑤},{𝑟, 𝑡,𝑤}⟩};

• 𝖭𝖾𝖼𝖠𝖼𝖼∪(𝑢) = ⟨{𝑤},{𝑟,𝑤}⟩.
So 𝑢 is credulously accepted, because an argument for 𝑢 can be constructed from the premise 𝑤 and there are arguments that
sufficiently defend it which are constructed from the premises 𝑟 and 𝑠 and from 𝑟 and 𝑡. The premise 𝑟 is therefore necessary in the
defense of the argument for 𝑢.

Since the structure of the arguments is taken into account before the intersection of the sufficient explanations is taken, the
necessary acceptance explanation for 𝑢 no longer only relies on the argument 𝐴.

6.2.3. Properties of necessity and sufficiency for acceptance

Next we show some useful properties of sufficient and necessary (sets of) arguments for acceptance. We show that sufficient sets
26

are admissible, which means that they are conflict-free and defend their own arguments, we discuss conditions under which sufficient

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵 𝐶

𝐷

7

𝐴 𝐵 𝐶

𝐷𝐸

 ′
7

Fig. 7. Graphical representation of the argumentation frameworks 7 and  ′
7 .

and necessary sets are empty and how necessary sets are related to sufficient sets. These results provide insight into the content of
sufficient and necessary sets and how these are related. Moreover, based on these results, it can be determined what additional
explanations need to be implemented to cover empty explanations. The proofs of the results in this section can be found in A.4.

Proposition 7. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted w.r.t. some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,
𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

1. For all 𝖲 ∈ 𝖲𝗎𝖿𝖿(𝐴, ∅), 𝖲 ∈ 𝖠𝖽𝗆();
2. 𝖲𝗎𝖿𝖿 (𝐴, ∅) = {𝐴} iff there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att or {𝐴} defends itself against all its attackers;

3. 𝖭𝖾𝖼(𝐴, ∅) = {𝐴} iff there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att, or {𝐴} defends itself against all its attackers or it holds that ⋂
𝖲𝗎𝖿𝖿(𝐴, ∅) = {𝐴}.

4. 𝖭𝖾𝖼(𝐴, ∅) =
⋂

𝖲𝗎𝖿𝖿 (𝐴, ∅).

This proposition shows that the sets in 𝖲𝗎𝖿𝖿 (𝐴, ∅) are admissible and contain all the needed arguments to defend 𝐴 in the sense
of Definition 1 (item 1). Like for the basic explanations (recall Proposition 3), sufficient sets are only empty when the considered
argument is not attacked at all (item 2) and necessary sets are only empty when they are not attacked at all, or there are sufficient
sets which have an empty intersection (item 3). Finally, necessary sets are the intersection of all the sufficient sets of the argument
(item 4).

The next proposition relates the introduced notions of necessity and sufficiency with 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. In particular, for all exten-

sions  , the first item shows that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) is a sufficient set of arguments for the acceptance of 𝐴 and the second item shows
that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) contains the necessary arguments for 𝐴. This shows that, although 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 is only one of many options for 𝔻,
by defining the basic explanations in Section 3.1 with 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, these explanations are always sufficient and contain the necessary
arguments.

Proposition 8. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖲𝗍𝖻}
and ⋆ ∈ {∩, ∪}. Then:

• for all  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴), 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅);
•
⋂

∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖭𝖾𝖼(𝐴, ∅).

Remark 13. One might suspect that, based on the above result, necessary and sufficient explanations can be calculated with Algo-

rithm 1. And indeed, the second bullet above shows that this is the case for necessary explanations (recall from Definition 10 that
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) can be calculated with Algorithm 1). However, for sufficient explanations this is not the case. Note that, in our
running example, {𝐶, 𝐹 } ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅), however, 𝐹 does not defend 𝐴 in any extension.

6.3. Necessity and sufficiency for non-acceptance

When looking at the non-acceptance of an argument 𝐴, the acceptance of any of its direct attackers is a sufficient explanation.
However, other arguments (e.g., some of the indirect attackers) might be sufficient as well. An argument is necessary for the non-

acceptance of 𝐴, when it is relevant and 𝐴 is accepted in the argumentation framework without it. In what follows we will assume
that (𝐴, 𝐴) ∉ Att, since otherwise 𝐴 itself is the reason for its non-acceptance.

Example 37. Let 7 = ⟨Args7,Att7⟩, shown in Fig. 7. Since 𝐷 is not attacked at all, 𝐷 is a sufficient explanation for the
non-acceptance of 𝐴, since by accepting 𝐷, 𝐴 cannot be accepted under admissibility-based semantics. Now consider  ′

7 =⟨Args7 ∪ {𝐸},Att7 ∪ {(𝐸,𝐵)}⟩, also shown in Fig. 7. Here 𝐴 is accepted, even for 𝖲𝖾𝗆 = 𝖦𝗋𝖽, since 𝐸 attacks 𝐵. The attack from
27

𝐷 is therefore no longer sufficient for the non-acceptance of 𝐴. In fact, 𝐴 is no longer non-accepted.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

In order to define sufficiency for non-acceptance we need the following definition, which formalizes the above:

Definition 31. Let  = ⟨Args,Att⟩ be an AF and let 𝐴, 𝐵 ∈ Args such that 𝐴 indirectly attacks 𝐵, via 𝐶1, … , 𝐶𝑛 ∈ Args, i.e.,
(𝐴, 𝐶1), (𝐶1, 𝐶2), … , (𝐶𝑛, 𝐵) ∈ Att. It is said that the attack from 𝐴 on 𝐵 is uncontested if there is no 𝐷 ∈ Args such that (𝐷, 𝐶2𝑖) ∈ Att
for 𝑖 ∈ {1, … , 𝑛2 }. It is contested otherwise, in which case it is said that the attack from 𝐴 is contested in 𝐶2𝑖 and that 𝐶2𝑖 is the
contested argument.

This definition is needed since the acceptance of an indirect attacker might already be sufficient for the non-acceptance of an
argument, but not every indirect attacker is sufficient for non-acceptance. In Example 37 this was shown by the attack from 𝐸 on 𝐵,
which contested the attack from 𝐷 on 𝐴 in 𝐵. In our running example we have:

Example 38. For 1 from Example 1 we have that the direct attacks from 𝐶 and 𝐸 on 𝐵 are uncontested. Therefore, both 𝐸 and
𝐶 can be seen as sufficient for the non-acceptance of 𝐵. However, the attacks from 𝐷 and 𝐹 on 𝐴 are contested in 𝐵. For 𝐷 this
follows since it defends 𝐵, but 𝐵 is attacked by 𝐸 and, similarly, 𝐹 defends 𝐵, but 𝐵 is attacked by 𝐶 . Hence, although 𝐷 and 𝐹
indirectly attack 𝐴, by just accepting one, 𝐴 is not necessarily non-accepted, therefore neither would be sufficient on its own to make
𝐴 non-accepted.

6.3.1. Necessity and sufficiency for non-accepted arguments

For the definition of necessary for non-acceptance we define subframeworks, which are needed since an argument might be
non-accepted since it is attacked by an accepted or by another non-accepted argument.15

Definition 32. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args. Then ↓𝐴 = ⟨Args ⧵ {𝐴}, Att ∩ (Args ⧵ {𝐴} × Args ⧵ {𝐴})⟩ denotes
the AF based on  but without 𝐴.

Since indirect attacks might be sufficient for not accepting an argument, but they also might be contested, the definition of
sufficiency for non-acceptance is defined inductively.

Definition 33. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be non-accepted (w.r.t. 𝖲𝖾𝗆 and ∪ or ∩). Then:

• 𝖲 ⊆ Args is sufficient for the non-acceptance of 𝐴 if 𝖲 is relevant for 𝐴 and there is a 𝐵 ∈ 𝖲 such that:

– (𝐵, 𝐴) ∈ Att; or

– 𝐵 indirectly attacks 𝐴 and that attack is uncontested; or

– 𝐵 indirectly attacks 𝐴 and for every argument 𝐶 in which the attack from 𝐵 on 𝐴 is contested and every 𝐷 ∈ Args such that
(𝐷, 𝐶) ∈ Att, there is an 𝖲′ ⊆ 𝖲 that is sufficient for the non-acceptance of 𝐷.

• 𝐵 ∈ Args is necessary for the non-acceptance of 𝐴 if 𝐵 is relevant for 𝐴 and 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 and ∪ or ∩ in ↓𝐵 .

Example 39. For 1 from Example 1 we have that 𝐵 is both necessary and sufficient for the non-acceptance of 𝐴. Moreover,
while 𝐷 and 𝐹 are neither sufficient for the non-acceptance of 𝐴, {𝐷, 𝐹 } is. For the non-acceptance of 𝐵 we have that 𝐶 and 𝐸 are
sufficient, but neither of these is necessary.

We can now introduce the above notions as variations of 𝔻.

Definition 34. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be non-accepted (w.r.t. 𝖲𝖾𝗆 and ∪ or ∩). Then:

• 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) = {𝖲 ⊆ Args ∣ 𝖲 is sufficient for the non-acceptance of 𝐴}, denotes the set of sets of arguments that, when accepted,
cause 𝐴 to be non-accepted;

• 𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⪯(𝐴, ∅) = {𝖲 ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) ∣ ∄𝖲′ ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) such that 𝖲′ ⪯ 𝖲}, denotes the set of all ⪯-minimally sufficient sets
for the non-acceptance of 𝐴.

• 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) = {𝐵 ∈ Args ∣ 𝐵 is necessary for the non-acceptance of 𝐴}, denotes the set of all arguments that are necessary for
𝐴 not to be accepted.

Let  = ⟨Args,Att⟩ be an AF, 𝐴 ∈ Args be a not credulously accepted argument and let  ∈ 𝖲𝖾𝗆() be any extension. When
implementing the above variations of 𝔻 in the credulous non-acceptance explanation from Definition 8, we obtain the following16:

• If 𝔻 = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍, then: 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴, ) = {𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) ∣  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)} = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅);
• If 𝔻 = 𝖭𝖾𝖼𝖭𝗈𝗍, then: 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴, ) = {𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) ∣  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)} = 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅).

15 In terms of labeling semantics (see e.g., [5]) an argument is non-accepted if it is out (i.e., attacked by an in argument) or undecided.
28

16 The ∩-explanations are similar and left to the reader.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Example 40. For 1, let 𝖲 ∈ {1, 2, 3} be an extension. Recall that both 𝐴 and 𝐵 are not skeptically accepted when 𝖲𝖾𝗆 = 𝖯𝗋𝖿 .

• If 𝔻 = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍 then: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {{𝐵}, {𝐷, 𝐹 }, {𝐵, 𝐷, 𝐹 }}. This means that for the non-acceptance of 𝐴 there are
three sets of sufficient arguments. If 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⊆ then 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {{𝐵}, {𝐷, 𝐹 }} while if 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍≤ then
𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {𝐵}.

• If 𝔻 = 𝖭𝖾𝖼𝖭𝗈𝗍 then: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 4) = {𝐵, 𝐷, 𝐹 }. There are three necessary arguments for the non-acceptance of 𝐴: 𝐵, 𝐷 and
𝐹 .

• If 𝔻 = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍 then: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 𝖲) = {{𝐶}, {𝐸}, {𝐶, 𝐸}} and if 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⪯ then 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 𝖲) = {{𝐶}, {𝐸}}. Thus,
there are three sufficient sets for the non-acceptance 𝐵, two of which are minimal: {𝐶} and {𝐸}.

• If 𝔻 = 𝖭𝖾𝖼𝖭𝗈𝗍 then: 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 𝖲) = ∅. Thus, there are no arguments necessary for the skeptical non-acceptance of 𝐵.

Note that these correspond to the intuitions in Example 39.

The next example shows how necessary and sufficient explanations differ from explanations based on extension-based semantics
as discussed in Sections 3 and 4.

Example 41. Recall the argumentation framework 2 from Examples 7 and 33. Recall that 𝖯𝗋𝖿 (2) = {1, 2} = {{𝐴, 𝐶, 𝐷},{𝐴,
𝐶,𝐸}}.

• If 𝔻 = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍, then 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 𝖲) = {{𝐶}, {𝐶, 𝐷}, {𝐷}} for 𝖲 ∈ {1, 2}.

• If 𝔻 = 𝖭𝖾𝖼𝖭𝗈𝗍, then 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 𝖲) = ∅ for 𝖲 ∈ {1, 2}.

Thus, similar to Example 33 even though 𝐶 is always part of the extension under any completeness-based semantics, {𝐷} is also
sufficient for the non-acceptance of 𝐵. Therefore, 𝐶 is not necessary for the non-acceptance of 𝐵 either, since the acceptance of 𝐷 is
already sufficient.

6.3.2. Necessity and sufficiency for non-accepted formulas

Similar to the necessary and sufficient explanation for accepted formulas, the non-acceptance explanations for formulas might
differ from the argument explanations if the elements of the explanations are taken into account. We therefore refine the non-

acceptance explanation definitions as well, similar to Definition 30. Like before, we assume that AllArgs(𝜙) ≠ ∅.

Definition 35. Let  (AT) = ⟨Args,Att⟩ be an argumentation framework based on the argumentation theory AT and let 𝜙 ∈ 

be such that 𝜙 is not ⋆-accepted for 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Moreover, let 𝐴𝜙 ∈ AllArgs(𝜙) and
𝖲 ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴𝜙, ∅). First, the basic sufficient explanations, based on Definition 23:

𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝜙,𝖲) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ AllArgs(𝜙), 𝖢𝗈𝗇𝖼(𝐴) = 𝜙 and ∃𝐵 ∈ 𝖲 such that (𝐵,𝐴) ∈ Att}

𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙) = {⟨𝔽 (𝐴),𝔽 (𝖲)⟩ ∣𝐴 ∈ AllArgs(𝜙) and 𝖲 ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅)}.

Now suppose that minimality has to be taken into account. Then based on the above and Definition 25, where ⪯∈ {≤, ⊆}:

𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩⪯(𝜙,∅) =
{⟨𝔽 (𝐴),𝖲′⟩ |||| 𝖲′ ∈ min⪯

𝐴∈AllArgs(𝜙)&𝖲∈𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅)
𝔽 (𝖲)

}
𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪⪯(𝜙) =

{⟨
𝔽 (𝐴),𝔽 (𝖲′)

⟩ ||||𝐴 ∈ AllArgs(𝜙) and 𝖲′ ∈ min⪯
𝖲∈𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅)

𝔽 (𝖲)
}
.

Finally, we consider necessity, based on a similar construction as the necessity explanations from Definition 30:

𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∩(𝜙,∅) =

{⟨
𝔽 (𝐴),

⋂
𝖲∈𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅)

𝔽 (𝖲)

⟩ |||||𝐴 ∈ AllArgs(𝜙)

}

𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∪(𝜙) =

{⟨
𝔽 (𝐴),

⋂
𝖲∈𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅)

𝔽 (𝖲)

⟩ |||||𝐴 ∈ AllArgs(𝜙)

}
.

The skeptical sufficient explanation returns for each argument 𝐴 with conclusion 𝜙 attacked by the given set of arguments 𝖲 a
pair consisting of the elements of 𝐴 and the elements of 𝖲 determined by 𝔽 (why is 𝖲 sufficient for the non-acceptance of arguments
for 𝜙?). Thus, the explanations show why 𝖲 is sufficient for the non-acceptance of 𝜙, by giving for each argument 𝐴 for 𝜙 in 𝖲 a
pair, consisting of 𝐴 as a reason for why 𝜙 could be a conclusion and 𝖲 in terms of (the elements of) the arguments. The credulous
sufficient explanation is similar, but more extensive. It considers all arguments for 𝜙 and all sufficient sets for the non-acceptance of
these arguments (what are the sufficient sets for the non-acceptance of all arguments for 𝜙?). Thus, it returns the sufficient reasons
29

for the non-acceptance of 𝜙, considering all arguments and all sufficient sets in terms of (the elements of) the arguments.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

The second set of explanations is similar, but takes minimality into account. In the skeptical case, minimality is considered over
all arguments with conclusion 𝜙 and the sufficient sets for the non-acceptance of these arguments (what is a minimal sufficient set
for the non-acceptance of an argument for 𝜙?). The explanation is then a pair, containing an argument for 𝜙 and a sufficient set for
its non-acceptance in terms of (the elements of) the arguments, such that the second element is minimal. In the credulous case all
arguments for 𝜙 are considered and minimality is taken over the sufficient sets for the non-acceptance of each of these arguments
(what are the minimal sufficient sets for the non-acceptance of all arguments for 𝜙?).

In the case of sufficiency, 𝔻 = 𝖲𝗎𝖿𝖿𝖭𝗈𝗍 is applied to the explanations from Definition 24. For necessity the intersection of the
elements of these sufficient sets based on the following definition is applied:

• 𝖭𝖾𝖼(𝐴, ∅) =
⋂

𝖲∈𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴,∅) 𝔽 (𝖲), which denotes the set of all elements (determined by 𝔽) of the intersection of the sufficient sets
for 𝐴.

Like in the acceptance case, recall Definition 30, the skeptical and credulous necessity explanations are similar. This is the case
since necessity is a skeptical property. The explanations are again sets of paris, the first element is an argument 𝐴 for 𝜙 and the
second contains all the necessary arguments or elements there of for the non-acceptance of 𝐴 (what elements are necessary for the
non-acceptance of 𝜙?).

The resulting explanations for the running example are similar to those for the acceptance explanations:

Example 42. Recall that, for the argumentation framework  (AT1), 𝐴 is the only argument for 𝑢 and 𝐵 is the only argument for
¬𝑛(𝑑1). We have the following explanations:

• For sufficiency, if 𝔽 = 𝗂𝖽: 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢) ∈ {⟨𝐴,{𝐵}⟩ , ⟨𝐴,{𝐷,𝐹 }⟩ , ⟨𝐴,{𝐵,𝐷,𝐹 }⟩} and 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1)) ∈ {⟨𝐵,{𝐶}⟩ ,⟨𝐵,{𝐸}⟩ , ⟨𝐵,{𝐶,𝐸}⟩}, thus 𝐵 on its own, 𝐷 and 𝐹 or all three together are sufficient for the non-acceptance of argument
𝐴 for 𝑢 while 𝐶 , 𝐸 or 𝐶 and 𝐸 together are sufficient for the non-acceptance of argument 𝐵 for ¬𝑛(𝑑1).

• For sufficiency, if 𝔽 = 𝖯𝗋𝖾𝗆: 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢) = ⟨{𝑤},{𝑣}⟩ and 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1)) ∈ {⟨{𝑣},{𝑟, 𝑠}⟩ , ⟨{𝑣},{𝑟, 𝑡}⟩ , ⟨{𝑣},{𝑟, 𝑠, 𝑡}⟩},
so the premise 𝑣 is sufficient on its own for the non-acceptance of 𝑢, while for the non-acceptance of ¬𝑛(𝑑1), 𝑟 and 𝑠, 𝑟 and 𝑡 or
𝑟, 𝑠 and 𝑡 together are sufficient.

• For necessity, 𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢) = ⟨𝐴,{𝐷,𝐹 }⟩ and 𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1)) = ⟨𝐵,∅⟩ if we have that 𝔽 = 𝗂𝖽 and if 𝔽 = 𝖯𝗋𝖾𝗆:
𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∩(𝑢) = ⟨{𝑤},{𝑣}⟩ and 𝖭𝖾𝖼𝖭𝗈𝗍𝖠𝖼𝖼∩(¬𝑛(𝑑1)) = ⟨{𝑣},{𝑟}⟩, so, when we look at arguments, 𝐷 and 𝐹 are necessary
for the non-acceptance of 𝑢, there is no argument necessary for the non-acceptance of or ¬𝑛(𝑑1), but when looking at the
premises, we have that 𝑣 is necessary for the non-acceptance of 𝑢 and 𝑟 is necessary for the non-acceptance of 𝑟.

6.3.3. Properties of necessity and sufficiency for non-acceptance

The next propositions are the non-acceptance counterparts of Propositions 7 and 8. First some basic properties of sufficiency
and necessity for non-acceptance, showing the conditions under which sufficient and necessary explanations for non-acceptance are
empty.

Proposition 9. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be non-accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽,
𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

• 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) ≠ ∅;

• 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) = ∅ implies that there are at least two direct attackers of 𝐴.

Recall that non-acceptance explanations for 𝔻 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 are never empty (Proposition 5), since there has to be a reason
(an attack) that causes the non-acceptance. This is reflected in the results above: there is always some sufficient set of arguments for
the non-acceptance of an argument, but it can be that there are several reasons for the non-acceptance of an argument, so it might
be that there are no necessary arguments.

Now we show how 𝔻 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 is related to the here introduced notions of sufficiency and necessity for non-acceptance. In
particular, for all extensions  , the first item shows that the set of arguments obtained by 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) is a sufficient set for the
non-acceptance for 𝐴 and the second item shows that 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) contains the necessary arguments for the non-acceptance
of 𝐴. As a result, the basic explanations in Section 3.2 defined based on 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 are sufficient and contain the necessary
arguments for the non-acceptance for 𝐴.

Proposition 10. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be an argument that is not accepted w.r.t.
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

• for all  ∈ 𝖲𝖾𝗆() such that 𝐴 ∉  , 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅);
• 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) ⊆

⋂
∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

Remark 14. The above proposition shows that necessary and sufficient explanations for non-acceptance cannot be calculated with
30

Algorithm 1. For sufficiency, the reason is similar to the acceptance case (recall Remark 13): not all sufficient sets are calculated by

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴 𝐵

𝐶 𝐷 𝐸

𝐹 𝐺 𝐻

Fig. 8. Graphical representation of 8 .

the algorithm. For necessity, the algorithm can calculate 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) for all  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and it could therefore easily
be adjusted to calculate their intersection, however, 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) might be a subset of the intersection.

6.4. Necessity, sufficiency and minimality

Although the notions of minimality from [33] and recalled in Section 6.1 are aimed at reducing the size of an explanation, by
applying instead the notions of sufficiency and necessity as discussed in this paper, the size of the explanation can be further reduced.
To see this, consider the following example:

Example 43. Let 8 = ⟨Args8,Att8⟩ as shown in Fig. 8. Here we have that 𝖯𝗋𝖿(8) = {8} = {{𝐴, 𝐶, 𝐸, 𝐹 , 𝐻}}. If 𝔻𝖺𝖼𝖼 =
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 8) = {𝐶, 𝐸, 𝐹 , 𝐻} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, 8) = {𝐶, 𝐸, 𝐹 , 𝐻}. These are the ex-

planations for the acceptance of 𝐴 and the non-acceptance of 𝐵 as defined in Section 3 or Section 6.1.

Now consider 𝔻𝖺𝖼𝖼 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⊆ and 𝔻𝗇𝖺𝖼𝖼 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⊆. Then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 8) = {{𝐴, 𝐶, 𝐸},{𝐴, 𝐹 , 𝐻}} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 8) =
{{𝐶}, {𝐹 }}. If 𝔻𝖺𝖼𝖼 = 𝖭𝖾𝖼 and 𝔻𝗇𝖺𝖼𝖼 = 𝖭𝖾𝖼𝖭𝗈𝗍 then 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐴, 8) = {𝐴} and 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐵, 8) = {𝐶, 𝐸, 𝐹 , 𝐻}. Indeed, {𝐴, 𝐶, 𝐸}
or {𝐴, 𝐹 , 𝐻} would already be sufficient for the acceptance of 𝐴, yet this cannot be expressed with minimal explanations. And,
similarly, both {𝐶} and {𝐹 } are minimally sufficient for the non-acceptance of 𝐵. Thus, the minimally sufficient explanations are
≤-smaller than the minimal explanations from Section 6.1.

That minimally sufficient explanations can be smaller than minimal explanations is formalized in the next propositions. We show
that for any set in a ∩-acceptance explanation, there is a minimally sufficient explanation that can be smaller, that the reverse also
holds for admissible semantics and that any explanation (whether minimal or not) contains all the necessary arguments.

Proposition 11. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args and let ⪯∈ {⊆, ≤}. Then, for 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and
𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}:

• for every 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩⪯(𝐴) for 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯ such that 𝖲′ ⪯ 𝖲;

• where 𝖲𝖾𝗆 = 𝖠𝖽𝗆, for every 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩⪯(𝐴) where 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯ also 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴);
• for all 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴), 𝖭𝖾𝖼(𝐴, ∅) ⊆ 𝖲.

In words, for every (minimal) basic explanation, there is a minimal sufficient explanation that might be smaller (item 1), all
minimal sufficient explanations are part of the ∩-explanation under admissibility semantics (item 2) and all (minimal) explanations
still contain the necessary explanations (item 3).

The next proposition is the non-acceptance counterpart of the above proposition:

Proposition 12. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args and let ⪯∈ {≤, ⊆}. Then, for 𝔻 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 and
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}:

• for every 𝖲 ∈ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) there is an 𝖲′ ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪⪯(𝐴) where 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⪯ such that 𝖲′ ⪯ 𝖲.

• for all 𝖲 ∈ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴), 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) ⊆ 𝖲.

Thus, for every (minimal) set of a ∪-non-acceptance explanation, there is a minimal sufficient non-acceptance explanation which
might be smaller (item 1) and every set of a ∪-non-acceptance explanation (whether minimal or not) contains the necessary arguments
for non-acceptance (item 2).

These propositions show that our implementation of necessity and sufficiency result in meaningful but smaller than minimal
explanations. In the next section we will turn to a real-life application and illustrate the various explanations introduced in this
31

paper.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

7. Applying the basic framework

In this section we show how the various explanations can be applied in a real-life scenario. The Netherlands Police employs
several applications based on structured argumentation frameworks (a variant of ASPIC+, see [54] for the formal details17). One
such application concerns complaints by citizens about online trade fraud (e.g., a product bought through a web-shop or on eBay
never arrives or turns out to be fake). The system queries the citizen for various observations, and then determines whether the
complaint is a case of fraud [12,54]. Another related example is a classifier for checking fraudulent web-shops, which scrapes
information about online shops and then tries to determine whether they are real (bone fide) or fake (mala fide) shops [53]. These
applications are aimed at assisting the police at working through high volume tasks, leaving more time for tasks that require human
attention. In this paper we focus on applying the explanations in the context of the application on online trade fraud. This application
is based on the formal modeling of Article 326 of the Dutch Criminal Code18:

A person who takes some good or money away from someone, while misleading through false contact details, deceptive tricks or
an accumulation of lies is guilty of fraud.

Consider a scenario where a complainant has ordered a product through an online shop. We introduce the following language 2 :
the complainant delivered (cd), the counterparty delivered (cpd); the received product seems fake (fake); the counterparty provided
contact details (con); the contact details were false (fcon); the received package is indeed fake (recfake); the delivery may still arrive
(deco); it is a case of fraud (f); and their negations. While the complainant provides the information from the described scenario (the
knowledge base of this particular instance), the system constructs further arguments from this, based on the Dutch Criminal Law.19

Important in Article 326 is that money was taken away from someone: the complainant (i.e., the supposed victim) delivered, that is,
they kept their side of the bargain by paying, and the counterparty (i.e., the possible suspect) did not deliver, that is, they did not
send the (right) product or package to the complainant. Also, simply not delivering is not considered fraud: the counterparty must
have shown their intent to commit fraud by, for example, providing fake contact details so the complainant could not contact them
about the (undelivered) package, or by, for example, trying to pass off a fake product as real. This leads to the following defeasible
rules:

𝑅1 If the counterparty delivered (cpd) and the received product seems fake (fake) then the received packages are usually indeed
fake (recfake);

𝑅2 If the counterparty did not deliver (¬cpd) and no contact details were provided (¬con) then usually the delivery will not arrive
(¬deco);

𝑅3 If the counterparty did not deliver (¬cpd), contact details were provided (con) and the contact details were false (fcon) then
usually the delivery will not arrive anymore (¬deco);

𝑅4 If the counterparty did not deliver (¬cpd), contact details were provided (con) and the contact details were not false (¬fcon) then
usually the package may still arrive (deco);

𝑅5 If the complainant delivered (cd) and the received package is indeed fake (recfake) it is usually a case of fraud (f);

𝑅6 If the counterparty did not deliver (¬cpd), the complainant delivered (cd) and the delivery will not arrive anymore (¬deco) it is
usually a case of fraud (f);

𝑅7 If the delivery may still arrive (deco) and the complainant delivered (cd) it is usually not a case of fraud (¬f);

𝑅8 If the product does not seem fake (¬fake) and the complainant delivered (cd) it is usually not a case of fraud (¬f);

𝑅9 If the complainant did not deliver (¬cd) it is usually not a case of fraud (¬f).

Suppose we have the full knowledge base containing all the antecedents of rules that are not a consequent of a rule as well:
the counterparty did (not) deliver (cpd, ¬cpd), the received product does (not) seem fake (fake, ¬fake), contact details were (not)
provided (con, ¬con), the contact details were (not) false (fcon, ¬fcon), the complainant did (not) deliver (cd, ¬cd). We can then derive
the arguments 𝐴1, … , 𝐴10, 𝐵1, … , 𝐵4 and 𝐶1, … , 𝐶6 as shown in Fig. 9 on page 33. A graphical representation of the resulting
argumentation framework 9 is shown in Fig. 10 in Appendix B, on page 44. Since there are over 30 preferred extensions, we
provide in the same appendix an exhaustive list of the preferred extensions, the argument explanations and the derivation process.

By design, the application tries to determine whether the provided scenario by the complainant is a case of fraud (𝑓 is accepted)
or not (¬𝑓 is accepted). For both conclusions there are three arguments: 𝐶1, 𝐶2 and 𝐶3, respectively 𝐶4, 𝐶5 and 𝐶6. There are 10
preferred extensions with an argument for 𝑓 and 25 preferred extensions with an argument for ¬𝑓 . As a result, simply returning
the extensions containing an argument for 𝑓 or ¬𝑓 is not very informative as an explanation of why something is (not) a case of
fraud, especially for the non-expert citizen. But, returning the basic explanations as given in Section 3, also results in 10 possible
explanations for arguments with conclusion 𝑓 and 26 possible explanations for arguments with conclusion ¬𝑓 (see Appendix B for a
complete overview of all extensions and all types of explanations). Each of these basic explanations contains a number of arguments

17 The corresponding demo of [54], demonstrating the argumentation-based part of the application, is available at https://pyarg .npai .science .uu .nl, as example
application.
18 The article can be found, in Dutch, at: https://wetten .overheid .nl /BWBR0001854 /2018 -01 -01 /#BoekTweede _TiteldeelXXV _Artikel326.
19 In order to make the argumentation framework and corresponding explanations more interesting the rules that are applied here are only inspired by the law. The
32

real application is based on slightly different rules.

https://pyarg.npai.science.uu.nl
https://wetten.overheid.nl/BWBR0001854/2018-01-01/#BoekTweede_TiteldeelXXV_Artikel326

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

cd cpd fake

recfake

f

𝑅1

𝑅5

𝐴9 𝐴1 𝐴3

𝐵1

𝐶1

cd ¬cpd ¬con

¬deco

f

𝑅2

𝑅6

𝐴9 𝐴2 𝐴6

𝐵2

𝐶2

cd ¬cpd con fcon

¬deco

f

𝑅3

𝑅6

𝐴9 𝐴2 𝐴5 𝐴7

𝐵3

𝐶3

cd ¬cpd con ¬fcon

deco

¬f

𝑅4

𝑅7

𝐴9 𝐴2 𝐴5 𝐴8

𝐵4

𝐶4

¬fake cd

¬f

𝑅8

𝐴4 𝐴9

𝐶5

¬cd

¬f

𝐴10

𝐶6

Fig. 9. Graphical representation of the derivations of the arguments in 9 .

which are constructed from a number of premises. Reducing the size of the explanations is therefore essential. Below we are therefore
interested in minimal acceptance explanations denoted by 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝑓, ) and 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(¬𝑓, ) for ⪯∈ {≤, ⊆} and  ∈ {1, … , 35}.
The full explanations are provided in Appendix B.

One other aspect of explanations that we can vary in this example is 𝔽 . For example, we can give back the arguments, premises,
rules, and so on. Exactly how we choose 𝔽 depends on the receiver of the explanation. For a police analyst, for example, it makes
sense to pick 𝔽 = 𝗂𝖽, as they will probably know what the arguments stand for (e.g., which conclusions they have) so they can work
with a ‘summary’ in terms of argument id’s. However, a citizen making a one-time complaint is probably less interested (and less
familiar) with the specific arguments and their interactions. In the intake system at the police, citizens only provide basic information
(i.e., premises of arguments) to the system, and it therefore makes sense to provide explanations in terms of the same kind of basic
information provided by the citizens. We therefore choose 𝔽 = 𝖯𝗋𝖾𝗆 and obtain the following minimal explanations for 𝑓 and ¬𝑓 :

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(𝑓,33) = ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,3) = {⟨{cpd, fake, cd},{cpd, fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,7) = {⟨{cpd, fake, cd},{cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,23) = {⟨{¬cpd,¬con, cd},{¬cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,25) = {⟨{¬cpd, con, fcon, cd},{¬cpd, con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,33) = ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩
𝖯𝗋𝖿𝖠𝖼𝖼∪

≤
(¬𝑓,2) = {⟨{¬cd},{cpd, con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,6) = {⟨{¬cd},{cpd,¬con,¬cd}⟩}
33

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,18) = {⟨{¬cd},{¬cpd, con,¬cd}⟩}

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,22) = {⟨{¬cd},{¬cpd,¬con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,2) = {⟨{¬cd},{cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,6) = {⟨{¬cd},{cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,9) = {⟨{¬fake, cd},{cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,13) = {⟨{¬fake, cd},{cpd,¬fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,18) = {⟨{¬cd},{¬cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,19) = {⟨{¬cpd, con,¬fcon, cd},{¬cpd, con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,22) = {⟨{¬cd},{¬cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,26) = {⟨{¬fake, cd},{¬cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,31) = {⟨{¬fake, cd},{¬cpd,¬fake,¬con, cd}⟩}.

These explanations suggest that there is a variety of scenarios possible in which there is a case of fraud (or not). For example, it
is a case of fraud when the counterparty did not deliver (¬𝑐𝑝𝑑), no contact details were provided by the counterparty (¬𝑐𝑜𝑛) and
the complainant delivered (𝑐𝑑), or when both the complainant and the counterparty delivered (𝑐𝑑 and 𝑐𝑝𝑑), contact details were
provided (𝑐𝑜𝑛) but the received product seems fake (𝑓𝑎𝑘𝑒). Similarly, it is not a case of fraud when both the complainant and the
counterparty delivered, contact details were provided and the received product seems not to be a fake.

The above example shows that (subset-)minimality can be a rather crude measure for explanations. Even for a relatively simple
structured argumentation framework, the number of ⊆-minimal explanations is quite large, and ≤-minimality misses certain expla-

nations (e.g., about fake products) because these arguments have more premises. For more meaningful and smaller explanations we
turn to necessity and sufficiency, obtaining the following explanations for ≤-minimal sufficiency and necessity:

Minimal sufficiency: 𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪
≤
(𝑓,∅) = {⟨{cpd, fake, cd},{cpd, fake, cd}⟩ , ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩}

Necessity: 𝖭𝖾𝖼𝖠𝖼𝖼∪(𝑓,∅) = ⟨{cd},{cd}⟩
Minimal sufficiency: 𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪

≤
(¬𝑓,∅) = {⟨{¬cd},{¬cd}⟩}

Necessity: 𝖭𝖾𝖼𝖠𝖼𝖼∪(¬𝑓,∅) = ∅.

As mentioned above, there is a variety of possible scenarios for both fraud and not fraud, but based on the necessity and suf-

ficiency explanations one knowledge base element is essential: the complainant must have delivered for fraud. With the basic
explanations, even when only looking at the minimal ones, this conclusion could not be derived and the explanation might have
been {cpd, ¬con, ¬cd} for not fraud, while the explanation only containing ¬cd would be more informative. Therefore, with necessary
and sufficient explanations, we can provide compact explanations that only contain the core reasons for a conclusion: it allows to
point to a specific part of the law that resulted in this particular conclusion. This was not possible with the (minimal) explanations
from the basic framework.

8. Related work

Explainable AI is a fast growing research area and explainability is investigated in many sub-areas of AI, including in formal
argumentation. As mentioned in the introduction, one of the main contributions of this paper is our focus on necessity and sufficiency.
These are some of the most important selection mechanisms of explanations [46] and have been studied in logic, philosophy and
psychology [37,41–43,66]. Necessity and sufficiency has been implemented in some approaches to XAI as well. For example, [65]

propose a unifying framework, where necessity and sufficiency are based on probabilities and in [28] pertinent positives and pertinent
negatives are studied. Although these approaches help to select the most relevant explanations, these do not increase the transparency
of the black-box models on which they are applied. In this paper we focused on necessity and sufficiency for argumentation.

When it comes to literature on argumentation-based explanations, there are roughly two directions. First, there is the application
of formal argumentation to explain decisions derived with other AI-methods, e.g., [21,26,59], see [24] for a recent overview. These
approaches can be seen as a step towards hybrid, or neuro-symbolic AI, where the performance of learning-based methods is com-

bined with the transparency of knowledge-based methods (in this case formal argumentation) [25,44,45]. Second, there is literature
on local explanations of formal argumentation, where argumentation is applied to explain argumentation-based conclusions, see
e.g., [19,27,33,34,36,40,52,61]. For now, our research falls within this second direction of research and we will relate this paper to
the existing literature below. As we will mention in the next section, with this research we aim to develop an argumentation-based
explanations method that is generally applicable and can improve the argumentation-based component of the research in the first
direction. Therefore, our research is also relevant for the first direction, though not directly related yet.

García et al. [36] study explanations for abstract argumentation and DeLP [35]. Explanations for a claim are defined as triples
of dialectical trees that provide a warrant for the claim, dialectical trees that provide a warrant for the contrary of the claim, and
dialectical trees for the claim and its contrary that provide no warrant. This means, on the one hand, that explanations might contain
34

many arguments and, on the other hand, that the receiver of the explanation is expected to understand argumentation and dialectical

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

trees. With real-life applications in mind, we believe that explanations that rely less on the underlying argumentation framework and
that can be adjusted to the application would be more useful.

To explain the acceptance of an argument in abstract argumentation and ABA [15], the notion of related admissibility is introduced
in [33] and explanations are derived based on dispute trees [31]. In [16, Proposition 2], it is shown that these explanations are
a special case of our basic argument explanations. These explanations based on dispute trees are applied in, e.g., [23,67]. Our
explanations framework is more general, for example, we take the semantics into account and allow to refine the explanation based
on the underlying structure of the arguments, if this is available. The method in [19] is also based on a (formal) discussion, but
rather than investigating the explanatory properties of these discussions, that paper is on the computational complexity.

Explanations for non-accepted arguments in abstract argumentation are studied in [34,61], both of which focus on the structure
of the AF and not credulous acceptance under admissible semantics. Note that we consider a skeptical and credulous variant of
non-acceptance for several Dung-style semantics. In [34] an explanation consists of either a set of arguments or a set of attacks, the
removal of which would make the argument admissible. In structured argumentation it is not always possible to remove exactly one
argument (or attack). In 9 of Fig. 10 from Section 7, 𝐴1 would become skeptically accepted for any completeness-based semantics,
if 𝐴2 would be removed. However, when looking at the underlying argumentation theory, when 𝐴2 is removed, the arguments 𝐵2
and 𝐵3 do no longer exist and thus ¬deco is no longer a credulous conclusion. Therefore, in this paper the basic definition for non-

accepted arguments is defined in terms of the arguments for which no defense exist and no suggestion is made how to change the
argumentation framework in order to get the considered argument accepted. In [61], explanations are sub-frameworks, such that
the considered argument is not credulously accepted in that sub-framework and any of its super-frameworks. Though a note was
added on the applicability of such explanations in a structured setting, this is not formally investigated in that paper. Computational
complexity for the explanations in [61] is studied in [52], but still only for non-accepted arguments in abstract argumentation.

Like Saribatur et al. [61], Ulbricht and Wallner [63] use the notion of subframeworks to study strong explanations: sets of
arguments that ensure that, when present in a subframework, the desired set of arguments is acceptable under admissibility in
that subframework. It is shown that these explanations result in smaller sets of arguments than the extensions, sufficient for the
acceptability. Since this work relies on the structure of the argumentation framework, it is designed for abstract argumentation
however, as illustrated above, in structured argumentation it is not possible to consider subframeworks without considering the
underlying structure of the arguments. Our work is applicable to both abstract and structured settings, for both acceptance and
non-acceptance and we consider both sufficiency and necessity.

In [40] explanations are presented as a semantics that assigns to each accepted argument a set of explanations arguments.
Intuitively, the arguments in the explanation are together sufficient to accept the argument. The properties of such explanations are
then studied with a principle-based approach. Finally, while in all the previous mentioned literature extension-based semantics is
applied, in [27] the interpretability of abstract argumentation with gradual semantics is studied.

Since the introduction of our notions of necessity and sufficiency in [17], similar notions have been studied. For example,
Potyka et al. [55] use these notions, combined with bipolar argumentation and Markov networks to explain random forests. Rotolo
and Sartor [60] study the relation between argumentation and explanation in the law in a formal setting. While their notions
of necessity and sufficiency are similar, they focus on specific legal conclusions rather than general arguments or their elements.
Besnard et al. [10] provide visual explanations in the context of abstract argumentation and although they do write about sufficient
reasons, this notion is not formally defined. Finally, Kampik et al. [38] also provide sufficient and necessary explanations, but their
definitions differ since their explanations are focused on change in Quantitative Bipolar Argumentation Frameworks (QBAFs) [6].

Proof theories and argument games are related to argumentation-based explanations. For example, in [29], a proof theory for
skeptical acceptance under preferred semantics is introduced, answering the question why an argument is skeptically accepted
and in [47] argument games for several extension-based semantics are collected. Although the explanations from Section 3 can be
represented in terms of argument games, the variations to these basic explanations and in particular the notions of sufficiency and
necessity have not been studied. Moreover, our work is designed to be applicable to structured settings as well. Acceptance for
formulas might differ from acceptance for arguments (e.g., in 6 from Example 25 𝑝 is skeptically accepted, but no argument
for 𝑝 is skeptically accepted) and, as a result, formula explanations might differ from argument explanations. To account for this
difference is essential, since the case study from Section 7 shows that there are real-life applications based on structured settings that
might benefit from our explanations. Representing explanations as an argument or discussion game is of interest when preparing
explanations for applications and in future work we will study how the variations to the basic explanations can be represented.

To the best of our knowledge, this is the only framework that can explain acceptance and non-acceptance in a similar way and
that is generally applicable: it does not depend on the specific structure of an argumentation framework, the applied extension-

based semantics or the way in which the argumentation framework was derived (i.e., it is applicable to both abstract and structured
argumentation). Additionally, we have ensured that our framework is easily adjustable to the application and receiver at hand, by
introducing the functions 𝔻 and 𝔽 . As a result, our framework is more general than the existing approaches to local argumentation-

based explanations.

9. Conclusion and future work

Argumentation has been gaining traction as a valid AI technique for practical applications [3,53,54], and is also increasingly used
to explain decisions derived with other AI-approaches [24,64]. With formal argumentation frameworks thus being increasingly used
and becoming more complex, it is essential that we can explain the conclusions of such an argumentation framework (i.e., which
35

arguments are accepted and which ones are not) in terms of relevant arguments, and that we can select the explanations that conform

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

to criteria for ‘good’ explanations (cf. [46]). In this paper, we have developed an explanation method that does exactly this, and
is generally applicable and adjustable to both abstract and structured argumentation frameworks. In particular, we have made the
following contributions:

• We have proposed a generic, flexible formal framework for determining and computing argument-based explanations for argu-

ments and their conclusions (Sections 3 and 5). The framework can be applied in abstract and structured settings, for accepted
and non-accepted arguments and formulas and for a variety of Dung-style semantics. It can provide different types of useful
explanations, in terms of arguments and formulas.

• We have shown the flexibility of the framework by implementing how humans select relevant explanations based on minimality,
necessity and sufficiency (Section 6).

• In Section 7 we have applied the framework to a real-life scenario of the Netherlands Police. This demonstrates the usefulness
of our framework as well as the benefits of necessity and sufficiency.

Together, this shows the potential of our framework to be applied as a general argumentation-based explanations method. Addition-

ally, our study on minimality, necessity and sufficiency is of interest beyond explanations.

• We have shown how the essential information can be selected from extensions and argumentation settings in general. Therefore,
our work paves the way to investigate how to draw conclusions from formal argumentation beyond the well-known extensions.

With the presented framework, we will work towards an explanation method that any researcher in explainable AI can apply to
explain decisions from their AI-application in a reliable and human understandable way. Therefore, in future work, we will study
which findings from the social sciences [46] (e.g., contrastiveness and other selection methods) and the argumentation literature
(e.g., argument-based dialogues [13]) should be accounted for. We will also continue our investigation into the implementation of
explanations in the real-life applications at the Netherlands Police. To this end we will do a user study with both citizens and police
analysts as well as improve the computational complexity of our method.

In addition to being interesting criteria for selecting an explanation, minimality, necessity and sufficiency are also of interest
when studying what information (e.g., arguments or formulas) makes it possible or ensures that an argument or claim is accepted
in formal argumentation in general. Thus, our findings of this paper will also be interesting for studying properties of semantics as
well as in dynamic settings. In dynamic argumentation, the argumentation framework can be adjusted in view of new information,
reflecting the dynamic nature of argumentation. In enforcement [7,18], for example, the question is whether it is possible to adjust
the framework such that an argument or formula becomes accepted. Knowing which sets of arguments are necessary or sufficient for
the (non-)acceptance of an argument is therefore useful.

CRediT authorship contribution statement

AnneMarie Borg: Conceptualization, Formal analysis, Writing – original draft, Writing – review & editing. Floris Bex: Concep-

tualization, Formal analysis, Funding acquisition, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This research has been partly funded by the Dutch Ministry of Justice and the Netherlands Police.

Appendix A. Full proofs of the results in the paper

Throughout the paper no proofs were provided for our results. In this appendix full proofs of all the results are collected. For the
purpose and intuition of the results we refer to their first statement within the paper itself.

A.1. Proofs of the properties of the basic explanations

Proposition 1. Let  = ⟨Args,Att⟩ be an argumentation framework where 𝐴 ∈ Args. Then:
36

1. 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) for all 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻,𝖤𝗀𝗋}.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

2. 𝖲𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖲𝗌𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) ⊆ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴).
3. For each 𝖲 ∈ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) such that 𝖲 ⊆ 𝖲′

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted.

1. Let 𝐵 ∈ 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴), then 𝐵 (in)directly defends 𝐴 and 𝐵 ∈ 𝖦𝗋𝖽(), therefore 𝐵 ∈
⋂

𝖲𝖾𝗆(). It follows that 𝐵 ∈
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) for all  ∈ 𝖲𝖾𝗆(). Hence 𝐵 ∈

⋂
𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) and 𝐵 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴) as well.

2. Let 𝖲 ∈ 𝖲𝗍𝖻𝖠𝖼𝖼∩(𝐴), then there is some  ∈ 𝖲𝗍𝖻() such that 𝖲 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ). Since 𝖲𝗍𝖻() ⊆ 𝖲𝗌𝗍𝖻() ⊆ 𝖯𝗋𝖿 () ⊆
𝖢𝗆𝗉() it follows that  ∈ 𝖲𝖾𝗆() for 𝖲𝖾𝗆 ∈ {𝖲𝗌𝗍𝖻, 𝖯𝗋𝖿 , 𝖢𝗆𝗉} as well. Therefore 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) for 𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖲𝗌𝗍𝖻}.

3. Let 𝖲 ∈ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴), then there is some  ∈ 𝖢𝗆𝗉() such that 𝖲 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ). By Definition 1 there is some  ⊆  ′ ∈
𝖯𝗋𝖿(), let 𝖲′ = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴,  ′). Note that 𝖲′ ∈ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) and that 𝖲 ⊆ 𝖲′. □

Proposition 2. Let  = ⟨Args,Att⟩ be an argumentation framework,  ∈ 𝖲𝖾𝗆() for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}
and let 𝐴, 𝐵 ∈ Args. Then:

• if 𝐴 ∈𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ), then 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, );
• if 𝐴 ∈𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ) and 𝐵 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ), then 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ).

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework,  ∈ 𝖲𝖾𝗆() for 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and
let 𝐴, 𝐵 ∈ Args. Suppose that 𝐴 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ). By definition of 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 it follows that 𝐴 ∈  . Let 𝐶 ∈ Args such that 𝐶 ∈
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ). Then there is some 𝐷 ∈ Args such that (𝐷, 𝐴) ∈ Att and 𝐶 defends 𝐴 against this attack. However, since 𝐴 defends
𝐵, it follows that 𝐷 attacks 𝐵 as well, from which it follows that 𝐶 defends 𝐵 as well. Therefore 𝐶 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ). The second
item follows immediately. □

Proposition 3. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,
𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) = {∅} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆() iff there is no
𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att.

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗍𝖻} and
⋆ ∈ {∩, ∪}.

⇒ Suppose that 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴, ) = {∅} for all  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴). Then for each  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴), 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = ∅. Hence there
is no attacker of 𝐴 that is defended by some argument from  . Since 𝐴 ∈  , 𝐴 is defended against its attackers. It follows that 𝐴 is
not attacked at all.

Similarly, suppose that 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴) = ∅. Then there is some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) such that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = ∅. Hence there is no
attacker of 𝐴 that is defended by some argument from  . Since 𝐴 ∈  , 𝐴 is defended against its attackers. It follows that 𝐴 is not
attacked at all.

⇐ Now suppose that 𝐴 is not attacked. Then there is no argument that defends 𝐴. Therefore, for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴),
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = ∅. It follows that 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) = {∅} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  . □

Proposition 4. Let  = ⟨Args,Att⟩ be an argumentation framework where 𝐴 ∈ Args. Then:

1. 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
2. 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
3. Let  ∈ 𝖲𝗌𝗍𝖻𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Then 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ), for 𝖲𝖾𝗆∈ {𝖢𝗆𝗉,𝖯𝗋𝖿}.

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be non-accepted.

1. Let 𝗀𝗋𝖽 ∈𝖦𝗋𝖽() be the grounded extension, note that we have 𝗀𝗋𝖽 =
⋂

𝖢𝗆𝗉() and that 𝗀𝗋𝖽 ∈ 𝖢𝗆𝗉() [30]. It therefore
follows that, if 𝐴 ∉ 𝗀𝗋𝖽, then 𝗀𝗋𝖽 ∈ 𝖢𝗆𝗉𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). By Definition 8 we have that 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ∈ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) and since
𝗀𝗋𝖽 =

⋂
𝖢𝗆𝗉(), also 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ⊆

⋂
𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴).

2. Suppose that 𝐴 is not accepted w.r.t. 𝖲𝗌𝗍𝖻, then for some  ∈ 𝖲𝗌𝗍𝖻(), 𝐴 ∉  . Note that 𝖲𝗌𝗍𝖻𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) ⊆ 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) ⊆
𝖢𝗆𝗉𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Therefore, for all  ∈ 𝖲𝗌𝗍𝖻𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴),  ∈ 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and  ∈ 𝖢𝗆𝗉𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Hence it holds that
𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).

3. Let  ∈ 𝖲𝗌𝗍𝖻𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). As mentioned above,  ∈ 𝖯𝗋𝖿𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and  ∈ 𝖢𝗆𝗉𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) as well. It follows that,

𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴,) = 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴) = 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴). □

Proposition 5. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆 ∈
37

{𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Proof. Let  = ⟨Args,Att⟩ and 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆∈ {𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}.
Assume, towards a contradiction, that 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) = {∅}, then for each extension  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴), 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) = ∅.
Hence there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att. But then, by the completeness of  it follows that 𝐴 ∈  . A contradiction.
Now assume that 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = ∅ for some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴), then 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) = ∅. But then, as before, 𝐴 ∈  . A
contradiction. Therefore 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}. □

Proposition 6. Let  = ⟨Args,Att⟩ be an argumentation framework, let  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖨𝖽𝗅,
𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and let 𝐴,𝐵1,… ,𝐵𝑛,𝐶1,… ,𝐶𝑘 ∈ Args such that (𝐵1, 𝐴), … , (𝐵𝑛, 𝐴) ∈ Att and 𝐴 indirectly attacks 𝐶1, … , 𝐶𝑘. Then:

• where 𝐵1, … , 𝐵𝑚 ∈  , for 𝑚 ≤ 𝑛 it holds that: 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ⊇ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵1, ) ∪… ∪𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵𝑚, );
• when 𝐴 ∈  we have: 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵1, ) ∪… ∪𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵𝑛,);
• where 𝐴 ∈  and 𝐶1, … , 𝐶𝑗 ∉  , for 𝑗 ≤ 𝑘 it holds that: 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶𝑖, ) for all 𝑖 ∈ {1, … , 𝑗}.

Proof. Let  = ⟨Args,Att⟩ be an AF, let  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅,𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and let 𝐴 ∈ Args.

• Let 𝐵 ∈  be such that (𝐵, 𝐴) ∈ Att. If 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ) = ∅, we are done, hence, let 𝐶 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐵, ). Then, by the proof
of Proposition 3 there is some 𝐷 ∈ Args such that (𝐷, 𝐵) ∈ Att and 𝐶 (in)directly attacks 𝐷. Since 𝐵 attacks 𝐴, it follows that
𝐷 defends 𝐴 and that 𝐶 (in)directly attacks 𝐴. Since 𝐶 ∈  ,  does not defend 𝐴 against the attack from 𝐶 and therefore
𝐶 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

• Let 𝐶 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ), then, by Proposition 3, 𝑛 ≠ 0. Suppose that 𝐶 directly defends 𝐴, then there is a 𝐵𝑖 ∈ {𝐵1, … , 𝐵𝑛}
such that (𝐶, 𝐵𝑖) ∈ Att. Since 𝐶 ∈  it follows that 𝐶 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵𝑖,). Now suppose that 𝐶 indirectly defends 𝐴. Then
there are 𝐷1, 𝐷2, … , 𝐷𝑘 ∈ Args, where 𝑘 is odd, such that (𝐷1, 𝐵𝑖), (𝐷2, 𝐷1), … (𝐷𝑘, 𝐷𝑘−1), (𝐶,𝐷𝑘) ∈ Att. Since 𝐷𝑘 defends 𝐵𝑖

and 𝐶 attacks 𝐷𝑘 it follows that 𝐶 attacks 𝐵𝑖 as well. Hence 𝐶 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵𝑖, ). Note that, for any 𝐷 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) a
𝐵𝑖 ∈ {𝐵1, … , 𝐵𝑛} exists. It therefore follows that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵1, ) ∪… ∪𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐵𝑛, ).

• Let 𝐴 ∈  and suppose that 𝐶1, … , 𝐶𝑗 ∉  for some 𝑗 ≤ 𝑘. By assumption 𝐴 indirectly attacks 𝐶𝑖 for all 𝑖 ∈ {1, … , 𝑗} and since 𝐴 ∈
 , 𝐶𝑖 is not defended against this attack by 𝐴. Therefore 𝐴 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶𝑖, ). Note that any 𝐷 ∈ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) defends
𝐴 and therefore indirectly attacks 𝐶𝑖 as well. It therefore follows that 𝐷 ∈ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶𝑖, ) and hence 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ⊆
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐶𝑖, ) for all 𝑖 ∈ {1, … , 𝑗}. □

A.2. Proofs concerning the computation of the explanations

Theorem 1. Let  = ⟨Args,Att⟩ be an argumentation framework. Then:

1. there is an attack-path from 𝐴 to 𝐵 of length 𝑛 iff 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵);
2. 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵) iff there is an attack-path from 𝐴 to 𝐵;

In order to show the above theorem, we need some lemmas and propositions. These lemmas and propositions will partly be shown
by induction proofs, for which the following remark will be useful.

Remark 15. Let  = ⟨Args,Att⟩ be an AF and let 𝐴, 𝐵 ∈ Args. It holds that 𝐴 = 𝐵 iff there is an attack-path from 𝐴 to 𝐵 that has
length 0. Similarly, (𝐴, 𝐵) ∈ Att iff there is an attack-path from 𝐴 to 𝐵 of length 1.

Lemma 1. If ReReach(𝐴, 𝐴′, 𝑛, 𝖲) is called, there is an attack-path from 𝐴′ to 𝐴, of length 𝑛, along the attacks in 𝖲.

Proof. Suppose that ReReach(𝐴, 𝐴′, 𝑛, 𝖲) is called, either at Line 1 of Algorithm 1 or at Line 2 of Procedure ReReach. We proceed by
induction on 𝑛.

• If 𝑛 = 0: then ReReach(𝐴, 𝐴, 0, ∅) is called at Line 1 of Algorithm 1. Since 𝐴 =𝐴′, by Remark 15, there is an attack-path of length
0 from 𝐴′ to 𝐴, without any attacks.

• If 𝑛 = 1: then ReReach(𝐴, 𝐴′, 𝑛, 𝖲) was called at the first iteration of Procedure ReReach. Hence (𝐴′, 𝐴) ∈ Att and (𝐴′, 𝐴) ∉ ∅. By
Remark 15, there is an attack-path of length 1 from 𝐴′ to 𝐴.

Suppose now that the claim holds for 𝑛 up to 𝑘 ≥ 1.

• If 𝑛 = 𝑘 + 1: then there is some 𝐵 ∈ Args such that ReReach(𝐴, 𝐴′, 𝑛, 𝖲) is called at Line 2 of the call ReReach(𝐴, 𝐵, 𝑘, 𝖲′) where
𝖲′ = 𝖲 ⧵ {(𝐴′, 𝐵)}). To see that 𝖲′ = 𝖲 ⧵ {(𝐴′, 𝐵)}, note that Visited is updated at Line 5 with (𝐴′, 𝐵) before ReReach(𝐴, 𝐴′, 𝑛, 𝖲)
is called and if (𝐴′, 𝐵) ∈ 𝖲′, the call to ReReach(𝐴, 𝐴′, 𝑛, 𝖲) would not be reached.

By induction hypothesis, there is an attack-path from 𝐵 to 𝐴 of length 𝑘 along the attacks in 𝖲′. Since (𝐴′, 𝐵) ∉ 𝖲′, it follows
that the attack (𝐴′, 𝐵) was not used in the attack-path from 𝐵 to 𝐴. Therefore, the path from 𝐴′ to 𝐴 along (𝐴′, 𝐵) and the
38

attack-path 𝐵 to 𝐴 is an attack-path from 𝐴′ to 𝐴 of length 𝑘 + 1 along the attacks in 𝖲. □

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

The next proposition shows that Algorithm 1 is sound.

Proposition 13. If 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵) then there is an attack-path from 𝐴 to 𝐵 of length 𝑛.

Proof. Suppose that 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵), that there is an attack-path from 𝐴 to 𝐵 of length 𝑛 is shown by induction on 𝑛:

• If 𝑛 = 0: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 1 of the algorithm (since at any other place that 𝖣𝗂𝗌𝗍(𝐴, 𝐵) might be updated, the
addition is always more than 0). It follows immediately that 𝐴 = 𝐵. Hence there is an attack path from 𝐴 to 𝐵 of length 0.

• If 𝑛 = 1: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 2 of the procedure in the first iteration of the for-loop (since in any other iteration
𝑛 ≠ 0). It follows that (𝐴, 𝐵) ∈ Att. Hence the attack-path consists of one attack: (𝐴, 𝐵). Thus there is an attack-path from 𝐴 to 𝐵
of length 1.

Suppose that the proposition holds for values of 𝑛 up to 𝑘, where 𝑘 ≥ 1. Then:

• If 𝑛 = 𝑘 +1: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 2 of Procedure ReReach. This is only the case if there is some argument 𝐶 ∈ Args
such that ReReach(𝐵, 𝐶, 𝑘, 𝖲) was called and (𝐴, 𝐶) ∈ Att such that (𝐴, 𝐶) ∉ 𝖲. By induction hypothesis, there is an attack-path
from 𝐶 to 𝐵 of length 𝑘 and by Lemma 1, this attack-path is along the attacks in 𝖲. Since (𝐴, 𝐶) ∉ 𝖲 by assumption, the path
from 𝐴 to 𝐵 via the attack (𝐴, 𝐶) and the attack-path from 𝐶 to 𝐵 is an attack-path, of length 𝑘 + 1.

This shows that for any 𝑛, if 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵), there is an attack-path of length 𝑛 from 𝐴 to 𝐵. □

In the next lemma the relation between the attacks in an attack-path and the attacks in Visited in the procedure is shown.

Lemma 2. If there is an attack-path from 𝐴 to 𝐵, along the attacks (𝐴, 𝐶1), (𝐶1, 𝐶2), … , (𝐶𝑛−1,𝐵) ∈ Att, for 𝐶1, … , 𝐶𝑛−1 ∈ Args, then
during the run of the algorithm ReReach(𝐵, 𝐴, 𝑛, {(𝐴, 𝐶1), (𝐶1, 𝐶2),… , (𝐶𝑛−1, 𝐵)} will be called.

Proof. Suppose that there is an attack-path from 𝐴 to 𝐵, along the attacks (𝐴, 𝐶1), (𝐶1, 𝐶2), … , (𝐶𝑛−1,𝐵) ∈ Att, for 𝐶1, … , 𝐶𝑛−1 ∈
Args. We proceed by induction on 𝑛 ≥ 1. Since 𝐵 ∈ Args, ReReach(𝐵, 𝐵, 0, ∅) will be called at Line 1 of the algorithm.

• If 𝑛 = 1: then (𝐴, 𝐵) ∈ Att. At this point Visited is still empty, hence the for-loop at Line 2 of Procedure ReReach will be run for
𝐴. At Line 2, Visited becomes {(𝐴, 𝐵)} and at Line 2, ReReach(𝐵, 𝐴, 1, {(𝐴, 𝐵)}) is called.

Suppose the statement holds for values of 𝑛 up to 𝑘 ≥ 1. Then:

• If 𝑛 = 𝑘 + 1: then there are 𝐶1, … , 𝐶𝑘 such that there is an attack-path from 𝐴 to 𝐵 along the attacks (𝐴, 𝐶1), … , (𝐶𝑘, 𝐵). And
hence there is an attack-path from 𝐶1 to 𝐵 along the attacks (𝐶1, 𝐶2), … , (𝐶𝑘, 𝐵) of length 𝑘. By induction hypothesis, it holds
that ReReach(𝐵, 𝐶1, 𝑘, {(𝐶1, 𝐶2),… , (𝐶𝑘, 𝐵)} is called during the run of the algorithm.

Since (𝐴, 𝐶1) ∈ Att, 𝐴 is one of the arguments considered during this call. By assumption (𝐴, 𝐶1), … , (𝐶𝑘, 𝐵) is an attack-path
from 𝐴 to 𝐵, therefore no attack appears twice. Hence (𝐴, 𝐶1) ∉ {(𝐶1, 𝐶2),… , (𝐶𝑘, 𝐵)}. Then Visited will be updated with (𝐴, 𝐶1)
at Line 2 and at Line 2 ReReach(𝐵, 𝐴, 𝑘 + 1, {(𝐴, 𝐶1), (𝐶1, 𝐶2), … , (𝐶𝑘, 𝐵)}) is called.

This shows that for any 𝑛, if there is an attack-path from 𝐴 to 𝐵 along the attacks in 𝖲, ReReach(𝐵, 𝐴, 𝑛, 𝖲) will be called. □

The next proposition shows that Algorithm 1 is complete.

Proposition 14. If there is an attack-path from 𝐴 to 𝐵 of length 𝑛 then 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵).

Proof. Suppose that there is an attack-path from 𝐴 to 𝐵 of length 𝑛. We proceed again by induction on 𝑛.

• If 𝑛 = 0: then by Remark 15 𝐴 =𝐵. By Line 1 of Algorithm 1, 0 ∈𝖣𝗂𝗌𝗍(𝐴, 𝐴) and 0 ∈𝖣𝗂𝗌𝗍(𝐵, 𝐵).
• If 𝑛 = 1: then by Remark 15 (𝐴, 𝐵) ∈ Att. By Line 2 of Procedure ReReach, 1 ∈𝖣𝗂𝗌𝗍(𝐴, 𝐵).

Suppose that the statement holds for 𝑛 up to 𝑘 ≥ 1.

• If 𝑛 = 𝑘 + 1: then there are 𝐶1, … , 𝐶𝑘+1 ∈ Args, such that 𝐴 = 𝐶1, 𝐵 = 𝐶𝑘+1, (𝐶1, 𝐶2),… , (𝐶𝑘, 𝐶𝑘+1) ∈ Att and there are no
1 ≤ 𝑖, 𝑗 ≤ 𝑘 such that 𝑖 ≠ 𝑗 and (𝐶𝑖, 𝐶𝑖+1) = (𝐶𝑗, 𝐶𝑗+1) (i.e., the attack-path does not follow an attack twice). Note that for any 2 ≤
𝑖, 𝑗 ≤ 𝑘 + 1 such that 𝑖 ≤ 𝑗, the corresponding subset of attacks is an attack-path from 𝐶𝑖 to 𝐶𝑗 . In particular, (𝐶2, 𝐶3), … , (𝐶𝑘, 𝐵)
is an attack-path from 𝐶2 to 𝐵 of length 𝑘.

By induction hypothesis, 𝑘 ∈ 𝖣𝗂𝗌𝗍(𝐶2, 𝐵). Since 𝑘 ≥ 1, 𝖣𝗂𝗌𝗍(𝐶2, 𝐵) was updated at Line 2 of Procedure ReReach during the
39

ReReach(𝐵, 𝐶3, 𝑘 − 1, 𝖲′) call of the procedure. By Lemma 2 it follows that 𝖲′ = {(𝐶3, 𝐶4),… , (𝐶𝑘, 𝐵)}. Then, at Line 2 Visited

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

is updated with (𝐶2, 𝐶3) and, at Line 2, ReReach(𝐵, 𝐶2, 𝑘, 𝖲′ ∪ {(𝐶2, 𝐶3)}) is called. Since (𝐶1, 𝐶2) ∈ Att and since there is an
attack-path from 𝐶1 to 𝐶𝑘+1 along the attacks of 𝖲′ ∪ {(𝐶1, 𝐶2), (𝐶2, 𝐶3)}, 𝖣𝗂𝗌𝗍(𝐴, 𝐵) will be updated at Line 2 with 𝑘 + 1. □

In our paper we are interested in the distance between two arguments (since this determines whether the relation is an attack
(the distance is odd) or a defense (the distance is even)), but also in the arguments from which an argument is reachable. Both are
computed by Algorithm 1 and the next lemma shows the relation between the two.

Lemma 3. 𝖣𝗂𝗌𝗍(𝐴, 𝐵) ≠ ∅ iff 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵).

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴, 𝐵 ∈ Args. Assume that Algorithm 1 was run on  . Consider both directions
separately.

⇒ Suppose that 𝖣𝗂𝗌𝗍(𝐴, 𝐵) ≠ ∅. This direction is shown by induction on the minimal value 𝑛 in 𝖣𝗂𝗌𝗍(𝐴, 𝐵).
– If 𝑛 = 0: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 1 of the algorithm (since at Line 2 of the procedure the addition is always more

than 0) and thus 𝐴 =𝐵. By Line 1 again it follows that 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐴).
– If 𝑛 = 1: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 2 of the procedure during the first iteration of the for-loop, in which case
(𝐴, 𝐵) ∈ Att. By Line 2 it follows that 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵).

Now suppose that the statement holds for 𝑛 up to a value of 𝑘 ≥ 1.

– If 𝑛 = 𝑘 + 1: then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) was updated at Line 2 of Procedure ReReach. Therefore, during this run of ReReach, at Line 2,
𝖱𝖾𝖺𝖼𝗁(𝐵) is updated with 𝖱𝖾𝖺𝖼𝗁(𝐴). Note that by Line 1 of Algorithm 1 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐴) and hence 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵).

⇐ Now assume that 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵). We consider three cases:

– 𝐴 =𝐵, then 𝖱𝖾𝖺𝖼𝗁(𝐵) was updated at Line 1 of Algorithm 1, such that 𝐵 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵) and 0 ∈𝖣𝗂𝗌𝗍(𝐴, 𝐵).
– 𝖱𝖾𝖺𝖼𝗁(𝐵) was updated at Line 2 of Procedure ReReach, with 𝖱𝖾𝖺𝖼𝗁(𝐴). Then at Line 2, 𝖣𝗂𝗌𝗍(𝐴, 𝐵) is updated with 𝑛 + 1.

– 𝖱𝖾𝖺𝖼𝗁(𝐵) was updated at Line 2 of Procedure ReReach, with 𝖱𝖾𝖺𝖼𝗁(𝐶) and 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐶). Hence, by Proposition 13, there
is an attack-path from 𝐴 to 𝐶 and there is an attack-path from 𝐶 to 𝐵. If no attack in the path from 𝐶 to 𝐵 is used in the
attack-path from 𝐴 to 𝐶 , the procedure will call all arguments in the attack-path from 𝐴 to 𝐶 until it reaches 𝐴. At which
point 𝖣𝗂𝗌𝗍(𝐴, 𝐵) will be updated.

Suppose now that there is some (𝐷1, 𝐷2) ∈ Att, such that (𝐷1, 𝐷2) appears in both paths. Then there is an attack-path from 𝐴
to 𝐷1 (along the attacks (𝐴, 𝐸𝑘), … , (𝐸1,𝐷1), where 𝐸𝑘, … , 𝐸1 ∈ Args) and there is an attack-path from 𝐷1 to 𝐵. Without loss
of generality, suppose that (𝐷1, 𝐷2) is such that there is no attack (𝐷′

1, 𝐷
′
2) in the attack-path from 𝐴 to 𝐷1 that also appears

in the attack-path from 𝐶 to 𝐵 (otherwise the described procedure has to be repeated). Since there is an attack-path from
𝐷1 to 𝐵 (say of length 𝑙𝑑), by Lemma 2, ReReach(𝐵, 𝐷1, 𝑙𝑑 , 𝖲) is called. By assumption {(𝐴, 𝐸𝑘), … , (𝐸1, 𝐷1)} ∩ 𝖲 = ∅. Hence,
for each 𝑖 ∈ {1, … , 𝑘}, during the call for ReReach(𝐵, 𝐷1, 𝑙𝑑 , 𝖲), ReReach(𝐵, 𝐸𝑖, 𝑙𝑑 + 𝑖, 𝖲 ∪ {(𝐸𝑖, 𝐸𝑖−1), … , (𝐸1, 𝐷1)}) is called.
At ReReach(𝐵, 𝐸𝑘, 𝑙𝑑 + 𝑘, 𝖲 ∪ {(𝐸𝑘, 𝐸𝑘−1), … , (𝐸1, 𝐷1)}), note that (𝐴, 𝐸𝑘) ∉ 𝖲 ∪ {(𝐸𝑘, 𝐸𝑘−1),… , (𝐸1, 𝐷1)}. Hence 𝖱𝖾𝖺𝖼𝗁(𝐵) is
updated with 𝖱𝖾𝖺𝖼𝗁(𝐴) and 𝖣𝗂𝗌𝗍(𝐴, 𝐵) is updated with 𝑙𝑑 + 𝑘 + 1. Therefore 𝖣𝗂𝗌𝗍(𝐴, 𝐵) ≠ ∅.

This shows that, in any situation, if 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵) then 𝖣𝗂𝗌𝗍(𝐴, 𝐵) ≠ ∅. □

With the above results we have the proof of Theorem 1:

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴, 𝐵 ∈ Args and suppose that Algorithm 1 was run on  . Then:

1. Soundness and completeness of the algorithm follows immediately by Propositions 13 and 14.

2. By Lemma 3 we know that 𝐴 ∈ 𝖱𝖾𝖺𝖼𝗁(𝐵) iff 𝖣𝗂𝗌𝗍(𝐴, 𝐵) ≠ ∅ and by the soundness and completeness of the algorithm (i.e., the
first item) it is known that 𝑛 ∈ 𝖣𝗂𝗌𝗍(𝐴, 𝐵) iff there is an atack-path from 𝐴 to 𝐵. □

We now turn to the computational complexity of the algorithm. Note that the algorithm does not determine whether an argument
is accepted or not. It is therefore important that the extensions have been determined before running the algorithm.

Theorem 2. Algorithm 1 runs in polynomial time. In particular the time complexity is (|Args| ⋅ |Att|2).
Proof. Let  = ⟨Args,Att⟩ be an argumentation framework and suppose that Algorithm 1 was run on this framework. Then:

• The first for-call of the algorithm takes |Args| time.

• Procedure ReReach runs in |Att|2: from each attack at most all other attacks are visited exactly once (|Att|) and at most |Att|
attacks end in a single argument (|Att|).

• The procedure is called |Args| times from Algorithm 1.

This gives a total of |Args| + |Args| ⋅ |Att|2, assuming that Att ≠ ∅ (this is safe to assume since argumentation could be considered
40

interesting only when there are attacks), (|Args| ⋅ |Att|2). □

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

A.3. Proofs of the results on the variations of 𝔻

Corollary 1. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args and let 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. Then:

1. 𝖦𝗋𝖽𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) for 𝖲𝖾𝗆 ∈ {𝖦𝗋𝖽, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}.

2. 𝖲𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖲𝗌𝗍𝖻𝖠𝖼𝖼∩(𝐴) ⊆ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) ⊆ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴).
3. For each 𝖲 ∈ 𝖢𝗆𝗉𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖯𝗋𝖿𝖠𝖼𝖼∩(𝐴) such that 𝖲 ⊆ 𝖲′.

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args. Suppose that 𝐴 is accepted under 𝖲𝖾𝗆 and ⋆ ∈ {∩, ∪}.
The proof is similar to the proof of Proposition 1. This follows since any direct defender 𝐵 of 𝐴 in a 𝖲𝖾𝗆1-extension  is also a direct
defender of 𝐴 in any 𝖲𝖾𝗆2-extension that contains  . □

Corollary 2. Let  = ⟨Args,Att⟩ be an AF, let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈
{∩, ∪} and let 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀. Then 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) = {∅} and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) iff there is no 𝐵 ∈ Args such
that (𝐵, 𝐴) ∈ Att.

Proof. Let  = ⟨Args,Att⟩ be an AF, let 𝐴 ∈ Args be such that 𝐴 is accepted w.r.t. 𝖲𝖾𝗆∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}
and let 𝔻 = 𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀.

⇒ Suppose that 𝖲𝖾𝗆𝖠𝖼𝖼∩ = {∅} or 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴). The proof follows similarly to the proof for 𝔻 =
𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 in Proposition 3.

⇐ If 𝐴 is not attacked, it follows that 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴, ) = {∅} for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) and 𝖲𝖾𝗆𝖠𝖼𝖼∪(𝐴) = ∅. □

Corollary 3. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args be non-accepted, ⋆ ∈ {∩, ∪} and let 𝔻 ∈ {𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾,
𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾}. Then:

• 𝖦𝗋𝖽𝖭𝗈𝗍𝖠𝖼𝖼(𝐴) ⊆
⋂

𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).
• 𝖲𝗌𝗍𝖻𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖯𝗋𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ⊆ 𝖢𝗆𝗉𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴).

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework, 𝐴 ∈ Args be non-accepted and let ⋆ ∈ {∩, ∪}. Recall that the proof for
Proposition 4 is based on the relation between the extensions of  under the different semantics. This relation is not changed by
the variations of 𝔻. The proof remains therefore the same. □

Corollary 4. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆 ∈
{𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻,𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Then:

• if 𝔻 = 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾 then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any extension  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}; and

• if 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾 then 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = ∅ for any extension  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) or 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) = {∅} implies that for
all 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att, (𝐴, 𝐵) ∈ Att as well.

Proof. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be such that 𝐴 is non-accepted w.r.t. 𝖲𝖾𝗆 ∈
{𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋} and ⋆ ∈ {∩, ∪}. Because of our choice of semantics (i.e., completeness-based) and the fact that
𝐴 is not accepted, there is some 𝐵 ∈ Args, such that (𝐵, 𝐴) ∈ Att and 𝐴 is not defended by some  ∈ 𝖲𝖾𝗆(). Consider both items:

• let 𝔻 = 𝖭𝗈𝖣𝗂𝗋𝖣𝖾𝖿𝖾𝗇𝗌𝖾. It follows immediately that 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) ≠ ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) and 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) ≠ {∅}.

• let 𝔻 = 𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾. Suppose that 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∩(𝐴, ) = ∅ for any  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) [respectively 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) = {∅}].
Then, by Proposition 5, it follows that 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ⧵𝖭𝗈𝖲𝖾𝗅𝖿𝖣𝖾𝖿𝖾𝗇𝗌𝖾(𝐴, ) = ∅ [for all extensions  ∈ 𝖲𝖾𝗆()]. It follows
that (𝐴, 𝐵) ∈ Att, for each attacker of 𝐴. □

A.4. Proofs concerning necessity and sufficiency of explanations

Proposition 8. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 , 𝖲𝗍𝖻}
and ⋆ ∈ {∩, ∪}. Then:

• for all  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴), 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅);
•
⋂

∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) = 𝖭𝖾𝖼(𝐴, ∅).
41

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be an argument that is accepted w.r.t. 𝖲𝖾𝗆. Consider both items.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

• Since 𝐴 is accepted, there is some  ∈ 𝖲𝖾𝗆() such that 𝐴 ∈  . Let 𝖳 =𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ). By definition, 𝖳 is relevant for 𝐴 (i.e.,
all 𝐵 ∈ 𝖳 (in)directly defend 𝐴 and since 𝐵 ∈  , (𝐵, 𝐵) ∉ Att). Now suppose that there is some 𝐶 ∈ Args such that 𝐶 attacks 𝐴
and 𝐴 is not defended by 𝖳. By assumption 𝐴 ∈  . Hence there is a 𝐷 ∈  such that (𝐷, 𝐶) ∈ Att. But then 𝐷 (in)directly defends
𝐴 and therefore 𝐷 ∈ 𝖳. Thus 𝖳 defends 𝐴 against all its attackers and therefore 𝖳 ∈ 𝖲𝗎𝖿𝖿(𝐴, ∅).

• Let 𝖳 =
⋂

∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴)𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ), since 𝐴 is accepted it follows that 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) ≠ ∅. Suppose there is some 𝐵 ∈ 𝖳 which
is not necessary for the acceptance of 𝐴. Then there is an  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) such that 𝐵 ∉  . However, by definition of 𝖳,
𝐵 ∈

⋂
𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴). Hence 𝖳 is necessary for 𝐴. To see that 𝖳 contains all the necessary arguments, assume it does not. Then

there is some 𝐵 ∈ Args such that 𝐵 ∉ 𝖳 but 𝐵 is necessary for the acceptance of 𝐴. However, since 𝐵 ∉ 𝖳, there is some
 ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) such that 𝐵 ∉  , but 𝐴 ∈  . A contradiction. □

Proposition 7. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be accepted w.r.t. some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,
𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

1. For all 𝖲 ∈ 𝖲𝗎𝖿𝖿(𝐴, ∅), 𝖲 ∈ 𝖠𝖽𝗆();
2. 𝖲𝗎𝖿𝖿 (𝐴, ∅) = {𝐴} iff there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att or {𝐴} defends itself against all its attackers;

3. 𝖭𝖾𝖼(𝐴, ∅) = {𝐴} iff there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att, or {𝐴} defends itself against all its attackers or it holds that ⋂
𝖲𝗎𝖿𝖿(𝐴, ∅) = {𝐴}.

4. 𝖭𝖾𝖼(𝐴, ∅) =
⋂

𝖲𝗎𝖿𝖿 (𝐴, ∅).

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be accepted w.r.t. some 𝖲𝖾𝗆.

1. Let 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴). By definition 𝖲 is conflict-free and defends 𝖲 against all its attackers. It follows that 𝖲 ∈ 𝖠𝖽𝗆().
2. Suppose that 𝖲𝗎𝖿𝖿(𝐴, ∅) = {𝐴}. Then {𝐴} is sufficient for the acceptance of 𝐴, from which it follows that 𝐴 attacks all its

attackers, or ∅ is sufficient for the acceptance of 𝐴. In the latter case, there is no 𝖲 ⊆ Args such that 𝖲 is relevant for 𝐴 and
defends 𝐴 against all its arguments. Since 𝐴 is accepted by assumption, it follows that 𝐴 is not attacked at all. Now suppose
that there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att. Then there is no 𝖲 ⊆ Args that is relevant for 𝐴 and hence ∅ is sufficient for the
acceptance of 𝐴 and therefore 𝖲𝗎𝖿𝖿 (𝐴, ∅) = {𝐴}.

3. First suppose that 𝖭𝖾𝖼(𝐴, ∅) = {𝐴}. Then there is no argument relevant for 𝐴, other than possibly 𝐴 itself (from which it follows
that there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att or if (𝐵, 𝐴) ∈ Att then (𝐴, 𝐵) ∈ Att) or there is no 𝐵 ∈ Args ⧵ {𝐴} such that
𝐵 ∈

⋂
𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴). Note that for each 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅) there is some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) such that 𝖲 ⊆  . Since

⋂
𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴) = {𝐴}

it follows that
⋂

𝖲𝗎𝖿𝖿 (𝐴, ∅) = {𝐴} as well.

For the other direction suppose first that 𝐴 is not attacked at all, then there is no argument relevant for 𝐴 from which it follows
that 𝖭𝖾𝖼(𝐴, ∅) = {𝐴}. Now suppose that 𝖲𝗎𝖿𝖿(𝐴, ∅) = {𝐴}. By assumption 𝐴 is accepted and 𝐴 is attacked, hence 𝖲𝗎𝖿𝖿(𝐴, ∅) = {𝐴}
iff 𝐴 attacks all its attackers. It follows that for each 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅) and for each 𝐵 ∈ 𝖲 there is an 𝖲′ ∈ 𝖲𝗎𝖿𝖿(𝐴, ∅) such that 𝐵 ∉ 𝖲′

and therefore also an  ∈ 𝖠𝖽𝗆() with 𝐵 ∉  but 𝐴 ∈  . Therefore none of the arguments is necessary: 𝖭𝖾𝖼(𝐴, ∅) = {𝐴}.

4. In view of the above two items, suppose that 𝐴 is attacked by some argument. Let 𝐵 ∈ 𝖭𝖾𝖼(𝐴, ∅) and suppose that 𝐵 ∉⋂
𝖲𝗎𝖿𝖿(𝐴, ∅). Then there is some 𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅) such that 𝐵 ∉ 𝖲. Note that 𝖲 ∈ 𝖠𝖽𝗆(). However, 𝐵 ∉ 𝖲, a contradiction

with 𝐵 ∈ 𝖭𝖾𝖼(𝐴, ∅). □

Proposition 9. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be non-accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽,
𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

• 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅) ≠ ∅;

• 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) = ∅ implies that there are at least two direct attackers of 𝐴.

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be an argument that is not accepted w.r.t. 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆,𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗌𝗍𝖻}.

• Suppose that 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴) = ∅. Then there is no 𝖲 ⊆ Args that is relevant for 𝐴 and in which 𝐵 ∈ Args (in)directly attacks 𝐴. It
follows that there is no 𝐵 ∈ Args such that (𝐵, 𝐴) ∈ Att. A contradiction with the assumption that 𝐴 is non-accepted and that
(𝐴, 𝐴) ∉ Att.

• It follows that there are 𝐵1, … , 𝐵𝑛 ∈ Args such that (𝐵1, 𝐴), … , (𝐵𝑛, 𝐴) ∈ Att. Assume that 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) = ∅ but that 𝑛 = 1. Since
by assumption in this section (𝐴, 𝐴) ∉ Att, it follows that 𝐴 is not attacked in ↓𝐵1

and should therefore be accepted in any
complete extension. Hence 𝑛 ≥ 2. □

Lemma 4. Let  = ⟨Args,Att⟩,  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖲𝗍𝖻} and 𝐴 ∈ Args. If there is a 𝐵 ∈  such that
(𝐵, 𝐴) ∈ Att, then  ∈ 𝖲𝖾𝗆(↓𝐴).20
42

20 For 𝖲𝖾𝗆 =𝖦𝗋𝖽 this lemma was shown in [14].

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

Proof. Let  = ⟨Args,Att⟩,  ∈ 𝖲𝖾𝗆() for some 𝖲𝖾𝗆 and 𝐴, 𝐵 ∈ Args such that 𝐵 ∈  and (𝐵, 𝐴) ∈ Att. Note that  is still
admissible in ↓𝐴 since no new attacks are added.

𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖯𝗋𝖿}. Now suppose there is some 𝐶 ∈ Args such that 𝐶 ∉  but 𝐶 is defended by  in ↓𝐴. If 𝐶 is not attacked
at all in ↓𝐴, since 𝐶 ∉  , (𝐴, 𝐶) ∈ Att, but then  defends 𝐶 in  , a contradiction. Hence there is some 𝐷 ∈ Args such that
(𝐷, 𝐶) ∈ Att and  defends against this attack in ↓𝐴, but then  would defend 𝐶 in  as well. Again a contradiction. Hence 
is complete in ↓𝐴 and if  was maximally complete in  it is still maximally complete in ↓𝐴.

𝖲𝖾𝗆 = 𝖲𝗌𝗍𝖻. Any argument, other than 𝐴, attacked by  is still attacked by  in ↓𝐴. Since  is still complete, it follows that 
is also still semi-stable. □

Proposition 10. Let  = ⟨Args,Att⟩ be an argumentation framework and let 𝐴 ∈ Args be an argument that is not accepted w.r.t.
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽, 𝖯𝗋𝖿 ,𝖲𝗍𝖻} and ⋆ ∈ {∩, ∪}. Then:

• for all  ∈ 𝖲𝖾𝗆() such that 𝐴 ∉  , 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅);
• 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) ⊆

⋂
∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ).

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be non-accepted w.r.t. 𝖲𝖾𝗆∈ {𝖢𝗆𝗉,𝖦𝗋𝖽,𝖯𝗋𝖿 ,𝖲𝗌𝗍𝖻}. Consider both items:

• By definition of 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍, 𝖳 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) is relevant for 𝐴. We show that there is a 𝐵 ∈ 𝖳 such that (𝐵, 𝐴) ∈ Att.
Suppose there is no such 𝐵, then 𝐴 is not attacked at all or  defends 𝐴 against all its direct attackers and therefore against
all its attackers, both are a contradiction with the completeness of  . Hence there is such a 𝐵 ∈ 𝖳. From which it follows that
𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴).

• Let 𝐵 ∈ 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴) and suppose that 𝐵 ∉
⋂

∈𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴)𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴). Then there is some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴) such that
𝐵 ∉ 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ). By assumption, 𝐵 is relevant for 𝐴 and thus (in)directly attacks 𝐴. From which it follows that there is
some 𝐶 ∈  such that (𝐶, 𝐵) ∈ Att. By Lemma 4,  ∈ 𝖲𝖾𝗆(↓𝐵), a contradiction with the assumption that 𝐵 ∈ 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴). □

Proposition 11. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args and let ⪯∈ {⊆, ≤}. Then, for 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 and
𝖲𝖾𝗆 ∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗍𝖻, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}:

• for every 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) there is an 𝖲′ ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩⪯(𝐴) for 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯ such that 𝖲′ ⪯ 𝖲;

• where 𝖲𝖾𝗆 = 𝖠𝖽𝗆, for every 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩⪯(𝐴) where 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯ also 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴);
• for all 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴), 𝖭𝖾𝖼(𝐴, ∅) ⊆ 𝖲.

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be accepted w.r.t. 𝖲𝖾𝗆∈ {𝖠𝖽𝗆, 𝖢𝗆𝗉, 𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖲𝗌𝗍𝖻}:

• Let 𝖲 ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩(𝐴) and 𝔻 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀, then 𝖲 = 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) for some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁(𝐴). By Proposition 8 it follows that
𝖲 ∈ 𝖲𝗎𝖿𝖿 (𝐴, ∅). Then there is some 𝖲′ ∈𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯(𝐴, ∅) such that 𝖲′ ⪯ 𝖲 and 𝖲′ ∈ 𝖲𝖾𝗆𝖠𝖼𝖼∩⪯(𝐴) for 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯, for any of the
considered semantics.

• Let 𝖲𝖾𝗆 = 𝖠𝖽𝗆 and 𝖲 ∈ 𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯(𝐴, ∅). By Proposition 7, 𝖲 ∈ 𝖠𝖽𝗆() and by definition of a sufficient set of arguments,
𝖲 defends 𝐴 against all its attackers. Therefore 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, 𝖲) = 𝖲. Suppose now that 𝖲 is such that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, 𝖲) is not
⪯-minimal among  ∈ 𝖠𝖽𝗆(). Then there is some  ∈ 𝖠𝖽𝗆𝖶𝗂𝗍𝗁(𝐴) such that 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ≺ 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, 𝖲). By Proposi-

tion 8, 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ∈ 𝖲𝗎𝖿𝖿(𝐴, ∅). A contradiction since 𝖲 ∈𝖬𝗂𝗇𝖲𝗎𝖿𝖿⪯(𝐴, ∅) and 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐴, ) ≺ 𝖲.

• This follows immediately from the second item in Proposition 8. □

Proposition 12. Let  = ⟨Args,Att⟩ be an argumentation framework, let 𝐴 ∈ Args and let ⪯∈ {≤, ⊆}. Then, for 𝔻 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍 and
𝖲𝖾𝗆 ∈ {𝖢𝗆𝗉,𝖯𝗋𝖿 , 𝖨𝖽𝗅, 𝖲𝗌𝗍𝖻, 𝖤𝗀𝗋}:

• for every 𝖲 ∈ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) there is an 𝖲′ ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍𝖠𝖼𝖼∪⪯(𝐴) where 𝔻 =𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⪯ such that 𝖲′ ⪯ 𝖲.

• for all 𝖲 ∈ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴), 𝖭𝖾𝖼𝖭𝗈𝗍(𝐴, ∅) ⊆ 𝖲.

Proof. Let  = ⟨Args,Att⟩ be an AF and let 𝐴 ∈ Args be non-accepted w.r.t. 𝖲𝖾𝗆∈ {𝖢𝗆𝗉, 𝖦𝗋𝖽,𝖯𝗋𝖿 , 𝖲𝗌𝗍𝖻}:

• Let 𝖲 ∈ 𝖲𝖾𝗆𝖭𝗈𝗍𝖠𝖼𝖼∪(𝐴) for 𝔻 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍. Note that we have 𝖲 = 𝖭𝗈𝖣𝖾𝖿𝖠𝗀𝖺𝗂𝗇𝗌𝗍(𝐴, ) for some  ∈ 𝖲𝖾𝗆𝖶𝗂𝗍𝗁𝗈𝗎𝗍(𝐴). Hence,
by Proposition 10 it follows that 𝖲 ∈ 𝖲𝗎𝖿𝖿𝖭𝗈𝗍(𝐴, ∅). Therefore, there is some 𝖲′ ∈𝖬𝗂𝗇𝖲𝗎𝖿𝖿𝖭𝗈𝗍⪯(𝐴, ∅) such that 𝖲′ ⪯ 𝖲, for any of
the considered semantics.
43

• This follows from the second item in Proposition 10. □

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝐴1𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝐴7𝐴8 𝐴9𝐴10

𝐵1 𝐵2 𝐵3 𝐵4

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6

Fig. 10. Graphical representation of the framework 9 on online trade fraud.

Appendix B. Formal construction explanations online trade fraud

In this appendix we collect the preferred extensions and provide a formal construction and an exhaustive list of the acceptance
explanations of the arguments 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6. See Fig. 10 for a graphical representation of the argumentation framework.
The argumentation framework 9 has 35 preferred extensions:

1 ={𝐴1,𝐴3,𝐴5,𝐴7,𝐴9,𝐵1,𝐶1} 2 = {𝐴1,𝐴3,𝐴5,𝐴7,𝐴10,𝐵1,𝐶6}

3 ={𝐴1,𝐴3,𝐴5,𝐴8,𝐴9,𝐵1,𝐶1} 4 = {𝐴1,𝐴3,𝐴5,𝐴8,𝐴10,𝐵1,𝐶6}

5 ={𝐴1,𝐴3,𝐴6,𝐴7,𝐴9,𝐵1,𝐶1} 6 = {𝐴1,𝐴3,𝐴6,𝐴7,𝐴10,𝐵1,𝐶6}

7 ={𝐴1,𝐴3,𝐴6,𝐴8,𝐴9,𝐵1,𝐶1} 8 = {𝐴1,𝐴3,𝐴6,𝐴8,𝐴10,𝐵1,𝐶6}

9 ={𝐴1,𝐴4,𝐴5,𝐴7,𝐴9,𝐶5} 10 = {𝐴1,𝐴4,𝐴5,𝐴7,𝐴10,𝐶6}

11 ={𝐴1,𝐴4,𝐴5,𝐴8,𝐴9,𝐶5} 12 = {𝐴1,𝐴4,𝐴5,𝐴8,𝐴10,𝐶6}

13 ={𝐴1,𝐴4,𝐴6,𝐴7,𝐴9,𝐶5} 14 = {𝐴1,𝐴4,𝐴6,𝐴7,𝐴10,𝐶6}

15 ={𝐴1,𝐴4,𝐴6,𝐴8,𝐴9,𝐶5} 16 = {𝐴1,𝐴4,𝐴6,𝐴8,𝐴10,𝐶6}

17 ={𝐴2,𝐴3,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3} 18 = {𝐴2,𝐴3,𝐴5,𝐴7,𝐴10,𝐵3,𝐶6}

19 ={𝐴2,𝐴3,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4} 20 = {𝐴2,𝐴3,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6}

21 ={𝐴2,𝐴3,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2} 22 = {𝐴2,𝐴3,𝐴6,𝐴7,𝐴10,𝐵2,𝐶6}

23 ={𝐴2,𝐴3,𝐴6,𝐴8,𝐴9,𝐵2,𝐶2} 24 = {𝐴2,𝐴3,𝐴6,𝐴8,𝐴10,𝐵2,𝐶6}

25 ={𝐴2,𝐴4,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3} 26 = {𝐴2,𝐴4,𝐴5,𝐴7,𝐴9,𝐵3,𝐶5}

27 ={𝐴2,𝐴4,𝐴5,𝐴7,𝐴10,𝐵3,𝐶6} 28 = {𝐴2,𝐴4,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4,𝐶5}

29 ={𝐴2,𝐴4,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6} 30 = {𝐴2,𝐴4,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2}

31 ={𝐴2,𝐴4,𝐴6,𝐴7,𝐴9,𝐵2,𝐶5} 32 = {𝐴2,𝐴4,𝐴6,𝐴7,𝐴10,𝐵2,𝐶6}

33 ={𝐴2,𝐴4,𝐴6,𝐴8,𝐴9,𝐵2,𝐶2} 34 = {𝐴2,𝐴4,𝐴6,𝐴8,𝐴9,𝐵2,𝐶5}
44

35 ={𝐴2,𝐴4,𝐴6,𝐴8,𝐴10,𝐵2,𝐶6}.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

In the discussion of the example we are interested in explanations for it is (not) a case of fraud: the (non-)acceptance of the
arguments 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6. We first provide the sets 𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀 for each of these arguments:

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶1) = {𝐴1,𝐴2,𝐴3,𝐴5,𝐴6,𝐴7,𝐴9,𝐴10,𝐵2,𝐵3,𝐶1,𝐶2,𝐶3}

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶2) = {𝐴1,𝐴2,𝐴3,𝐴5,𝐴6,𝐴7,𝐴9,𝐴10,𝐵2,𝐵3,𝐶1,𝐶2,𝐶3}

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶3) = {𝐴1,𝐴2,𝐴3,𝐴5,𝐴6,𝐴7,𝐴9,𝐴10,𝐵2,𝐵3,𝐶1,𝐶2,𝐶3}

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶4) = {𝐴1,𝐴2,𝐴4,𝐴5,𝐴6,𝐴8,𝐴9,𝐴10,𝐵4,𝐶4,𝐶5,𝐶6}

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶5) = {𝐴1,𝐴2,𝐴4,𝐴5,𝐴6,𝐴8,𝐴9,𝐴10,𝐵4,𝐶4,𝐶5,𝐶6}

𝖣𝖾𝖿𝖾𝗇𝖽𝗂𝗇𝗀(𝐶6) = {𝐴1,𝐴2,𝐴4,𝐴5,𝐴6,𝐴8,𝐴9,𝐴10,𝐵4,𝐶4,𝐶5,𝐶6}.

Based on the above sets we can now determine the basic argument explanations for their credulous acceptance:

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶1,1) = {𝐴1,𝐴3,𝐴5,𝐴7,𝐴9,𝐶1} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶1,3) = {𝐴1,𝐴3,𝐴5,𝐴9,𝐶1}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶1,5) = {𝐴1,𝐴3,𝐴6,𝐴7,𝐴9,𝐶1} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶1,7) = {𝐴1,𝐴3,𝐴6,𝐴9,𝐶1}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶2,21) = {𝐴2,𝐴3,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶2,23) = {𝐴2,𝐴3,𝐴6,𝐴9,𝐵2,𝐶2}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶2,30) = {𝐴2,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶2,33) = {𝐴2,𝐴6,𝐴9,𝐵2,𝐶2}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶3,17) = {𝐴2,𝐴3,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶3,25) = {𝐴2,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶4,19) = {𝐴2,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶4,28) = {𝐴2,𝐴4,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4,𝐶5}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,9) = {𝐴1,𝐴4,𝐴5,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,11) = {𝐴1,𝐴4,𝐴5,𝐴8,𝐴9,𝐶5},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,13) = {𝐴1,𝐴4,𝐴6,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,15) = {𝐴1,𝐴4,𝐴6,𝐴8,𝐴9,𝐶5},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,26) = {𝐴2,𝐴4,𝐴5,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,28) = {𝐴2,𝐴4,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4,𝐶5},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,31) = {𝐴2,𝐴4,𝐴6,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶5,34) = {𝐴2,𝐴4,𝐴6,𝐴8,𝐴9,𝐶5}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,2) = {𝐴1,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,4) = {𝐴1,𝐴5,𝐴8,𝐴10,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,6) = {𝐴1,𝐴6,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,8) = {𝐴1,𝐴6,𝐴8,𝐴10,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,10) = {𝐴1,𝐴4,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,12) = {𝐴1,𝐴4,𝐴8,𝐴10,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,14) = {𝐴1,𝐴4,𝐴6,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,16) = {𝐴1,𝐴4,𝐴6,𝐴8,𝐴10,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,18) = {𝐴2,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,20) = {𝐴2,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,22) = {𝐴2,𝐴6,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,24) = {𝐴2,𝐴6,𝐴8,𝐴10,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,27) = {𝐴2,𝐴4,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,29) = {𝐴2,𝐴4,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6},

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,32) = {𝐴2,𝐴4,𝐴6,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪(𝐶6,35) = {𝐴2,𝐴4,𝐴6,𝐴8,𝐴10,𝐶6}.

For ⪯-minimal explanations (with ⪯∈ {≤, ⊆}), we use the notation 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯, to denote the possible ⪯-minimal explanations from
Section 6.1:

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶1,3) = {𝐴1,𝐴3,𝐴5,𝐴9,𝐶1} 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶1,7) = {𝐴1,𝐴3,𝐴6,𝐴9,𝐶1}

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶2,33) = {𝐴2,𝐴6,𝐴9,𝐵2,𝐶2}

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶3,25) = {𝐴2,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶4,19) = {𝐴2,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4}

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶5,9) = {𝐴1,𝐴4,𝐴5,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶5,13) = {𝐴1,𝐴4,𝐴6,𝐴9,𝐶5},

𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶5,26) = {𝐴2,𝐴4,𝐴5,𝐴9,𝐶5} 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯(𝐶5,31) = {𝐴2,𝐴4,𝐴6,𝐴9,𝐶5}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(𝐶6,2) = {𝐴1,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪

≤
(𝐶6,6) = {𝐴1,𝐴6,𝐴10,𝐶6}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(𝐶6,18) = {𝐴2,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪

≤
(𝐶6,22) = {𝐴2,𝐴6,𝐴10,𝐶6}}

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝐶6,2) = {{𝐴1,𝐴5,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝐶6,6) = {𝐴1,𝐴6,𝐴10,𝐶6}

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝐶6,16) = {𝐴1,𝐴4,𝐴8,𝐴10,𝐶6} 𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝐶6,18) = {𝐴2,𝐴5,𝐴10,𝐶6}
∪

45

𝖯𝗋𝖿𝖠𝖼𝖼⊆(𝐶6,22) = {𝐴2,𝐴6,𝐴10,𝐶6}}.

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

For necessity and ≤-minimal sufficiency we obtain:

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶1,∅) = {{𝐴1,𝐴3,𝐴6,𝐴9,𝐶1},{𝐴1,𝐴3,𝐴7,𝐴9,𝐶1},{𝐴1,𝐴3,𝐴9,𝐶1}}

𝖭𝖾𝖼(𝐶1,∅) = {𝐴1,𝐴3,𝐴9,𝐶1}

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶2,∅) = {{𝐴2,𝐴3,𝐴6,𝐴9,𝐵2,𝐶2},{𝐴2,𝐴6,𝐴9,𝐵2,𝐶2}}

𝖭𝖾𝖼(𝐶2,∅) = {𝐴2,𝐴6,𝐴9,𝐵2,𝐶2}

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶3,∅) = {{𝐴2,𝐴3,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3},{𝐴2,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}}

𝖭𝖾𝖼(𝐶3,∅) = {𝐴2,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶4,∅) = {{𝐴2,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4},{𝐴5,𝐴8,𝐴9,𝐵4,𝐶4}}

𝖭𝖾𝖼(𝐶4,∅) = {𝐴5,𝐴8,𝐴9,𝐶4}

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶5,∅) = {{𝐴4,𝐴9,𝐶5}}

𝖭𝖾𝖼(𝐶5,∅) = {𝐴4,𝐴9,𝐶5}

𝖬𝗂𝗇𝖲𝗎𝖿𝖿 (𝐶6,∅) = 𝖭𝖾𝖼(𝐶6,∅) = {𝐴10,𝐶6}.

We now turn to the explanations for the credulous acceptance of fraud respectively not fraud (i.e., 𝑓 and ¬𝑓). First for 𝔽 = 𝗂𝖽:

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,1) = {
⟨
𝐶1,{𝐴1,𝐴3,𝐴5,𝐴7,𝐴9,𝐶1}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,3) = {
⟨
𝐶1,{𝐴1,𝐴3,𝐴5,𝐴9,𝐶1}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,5) = {
⟨
𝐶1,{𝐴1,𝐴3,𝐴6,𝐴7,𝐴9,𝐶1}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,7) = {
⟨
𝐶1,{𝐴1,𝐴3,𝐴6,𝐴9,𝐶1}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,17) = {
⟨
𝐶3,{𝐴2,𝐴3,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,21) = {
⟨
𝐶2,{𝐴2,𝐴3,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,23) = {
⟨
𝐶2,{𝐴2,𝐴3,𝐴6,𝐴9,𝐵2,𝐶2}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,25) = {
⟨
𝐶3,{𝐴2,𝐴5,𝐴7,𝐴9,𝐵3,𝐶3}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,30) = {
⟨
𝐶2,{𝐴2,𝐴6,𝐴7,𝐴9,𝐵2,𝐶2}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,33) = {
⟨
𝐶2,{𝐴2,𝐴6,𝐴9,𝐵2,𝐶2}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,2) = {⟨𝐶6,{𝐴1,𝐴5,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,4) = {⟨𝐶6,{𝐴1,𝐴5,𝐴8,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,6) = {⟨𝐶6,{𝐴1,𝐴6,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,8) = {⟨𝐶6,{𝐴1,𝐴6,𝐴8,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,9) = {

⟨
𝐶5,{𝐴1,𝐴4,𝐴5,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,10) = {⟨𝐶6,{𝐴1,𝐴4,𝐴5,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,11) = {

⟨
𝐶5,{𝐴1,𝐴4,𝐴5,𝐴8,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,12) = {⟨𝐶6,{𝐴1,𝐴4,𝐴8,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,13) = {

⟨
𝐶5,{𝐴1,𝐴4,𝐴6,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,14) = {⟨𝐶6,{𝐴1,𝐴4,𝐴6,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,15) = {

⟨
𝐶5,{𝐴1,𝐴4,𝐴6,𝐴8,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,16) = {⟨𝐶6,{𝐴1,𝐴4,𝐴6,𝐴8,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,18) = {⟨𝐶6,{𝐴2,𝐴5,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,19) = {

⟨
𝐶4,{𝐴2,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,20) = {⟨𝐶6,{𝐴2,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6}⟩}

46

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,22) = {⟨𝐶6,{𝐴2,𝐴6,𝐴10,𝐶6}⟩}

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,24) = {⟨𝐶6,{𝐴2,𝐴6,𝐴8,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,26) = {

⟨
𝐶5,{𝐴2,𝐴4,𝐴5,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,27) = {⟨𝐶6,{𝐴2,𝐴4,𝐴5,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,28) = {

⟨
𝐶4,{𝐴2,𝐴4,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4,𝐶5}

⟩
,
⟨
𝐶5,{𝐴2,𝐴4,𝐴5,𝐴8,𝐴9,𝐵4,𝐶4,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,29) = {⟨𝐶6,{𝐴2,𝐴4,𝐴5,𝐴8,𝐴10,𝐵4,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,31) = {

⟨
𝐶5,{𝐴2,𝐴4,𝐴6,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,32) = {⟨𝐶6,{𝐴2,𝐴4,𝐴6,𝐴10,𝐶6}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,34) = {

⟨
𝐶5,{𝐴2,𝐴4,𝐴6,𝐴8,𝐴9,𝐶5}

⟩
}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,35) = {⟨𝐶6,{𝐴2,𝐴4,𝐴6,𝐴8,𝐴10,𝐶6}⟩}
As discussed in Section 5.3, we can also choose 𝔽 = 𝖯𝗋𝖾𝗆. The explanations for the credulous acceptance of 𝑓 and ¬𝑓 are then:

𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,1) = {⟨{cpd, fake, cd},{cpd, fake, con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,3) = {⟨{cpd, fake, cd},{cpd, fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,5) = {⟨{cpd, fake, cd},{cpd, fake,¬con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,7) = {⟨{cpd, fake, cd},{cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,17) = {⟨{¬cpd, con, fcon, cd},{¬cpd, fake, con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,21) = {⟨{¬cpd,¬con, cd},{¬cpd, fake,¬con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,23) = {⟨{¬cpd,¬con, cd},{¬cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,25) = {⟨{¬cpd, con, fcon, cd},{¬cpd, con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,30) = {⟨{¬cpd,¬con, cd},{¬cpd,¬con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(𝑓,33) = {⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,2) = {⟨{¬cd},{cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,4) = {⟨{¬cd},{cpd, con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,6) = {⟨{¬cd},{cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,8) = {⟨{¬cd},{cpd,¬con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,9) = {⟨{¬fake, cd},{cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,10) = {⟨{¬cd},{cpd,¬fake, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,11) = {⟨{¬fake, cd},{cpd,¬fake, con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,12) = {⟨{¬cd},{cpd,¬fake, con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,13) = {⟨{¬fake, cd},{cpd,¬fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,14) = {𝑡𝑢𝑝𝑙𝑒{¬cd},{cpd,¬fake,¬con,¬cd}}

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,15) = {⟨{¬fake, cd},{cpd,¬fake,¬con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,16) = {⟨{¬cd},{cpd,¬fake,¬con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,18) = {⟨{¬cd},{¬cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,19) = {⟨{¬cpd, con,¬fcon, cd},{¬cpd, con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,20) = {⟨{¬cd},{¬cpd, con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,22) = {⟨{¬cd},{¬cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,24) = {⟨{¬cd},{¬cpd,¬con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,26) = {⟨{¬fake, cd},{¬cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,27) = {⟨{¬cd},{¬cpd,¬fake, con,¬cd}⟩}
47

𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,28) = {⟨{¬cpd, con,¬fcon, cd},{¬cpd,¬fake, con,¬fcon, cd}⟩ ,

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

⟨{¬fake, cd},{¬cpd,¬fake, con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,29) = {⟨{¬cd},{¬cpd,¬fake, con,¬fcon,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,31) = {⟨{¬fake, cd},{¬cpd,¬fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,32) = {⟨{¬cd},{¬cpd,¬fake,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,34) = {⟨{¬fake, cd},{¬cpd,¬fake,¬con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪(¬𝑓,35) = {⟨{¬cd},{¬cpd,¬fake,¬con,¬fcon,¬cd}⟩}

Like for argument explanations, we will first look at the minimal explanations, again using the notation 𝖯𝗋𝖿𝖠𝖼𝖼∪⪯ to denote the
possible ⪯-minimal explanations:

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(𝑓,33) = ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,3) = {⟨{cpd, fake, cd},{cpd, fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,7) = {⟨{cpd, fake, cd},{cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,23) = {⟨{¬cpd,¬con, cd},{¬cpd, fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,25) = {⟨{¬cpd, con, fcon, cd},{¬cpd, con, fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(𝑓,33) = ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩
𝖯𝗋𝖿𝖠𝖼𝖼∪

≤
(¬𝑓,2) = {⟨{¬cd},{cpd, con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,6) = {⟨{¬cd},{cpd,¬con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,18) = {⟨{¬cd},{¬cpd, con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪
≤
(¬𝑓,22) = {⟨{¬cd},{¬cpd,¬con,¬cd}⟩}

𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,2) = {⟨{¬cd},{cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,6) = {⟨{¬cd},{cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,9) = {⟨{¬fake, cd},{cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,13) = {⟨{¬fake, cd},{cpd,¬fake,¬con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,18) = {⟨{¬cd},{¬cpd, con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,19) = {⟨{¬cpd, con,¬fcon, cd},{¬cpd, con,¬fcon, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,22) = {⟨{¬cd},{¬cpd,¬con,¬cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,26) = {⟨{¬fake, cd},{¬cpd,¬fake, con, cd}⟩}
𝖯𝗋𝖿𝖠𝖼𝖼∪⊆(¬𝑓,31) = {⟨{¬fake, cd},{¬cpd,¬fake,¬con, cd}⟩}

Finally, we turn to necessity and ≤-minimal sufficiency:

Minimal sufficiency: 𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪
≤
(𝑓,∅) = {⟨{cpd, fake, cd},{cpd, fake, cd}⟩ , ⟨{¬cpd,¬con, cd},{¬cpd,¬con, cd}⟩}

Necessity: 𝖭𝖾𝖼𝖠𝖼𝖼∪(𝑓,∅) = ⟨{cd},{cd}⟩
Minimal sufficiency: 𝖲𝗎𝖿𝖿𝖠𝖼𝖼∪

≤
(¬𝑓,∅) = {⟨{¬cd},{¬cd}⟩}

Necessity: 𝖭𝖾𝖼𝖠𝖼𝖼∪(¬𝑓,∅) = ∅.

References

[1] C. Antaki, I. Leudar, Explaining in conversation: towards an argument model, Eur. J. Soc. Psychol. 22 (2) (1992) 181–194.

[2] O. Arieli, A. Borg, J. Heyninck, C. Straßer, Logic-based approaches to formal argumentation, in: D. Gabbay, M. Giacomin, G.R. Simari, M. Thimm (Eds.),
Handbook of Formal Argumentation, vol. 2, College Publications, 2021, pp. 719–850.

[3] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. Simari, M. Thimm, S. Villata, Towards artificial argumentation, AI Mag. 38 (3) (2017)
25–36.

[4] K. Atkinson, T. Bench-Capon, D. Bollegala, Explanation in AI and law: past, present and future, Artif. Intell. 289 (2020) 103387.

[5] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their semantics, in: P. Baroni, D. Gabay, M. Giacomin, L. van der Torre (Eds.),
Handbook of Formal Argumentation, College Publications, 2018, pp. 159–236.

[6] P. Baroni, A. Rago, F. Toni, From fine-grained properties to broad principles for gradual argumentation: a principled spectrum, Int. J. Approx. Reason. 105
(2019) 252–286.

[7] R. Baumann, S. Doutre, J.-G. Mailly, J. Wallner, Enforcement in formal argumentation, in: D.M. Gabbay, M. Giacomin, G.R. Simari, M. Thimm (Eds.), Handbook
48

of Formal Argumentation, vol. 2, College Publications, 2021, pp. 445–510.

http://refhub.elsevier.com/S0888-613X(24)00030-6/bib5A38BA469FC36BBF2F67E00A1DD3F073s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib19DD245516E1814A6F5AB454D7843A39s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib19DD245516E1814A6F5AB454D7843A39s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0FACFBBAEDEF776EDA9BD89F5E3AD340s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0FACFBBAEDEF776EDA9BD89F5E3AD340s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib00A823835B187179C426A76548BC26F2s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib45B620868CAD70E4064A268F562FCE0Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib45B620868CAD70E4064A268F562FCE0Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib450F2EB00ABBA3968FA2647186CB67AAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib450F2EB00ABBA3968FA2647186CB67AAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib47E18EFE2BA0A314A88C9DDBBC7166E6s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib47E18EFE2BA0A314A88C9DDBBC7166E6s1

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

[8] T. Bench-Capon, P. Dunne, Argumentation in artificial intelligence, Artif. Intell. 171 (10) (2007) 619–641.

[9] P. Besnard, A. Garcia, A. Hunter, S. Modgil, H. Prakken, G. Simari, F. Toni, Introduction to structured argumentation, Argument Comput. 5 (1) (2014) 1–4.

[10] P. Besnard, S. Doutre, T. Duchatelle, M. Lagasquie-Schiex, Explaining semantics and extension membership in abstract argumentation, Intell. Syst. Appl. 16
(2022) 200118.

[11] F. Bex, D. Walton, Combining explanation and argumentation in dialogue, Argument Comput. 7 (1) (2016) 55–68.

[12] F. Bex, B. Testerink, J. Peters, AI for online criminal complaints: from natural dialogues to structured scenarios, in: Workshop Proceedings of Artificial Intelligence
for Justice at ECAI 2016, 2016, pp. 22–29.

[13] E. Black, N. Maudet, S. Parsons, Argumentation-based dialogue, in: D. Gabbay, M. Giacomin, G.R. Simari, M. Thimm (Eds.), Handbook of Formal Argumentation,
vol. 2, College Publications, 2021, pp. 511–575.

[14] G. Boella, S. Kaci, L. van der Torre, Dynamics in argumentation with single extensions: abstraction principles and the grounded extension, in: C. Sossai, G.
Chemello (Eds.), Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), in:
Lecture Notes in Computer Science, vol. 5590, Springer, 2009, pp. 107–118.

[15] A. Bondarenko, P.M. Dung, R. Kowalski, F. Toni, An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell. 93 (1) (1997) 63–101.

[16] A. Borg, F. Bex, A basic framework for explanations in argumentation, IEEE Intell. Syst. 36 (2) (2021) 25–35.

[17] A. Borg, F. Bex, Necessary and sufficient explanations for argumentation-based conclusions, in: J. Vejnarová, N. Wilson (Eds.), Proceedings of the 16th European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’21), in: Lecture Notes in Computer Science, vol. 12897,
Springer, 2021, pp. 45–58.

[18] A. Borg, F. Bex, Enforcing sets of formulas in structured argumentation, in: M. Bienvenu, G. Lakemeyer, E. Erdem (Eds.), Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning (KR’21), IJCAI Organization, 2021, pp. 130–140.

[19] M. Caminada, P.E. Dunne, Minimal strong admissibility: a complexity analysis, in: H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.), Proceedings of the 8th
International Conference on Computational Models of Argument (COMMA’20), in: Frontiers in Artificial Intelligence and Applications, vol. 326, IOS Press, 2020,
pp. 135–146.

[20] M. Caminada, Y. Wu, On the limitations of abstract argumentation, in: Proceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC’11), 2011.

[21] O. Cocarascu, A. Stylianou, K. Cyras, F. Toni, Data-empowered argumentation for dialectically explainable predictions, in: G.D. Giacomo, A. Catalá, B. Dilkina,
M. Milano, S. Barro, A. Bugarín, J. Lang (Eds.), Proceedings of the 24th European Conference on Artificial Intelligence (ECAI’20), in: Frontiers in Artificial
Intelligence and Applications, vol. 325, IOS Press, 2020, pp. 2449–2456.

[22] L. Console, P. Torasso, A spectrum of logical definitions of model-based diagnosis 1, Comput. Intell. 7 (3) (1991) 133–141.

[23] K. Čyras, D. Birch, Y. Guo, F. Toni, R. Dulay, S. Turvey, D. Greenberg, T. Hapuarachchi, Explanations by arbitrated argumentative dispute, Expert Syst. Appl.
127 (2019) 141–156.

[24] K. Čyras, A. Rago, E. Albini, P. Baroni, F. Toni, Argumentative XAI: a survey, in: Z. Zhou (Ed.), Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI’21), 2021, pp. 4392–4399, ijcai.org.

[25] A. d’Avila Garcez, L. Lamb, Neurosymbolic AI: the 3rd wave, arXiv :2012 .05876 [abs], 2020.

[26] A. Dejl, P. He, P. Mangal, H. Mohsin, B. Surdu, E. Voinea, E. Albini, P. Lertvittayakumjorn, A. Rago, F. Toni, Argflow: a toolkit for deep argumentative expla-

nations for neural networks, in: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS’21), International
Foundation for Autonomous Agents and Multiagent Systems, 2021, pp. 1761–1763.

[27] J. Delobelle, S. Villata, Interpretability of gradual semantics in abstract argumentation, in: G. Kern-Isberner, Z. Ognjanovic (Eds.), Proceedings of the 15th
European Conference Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’19), in: Lecture Notes in Computer Science, vol. 11726,
Springer, 2019, pp. 27–38.

[28] A. Dhurandhar, P. Chen, R. Luss, C. Tu, P. Ting, K. Shanmugam, P. Das, Explanations based on the missing: towards contrastive explanations with pertinent
negatives, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Proceedings of the 31st Conference on Neural Information
Processing Systems (NeurIPS’18), 2018, pp. 590–601.

[29] S. Doutre, J. Mengin, On sceptical versus credulous acceptance for abstract argument systems, in: J.J. Alferes, J.A. Leite (Eds.), Proceedings of the 9th European
Conference on Logics in Artificial Intelligence (JELIA’04), in: Lecture Notes in Computer Science, vol. 3229, Springer, 2004, pp. 462–473.

[30] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell. 77 (2)
(1995) 321–357.

[31] P.M. Dung, R. Kowalski, F. Toni, Assumption-based argumentation, in: G.R. Simari, I. Rahwan (Eds.), Argumentation in Artificial Intelligence, Springer, 2009,
pp. 199–218.

[32] W. Dvořák, P.E. Dunne, Computational problems in formal argumentation and their complexity, in: P. Baroni, D. Gabay, M. Giacomin, L. van der Torre (Eds.),
Handbook of Formal Argumentation, College Publications, 2018, pp. 631–688.

[33] X. Fan, F. Toni, On computing explanations in argumentation, in: B. Bonet, S. Koenig (Eds.), Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), AAAI Press, 2015, pp. 1496–1502.

[34] X. Fan, F. Toni, On explanations for non-acceptable arguments, in: E. Black, S. Modgil, N. Oren (Eds.), Proceedings of the 3rd International Workshop on Theory
and Applications of Formal Argumentation, (TAFA’15), in: Lecture Notes in Computer Science, vol. 9524, Springer, 2015, pp. 112–127.

[35] A. García, G. Simari, Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program. 4 (1&2) (2004) 95–138.

[36] A. García, C. Chesñevar, N. Rotstein, G. Simari, Formalizing dialectical explanation support for argument-based reasoning in knowledge-based systems, Expert
Syst. Appl. 40 (8) (2013) 3233–3247.

[37] D. Hilton, Conversational processes and causal explanation, Psychol. Bull. 107 (1) (1990) 65–81.

[38] T. Kampik, K. Čyras, J. Ruiz Alarcón, Change in quantitative bipolar argumentation: sufficient, necessary, and counterfactual explanations, Int. J. Approx.
Reason. 164 (2024) 109066.

[39] D. Lewis, Causal explanation, Philos. Pap. 2 (1986) 214–240.

[40] B. Liao, L. van der Torre, Explanation semantics for abstract argumentation, in: H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.), Proceedings of the 8th
International Conference on Computational Models of Argument (COMMA’20), in: Frontiers in Artificial Intelligence and Applications, vol. 326, IOS Press, 2020,
pp. 271–282.

[41] F. Lin, On strongest necessary and weakest sufficient conditions, Artif. Intell. 128 (1) (2001) 143–159.

[42] P. Lipton, Contrastive explanation, R. Inst. Philos. Suppl. 27 (1990) 247–266.

[43] T. Lombrozo, Causal-explanatory pluralism: how intentions, functions, and mechanisms influence causal ascriptions, Cogn. Psychol. 61 (4) (2010) 303–332.

[44] G. Marcus, The next decade in AI: four steps towards robust artificial intelligence, CoRR, arXiv :2002 .06177 [abs], 2020, https://arxiv .org /abs /2002 .06177.

[45] G. Marcus, E. Davis, Rebooting AI: Building Artificial Intelligence We Can Trust, Vintage Books, 2019.

[46] T. Miller, Explanation in artificial intelligence: insights from the social sciences, Artif. Intell. 267 (2019) 1–38.

[47] S. Modgil, M. Caminada, Proof theories and algorithms for abstract argumentation frameworks, in: G.R. Simari, I. Rahwan (Eds.), Argumentation in Artificial
Intelligence, Springer, 2009, pp. 105–129.

[48] S. Modgil, H. Prakken, Resolutions in structured argumentation, in: B. Verheij, S. Szeider, S. Woltran (Eds.), Proceedings of the 4th International Conference on
Computational Models of Argument (COMMA’12), in: Frontiers in Artificial Intelligence and Applications, vol. 245, IOS Press, 2012, pp. 310–321.
49

[49] S. Modgil, H. Prakken, A general account of argumentation with preferences, Artif. Intell. 195 (2013) 361–397.

http://refhub.elsevier.com/S0888-613X(24)00030-6/bib56C70DFBF8D46719A02D49E97A5BFEEAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibE25014D38B777E2F2147FE2C5FE3D500s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib23357F91E63E29450176D28E3E890495s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib23357F91E63E29450176D28E3E890495s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib60A8D7E798D900801F11999324A1C220s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibFF62A6366215C753253BA6A865E27264s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibFF62A6366215C753253BA6A865E27264s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib32023311EE2A03E3EC08DC7AB5D91A32s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib32023311EE2A03E3EC08DC7AB5D91A32s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib03F1ED1B45606B988E3EC02F3D7D8D41s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib03F1ED1B45606B988E3EC02F3D7D8D41s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib03F1ED1B45606B988E3EC02F3D7D8D41s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib7778FDF0F31C5B82C64C10CC66C9AE77s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib13D8AF17F3752B4A26EFE14EDFAF4C97s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibD2BD0EF5606354FFA65CA86171851BEAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibD2BD0EF5606354FFA65CA86171851BEAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibD2BD0EF5606354FFA65CA86171851BEAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibA0DB4800D00E8AEF38D99FE961373D59s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibA0DB4800D00E8AEF38D99FE961373D59s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib71D83EA3D32D0C4D56F87F535B6438EDs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib71D83EA3D32D0C4D56F87F535B6438EDs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib71D83EA3D32D0C4D56F87F535B6438EDs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibB9B4152177537A7C17ABFC925A71D916s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib99AC2780229536B4668B867F84C2E70Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib99AC2780229536B4668B867F84C2E70Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib99AC2780229536B4668B867F84C2E70Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib7BE6E17BBDE3515FE1857C35B4E76670s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib8A19AE2A98F524074D23168B94380FFAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib8A19AE2A98F524074D23168B94380FFAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibE2AFB143424BE960F9B528495872D52Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibE2AFB143424BE960F9B528495872D52Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib4B48A39AFF23135AA6D3ACD22801EE74s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib9523CA14D07EC25B25810A6EDCFC0FDFs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib9523CA14D07EC25B25810A6EDCFC0FDFs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib9523CA14D07EC25B25810A6EDCFC0FDFs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib8DFD50D485536E59A7452FC4A233A46Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib8DFD50D485536E59A7452FC4A233A46Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib8DFD50D485536E59A7452FC4A233A46Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAEC22B2CC47256A05164F54037FE62ECs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAEC22B2CC47256A05164F54037FE62ECs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAEC22B2CC47256A05164F54037FE62ECs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibF78DD68DBDFC42C646AE798CEB4BA4E2s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibF78DD68DBDFC42C646AE798CEB4BA4E2s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibCAB3809B47BC615992CDF63EAC652008s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibCAB3809B47BC615992CDF63EAC652008s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1C91AA753A5D7FDBD8AAB040D1D56646s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1C91AA753A5D7FDBD8AAB040D1D56646s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib06FDE7508E4DFC9FC921DF06AD92ED6Bs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib06FDE7508E4DFC9FC921DF06AD92ED6Bs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibDFDFB2B5E72DFD23D906237B22836732s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibDFDFB2B5E72DFD23D906237B22836732s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0D8220F4BA8602366ECDC2DD615030C8s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0D8220F4BA8602366ECDC2DD615030C8s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibC8EC0BD6BA7CA0D43D2E9CE0E8306AB4s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1235DD62C5795C6AB461CFF247F72AF8s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1235DD62C5795C6AB461CFF247F72AF8s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib91C9BD6E5EA2A981D0653E9872DA4398s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib996CE230C2CB7F465C13489D2805FFDAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib996CE230C2CB7F465C13489D2805FFDAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1C290EF575CE971C930C9B6346689D2Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0126E1065773BF5625882E4148BC50ABs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0126E1065773BF5625882E4148BC50ABs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0126E1065773BF5625882E4148BC50ABs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAE7B3DE8BC772F338554B07148700D6Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib67B4AD3779A755DB0D6A168C408FAA46s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibDF9A315E463B4A2A0F90B12736E1BED7s1
https://arxiv.org/abs/2002.06177
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib70B83B7E47AC5D73C17B8A58461EFA51s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib4A720F35EB28513D4B22EB23A535EFF3s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibBB340060C4AAD4B9DBCD37D0F455BD6Cs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibBB340060C4AAD4B9DBCD37D0F455BD6Cs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibEF9A8FA7307A0328679ECF57F474FCF1s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibEF9A8FA7307A0328679ECF57F474FCF1s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib010BA9F57CDCA1519281371F1177BD19s1

International Journal of Approximate Reasoning 168 (2024) 109143A. Borg and F. Bex

[50] S. Modgil, H. Prakken, The ASPIC+ framework for structured argumentation: a tutorial, Argument Comput. 5 (1) (2014) 31–62.

[51] S. Modgil, H. Prakken, Abstract rule-based argumentation, in: P. Baroni, D. Gabay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumentation,
College Publications, 2018, pp. 287–364s.

[52] A. Niskanen, M. Järvisalo, Smallest explanations and diagnoses of rejection in abstract argumentation, in: D. Calvanese, E. Erdem, M. Thielscher (Eds.), Proceed-

ings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR’20), 2020, pp. 667–671.

[53] D. Odekerken, F. Bex, Towards transparent human-in-the-loop classification of fraudulent web shops, in: S. Villata, J. Harašta, P. Křemen (Eds.), Proceedings of
the 33rd International Conference on Legal Knowledge and Information Systems (JURIX’20), in: Frontiers in Artificial Intelligence and Applications, vol. 334,
IOS Press, 2020, pp. 239–242.

[54] D. Odekerken, F. Bex, A. Borg, B. Testerink, Approximating stability for applied argument-based inquiry, Intell. Syst. Appl. 16 (2022) 200110.

[55] N. Potyka, X. Yin, F. Toni, Explaining random forests using bipolar argumentation and Markov networks, in: B. Williams, Y. Chen, J. Neville (Eds.), Proceedings
of the 37th AAAI Conference on Artificial Intelligence, AAAI Press, 2023, pp. 9453–9460.

[56] H. Prakken, An abstract framework for argumentation with structured arguments, Argument Comput. 1 (2) (2010) 93–124.

[57] H. Prakken, Historical overview of formal argumentation, in: P. Baroni, D. Gabay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumentation,
College Publications, 2018, pp. 75–143.

[58] H. Prakken, M. de Winter, Abstraction in argumentation: necessary but dangerous, in: S. Modgil, K. Budzynska, J. Lawrence (Eds.), Proceedings of the 7th
International Conference on Computation Models of Argument (COMMA’18), in: Frontiers in Artificial Intelligence and Applications, vol. 305, IOS Press, 2018,
pp. 85–96.

[59] A. Rago, O. Cocarascu, C. Bechlivanidis, D. Lagnado, F. Toni, Argumentative explanations for interactive recommendations, Artif. Intell. 296 (2021) 103506.

[60] A. Rotolo, G. Sartor, Argumentation and explanation in the law, Front. Artif. Intell. 6 (2023).

[61] Z. Saribatur, J. Wallner, S. Woltran, Explaining non-acceptability in abstract argumentation, in: Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI’20), in: Frontiers in Artificial Intelligence and Applications, vol. 325, IOS Press, 2020, pp. 881–888.

[62] P. Thagard, Explanatory coherence, Behav. Brain Sci. 12 (3) (1989) 435–502.

[63] M. Ulbricht, J.P. Wallner, Strong explanations in abstract argumentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,
pp. 6496–6504.

[64] A. Vassiliades, N. Bassiliades, T. Patkos, Argumentation and explainable artificial intelligence: a survey, Knowl. Eng. Rev. 36 (2021) e5.

[65] D.S. Watson, L. Gultchin, A. Taly, L. Floridi, Local explanations via necessity and sufficiency: unifying theory and practice, CoRR, arXiv :2103 .14651 [abs], 2021,
https://arxiv .org /abs /2103 .14651.

[66] J. Woodward, Sensitive and insensitive causation, Philos. Rev. 115 (1) (2006) 1–50.

[67] Z. Zeng, C. Miao, C. Leung, Z. Shen, J.J. Chin, Computing argumentative explanations in bipolar argumentation frameworks, in: The 33rd AAAI Conference on
50

Artificial Intelligence (AAAI’19), AAAI Press, 2019, pp. 10079–10080.

http://refhub.elsevier.com/S0888-613X(24)00030-6/bib5A9226B9CD37B0DC9BF8C6366AF56576s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibC1A0309C17DE670E875B3A7996B8F0E2s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibC1A0309C17DE670E875B3A7996B8F0E2s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib6281BBA528512EE61FCD09486A0C3304s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib6281BBA528512EE61FCD09486A0C3304s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0D3C1D516AC534CB2857B0D77EF627AAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0D3C1D516AC534CB2857B0D77EF627AAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib0D3C1D516AC534CB2857B0D77EF627AAs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibFC7A1F9AD78C7DA604B9560858B0C6F6s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib629ADF206C8063BCA175635C65136F22s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib629ADF206C8063BCA175635C65136F22s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib739C64340A31A03ECB35DAE716F9F907s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAB48705FF934354671F3AD9048A5C90Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibAB48705FF934354671F3AD9048A5C90Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibB7848310000D9822F6DAF694E65EC74Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibB7848310000D9822F6DAF694E65EC74Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibB7848310000D9822F6DAF694E65EC74Fs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib3E48224B0619495640A7061BB4391F6Cs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibE13446EB20B620521395D8D7E7210607s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib548C4A40B92E5B7ECEFE407D4657B11Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib548C4A40B92E5B7ECEFE407D4657B11Ds1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibC43916871E8B9E0F5767CD9D083E557As1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibD2DD82B92080615D597BC6953D7F19D4s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bibD2DD82B92080615D597BC6953D7F19D4s1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib9E81F94DE92D00AE437BE96604765813s1
https://arxiv.org/abs/2103.14651
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib1043AED52922DA2308000E7023FF06DFs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib91B260735618EA4BC28BA2D8A8F744FEs1
http://refhub.elsevier.com/S0888-613X(24)00030-6/bib91B260735618EA4BC28BA2D8A8F744FEs1

	Minimality, necessity and sufficiency for argumentation and explanation
	1 Introduction
	2 Preliminaries: abstract argumentation
	3 Basic explanations
	3.1 Basic explanations for acceptance
	3.2 Basic explanations for non-acceptance
	3.3 Properties of the basic explanations
	3.3.1 Properties concerning acceptance explanations
	3.3.2 Properties concerning non-acceptance explanations
	3.3.3 Comparing acceptance and non-acceptance

	3.4 Computing the explanations

	4 Varying the basic explanations
	4.1 Other notions of defense
	4.2 Explanations under other semantics
	4.3 Some results for the variations of D

	5 Explanations in structured argumentation settings
	5.1 ASPIC+
	5.2 Basic explanations for formulas
	5.2.1 Explanations for accepted formulas
	5.2.2 Explanations for non-accepted formulas

	5.3 Element explanations

	6 Minimality, necessity and sufficiency
	6.1 Minimality
	6.2 Necessity and sufficiency for acceptance
	6.2.1 Necessity and sufficiency for accepted arguments
	6.2.2 Necessity and sufficiency for accepted formulas
	6.2.3 Properties of necessity and sufficiency for acceptance

	6.3 Necessity and sufficiency for non-acceptance
	6.3.1 Necessity and sufficiency for non-accepted arguments
	6.3.2 Necessity and sufficiency for non-accepted formulas
	6.3.3 Properties of necessity and sufficiency for non-acceptance

	6.4 Necessity, sufficiency and minimality

	7 Applying the basic framework
	8 Related work
	9 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Full proofs of the results in the paper
	A.1 Proofs of the properties of the basic explanations
	A.2 Proofs concerning the computation of the explanations
	A.3 Proofs of the results on the variations of D
	A.4 Proofs concerning necessity and sufficiency of explanations

	Appendix B Formal construction explanations online trade fraud
	References

