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Abstract In the first part of this chapter we review the recently developed theory of
twin semigroups and norming dual pairs in the light of neutral delay equations. In the
second part we extend the perturbation theory for twin semigroups to include time-
dependent perturbations. Finally we apply this newly developed theory to neutral
periodic delay equations.

1 Introduction

Consider a function x defined on the half-line [0,∞) with values in Rn and assume
that the derivative ẋ depends on the history of x and ẋ .More precisely, we assume that
there exists h > 0 such that ẋ(t) depends on x(τ ) and ẋ(τ ) for t − h ≤ τ ≤ t . Given
these restrictions we would like to consider a general linear differential equation.

To formulate precisely what type of equations we consider, we first define the
segment xt : [−h, 0] → R

n by

xt (θ) := x(t + θ), for − h ≤ θ ≤ 0. (1)

Let η and ζ be n × n-matrix-valued functions of bounded variation defined on [0,∞)

such that η(0) = ζ(0) = 0, η and ζ are continuous from the right on (0, h), η(t) =
η(h) and ζ(t) = ζ(h) for t ≥ h.Wecall such functionsη and ζ of normalizedbounded
variation. Furthermore assume that η(t) is continuous at t = 0. (See Appendix A for
the precise definition and basic properties of such functions.)

The class of equations that we will study can now be written as

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ h

0
dζ(θ)x(t − θ). (2)
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To single out a unique solution we have to provide an initial condition at a certain
time s. The initial condition should specify the values of x on the interval of length
h preceding time s. Let y satisfy (2) for t ≥ s and the initial condition

y(s + θ) = ϕ(θ), −h ≤ θ ≤ 0,

where ϕ ∈ B ([−h, 0];Rn), the Banach space of bounded Borel measurable func-
tions provided with the supremum norm (see Sect.A for the precise definition and
basic properties). Then x defined for t ≥ 0 by x(t) = y(s + t), satisfies (2) for t ≥ 0
and the initial condition

x(θ) = ϕ(θ), −h ≤ θ ≤ 0. (3)

Equation (2) is time invariant and called autonomous. So we can, without loss of
generality, restrict our attention to an initial condition imposed at time zero. This in
contrast to time periodic equations which we will consider in Sect. 8.

Equation (2) is called a neutral functional differential equation (NFDE). A
solution of the initial-value problem (2)–(3) on the half-line [0,∞) is a function
x ∈ B ([0,∞);Rn) such that

(i) (3) holds;
(ii) on (0,∞), the function x is absolutely continuous and (2) holds;
(iii) the following limit exists

lim
t↓0

1

t

[
x(t) −

∫ h

0
dη(θ)x(t − θ) − ϕ(0) −

∫ h

0
dη(θ)ϕ(−θ)

]

and equals
∫ h
0 dζ(θ)ϕ(−θ).

We end the introduction with an outline of this chapter. In Sect. 2 we derive a
representation of the solution of a NFDE by direct methods. The main result is given
in Theorem 2.4. In Sect. 3 we introduce the notions of norming dual pair and twin
semigroup following Diekmann and Verduyn Lunel (2021). In Sect. 4 we introduce
a concrete norming dual pair that will be used in Sect. 5 to represent the solution
semigroup corresponding to a NFDE as a twin semigroup. In Sect. 6 we use the
twin semigroup approach towards NFDE to prove a variation-of-constants formula,
see Theorem 6.4. In Sect. 7 we develop the perturbation theory for bounded time-
dependent perturbations of twin semigroups. The main result is given in Theorem
7.5. In Sect. 8 we consider periodic NFDE as an application of the perturbation
theory developed in Sect. 7 and prove that periodic NFDE define a twin evolutionary
system. Finally in Appendix A we review some basic properties of functions of
bounded variations and complex Borel measures.
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2 Introduction to NFDE

This section is concerned with the existence, uniqueness and representation of a
solution of the initial-value problem (2)–(3). For 0 ≤ t ≤ h, we can combine the two
separate pieces of information given in (2) and (3) and write

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ t

0
dζ(θ)x(t − θ) +

∫ h

t
dζ(θ)ϕ(t − θ). (4)

By integration and changing the order of integration we can write (4) as

x(t) −
∫ h

0
dη(θ)x(t − θ) =

∫ t

0
ζ(θ)x(t − θ) dθ + g(t), (5)

where

g(t) := ϕ(0) −
∫ h

0
dη(θ)ϕ(−θ) +

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ)

)
ds. (6)

Next we write (5) as follows

x(t) =
∫ t

0
dη(θ)x(t − θ) +

∫ t

0
ζ(θ)x(t − θ) dθ + f (t), (7)

where, using (6),

f (t) := g(t) +
∫ h

t
dη(θ)ϕ(t − θ)

= ϕ(0) +
∫ h

0
[ζ(t + σ) − ζ(σ)]ϕ(−σ) dσ

+
∫ h

0
d [η(t + σ) − η(σ)]ϕ(−σ). (8)

Here we have used that

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ)

)
ds =

∫ h

0
[ζ(t + σ) − ζ(σ)]ϕ(−σ) dσ

and that ∫ h

t
dη(θ)ϕ(t − θ) =

∫ h

0
dη(t + σ)ϕ(−σ).

It follows from TheoremA.2 that the function f defined by (8) is a bounded Borel
measurable function on [0,∞) that is constant on [h,∞).
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Define the function μ by

μ(θ) := η(θ) +
∫ θ

0
ζ(s) ds, 0 ≤ θ ≤ h, (9)

and μ(θ) = μ(h) for θ ≥ h, then μ is a n × n-matrix-valued function of normalized
bounded variation. Note that, since η(θ) is continuous at θ = 0, we have that μ(θ) is
continuous at θ = 0.

The convolutionproduct of an × n-matrix-valued functionof normalizedbounded
variation μ and a bounded Borel measurable function f is defined by

(μ ∗ f ) (t) :=
∫ t

0
dμ(θ) f (t − θ), t ≥ 0. (10)

From Theorem A.1, it follows that μ ∗ f is a bounded Borel measurable function on
[0,∞).

Using the convolution product defined by (10), the initial-value problem (2)–(3),
i.e., (7), can be rewritten as a renewal equation for x

x = μ ∗ x + f, (11)

where μ is given by (9) and f , given by (8), can be rewritten as

f (t) = ϕ(0) +
∫ h

0
d [μ(t + σ) − μ(σ)]ϕ(−σ). (12)

Therefore to prove existence and uniqueness of solutions of the initial-value problem
(2)–(3), it suffices to prove existence and uniqueness of solutions of the renewal
equation (11).

The convolution product of two n × n-matrix-valued functions of normalized
bounded variation μ and ν, defined by

(μ ∗ ν) (t) :=
∫ t

0
dμ(θ)ν(t − θ), t ≥ 0, (13)

is again a function of bounded variation (see Appendix A and, in particular, Theorem
A.3).

The resolvent kernel ρ of a renewal equation (11) with kernel μ and convolution
product (13) is defined as the matrix solution of the resolvent equation

ρ = ρ ∗ μ + μ = μ ∗ ρ + μ. (14)

The key property of the resolvent concerns the representation of the solution of the
renewal equation (11) as

x = f + ρ ∗ f. (15)
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Indeed taking to convolution with ρ on the left and right of (11) yields

ρ ∗ x = (ρ ∗ μ) ∗ x + ρ ∗ f = (ρ − μ) ∗ x + ρ ∗ f.

Hence μ ∗ x = ρ ∗ f and substituting this relation into (11) yields (15).

We now discuss the existence and uniqueness of the solution of (14) under the
assumption that μ is a n × n-matrix-valued function of normalized bounded varia-
tion. It follows from Appendix A and in particular Theorem A.1 that functions of
normalized bounded variation are in one-to-one correspondence to complex Borel
measures. This allows us to use measure theory to prove existence and uniqueness
of the solution of (14). We start with some preparations.

Let E denote the Borel σ-algebra on [0,∞). The Banach space of complex
Borel measures of bounded total variation is denoted by M ([0,∞)) (see (82)). Let
Mloc ([0,∞)) denote the vector space of local measures, i.e., set functions that are
defined on relatively compact Borel measurable subsets of [0,∞) and that locally
behave like bounded measures: for every T > 0 the set function μT defined by

μT (E) := μ (E ∩ [0, T ]) , E ∈ E,

belongs to M ([0,∞)). The elements of Mloc ([0,∞)) are called Radon measures.
Since the restriction to [0, T ] of μ ∗ ν depends only on the restrictions of μ and ν to
[0, T ], we can unambiguously extend the convolution product to Mloc ([0,∞)) (see
(84)).

We continue with the existence of the resolvent ρ of a complex Borel measure μ
supported on [0,∞). For details see Diekmann and Verduyn Lunel (2021, Theorem
A.7) and for further information and details see Grippenberg et. al. (1990).

Theorem 2.1 Suppose thatμ ∈ Mloc
([0,∞);Rn×n

)
. There exists a uniquemeasure

ρ ∈ Mloc
([0,∞);Rn×n

)
satisfying either one of the following identities

ρ − μ ∗ ρ = μ = ρ − ρ ∗ μ (16)

if and only if det [I − μ({0})] 
= 0. Furthermore, if μ((0, t]) is continuous as t = 0,
then ρ((0, t]) is continuous at t = 0 as well.

The following theorem summarizes some relevant results for renewal equations
(Diekmann and Verduyn Lunel 2021, Theorem A.9).

Theorem 2.2 Let μ ∈ Mloc
([0,∞),Rn×n

)
with det [I − μ({0}] 
= 0.

(i) For every f ∈ Bloc ([0,∞),Rn), the renewal equation (15) has a unique solution
x ∈ Bloc ([0,∞),Rn) given by

x = f + ρ ∗ f,

where ρ satisfies (16). Furthermore, if f is locally absolutely continuous, then
the solution x is locally absolutely continuous as well.
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(ii) If the kernel μ has no discrete part and if f ∈ C ([0,∞),Rn), then x ∈
C ([0,∞),Rn).

We now summarize the conclusions obtained so far in this section in the following
theorem.

Theorem 2.3 Let η and ζ be of normalized bounded variation. Let ϕ ∈
B ([−h, 0];Rn) be given. Define μ by (9). If det [I − μ(0)] 
= 0, then the NFDE
(2) provided with the initial condition (3) admits a unique solution. For t ≥ 0 this
solution coincides with the unique solution of the renewal equation (11) and the
solution has the representation (15) where ρ satisfies the resolvent equation (14) and
f is given by (8).

Representation (15) will be used to derive a representation of the solution of
(2)–(3) directly in terms of the initial data x0 = ϕ. We first need a definition. The
fundamental solution of the delay equation (2)–(3) on [−h,∞) is defined by the
n × n-matrix-valued function

X (t) :=
{
I + ρ((0, t]) for t ≥ 0,

0 for − h ≤ t < 0,
(17)

where ρ is the resolvent ofμ given byTheorem2.1. Since t �→ μ((0, t]) is continuous
at t = 0, it follows from Theorem 2.1 that ρ((0, t]) is continuous at t = 0. Therefore
we can conclude that X (t) has a jump at t = 0.

By construction, the fundamental matrix solution X (t) satisfies (2) with initial
data

X0(θ) =
{
I for θ = 0,

0 for − h ≤ θ < 0.
(18)

Using the fundamental matrix solution X (t) given by (17) and Fubini’s theorem,
we can rewrite the representation formula (15) in terms of the forcing function f
given by (8) directly in terms of the initial condition ϕ.

We summarize the result in a theorem.

Theorem 2.4 The solution of (2)–(3) is given explicitly by

x(t;ϕ) = X (t)ϕ(0) +
∫ h

0
d

[∫ t

−h
dX (τ ) (μ(t − τ + σ) − μ(σ))

]
ϕ(−σ). (19)

Or, equivalently, in terms of the resolvent ρ we have

x(t;ϕ) = (I + ρ((0, t])) ϕ(0) +
∫ h

0
d [μ(t + σ) − μ(σ)])ϕ(−σ)

+
∫ h

0
d

[∫ t

0
ρ(dτ ) (μ(t − τ + σ) − μ(σ))

]
ϕ(−σ). (20)

Here μ is given by (9).
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3 Norming Dual Pairs and Twin Semigroups

The system of equations (2)–(3) defines an infinite-dimensional dynamical system
on the state space B ([−h, 0];Rn), but for the qualitative study of such a dynamical
system we need an adjoint theory in place (see Hale and Verduyn Lunel 1993). In
the classical theory of delay equations this is the main reason to work with the state
spaceC ([−h, 0];Rn) despite the fact that the initial data of the fundamental solution
(see (18)) does not belong to this space. From the Riesz representation theorem it
follows that the dual space ofC ([−h, 0];Rn) has a nice characterization as the space
of functions of normalized bounded variation.

The state space B ([−h, 0];Rn) includes the initial data of the fundamental solu-
tion but its dual space does not have a nice characterization. So although the state
space B ([−h, 0];Rn) is a more natural space to consider, it has not yet been used
because its dual space is too large to provide a useful adjoint theory. A beautiful idea
to repair this discrepancy is to use the notion of a dual pair (see Aliprantis and Border
2006) made precise in Kunze (2011) for infinite-dimensional dynamical systems in
the following way.

Two Banach spaces Y and Y � are called a norming dual pair (cf. Kunze (2011))
if a bilinear map

〈 · , · 〉 : Y � × Y → R

exists such that, for some M ∈ [1,∞),

|〈y�, y〉| ≤ M‖y�‖‖y‖

and, moreover,

‖y‖ := sup
{|〈y�, y〉| | y� ∈ Y �, ‖y�‖ ≤ 1

}
‖y�‖ := sup

{|〈y�, y〉| | y ∈ Y, ‖y‖ ≤ 1
}
.

So we can consider Y as a closed subspace of Y �∗, the dual of Y �, and Y � as a closed
subspace of Y ∗ and both subspaces are necessarily weak∗ dense since they separate
points.

The collection of linear functionals Y � defines a weak topology on Y , denoted by
σ(Y,Y �). The corresponding locally convex topological vector space is denoted by
(Y,σ(Y,Y �)). A crucial point in our approach is that the dual space (Y,σ(Y,Y �))′

is (isometrically isomorphic to) Y � (Rudin 1991, Theorem 3.10). So if a linear func-
tional on Y is continuous with respect to the topology induced by Y �, it can be
(uniquely) represented by an element of Y �.

The next key idea to study infinite-dimensional dynamical systems on a norming
dual pair is the notion of a twin operator introduced in Diekmann and Verduyn Lunel
(2021).
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A twin operator L on a norming dual pair (Y,Y �) is a bounded bilinear map from
Y � × Y to R that defines both a bounded linear map from Y to Y and a bounded
linear map from Y � to Y �. More precisely,

L : Y � × Y → R (y�, y) �→ y�Ly

is such that

(i) for some C > 0 the inequality

|y�Ly| ≤ C‖y�‖‖y‖

holds for all y ∈ Y and y� ∈ Y �;
(ii) for given y ∈ Y themap y� �→ y�Ly is continuous as amap from (Y �,σ(Y �,Y ))

to R and hence there exists Ly ∈ Y such that

〈y�, Ly〉 = y�Ly

for all y� ∈ Y �;
(iii) for given y� ∈ Y � themap y �→ y�Ly is continuous as amap from (Y,σ(Y,Y �))

to R and hence there exists y�L ∈ Y � such that

〈y�L , y〉 = y�Ly

for all y ∈ Y .

So all three maps are denoted by the symbol L , but to indicate on which space L acts
we write, inspired by Feller (1953) which, in turn, is inspired by matrix notation,
either y�Ly, Ly or y�L . As a concrete example, consider the identity operator. It
maps (y�, y) to 〈y�, y〉, y to y and y� to y�.

If our starting point is a bounded linear operator L : Y → Y then there exists
an associated twin operator if and only if the adjoint of L leaves the embedding of
Y � into Y ∗ invariant. We express this in words by saying that L extends to a twin
operator. Likewise, if our starting point is an operator L : Y � → Y � then L extends
to a twin operator if and only if the adjoint of L leaves the embedding of Y into Y �∗
invariant. So a twin operator on a norming dual pair is reminiscent of the combination
of a bounded linear operator on a reflexive Banach space and its adjoint, whence the
adjective “twin”.

The composition of bounded bilinear maps is, in general, not defined. But for twin
operators it is! Indeed, if L1 and L2 are both twin operators on the norming dual pair
(Y,Y �), we define the composition L1L2 by

y�L1L2y := 〈y�L1, L2y〉.

Note that this definition entails that L1L2 acts on Y by first applying L2 and next L1,
whereas L1L2 acts on Y � by first applying L1 and next L2.
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Definition 3.1 A family {S(t)}t≥0 of twin operators on a norming dual pair (Y,Y �)
is called a twin semigroup if

(i) S(0) = I , and S(t + s) = S(t)S(s) for t, s ≥ 0;
(ii) there exist constants M ≥ 1 and ω ∈ R such that

|y�S(t)y| ≤ Meωt‖y‖‖ y�‖;

(iii) for all y ∈ Y , y� ∈ Y � the function

t �→ y�S(t)y

is measurable;
(iv) for Re λ > ω (with ω as introduced in ii)) there exists a twin operator S(λ) such

that

y�S(λ)y =
∫ ∞

0
e−λt y�S(t)y dt. (21)

Note that the combination of i i) and i i i) allows us to conclude that the right hand
side of (21) defines a bounded bilinear map, but not that it defines a twin operator.
Hence iv) is indeed an additional assumption.

Wecall S(λ)definedon {λ | Re λ > ω} theLaplace transform of {S(t)}. It actually
suffices to assume that the assertion of iv) holds for λ = λ0 with Re λ0 > ω. This
assumption allows us to introduce the multi-valued operator

C = λ0 I − S(λ0)
−1 (22)

on Y and next define the function λ �→ S(λ) by

S(λ) = (λI − C)−1 (23)

on an open neighbourhood of λ0.
In Definition 2.6 of Kunze (2009) an operator C is called the generator of the

semigroup provided the Laplace transform is injective and hence C is single-valued.
In Diekmann and Verduyn Lunel (2021) we adopted a more pliant position and call
C the generator even when it is multi-valued and we refer to this paper for additional
information.

Focusing on {S(t)}t≥0 as a semigroup of bounded linear operators on Y, we now
list some basic results from Kunze (2011).

Lemma 3.2 The following statements are equivalent

1. y ∈ D (C) and z ∈ Cy;
2. there exist λ ∈ C with Re λ > ω, here ω is as introduced in ii) of Definition 3.1,

and y, z ∈ Y such that
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y = S(λ)(λy − z)

3. y, z ∈ Y and for all t > 0

∫ t

0
S(τ )z dτ = S(t)y − y.

Here it should be noted that item 3. includes the assertions

• the integral
∫ t
0 S(τ )z dτ defines an element of Y (even though at first it only defines

an element of Y �∗);
• the integral

∫ t
0 S(τ )z dτ does not depend on the choice of z ∈ Cy in case C is

multi-valued.

Lemma 3.3 For all t > 0 and y ∈ Y , we have
∫ t
0 S(τ )y dτ ∈ D (C) and

S(t)y − y ∈ C
∫ t

0
S(τ )y dτ .

4 The Norming Dual Pair (B, NBV )

In the study of delay differential equations, the natural dual pair is given by

Y = B
([−1, 0],Rn

)
and Y � = N BV

([0, 1],Rn
)

(24)

with the pairing

〈y�, y〉 =
∫

[0,1]
y�(dσ) · y(−σ) (25)

(see Appendix A for the definition of N BV ). Here Y is provided with the supremum
norm and Y � with the total variation norm (see (83)). See Diekmann and Verduyn
Lunel 2021.

In the study of renewal equations, the natural dual pair is given by

Y = N BV
([−1, 0],Rn

)
and Y � = B

([0, 1],Rn
)

with the pairing

〈y�, y〉 =
∫

[−1,0]
y(dσ) · y�(−σ).

Returning to (24)–(25), we first make two trivial, yet useful, observations: fix
1 ≤ i ≤ n and −1 ≤ θ ≤ 0,
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∫
[0,1]

y�(dσ) · y(−σ) = yi (θ),

if y�
j (σ) = 0, 0 ≤ σ ≤ 1, j 
= i , and y�

i (σ) = 0 for 0 ≤ σ < −θ and y�
i (σ) = 1 for

σ ≥ −θ, and similarly

∫
[0,1]

y�(dσ) · y(−σ) = y�
i (−θ),

if y j (−σ) = 0, 0 ≤ σ ≤ 1, j 
= i , and yi (−σ) = 1 for 0 ≤ σ ≤ −θ and yi (−σ) = 0
for σ > −θ.

The point is that, consequently, in case of (24)–(25), convergence in both
(Y,σ(Y,Y �)) and (Y �,σ(Y �,Y )) entails pointwise convergence (in, respectively,
B ([−1, 0],Rn) and N BV ([0, 1],Rn)).

In the first case, the dominated convergence theorem implies that, conversely, a
bounded pointwise convergent sequence in B ([−1, 0],Rn) converges in
(Y,σ(Y,Y �)). For N BV ([0, 1],Rn), this is not so clear. It is true that the pointwise
limit of a sequence of functions of bounded variation is again of bounded variation
(Helly’s theorem), but there is no dominated convergence theorem for measures.

The following theorem is proved inDiekmann andVerduynLunel (2021, Theorem
B.1).

Theorem 4.1 The dual pair given by (24) and (25) is a norming dual pair, i.e.,

‖y‖ = sup
{|〈y�, y〉| | y� ∈ Y �, ‖y�‖ ≤ 1

}
‖y�‖ = sup

{|〈y�, y〉| | y ∈ Y, ‖y‖ ≤ 1
}
.

Furthermore

(i) (Y,σ(Y,Y �)) is sequentially complete;
(i i) a linear map (Y,σ(Y,Y �)) → R is continuous if it is sequentially continuous.

5 The Twin Semigroup Approach to NFDE

Consider the norming dual pair (Y,Y �) with Y and Y � as given in Sect. 4 by (24).
By solving (2)–(3), see Theorem 2.3, we can define a Y -valued function u :

[0,∞) → Y by
u(t;ϕ) := xt ( · ;ϕ), t ≥ 0, (26)

where xt is defined by (1), and bounded linear operators S(t) : Y → Y by

S(t)ϕ = u(t;ϕ). (27)
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The initial condition (2) translates into

S(0)ϕ = u(0;ϕ) = ϕ

and (27) reflects that we define a dynamical system on Y by translating along the
functionϕ extended according to (2). Belowwe show that {S(t)} is a twin semigroup
and we characterize its generator C . But first we present some heuristics.

In order to motivate an abstract ODE for the Y -valued function u, we first observe
that the infinitesimal formulation of the translation rule (26) amounts to the PDE

∂u

∂t
− ∂u

∂θ
= 0.

We need to combine this with (2), in terms of u(t)(0) = x(t), and we have to specify
the domain of definition of the derivativewith respect to θ. The latter is actually rather
subtle. An absolutely continuous function has almost everywhere a derivative and
when the function is Lipschitz continuous this derivative is bounded. Thus a Lipschitz
function specifies a unique L∞-equivalence class by the process of differentiation.
But not a unique element of Y . In fact the set

Cψ =
{
ψ′ ∈ Y | ψ(θ) = ψ(−1) +

∫ θ

−1
ψ′(σ) dσ,

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

}
(28)

is, for a given Lipschitz continuous function ψ, very large indeed. Note that the
boundary condition

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

takes care of (2). We define C as a multi-valued, unbounded, operator on Y by (28)
with domain given by

D (C) = Lip
([−1, 0],Rn

)
. (29)

We claim that (2)–(3) and (26) correspond to an abstract differential equation

du

dt
∈ Cu.

To substantiate this claim, we shall verify that {S(t)}t≥0 defined by (27) is a twin
semigroup and, finally, that C is the corresponding generator in the sense of (23)
where S(λ) is given by (21).

From the representation (19) of the solution of (2)–(3) we can derive an explicit
representation of the semigroup {S(t)}t≥0 defined by (27).
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Theorem 5.1 The semigroup {S(t)}t≥0 defined by (27) is given by

(S(t)ϕ) (θ) =
∫ h

0
Kt (θ, dσ)ϕ(−σ) (30)

with for σ > 0 and −h ≤ θ ≤ 0 the kernel Kt (θ,σ) defined by

Kt (θ,σ) := H(σ + t + θ) + H(t + θ)ρ(t + θ)

+ H(t + θ)

∫ t+θ

0
dX (ξ) (μ(t + θ + σ − ξ) − μ(σ)) , (31)

and Kt (θ, 0) = 0. Here ρ denotes the resolvent of μ with μ defined in (9), X denotes
the fundamental solution given by (17), and H is the standard Heaviside function.

Proof For t + θ < 0 the second and third terms in the expression for Kt do not
contribute, and the first term yields

(S(t)ϕ) (θ) = ϕ(t + θ)

which is in accordance with (27) because of (3).
Now assume that t + θ ≥ 0. Clearly the first term contributes a unit jump at σ = 0

and H(t + θ) = 1. The second term has, as a function of σ, a jump of magnitude
ρ(t + θ) at σ = 0, an absolutely continuous part with derivative given by

∫ t+θ

0
dX (ξ) (ζ(t + θ + σ − ξ) − ζ(σ)) ,

and a part of bounded variation given by

∫ t+θ

0
dX (ξ) (η(t + θ + σ − ξ) − η(σ)) .

The jumps yield the first term at the right hand side of (19) (see also (20)) evaluated
at t + θ, the absolutely continuous part yields the second, and the bounded variation
part the third term. �

Note that Kt is bounded, in the sense (cf. Kunze 2009, Definition 3.2) that for
fixed θ in [−1, 0] the function σ �→ Kt (θ,σ) is of normalized bounded variation,
while for fixed σ ∈ [0, 1] the function θ �→ Kt (θ,σ) is bounded and measurable.

The next corollary is a general property of kernel operators.

Corollary 5.2 The operator S(t) extends to a twin operator.

Proof The proof directly follows from the observation that we can represent the
action of y�S(t) explicitly as
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(
y�S(t)

)
(σ) =

∫ h

0
y�(dτ ) Kt (−τ ,σ).

�

Theorem 5.3 The semigroup {S(t)}t≥0 defined by (30) is a twin semigroup.

Proof With reference to Definition 3.1 we note that S(0) = I follows directly from
(30)–(31), while the semigroup property follows from the uniqueness of solutions to
(2)–(3) and the fact that S(t) corresponds to translation along the solution.

The exponential estimates (ii) are well-established in the theory of NFDE, see
Sect. 9.3 of Hale and Verduyn Lunel (1993) or the proof of Proposition 7.3 below.

Property (iii), the measurability of t �→ y�S(t)y, is a direct consequence of the
way Kt (θ,σ), defined in (31), depends on t .

It remains to verify that the Laplace transform defines a twin operator. By Fubini’s
Theorem, the Laplace transform is a kernel operator with kernel

∫ ∞

0
e−λt Kt (θ,σ) dt.

�

Theorem 5.4 The operator C defined by (28) and (29) is the generator (in the sense
of (23)) of {S(t)}t≥0 defined by (30).

Proof Assume ϕ ∈ (λI − C)ψ. Then there exists ψ′ ∈ Y which is a.e. a derivative
of ψ such that

λψ − ψ′ = ϕ, −1 ≤ θ < 0,

satisfying the boundary condition

λψ(0) −
∫ h

0
dη(θ)ψ′(−θ) −

∫ h

0
dζ(θ)ψ(−θ) = ϕ(0).

Solving the differential equation yields that

ψ(θ) = eλθψ(0) + eλθ

∫ 0

θ

e−λσϕ(σ) dσ (32)

and accordingly the boundary condition for θ = 0 boils down to

ψ(0) = �(λ)−1H(λ;ϕ), (33)

where
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H(λ;ϕ) := ϕ(0) + λ

∫ h

0
dη(σ)e−λσ

∫ 0

−σ

e−λτϕ(τ ) dτ

+
∫ h

0
dζ(σ)e−λσ

∫ 0

−σ

e−λτϕ(τ ) dτ .

This requires that det�(λ) 
= 0 with

�(λ) = λ

[
I −

∫ h

0
dη(σ)e−λσ

]
+

∫ h

0
dζ(σ)e−λσ.

Our claim is that the identity

(λI − C)−1ϕ =
∫ ∞

0
e−λt S(t)ϕ dt (34)

or, equivalently,

ψ(θ) =
∫ ∞

0
e−λt (S(t)ϕ) (θ) dt

holds. To verify this, we first note that

∫ ∞

0
e−λt (S(t)ϕ) (θ) dt =

∫ ∞

0
e−λt x(t + θ;ϕ) dt

=
∫ −θ

0
e−λtϕ(t + θ) dt +

∫ ∞

−θ

e−λt x(t + θ) dt

= eλθ

∫ 0

θ

e−λσϕ(σ) dσ + eλθ x̄(λ;ϕ),

where x̄(λ;ϕ) := ∫ ∞
0 e−λt x(t;ϕ) dt , with x(t;ϕ) the solution of (2)–(3) given by

(19). So, since (32) holds, to prove (34) it remains to check that

ψ(0) = x̄(λ;ϕ).

By taking the Laplace transform on both sides of (11) we deduce that

x̄(λ;ϕ) =
(
1 −

∫ ∞

0
e−λt dμ(t)

)−1

f̄ (λ)

= �(λ)−1λ f̄ (λ),

where f̄ (λ) := ∫ ∞
0 e−λt f (t) dt . Therefore, using the representation of f in (12), it

follows that
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λ f̄ (λ) = ϕ(0) +
∫ ∞

0
λe−λt

∫ t

0

(∫ h

s
dζ(θ)ϕ(s − θ) ds

)
dt

+ λ

∫ ∞

0
e−λt

∫ h

t
dη(θ)ϕ(t − θ) dt

= ϕ(0) +
∫ ∞

0
e−λt

∫ h

t
dζ(θ)ϕ(t − θ) dt

+ λ

∫ ∞

0
e−λt

∫ h

t
dη(θ)ϕ(t − θ) dt

= ϕ(0) +
∫ h

0
dζ(θ)

∫ θ

0
e−λtϕ(t − θ) dt

+ λ

∫ h

0
dη(θ)

∫ θ

0
e−λtϕ(t − θ) dt

= ϕ(0) +
∫ h

0
dζ(θ)e−λθ

∫ 0

−θ

e−λσϕ(σ) dσ

λ

∫ h

0
dη(θ)e−λθ

∫ 0

−θ

e−λσϕ(σ) dσ

= H(λ;ϕ).

Therefore it follows from (33) that indeed ψ(0) = x̄(λ;ϕ) and this completes the
proof of the identity (34). �

In Diekmann and Verduyn Lunel (2021), we proved Theorems 5.1, 5.3 and 5.4 for
retarded functional differential equations, and gave an alternative proof of Theorem
5.3 in the neutral case using a relative bounded perturbation argument, see Diekmann
and Verduyn Lunel (2021, Theorem 11.1).

6 The Variation-of-Constants Formula for NFDE

It is a direct consequence of (29) that

X = D (C) = C
([−1, 0],Rn

)
.

ClearlyCψ ∩ X is either empty or a singleton, cf. (28), and for the set to be nonempty
we need that ψ ∈ C1 and

ψ′(0) −
∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ).

So the generator A of the restriction {T (t)}t≥0 of {S(t)}t≥0 to X is given by
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D (A) =
{
ψ ∈ C1 | ψ′(0) −

∫ h

0
dη(θ)ψ′(−θ) =

∫ h

0
dζ(θ)ψ(−θ)

}

Aψ = ψ′

in complete agreement with the standard theory.
As S(t) maps Y into X for t ≥ 1, one might wonder whether we gained anything

at all by the extension from X to Y ? Already in the pioneering work of Jack Hale he
emphasized that if one adds a forcing term to (2), one needs

q(θ) :=
{
1 for θ = 0,

0 for − 1 ≤ θ < 0,

to describe the solution by way of the variation-of-constants formula.
Indeed, the solution of

d

dt

[
x(t) −

∫ h

0
dη(θ)x(t − θ)

]
=

∫ h

0
dζ(θ)x(t − θ) + f (t), t ≥ 0,

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0,

(35)

is explicitly given by

xt = S(t)ϕ +
∫ t

0
S(t − τ )q f (τ ) dτ , (36)

where S(t) is given by (30) and xt is as defined in (1). This formally follows directly
from the fact that the inhomogeneous NFDE (35) corresponds to the initial value
problem

du

dt
∈ Cu + q f, u(0) = ϕ,

where as before u(t) = xt . Note that the solution with initial condition q is the
so-called fundamental solution, cf. (18) and (17).

The integration theory presented next provides a precise underpinning of the
integral in (36) and the remainder of this section is devoted to a proof of (36). In
the original approach of Hale, the hidden argument θ in (36) is inserted and thus the
integral reduces to the integration of an R

n-valued function. Note that evaluation in
a point corresponds to the application of a Dirac functional, so our approach yields,
in a sense, a theoretical underpinning of Hale’s approach.

As a final remark, we emphasize that the variation-of-constants formula (36) is the
key first step towards a local stability and bifurcation theory for nonlinear problems,
as shown in detail in Diekmann et. al. (1995) for retarded functional differential
equations. For neutral functional differential equations this is work in progress.

Motivated by (36), we want to define an element u(t) of Y by way of the action
on Y � expressed in the formula
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〈y�, u(t)〉 = y�S(t)u0 +
∫ t

0
y�S(t − τ )q f (τ ) dτ , (37)

where the standard assumptions are

(i) (Y,Y �) is a norming dual pair;
(ii) q ∈ Y ;
(iii) f : [0, T ] → R is bounded and measurable;
(iv) {S(t)} is a twin semigroup,

and where u0 (corresponding to ϕ in (36)) is an arbitrary element of Y .
The definition of the first term at the right hand side of (37) is no problem at all,

it contributes S(t)u0 to u(t). The second term defines an element of Y �∗, but it is not
clear that this element is, without additional assumptions, represented by an element
of Y . The following lemma provides a sufficient condition.

Lemma 6.1 In addition to (i)–(iv) assume that

(
Y,σ(Y,Y �)

)
is sequentially complete. (38)

Then

y� �→
∫ t

0
y�S(t − τ )q f (τ ) dτ (39)

is represented by an element of Y , to be denoted as
∫ t
0 S(t − τ )q f (τ ) dτ .

Proof There exists a sequence of step functions fm such that | fm | ≤ | f | and fm → f
pointwise. Lemma 3.3 shows that

∫ t

0
S(t − τ )q fm(τ ) dτ

belongs to Y (in fact even to D (C)). Since (see Definition 3.1(ii))

∣∣y�S(t − τ )q fm(τ )
∣∣ ≤ Meω(t−τ )‖q‖‖y�‖ sup

σ
| f (σ)|,

the dominated convergence theorem implies that for every y� ∈ Y �

lim
m→∞

∫ t

0
y�S(t − τ )q fm(τ ) dτ =

∫ t

0
y�S(t − τ )q f (τ ) dτ .

The sequential completeness next guarantees that the limit too is represented by an
element of Y . �

In Diekmann and Verduyn Lunel (2021) we have developed a perturbation theory
to study neutral equations directly as an unbounded perturbation of a retarted equa-
tion. In order to do this, we have to replace f (τ ) dτ by F(dτ ) with F of bounded
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variation. In this setting the approximation by step functions used in the proof of
Lemma 6.1 no longer works. This observation motivates to look for an alternative
sufficient condition to replace (38). This is taken care of in the following lemma.

Lemma 6.2 In addition to (i)–(iv) assume that

a linear map
(
Y �,σ(Y �,Y )

) → R is continuous

if it is sequentially continuous. (40)

Then the assertion of Lemma 6.1 holds.

Proof Again we are going to make use of the dominated convergence theorem.
Consider a sequence {y�

m} in Y � such that for every y ∈ Y the sequence 〈y�
m, y〉

converges to zero in R. Then for all relevant t and τ we have

lim
m→∞ y�

mS(t − τ )q = 0

and consequently

lim
m→∞

∫ t

0
y�
mS(t − τ )q f (τ ) dτ = 0.

So the linear map (39) is, in the sense described in (40), sequentially continuous and
therefore, by the assumption, continuous. Since

(
Y �,σ(Y �,Y )

)′ = Y,

we conclude that (39) is represented by an element of Y . �

We are going to use the above results to show that a certain type of perturbation of
a twin semigroup {S(t)} yields again a twin semigroup. In order to do this we need
a dual version of (37), i.e., we want to define an element u�(t) of Y � by way of the
action on Y expressed in the formula

〈u�(t), y〉 = u�
0S(t)y +

∫ t

0
q�S(t − τ )y f (τ ) dτ , (41)

where the standard assumptions are as before with (ii) replaced by (ii)′, i.e.,

(i) (Y,Y �) is a norming dual pair;
(ii)′ q� ∈ Y �;
(iii) f : [0, T ] → R is bounded and measurable;
(iv) {S(t)} is a twin semigroup,

and where u�
0 is an arbitrary element of Y �. This implies that

y �→
∫ t

0
q�S(t − τ )y f (τ ) dτ (42)
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is represented by an element of Y �, to be denoted as
∫ t
0 q

�S(t − τ ) f (τ ) dτ .
Applying the two lemmas above, with the role of Y and Y � interchanged, we find

that this is indeed the case if either

(
Y �,σ(Y �,Y )

)
is sequentially complete (43)

or

a linear map
(
Y,σ(Y,Y �)

) → R is continuous

if it is sequentially continuous. (44)

Therefore to develop a perturbation theory for twin semigroups we need both (39)
and (42) to be represented by elements from, respectively, Y and Y �. This motivates
the following definition.

Definition 6.3 We say that a norming dual pair (Y,Y �) is suitable for twin pertur-
bation if

(a) at least one of (38) and (40) holds; and
(b) at least one of (43) and (44) holds

Recall from Theorem 4.1 that for the norming dual pair (B, N BV ) introduced
in Sect. 4 we have that (38) and (44) are satisfied. This shows that the norming dual
pair (B, N BV ) is suitable for twin perturbation.

We are now ready to give a rigorous proof of the variation-of-constants formula
for NFDE.

Theorem 6.4 The solution of the inhomogeneous NFDE (35) can be
represented by the variation-of-constants formula (36), i.e.,

xt = S(t)ϕ +
∫ t

0
S(t − τ )q f (τ ) dτ ,

where S(t) is the twin semigroup given by (30).

Proof It follows from Theorem 4.1 that

Y = B([−1, 0];Rn) and Y � = N BV ([0, 1];Rn)

is a norming dual pair suitable for twin perturbation. Therefore the claim follows by
applying Lemma 6.1 with respect to the norming dual pair (B, N BV ) and Lemma
6.2 with respect to the norming dual pair (N BV, B). �

In the treatment of renewal equations in Diekmann and Verduyn Lunel (2021)
we assumed (43) and (40). In fact for delay differential equations we take as normal
dual pair (Y,Y �) with Y = B([−1, 0]) and Y � = N BV ([0, 1]), while for renewal
equations we take (Y,Y �) with Y = N BV ([−1, 0]) and Y � = B([0, 1]).



The Twin Semigroup Approach Towards Periodic Neutral Delay Equations 21

7 Bounded Time-Dependent Perturbation of a Twin
Semigroup

In this section we assume

• (Y,Y �) is a norming dual pair that is suitable for twin perturbation, cf. Definition
6.3;

• {S0(t)} is a twin semigroup on (Y,Y �) with generator C0;
• For j = 1, . . . , n the elements q j ∈ Y and t �→ q�

j (t) ∈ Y � are given.

Definition 7.1 A two-parameter family U = {U (t, s)}t≥s of twin operators on a
norming dual pair (Y,Y �) is called a twin evolutionary system if

(i) U (s, s) = I and U (t, s) = U (t, r)U (r, s) for s ≤ r ≤ t
(ii) there exist constants M ≥ 1 and ω0 ∈ R such that for all y ∈ Y , y� ∈ Y �

|y�U (t, s)y| ≤ Meω0(t−s)‖y‖‖ y�‖, t ≥ s;

(iii) Let the set � ⊂ R
2 be defined by � = {(t, s) | −∞ < s ≤ t < ∞}. For all

y ∈ Y , y� ∈ Y � the function

� � (t, s) �→ y�U (t, s)y ∈ R

is measurable.

Our aim is to define constructively a twin evolutionary system {U (t, s)} corre-
sponding to the abstract multi-valued differential equation

du

dt
∈ C(t)u, t ≥ s, u(s) given, (45)

with

D (C(t)) = D (C0) , C(t)y = C0y +
n∑
j=1

〈q�
j (t), y〉q j . (46)

The first step is to introduce a n × n-matrix-valued function k(t, s) on R × R via
k(t, s) = 0 for −∞ < t ≤ s < ∞ and

ki j (t, s) := q�
i (t)S0(t − s)q j , −∞ < s ≤ t < ∞. (47)

Note that for each pair c1, c2 with −∞ < c1 < c2 < ∞ and for each
f ∈ L1 ([c1, c2];Rn), we have

sup
‖ f ‖≤1

∫ c2

c1

(∫ c2

c1

‖k(t, s) f (s)‖ ds
)
dt < ∞.
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Here ‖ f ‖ denotes the norm of f as function belonging to L1 ([c1, c2];Rn) and the
map

f �→
∫ t

c1

k(t, s) f (s) ds, c1 ≤ t ≤ c2,

defines a bounded linear operator on L1 ([c1, c2];Rn) which we shall denote by K .
The linear space of lower triangular kernel functions on [c1, c2] × [c1, c2] of type

L1
loc endowed with the norm

‖k‖1 := sup
‖ f ‖≤1

∫ c2

c1

(∫ c2

c1

‖k(t, s) f (s)‖ ds
)
dt

= ess sup
s∈[c1,c2]

∫ c2

c1

‖k(t, s)‖ dt (48)

is a Banach space (see Theorem 9.2.4 and Proposition 9.2.7 of Grippenberg et. al.
1990) which we will denote by L1+

([c1, c2] × [c1, c2];Rn×n
)
.

Now let k be a lower triangular kernel function of type L1
loc. We call an n × n-

matrix-function r(t, s) a resolvent kernel function of k if r(t, s) is a lower triangular
kernel function of type L1

loc and

r(t, s) = k(t, s) +
∫ t

s
r(t, a)k(a, s) da, −∞ < s ≤ t < ∞, (49)

= k(t, s) +
∫ t

s
k(t, a)r(a, s) da, −∞ < s ≤ t < ∞. (50)

Define the integral operator R similar as the operator K but with the kernel k(t, s)
replaced by r(t, s), i.e.,

(R f ) (t) :=
∫ t

c1

r(t, s) f (s) ds, c1 ≤ t ≤ c2.

Using the integral operators K and R, it follows from the identity (50) that for
c1 < t < c2 we have

(K R f )(t) =
∫ t

c1

k(t, s)(R f )(s) ds

=
∫ t

c1

k(t, s)

(∫ s

0
r(s, τ ) f (τ ) dτ

)
ds

=
∫ t

c1

(∫ t

τ

k(t, s)r(s, τ ) ds

)
f (τ ) dτ

=
∫ t

c1

(r(t, τ ) − k(t, τ )) f (τ ) dτ

= (R f )(t) − (K f )(t), c1 ≤ t ≤ c2.
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It follows that K R = R − K . Similarly, using (49), we have RK = R − K . This
yields K R = RK and

(I − K )(I + R) = (I + R)(I − K ) = I, (51)

where I is the identity operator on L1 ([c1, c2];Rn). Thus I − K is an invertible
operator on L1 ([c1, c2];Rn), and its inverse is given by I + R.

Theorem 7.2 If k(t, s) is a lower triangular kernel function of type L1
loc, then k(t, s)

has a unique resolvent kernel function r(t, s) of type L1
loc. In particular, the integral

equation x = Kx + f has a unique solution given by x = f + R f .

Proof The proof will be done in three steps. Throughout k(t, s) is a lower triangular
kernel function of type L1

loc.

Step 1. First note that if k1 and k2 are lower triangular kernel functions on R × R,
then the same holds true for the functions

(t, s) �→
∫ t

s
k1(t, a)k2(a, s) da and (t, s) �→

∫ t

s
k2(t, a)k1(a, s) da.

Furthermore, from the discussion in the paragraph preceding the present theorem it
follows that a resolvent kernel function of type L1

loc is unique whenever it exists.

Step 2.Because of uniqueness of the resolvent kernel of type L1
loc, it suffices to prove

existence of a resolvent kernel on [c1, c2] for every c1, c2 ∈ (0,∞) with c1 < c2.
Assume first that ‖k‖1 ≤ 1 with ‖k‖1 given by (48), then the map

r(t, s) �→
∫ t

s
k(t, a)r(a, s) da + k(t, s)

is a contraction on L1+
([c1, c2] × [c1, c2];Rn×n

)
. This shows that (50) (and, using

(51), similarly (49)) has a unique solution, and this solution is a resolvent kernel of
type L1

loc.

Step 3. Since k(t, s) is a lower triangular kernel function of type L1
loc, we define a

scaled lower triangular kernel function of type L1
loc by

k̂(t, s) := e−γ(t−s)k(t, s).

Since the norm of k̂ is defined by (see (48))

‖̂k‖1 := ess sup
s∈[c1,c2]

∫ c2

c1

‖̂k(t, s)‖ dt = ess sup
s∈[c1,c2]

∫ c2

c1

e−γ(t−s)‖k(t, s)‖ dt,

we can choose γ so large that ‖̂k‖1 < 1. From Step 2, it follows that the equation

r̂(t, s) = k̂(t, s) +
∫ t

s
k̂(t, a)̂r(a, s) da
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has a unique solution r̂ ∈ L1+
([c1, c2] × [c1, c2];Rn×n

)
. Therefore, we have

r̂(t, s) = e−γ(t−s)k(t, s) +
∫ t

s
e−γ(t−a)k(t, a)̂r(a, s) da,

and hence

eγ(t−s)r̂(t, s) = k(t, s) +
∫ t

s
k(t, a)eγ(a−s)r̂(a, s) da.

Thus

r(t, s) = k(t, s) +
∫ t

s
k(t, a)r(a, s) da,

where r(t, s) = eγ(t−s)r̂(t, s). This completes the proof. �

Proposition 7.3 If k(t, s) is a lower triangular kernel function that satisfies the esti-
mate ‖k(t, s)‖ ≤ m(t) for 0 ≤ s ≤ t and r(t, s) denotes the corresponding resolvent
kernel function, then

‖r(t, s)‖ ≤ m(t) exp

[∫ t

s
m(σ) dσ

]
, 0 ≤ s ≤ t < ∞.

Proof From the estimate ‖k(t, s)‖ ≤ m(t) for 0 ≤ s ≤ t we obtain the following
integral inequality for the function u(t, s) := ‖r(t, s)‖ on 0 ≤ s ≤ t :

u(t, s) ≤ m(t) + m(t)
∫ t

s
u(a, s) da, 0 ≤ s ≤ t < ∞. (52)

Now fix s ∈ [0,∞), and put

q(t) := exp

[
−

∫ t

s
m(σ) dσ

] ∫ t

s
u(a, s) da. t ≥ s. (53)

Differentiation of q with respect to t yields

dq

dt
(t) = −m(t)q(t) + exp

[
−

∫ t

s
m(σ) dσ

]
u(t, s)

=
(
u(t, s) − m(t)

∫ t

s
u(a, s) da

)
exp

[
−

∫ t

s
m(σ) dσ

]

≤ m(t) exp

[
−

∫ t

s
m(σ) dσ

]
,

where we have used (52). Integration from s to t yields the inequality
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q(t) ≤
∫ t

s
m(a) exp

[
−

∫ a

s
m(σ) dσ

]
da = 1 − exp

[
−

∫ t

s
m(σ) dσ

]
.

Together with the definition of q in (53) we arrive at

m(t)
∫ t

s
u(a, s) da = m(t) exp

[∫ t

s
m(σ) dσ

]
q(t)

≤ −m(t) + m(t) exp

[∫ t

s
m(σ) dσ

]
.

Substitution into (52) yields

u(t, s) ≤ m(t) exp

[∫ t

s
m(σ) dσ

]
, 0 ≤ s ≤ t < ∞,

which completes the proof. �

In the context of the variation-of-constants spirit (46) motivates us to presuppose
that U (t, s) and S0(t) should be related to each other by the equation

U (t, s) = S0(t − s) +
∫ t

s
S0(t − τ )B(τ )U (τ , s) dτ , t ≥ s, (54)

where

B(t)y :=
n∑
j=1

〈q�
j (t), y〉q j , t ≥ s. (55)

By letting B(t) act on (54) we obtain, for a given initial point y ∈ Y , a finite dimen-
sional renewal equation.

To derive this renewal equation, we first write (55) as

B(t)y = 〈q�(t), y〉 · q, t ≥ s, (56)

where t �→ q�(t) is the n-vector-valued function with Y �-valued components q�
j (t)

and q is the n-vector-valued with Y -valued components q j . Here we use · to denote
the inner product in Rn .

We can factor (a rank factorization) B as B = B2B1 with B1 : Y → R
n and B2 :

R
n → Y defined by

B1(t)y := 〈q�(t), y〉, B2x :=
n∑
j=1

x jq j , t ≥ s. (57)

Now let (54) act on y ∈ Y and use (56) to obtain
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U (t, s)y = S0(t − s)y +
∫ t

s
S0(t − τ )q�(τ )U (τ , s)y · q dτ , t ≥ s. (58)

Next act on both sides of (58) with the operator B1(t) as defined in (57) to arrive at

v(t, s)y = q�(t)S0(t − s)y +
∫ t

s
k(t, τ )v(τ , s)y dτ , t ≥ s, (59)

where
v(t, s)y := B1(t)U (t, s)y = q�(t)U (t, s)y, t ≥ s,

and the lower triangular kernel function k(t, s) is given by (47). Using Theorem 7.2
we can express the solution of (59) in terms of the resolvent r(t, s) of the kernel
k(t, s) and the forcing function t �→ q�(t)S0(t − s)y by the formula

v(t, s)y = q�(t)S0(t − s)y +
∫ t

s
r(t, τ )q�(τ )S0(τ − s)y dτ , t ≥ s. (60)

And now that the function v(t, s)y, representing q�(t)U (t, s)y, can be considered
as known, Eq. (54) becomes an explicit formula for U (t, s):

U (t, s) = S0(t − s) +
∫ t

s
S0(t − τ )q · v(τ , s) dτ , t ≥ s. (61)

Please note that, with this definition of U (t, s), we do indeed have that

v(t, s)y = q�(t)U (t, s)y

(compare (61) to (59)).
Formula (61) is well suited for proving, on the basis of Lemma 6.1 or Lemma 6.2,

thatU (t, s)maps Y into Y . But not for proving thatU (t, s)maps Y � into Y �. So even
though this may seem superfluous, we now provide an alternative dual constructive
definition starting from the following equation

U (t, s) = S0(t − s) +
∫ t

s
U (t, τ )B(τ )S0(τ − s) dτ , t ≥ s, (62)

which is the variant of (54) in which the roles ofU (t, s) and S0(t) are interchanged.
Let (62) act (from the right) on y� ∈ Y � and next let the resulting identity act on the
vector q. Using (56) this yields the equation

y�w(t, s) = y�S0(t − s)q +
∫ t

s
y�w(t, τ )k(τ , s) dτ , t ≥ s, (63)

where y�w(t, s) := y�U (t, s)q and k(t, s) is given by (47). The formula
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y�w(t, s) = y�S0(t − s)q +
∫ t

s
y�S0(t − τ )q r(τ , s) dτ , t ≥ s, (64)

expresses the solution of (63) in terms of the forcing function in (63) and the resolvent
r(t, s) of the kernel k(t, s). Next use (56) to rewrite (62) in the form

U (t, s) = S0(t − s) +
∫ t

s
w(t, τ ) · q�S0(τ − s) dτ , t ≥ s. (65)

Please note that indeed y�w(t, s) = y�U (t, s)q (compare (65) to (63)).
Of course we should now verify that the integrals in (61) and (65) do indeed

define the same object. Writing the integral in (61) as w0 ∗ v and the integral in (65)
as w ∗ v0, equality follows from (60) written in the form

v = v0 + r ∗ v0

and (64) written in the form
w = w0 + w0 ∗ r

since

w0 ∗ v = w0 ∗ (v0 + r ∗ v0) = w0 ∗ v0 + w0 ∗ r ∗ v0

= (w0 + w0 ∗ r) ∗ v0 = w ∗ v0.

Before we can prove Theorem 7.5 below we first need an auxiliary result.

Lemma 7.4 The solution v(t, s)y of (59) has the property

v(t, s)y = v(t, r)U (r, s)y, t ≥ r ≥ s. (66)

Proof From (59) it follows that

v(t, s)y = q�(t)S0(t − r)S0(r − s)y +
∫ r

s
k(t, τ )v(τ , s)y dτ

+
∫ t

r
k(t, τ )v(τ , s)y dσ, t ≥ r ≥ s,

and, by uniqueness, (66) follows provided the following identity holds

q�(t)S0(t − r)S0(r − s)y +
∫ r

s
k(t, τ )v(τ , s)y dτ = q�(t)S0(t − r)U (r, s)y.

Recall from (47) that

k(t, s) = q�S0(t − s)q = q�S0(t − r)S0(r − s)q, t ≥ r ≥ s,



28 S. Verduyn Lunel

so we conclude from (61) that this identity does indeed hold. �

Theorem 7.5 Equation (61) in combination with (60), or Eq. (65) in combination
with (64), defines a twin evolutionary system {U (t, s)} corresponding to the abstract
differential equation (45).

Proof Fix t ≥ s. Since (Y,Y �) is suitable for twin perturbation, we can use (61) and
either Lemma 6.1 or Lemma 6.2 to deduce that U (t, s) maps Y into Y . Similarly
we can use (65) and the observation concerning (42) to deduce thatU (t, s) maps Y �
into Y �. So U (t, s) is a twin operator.

Next we use Lemma 7.4 to derive the property

U (t, s) = U (t, r)U (r, s), t ≥ r ≥ s, (67)

To verify (67), we start from (61) and use Lemma 7.4 to write

U (t, s)y = S0(t − r)

[
S0(r − s)y +

∫ r

s
S0(r − τ )q · v(τ , s)y dτ

]

+
∫ t

r
S0(t − τ )q · v(τ , r)U (r, s)y dτ

= S0(t − r)U (r, s)y +
∫ t

r
S0(t − τ )q · v(τ , r)U (r, s)y dτ

= U (t, r)U (r, s)y.

Both the property S(s, s) = I and the measurability, for all y ∈ Y , y� ∈ Y �, of t �→
y�S(t)y follow from (61) and the corresponding properties of {S0(t)}.

Finally, the exponential estimate for y�S0(t)y yields exponential estimates for
both the kernel k(t, s) and the forcing function t �→ q�(t)S0(t − s)y, t ≥ s, in the
renewal equation (59). Therefore, using Proposition 7.3 we obtain an exponential
estimate for the resolvent r(t, s) and hence via (60) an exponential bound for v(t, s)y.
Finally, using (61) we obtain an exponential bound for y�U (t, s)y for t ≥ s.

This completes the proof of Theorem 7.5. �

8 A Perturbation Approach Towards Periodic NFDE

We shall be dealing with linear periodic neutral functional differential equations of
the following type:

⎧⎪⎨
⎪⎩

d

dt

[
x(t) −

∫ h

0
[dη(τ )]x(t − τ )

]
=

∫ h

0
[dτ ζ(t, τ )]x(t − τ ), t ≥ s,

x(s + θ) = ϕ(θ), −h ≤ θ ≤ 0.

(68)
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Here dτ denotes integration with respect to the τ variable and ϕ is a given function
in B ([−h, 0],Rn). Throughout we assume that for each t ∈ R the functions η and
ζ(t, ·) are n × n matrices of which the entries are real functions of bounded variation
on [0, h] and continuous from the left on (0, h), and η(0) = ζ(t, 0) = 0. Moreover,
it is assumed that there is a nondecreasing bounded function m ∈ L1

loc[−h,∞) such
that

Var[−h,0] ζ(t, ·) ≤ m(t), t ≥ 0.

Theorem 8.1 Under the above conditions, Eq. (68) defines a well-posed dynam-
ical system, that is, Eq. (68) has a unique solution x on [0,∞) such that xt ∈
B ([−h, 0],Rn) for t ≥ 0.

The above theorem is an extension of Theorem 6.1.1 in Hale and Verduyn Lunel
(1993) to the neutral case. In this section we shall derive Theorem 8.1 as a corollary
of Theorem 7.5 using the perturbation approach developed in the previous section.

Consider as the unperturbed problem the special case ζ = 0 in (68). Let y denote
the solution of the autonomous NFDE

⎧⎪⎨
⎪⎩

d

dt

[
y(t) −

∫ h

0
[dη(τ )]y(t − τ )

]
= 0, t ≥ 0,

y(θ) = ϕ(θ), −h ≤ θ ≤ 0.

(69)

From the theory developed in Sect. 2, it follows that the solution y of (69) satisfies
the autonomous renewal equation

y(t) −
∫ t

0
dη(θ)y(t − θ) = f0(t), t ≥ s, (70)

where

f0(t) := ϕ(0) −
∫ h

0
dη(θ)ϕ(−θ) +

∫ h

t
dη(θ)ϕ(t − θ), t ≥ s. (71)

The solution of (70) is given by

y(t) = f0(t) +
∫ t

0
dρ0(θ) f0(t − θ), t ≥ 0, (72)

where ρ0 denotes the resolvent of η, i.e., it satisfies the resolvent equation

ρ0 = η ∗ ρ0 + η, (73)

see Theorem 2.2. Denote by X (t) = I + ρ0(t) the fundamental matrix solution of
(69) so that we can write the solution y given by (72) as
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y(t) =
∫ t

0
dX (τ ) f0(t − τ ), t ≥ 0. (74)

It follows from Theorem 5.3 that the semigroup {S0(t)} defined by translation along
the solution of (69), i.e.,

(S0(t)ϕ) (θ) = y(t + θ;ϕ), −h ≤ θ ≤ 0, t ≥ 0,

is a twin semigroup.
Define for i = 1, . . . , n elements qi ∈ Y and functions t �→ q�

i (t) ∈ Y � by

qi (θ) :=
{
0 for − h ≤ θ < 0,

ei for θ = 0,
(75)

where ei is the i-th unit vector in R
n and the maps t �→ q�

i (t) are defined by

(
q�
i (t)

)
(θ) := ζi (t, θ), −h ≤ θ ≤ 0, t ≥ 0, (76)

where ζi is the i-th row of the n × n-matrix-valued function ζ.
For the matrix kernel k(t, s) introduced in (47) we have, using (75) and (76), the

representation

ki j (t, s) = q�
i (t)S0(t − s)q j

=
∫ t−s

0
dτ ζi (t, τ )X j (t − s − θ), t ≥ s, (77)

where X j (t) is the j-th column of the fundamentalmatrix solution X (t). Furthermore
for ϕ ∈ Y , using (76),

q�(t)S0(t − s)ϕ = q�(t)y(t − s;ϕ)

=
∫ h

0
dζ(t, θ)y(t − s − θ;ϕ), t ≥ s.

Let v(t, s)ϕ be the solution to the renewal equation (59), i.e.,

v(t, s)ϕ = q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v(τ , s)ϕ dτ , t ≥ s,

where the kernel k(t, s) is given by (77). We claim that the solution v(t, s)ϕ is given
by

v(t, s)ϕ =
∫ h

0
dζ(t, θ)x(t − θ;ϕ), t ≥ s, (78)

where x(·;ϕ) is the solution of (68).
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Define

v̄(t, s)ϕ :=
∫ h

0
dζ(t, θ)x(t − θ;ϕ). (79)

To prove that v(t, s) = v̄(t, s) it suffices to show that v̄(t, s)ϕ is also a solution of
the renewal equation (59).

Let x(·;ϕ) be the solution of (68). Similar as before we can rewrite equation (68)
to obtain that x is a solution of the renewal equation

x(t) −
∫ t

0
dη(θ)x(t − θ) =

∫ t

s
v̄(σ, s)ϕ dσ + f0(t), (80)

where f0 is given by (71). Note that the left hand side of (80) can be written as
x − η ∗ x . Using the resolvent equation (73) we obtain

(1 + ρ0) ∗ (x − η ∗ x) = x − η ∗ x + ρ0 ∗ x − ρ0 ∗ η ∗ x

= x − η ∗ x + ρ0 ∗ x − (ρ0 − η) ∗ x

= x .

Thus if we take on both sides of (80) the convolution with the fundamental solution
X (t) = I + ρ0(t) of (69) then

x(t) = y(t;ϕ) +
∫ t

s
dX (t − τ )

∫ τ

s
v̄(σ, s)ϕ dσ

= y(t;ϕ) +
∫ t

s
X (t − τ )v̄(τ , s)ϕ dτ , (81)

where y is given by (74). Finally take the convolution with q�(t) on both sides of
(81) to arrive at

v̄(t, s)ϕ = q�(t)y(t;ϕ) +
∫ t

s
q�(t)X (t − τ )v̄(τ , s)ϕ dτ

= q�(t)S0(t − s)ϕ +
∫ t

s

[∫ h

0
dζ(t, θ)X (t − τ − θ)

]
v̄(τ , s)ϕ dτ

= q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v̄(τ , s)ϕ dτ ,

where we have used (77) and (78). Therefore v̄(t, s)ϕ given by (79) satisfies the
identity

v̄(t, s)ϕ = q�(t)S0(t − s)ϕ +
∫ t

s
k(t, τ )v̄(τ , s)ϕ dτ .

This shows that v̄(t, s)ϕ is a solution to the renewal equation (59) and completes the
proof of the claim (78).
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Finally apply to (61) the element of Y � that corresponds to the Dirac measure in
−θ ∈ [0, 1] to obtain

(U (t, s)ϕ) (θ) = y(t − s + θ) +
∫ t

s
X (t − τ + θ) · v(τ , s)ϕ dτ

= x(t − s + θ;ϕ),

where in the last identity we have used (81).
Thus we conclude that the the perturbation approach based on the abstract

variation-of-constants formula developed in the previous section precisely yields
the twin evolutionary system defined by translation along the solution of (68).

We summarize this result in a theorem.

Theorem 8.2 Under the above conditions, translation along the solution of equation
(68) defines a twin evolutionary system {U (t, s)}t≥s given by (61).

A Review of Functions of Bounded Variation

In this appendix E denotes the Borel σ-algebra on [0,∞). For E ∈ E , we call a
sequence of disjoint sets {E j } in E a partition of E if ∪∞

j=1 E j = E . A complex
Borel measure is a map μ : E → C such that μ(∅) = 0 and

μ(E) =
∞∑
j=1

μ(E j ),

for every partition {E j } of E with the series converging absolutely. In the following
we will often omit the adjective ‘bounded’. The total variation measure |μ| of a
complex Borel measure μ is given by

|μ|(E) = sup

⎧⎨
⎩

n∑
j=0

|μ(E j )| | n ∈ N, {E j } a partition of E in E
⎫⎬
⎭ .

The vector space of complex Borel measures of bounded total variation is denoted
by M ([0,∞)). Provided with the total variation norm given by

‖μ‖T V = |μ| ([0,∞)) , (82)

the vector space M ([0,∞)) becomes a Banach space.

Let f : [0,∞) → C be a given function. For a partition {E j } of [0, t] with E j =
[t j−1, t j ) and 0 = t0 < t1 < · · · < tn = t we define the function T f : [0,∞) →
[0,∞] by
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T f (t) := sup
n∑
j=1

| f (t j ) − f (t j−1)|,

where the supremum is taken overn ∈ N and all such partitions of [0, t]. The extended
real function T f is called the total variation function of f . Note that if 0 ≤ a < b,
then T f (b) − T f (a) ≥ 0 and hence T f is an increasing function.

If limt→∞ T f (t) is finite, then we call f a function of bounded variation. We
denote the space of all such functions by BV . The space N BV ([0,∞)) of normalized
functions of bounded variation is defined by

N BV ([0,∞)) := { f ∈ BV | f is continuous from the right on (0,∞)

and f (0) = 0 }.

Provided with the norm
‖ f ‖T V := lim

t→∞ T f (t) (83)

the space N BV ([0,∞)) becomes a Banach space. More generally, we define for
−∞ < a < b < ∞, the vector space N BV ([a, b]) to be the space of functions
f : [a, b] → C such that f (a) = 0, f is continuous from the right on the open
interval (a, b), and whose total variation on [a, b], given by T f (b) − T f (a) = T f (b),
is finite. Providedwith the norm ‖ f ‖T V := T f (b), the space N BV ([a, b]) becomes a
Banach space. We extend the domain of definition of a function of bounded variation
by defining f (t) = 0 for t < 0 if f ∈ N BV ([0,∞)) and f (t) = 0 for t < a and
f (t) = f (b) for t > b if f ∈ N BV ([a, b]).
The following fundamental result (see Folland 1999, Theorem 3.29) provides the

correspondence between functions of bounded variation and complex Borel mea-
sures.

Theorem A.1 Letμ be a complex Borel measure onR. If f : [0,∞) → C is defined
by f (t) = μ((0, t]), then f ∈ N BV ([0,∞)). Conversely, if f ∈ N BV ([0,∞)) is
given, then there is a unique complex Borel measure μ f such that μ f ((0, t]) = f (t).
Moreover |μ f | = μT f .

Given a function f ∈ N BV ([a, b]) with corresponding measure μ f , we define
the Lebesgue-Stieltjes integral

∫
g d f or

∫
g(x) f (dx) to be

∫
g dμ f . Thus, a

Lebesgue-Stieltjes integral is a special Lebesgue integral and the theory for the
Lebesgue integral applies to the Lebesgue-Stieltjes integral. We embed L1 ([0,∞))

into M ([0,∞)) by identifying f ∈ L1 ([0,∞)) with the measure μ defined by

μ(E) =
∫
E
f (x) dx or, in short, μ(dx) = f (x) dx .

In this section we collect some results about the convolution of a measure and a
function and the convolution of two measures needed to study renewal equations.
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For details we refer to Appendix A of Diekmann and Verduyn Lunel (2021) and for
further results we refer to Folland (1999); Grippenberg et. al. (1990).

Let B ([0,∞)) denote the vector space of all bounded, Borel measurable func-
tions f : [0,∞) → R. Provided with the supremum norm (denoted by ‖ · ‖), the
space B ([0,∞)) becomes a Banach space. With B ([a, b]) we denote the Banach
space of all bounded, Borel measurable functions f : [a, b] → R provided with the
supremum norm.

The half-line convolution μ ∗ f of a measure μ ∈ M([0,∞)) and a Borel mea-
surable function f ∈ B ([0,∞)) is the function

(μ ∗ f )(t) :=
∫

[0,t]
μ(ds) f (t − s)

defined for those values of t for which [0, t] � s �→ f (t − s) is |μ|-integrable.
The following result can be found inGrippenberg et. al. (1990, Theorem 3.6.1(ii)).

Theorem A.2 If f ∈ B ([0,∞)) and μ ∈ M ([0,∞)), then the convolution of f
and μ satisfies μ ∗ f ∈ B ([0,∞)) and

‖μ ∗ f ‖ ≤ ‖μ‖T V ‖ f ‖.

The half-line convolution μ ∗ ν of two measures μ, ν ∈ M ([0,∞)) is defined by
the complex Borel measure that to each Borel set E ∈ E assigns the value

(μ ∗ ν)(E) :=
∫

[0,∞)

μ(ds)ν ((E − s)+) , (84)

where (E − s)+ := {e − s | e ∈ E} ∩ [0,∞) (cf. Grippenberg et. al. 1990, Defini-
tion 4.1.1)).

If χE is the characteristic function of the set E , then

ν((E − s)+) =
∫

[0,∞)

χE (σ + s)ν(dσ),

where [0,∞) � σ �→ χE (σ + s) is the characteristic function of (E − s)+. It fol-
lows from Theorem A.2 that s �→ ν(E − s)+) belongs to B ([0,∞)) and hence the
definition of the convolution of two measures μ ∗ ν : E → C given in (84) makes
sense. Furthermore, using Fubini’s Theorem, we have the following useful identity
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μ ∗ ν(E) =
∫

[0,∞)

μ(ds)ν ((E − s)+)

=
∫

[0,∞)

∫
[0,∞)

χE (σ + s)μ(ds)ν(dσ)

=
∫

[0,∞)

μ ((E − s)+) ν(ds).

The following result can be found inGrippenberg et. al. (1990, Theorem 4.1.2(ii)).

Theorem A.3 Let μ, ν ∈ M ([0,∞)) and let the convolution μ ∗ ν be defined by
(84).

(i) The convolution μ ∗ ν belongs to M ([0,∞)) and

‖μ ∗ ν‖T V ≤ ‖μ‖T V ‖ν‖T V .

(ii) For any bounded Borel function h ∈ B ([0,∞)), we have

∫
[0,∞)

h(t) (μ ∗ ν) (dt) =
∫

[0,∞)

∫
[0,∞)

h(t + s)μ(dt)ν(ds).

Using the one-to-one correspondence between complex Borel measures and func-
tions of bounded variation, see Theorem A.1, we can combine the above results to
obtain the following theorem (see Diekmann and Verduyn Lunel 2021, Theorem
A.5).

Theorem A.4 If f ∈ N BV ([0,∞)) and μ ∈ M([0,∞)), then the convolution of μ
and f satisfies μ ∗ f ∈ N BV ([0,∞)) and

‖μ ∗ f ‖T V ≤ ‖μ‖T V ‖ f ‖T V .

We also need the following result (see Diekmann and Verduyn Lunel 2021, The-
orem A.6).

Theorem A.5 Let μ ∈ M ([0,∞)) and let f : [0,∞) → C be a bounded continu-
ous function. If μ has no discrete part, then μ ∗ f is a bounded continuous function
and

‖μ ∗ f ‖ ≤ ‖μ‖T V ‖ f ‖.
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