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A B S T R A C T

(Sub)clinical hypocalcaemia occurs frequently in the dairy industry, and is one of the earliest symptoms of an
impaired transition period. Calcium deficiency is accompanied by changes in cows’ daily behavioural variables,
which can be measured by sensors. The goal of this study was to construct a predictive model to identify cows
at risk of hypocalcaemia in dairy cows using behavioural sensor data. For this study 133 primiparous and 476
multiparous cows from 8 commercial Dutch dairy farms were equipped with neck and leg sensors measuring
daily behavioural parameters, including eating, ruminating, standing, lying, and walking behaviour of the 21
days before calving. From each cow, a blood sample was taken within 48 h after calving to measure their blood
calcium concentration. Cows with a blood calcium concentration ≤2.0 mmol/L were defined as hypocalcemic.
In order to create a more context based cut-off, a second way of dividing the calcium concentrations into two
categories was proposed, using a linear mixed-effects model with a k-Means clustering. Three possible binary
predictive models were tested; a logistic regression model, a XgBoost model and a LSTM deep learning model.
The models were expanded by adding the following static features as input variables; parity (1, 2 or 3+),
calving season (summer, autumn, winter, spring), day of calcium sampling relative to calving (0, 1 or 2), body
condition score and locomotion score. Of the three models, the deep learning model performed best with an
area under the receiver operating characteristic curve (AUC) of 0.71 and an average precision of 0.47. This
final model was constructed with the addition of the static features, since they improved the model’s tuning
AUC with 0.11. The calcium label based on the cut-off categorization method proved to be easier to predict
for the models compared to the categorization method with the k-means clustering. This study provides a
novel approach for the prediction of hypocalcaemia, and an ameliorated version of the deep learning model
proposed in this study could serve as a tool to help monitor herd calcium status and to identify animals at
risk for associated transition diseases.
1. Introduction

The most challenging time in the lifespan of a cow is around
parturition, more commonly known as the transition period (Grummer,
1995). The cow has to adapt homeorhetic from a pregnant state to
a non-pregnant, and more importantly, lactating state (Bauman and
Currie, 1980). In this period, most infectious diseases and metabolic
disorders occur or originate, ranging from ketosis and retained fetal
membranes to displaced abomasum and mastitis (Drackley, 1999). One
of the arising problems is hypocalcaemia, more commonly known as
milk fever. Once a cow starts lactating, she looses more calcium in
her milk, urine, and faeces than she can replenish through intestinal
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reuptake. The mechanisms to rebalance calcium take a while to initiate,
resulting in a calcium dip right after calving (Horst et al., 1994).
Recently, Horst et al. (2021) suggested that hypocalcaemia could also
be explained as a result of an inflammatory reaction seen around
calving. There are two forms of hypocalcaemia; clinical hypocalcaemia
(CH), with visible clinical signs like increased heart rate, cold ears
and recumbency, and subclinical hypocalcaemia (SCH) which has no
recognizable symptoms but is associated with impaired postpartum
health and performance (Serrenho et al., 2021).

The reported prevalence of hypocalcaemia differs between studies,
but lies between 14%–40% of the cows after parturition overall and
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for higher parity cows up to 69% (Serrenho et al., 2021). Since the
disease is very common, many preventive measures are being applied
in an attempt to reduce milk fever occurrences. For instance; feeding a
pre-calving diet low in calcium, feeding a diet with a negative dietary
cation-anion difference and oral calcium drenching around calving, are
regularly used (Thilsing-Hansen et al., 2002; DeGaris and Lean, 2008).
Not all risk factors of hypocalcaemia are related to nutrition, (DeGaris
and Lean, 2008) and none of the measures have succeeded to fully
prevent hypocalcaemia (Venjakob et al., 2017; Ribeiro et al., 2013).

Devices that measure physiological or behavioural parameters, are
increasingly used in the dairy industry. In a survey held among Dutch
dairy farmers in 2015, 39% of the farmers reported using at least
one sensor system (Steeneveld and Hogeveen, 2015), a number that
probably has been growing ever since. Sensors can be used for oestrus
detection (Firk et al., 2002), lameness detection (Chapinal et al., 2010),
mastitis detection (Cavero et al., 2008; Jensen et al., 2016), and nu-
merous other applications. Nowadays, 129 different sensor systems are
commercially available (Stygar et al., 2021).

Overton et al. (2017) has shown that there are differences in prepar-
tum behaviour between healthy cows and those affected by metabolic
disease postpartum. The authors thereby suggested that this difference
could be used for disease prediction. Other researchers, such as Soriani
et al. (2012), Liboreiro et al. (2015), Hendriks et al. (2020) and Gus-
terer et al. (2020), have likewise explored the connection between cow
behaviour and disease using sensor-based techniques. These studies also
reported behavioural differences between disordered and healthy cows,
suggesting a possible predictive value of behaviour for disease. Stan-
gaferro et al. (2016) has shown that these sensor-based systems can
be used for the detection of diseases, and de Mol et al. (2015) has
demonstrated a system to identify deviations of behaviour which are
associated with metabolic disease. However, at the present time, for as
far as we know, models for specifically hypocalcaemia prediction with
behavioural sensor data do not yet exist (Garcia et al., 2020), despite
the suggestion of Overton et al. (2017) and the potential of precision
livestock farming to perform such tasks (Garcia et al., 2020; Wathes
et al., 2008).

In this study, we tried to build the first prediction model for a
specific disease using activity data. Given the high prevalence, impact,
and focus on the prevention of hypocalcaemia in practice (LeBlanc
et al., 2006), a model was built to predict hypocalcaemia.

The descriptive models using animal behaviour data described
above all used traditional machine learning models, but in this paper
we chose to approach this using a deep learning model. Deep learn-
ing is better scalable and often outperforms traditional data analysis
methodologies when handling large and complex data (Janiesch et al.,
2021). We hypothesized that given the complexity of behavioural data,
it therefore will result in a more accurate model. A LSTM deep learning
model was chosen, since this network can analyse sequential data and
has the ability to recognize temporal patterns, as can be seen in a
series of behavioural data, using a long term memory (Hochreiter and
Schmidhuber, 1997). The downside of a neural network is, next to
high computational cost, the black-box principle, making it hard to
distinguish which behaviours are important for a models’ prediction.
This problem is partly solved in this study with a cross-validated per-
mutation feature importance, although this method is labour-intensive
and cumbersome.

The goal of the study was to create a predictive model able to
differentiate at parturition which cow is at risk for hypocalcaemia after
parturition. This could then serve as a tool for the prevention and
control of metabolic disease.

2. Materials and methods

2.1. Data collection

This study was a part of the Sense Of Sensors project. In this
2

project, cows of eight Dutch dairy farms were equipped with leg and
neck sensors measuring animal behaviour. The Smarttag sensors were
provided by Nedap (Nedap, Groenlo, the Netherlands) and measured
five different features throughout the day. The leg sensors measured
the total minutes per day spent standing, lying and walking, while
the neck sensors measured the minutes spent eating and ruminating.
For this study, the sensor values recorded during the 21 days before
calving were used, a period generally accepted as the close up period
and a typical time for a cow to prepare for calving. So for each cow,
there were 5 different values each day for 21 days, resulting in 105
values per cow in total. In a paper by Hut et al. (2021), the farms and
sensors used are described elaborately. The data was collected between
November 2016 and May 2018 and included both data of dairy cows
in the transition period and pre-fresh heifers.

Blood samples were taken from the cows by a veterinarian on the
day of calving (0), the day after calving (1) or two days after calving
(2), in order to measure the blood calcium concentration. The samples
were taken from the coccygeal vein using a vacutainer and collected
into a heparinized blood collection tube. At the same day, the collected
samples were centrifuged for ten minutes at 4500 rpm (Centrifuge 5804
R; Eppendorf Germany) and afterwards manually pipetted into Eppen-
dorf cups. The samples were stored at −20 degrees Celsius, awaiting
quantitative analysis of total calcium serum concentration using the
Calcium Arsenazo method (Leary et al., 1992). This method was exe-
cuted by the Olympus AU680 with a limit of quantitation of 1 mmol/L
and an end point determination of 660 nm. One cow was removed from
the dataset because of an extraordinary high blood calcium value of
above 3, 4 mmol/L due to the administration of a calcium infusion
just before sampling. Since the research was conducted over a longer
period of time, 21 cows participated multiple times, but with a different
parity. However, each unique animal calving date combination was
seen as a different test subject. This selection process resulted in 609
unique dairy cow calving date combinations deemed appropriate for
this research.

For 416 cows, the body condition score (BCS) was determined by
a trained veterinarian at the end of the dry period. The scores were
described on a scale between 1 and 5, with 0.25 increments, as defined
by Ferguson et al. (1994). At the same observation for 414 cows, the
locomotion score was determined on a scale between 1 and 5 based
on posture and gate, but with the use of integers only, according
to Sprecher et al. (1997).

Calving seasons were extracted from the recorded calving dates and
were defined as 3-month periods according to Sanders et al. (2009).
Summer, for instance, was defined as the months of July, August, and
September.

2.2. Label preprocessing

Cows were divided into two categories; hypocalcaemic cows with
a blood calcium concentration equal to or lesser than 2.0 mmol/L
and normocalcaemic cows with a blood calcium concentration above
2.0 mmol/L. This threshold was chosen according to Reinhardt et al.
(2011). There is, however, increasing discussion whether the cut-off
value of 2.0 mmol/L is a valid number to define SCH, or is in fact
chosen arbitrarily in the past and therefore not evidence based (Ser-
renho et al., 2021). Therefore, a second way of splitting the two
categories was proposed using a linear mixed-effects model, in com-
bination with k-means clustering. This method corrects for parity and
day of measurement and results in a more fluent context based cut-off,
as recommended by Serrenho et al. (2021). The calcium concentration
was used as the response variable for the linear mixed effect model and
the day of blood sampling relative to calving (0, 1 or 2), parity (1, 2 or
3+) and farm were the predictor variables. As measurements of cows
from the same farm are correlated, grouping of the data must be taken
into account. Therefore, a linear mixed effect model was chosen, which
is a hierarchical multilevel model, and allows for different regression

coefficients for each predictor per farm and thereby includes both
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the variation within a farm and between farms. Then the k-means
clustering method was used based upon the residuals of the calcium
predictions and the absolute values of the calcium concentrations.
This resulted in two clusters; one group with relatively low calcium
concentrations and a group with relatively high calcium concentrations.

From the 609 cows, 365 cows were randomly attributed to the train
set, which equals approximately 60%. Of the remaining 244 cows, 50%
were attributed to the validation set and the remaining 122 cows were
attributed to the test set.

As neural networks cannot function with incomplete data (Ennett
et al., 2001), missing BCS and locomotion values were imputed using
the sklearn SimpleImputer (Python), which replaced null values by the
score that was most frequent in the train set.

2.3. Feature preprocessing

Min–Max scaling was used to normalize the sensor data. The nor-
malization was fitted on the values of the train set per behaviour. The
resulting normalization was also used for the test and validation set
without resetting the minimal and maximal value.

For numerous reasons, including sensor malfunctioning and admin-
istrative errors, data points were missing from the dataset. In fact,
approximately 14.6% of the sensor values were misrecorded. As each
cow had 105 different data points, omitting all cows with one or more
missing values would have resulted in a too great reduction in cows. In
order to therefore replace the missing values, a SimpleImputer (Python)
was used based upon the train set, which transformed the missing
values into the mean per feature of the according day before calving.
The distribution of missing values is visualized with a heatmap in the
appendix, Fig. 6.

The sensor values were placed into a three-dimensional matrix
of 21 days by 5 behaviours by the number of cows. The calcium
categories and static features were also extracted per cow and put into
separate lists with an index matching the sensor matrix. The feature
preprocessing is visualized in the appendix Fig. 5.

There were approximately 2.7 times more cows in the normocal-
caemia category, causing class-imbalance. However, most prediction
models give the best results with a balanced dataset (Johnson and
Khoshgoftaar, 2019). Therefore, upsampling was performed whereby
the cows with hypocalcaemia were extracted from the train set and
randomly sampled with replacement until there were as many cows
with hypocalcaemia as cows with normocalcaemia. This upsampling
was only performed on the train set.

2.4. Model building

In order to predict the probability to fall within a specific category
of calcium concentrations, three models were built: a logistic regression
model, a XgBoost model and a LSTM deep learning model.

The logistic regression model was chosen as the representative for
a traditional approach to prediction models, in order to be able to
make a comparison with the novel methods. For this model, the 3D
sensor value array was flattened to an array with the shape (number
of cows, 21 days ⋅ 5 features). This array served as the input feature
f the model, while the calcium group served as the output label.
or the model, the liblinear solver algorithm was used. Due to the
imited amount of hypocalcaemic cows, it was hypothetized that the
odel could focus too much on the healthy cows, therefore the model
as trained both with and without random upsampling of the train

et. A second way to deal with class imbalance, namely adding class
eights, was performed, introducing cost-sensitive learning (Johnson
nd Khoshgoftaar, 2019). The accompanying cost matrix was defined
y a grid search of a range of possible weights.

The second model used was a XgBoost model; a relatively recent
eveloped, but already widely used, machine learning model using
ree boosting (Chen and Guestrin, 2016). Research conducted by Gertz
3

et al. (2020) has already demonstrated that XgBoost is a proficient
and user-friendly approach for classifying motion-sensor data in cattle.
The input features and output labels used for this model were the
same as for the logistic regression model. The validation set was used
for early stopping and hyperparameter tuning, which was performed
automatically using random search. The hyperparameters tuned are
noted in Table 1. One parameter to point out is a positive class weight
as a possible solution to class imbalance, set to be the total number of
cows with normocalcaemia divided by the total number of cows with
hypocalcaemia. This method was used since it is the default solution
for class imbalance in a XgBoost model.

The third model was a LSTM deep learning model. The choice of an
LSTM (Long Short-Term Memory) model is fitting due to its capability
to analyse sequential data and its proficiency in recognizing temporal
patterns within the data (Hochreiter and Schmidhuber, 1997). A LSTM
model consist of cells, that next to providing an output, also provide a
cell-state which functions as the memory for the next cell. The matrices
of the 5 behavioural features were used as model input, where for
each time step a LSTM cell was formed. The cells were aligned in a
chronological order, connected by the cell state. Each cell has three
gates; a forget gate, to forget unnecessary information passed on by
the previous cell, an input gate layer, to process the new input and add
it to the cell state, and an output gate, which provides a filtered version
of the acquired cell-state as output. In the end, this resulted in a one
dimensional vector containing a summary of the information the LSTM
layers filtered from the sensors. This vector was passed on to a classic
multilayer perceptron (MLP) layer, which converted the vector to a
value between 0 and 1 using a sigmoid function. This value was used
as the probability that a cow will be in the low calcium category post-
partum. The architecture of the LSTM deep learning model is visualized
in Fig. 1.

2.5. LSTM model training

The training process of the LSTM model started with random initi-
ation of all the weights of the equations in the deep learning model,
thereby forming the untrained version of the model. The calcium
category acquired with these random weights was compared with
the desired result. This difference is expressed as the loss function.
The LSTM model was then trained using the backpropagation algo-
rithm (Rumelhart et al., 1986) in combination with the Adam gradient-
based optimization algorithm (Kingma and Ba, 2015), adjusting the
weights and biases in order to minimize the loss function, using the
training data. The model was programmed to stop training when the
loss of the validation set did not decrease for three consecutive rounds,
a process which is called early stopping. This was used to prevent
overfitting on the training data.

2.6. Static cow features

In order to improve the sensor based model performance, static
cow features were added as input features. The following features were
included: calving season, parity (1, 2 or 3+) and the day of blood
sampling compared to calving. Since neural networks can only process
numerical data as input, calving season and parity were converted to a
binary variable using the sklearn OneHotEncoder. This process resulted
in 8 static features to include in the models. The models were also
tested with the addition of BCS and locomotion score measured at
the end of the dry period to the static cow features, resulting in 10
static features included in the model. The preprocessing of the static
features is visualized in appendix Fig. 5. For the logistic regression
model and the XgBoost model, the static features were combined with
the sensor values in one array. However, in order to combine static and
sequential input for the deep learning model, a functional model was
build where the output vector of the LSTM layer was combined with
the static features in a concatenation layer, which was subsequently
processed using a traditional MLP layer with a ReLu activation function
and converted into a binary output using an MLP layer with a sigmoid

activation function. This process is visualized in Fig. 1.
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Fig. 1. Overview of the LSTM deep learning model architecture. The static features, delineated with dashed boundaries, were optional.
2.7. Model tuning

Since neural networks are prone to overfitting (Krogh, 2008), mea-
sures were taken in order to prevent overfitting. The number of nodes
were kept low to limit the size of the models, and a dropout and batch
normalization layer were added. Among others, these hyperparame-
ters were tuned and can be found in Table 1. The tuning process of
the models was based on random search, using the validation set to
compare the different hyperparameter combinations. There were six
different sets of input features; with only sensor values both upsampled
or not, sensors with parity, day of measurement relative to calving and
calving season upsampled or not and sensors with all the static features,
including BCS and locomotion score, both upsampled or not. These
combinations of the different sets of input features with the calcium
category to predict, based on either the clusters or on the cut-off value,
were seen as separate models, yielding 12 different models to tune per
model category. These combinations are listed in Table 2. Each model
was individually tuned and for each model 200 random combinations of
hyperparameters were tried, selecting the hyperparameter settings with
the best results. Only the logistic regression model was tuned using grid
search, thereby testing all sixty possible combinations. This method
was more appropriate since there were less potential combinations of
hyperparameters.

2.8. Model evaluation and comparison

The best performing hyperparameter configuration was evaluated
using bootstraps in order to quantify model consistency. A bootstrap
is a random sample with replacement of cows from the validation
set with the same size as the validation set. Fifty bootstraps were
created, each consisting of a unique combination of re-sampled cows.
First, the best hyperparameter configuration based on the area under
the receiver operating characteristic curve (AUC) while predicting the
calcium category of the validation set, was selected for each model.
Then this model was tested using the bootstraps, rendering fifty AUC
values each. Finally, the mean AUC and standard deviation (SD) of the
AUC were calculated and used to compare the different models. The SD
is a metric for consistent model performance, thus models with a lower
SD are more precise. Models were compared initially using the mean
AUC score and when this value was equivalent between two models,
the model with the least input features was preferred. The three models
with the best mean AUC score were evaluated on the test set. In Fig. 2
a schematic overview of the methodology for the model evaluation is
given.
4

Performance of the final models was evaluated on the test set using
the AUC and the average precision (AP); the area under the precision–
recall curve, using the predicted and true calcium categories of the test
set. These metrics were chosen since they are threshold independent
and therefore more suitable to compare between models. The accuracy,
sensitivity (true positive rate) and specificity (true negative rate), of the
best performing models were calculated with a threshold value of 0.5.

2.9. Feature importance

In order to calculate feature importance of the best performing
model, a method called cross-validated permutation feature importance
was applied (Kaneko, 2022). In this method, one feature of the vali-
dation set is randomly shuffled, thereby breaking the relationship with
the associated blood calcium concentration, while the other features re-
main the same. This is repeated fifty times per feature. The importance
of the feature is then measured by the mean decrease in accuracy of
the models’ prediction after permuting the feature. This method was
only applied for the deep learning model since for the XgBoost and
the logistic regression model the input array was flattened resulting in
105 input features instead of five, making it difficult to individually
assess the many different features. In order to evaluate whether there
is a difference in feature importance when static features are included,
both the best model with only the behavioural features and the best
performing model overall were tested.

2.10. Programming framework and data

Data processing and analysis was performed using the programming
language Python (Python Software Foundation, version 3.8.10, http:
//www.python.org) with the add-on packages Pandas (The Pandas De-
velopment Team, 2020; McKinney, 2010), NumPy (Harris et al., 2020),
scikit-learn (Pedregosa et al., 2011), XgBoost (Chen and Guestrin,
2016), Ray Tune (Liaw et al., 2018), TensorFlow (Abadi et al., 2016),
Keras (Chollet et al., 2015) and Mat plotlib (Hunter, 2007). For the
linear mixed-effects model, the programming language R was used
(R. Core Team, 2013) version 4.1.1, with the following packages:
‘lme4’ (Bates et al., 2015), ‘dplyr’ (Wickham et al., 2015), and ‘gg-
plot2’ (Wickham, 2016). For both R and Python the Apache Spark (Za-
haria et al., 2016) cluster-computing framework was used. To con-
tribute to open science as defined by the UNESCO recommendation on
Open Science, UNESCO (2021) the data used in this research is made
publicly available. The data is published in the form of an ontology.
This was developed in order to make the structure and concepts of the
data more comprehensible and to make it easier to extend the dataset
with external data, thereby facilitating future research. The populated

http://www.python.org
http://www.python.org
http://www.python.org
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Fig. 2. Overview of model evaluation.
Table 1
For each of the three models, hyperparameters were tuned in order to select the hyperparameter configuration with the best results. The different
hyperparameters are listed below, next to their possible settings, wherefrom 12 times 200 random combination were picked and tested. For the
logistic regression model, all the combinations of settings were tested.

Model category Hyperparameter Possible settings

Logistic regression
Upsampling True or False
Class weights 1:1, 1:2, 1:3, 1:4, 1:5
Predicted variable Based on Cut-off or Based on Cluster
Use of static features None, All, Without BCS and locomotion score

XgBoost

Learning rate Log-Uniform between 0.0001 and 0.1
Minimum loss reduction required for partition 0 or 1
Maximum depth of a tree 2, 3, . . . , 10
Minimum sum of instance weight needed in a child 1, 2, 3, 4
Class weights 1:1 or 1:2.7
Upsampling True or False
Predicted variable Based on Cut-off or Based on Cluster
Use of static features None, All, Without BCS and locomotion score

Deep learning model

Number of LSTM layers 0, 1, 2
Size of hidden state 10, 20, . . . , 100
Use of ReLu activation LSTM True or False
Dropout Rate 0, 0.1, . . . , 0.4
Batch Normalization True or False
Batch Size 12, 22, 32, 42
Use of static features None, All, Without BCS and locomotion score
Upsampling True or False
Predicted variable Based on Cut-off or Based on Cluster
Class weights 1:1, 1:2, 1:3, 1:4
Size MLP layer for static features 10, 20, . . . , 80
ontology, all the code written for this study, the code written for the
ontology and a figure to visualize the structure of the ontology can be
found on https://github.com/Bovi-analytics/van-leerdam-et-al.

3. Results

3.1. Calcium measurements

The mean calcium concentration was 2.15 mmol/L. Approximately
26.3% of the cows had a calcium concentration lower than or equal
to 2.0 mmol/L. The results of the measurements on the blood samples
taken from the cows within the 48 h after calving, as well as the
division between the two categories, are presented in Fig. 3(a). The k-
Means clustering of the measured calcium concentrations and residuals
produced by the linear mixed-effects model resulted in two clustered
categories, visualized in Fig. 4. Fig. 3(b) presents the distribution of
calcium concentrations per clustered category. The percentage of cows
attributed to the low calcium cluster was approximately 26.8%, thus
the group sizes between the two methods were comparable.

3.2. Difference in behaviour between the two calcium categories

The changes in average daily minutes spent on a behaviour during
the 21 days before calving per calcium category are visualized in
appendix Fig. 7. When comparing the different calcium categories, the
following observations were made, regardless of the method used of
calcium categorization; normocalcaemic cows numerically spent more
5

time walking and eating than hypocalcaemic cows during the entire
21-day period before calving. For eating behaviour, this difference
increased closer to parturition. Low calcium cows spent fewer minutes
lying and more minutes standing per day until day 5 before calv-
ing. Rumination had limited differences between normocalcaemic and
hypocalcaemic cows, except for the 5 days before calving, when the
hypocalcaemic cows spent more minutes ruminating.

3.3. Selecting the best model

All models predicted best using the cut-off categorization method.
The results of bootstrapping for the different combinations of input
features and labels are presented in Table 2. The static cow features
improved the model performance by 0.11 for the LSTM deep learning
model, 0.15 for the XgBoost and 0.23 for the logistic regression model,
based on the absolute increase in mean AUC of the bootstraps. The
95% confidence interval of the difference in mean AUC between the
best performing model with and without the addition of the static cow
features, did not include zero for all three models. This improvement
in model performance was considered significant. The addition of the
BCS and locomotion score did not significantly improve the model.
When comparing the mean AUC of the best model without the BCSs
and locomotion scores to the best model with the BCS and locomotion
scores, the 95% confidence interval of the mean difference included
zero.

https://github.com/Bovi-analytics/van-leerdam-et-al
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Fig. 3. Distribution of calcium concentrations per category (normocalcaemic and hypocalcaemic). Figure a is based on the cut-off value and figure b is based on the clustering
method.
.

Table 2
Mean AUC with SD of the models evaluated on the bootstraps of the validation set for different combinations of input features and the calcium category to predict, based either
on the clustering method or on the cut-off value of 2.0 mmol/L. The small set of static feature comprises the day of blood sampling compared to calving, parity and calving
season. The complete set of static features contains next to the day of blood sampling compared to calving, parity and calving season also BCS and locomotion score. For the
logistic regression model (Log Reg) upsampling was part of the grid search and was not extra evaluated using bootstraps, therefore only one mean AUC value per category is given

Categorization method Upsampling Static features set Log Reg
AUC/SD

XgBoost
AUC/SD

LSTM
AUC/SD

Cluster – – 0.51 0.082 0.58 0.066 0.63 0.059
Cluster + – – – 0.57 0.073 0.47 0.069
Cut-off – – – – 0.48 0.074 0.62 0.066
Cut-off + – 0.53 0.076 0.65 0.060 0.65 0.076
Cluster – Small 0.66 0.046 0.72 0.063 0.62 0.061
Cluster + Small – – 0.69 0.056 0.72 0.058
Cut-off – Small – – 0.79 0.061 0.76 0.055
Cut-off + Small 0.76 0.052 0.75 0.039 0.75 0.059
Cluster – All 0.69 0.055 0.68 0.059 0.75 0.055
Cluster + All – – 0.70 0.066 0.63 0.056
Cut-off – All – – 0.80 0.050 0.42 0.072
Cut-off + All 0.76 0.052 0.75 0.053 0.76 0.054
3.4. Performance of the final models

The model performance on the test set of the best hyperparameter
configuration of each model is presented in Table 3. The AUC value
was highest in the deep learning model, with the LSTM layer and all
static features. The logistic regression model had the highest AP, but the
difference is marginal. Table 3 also describes the accuracy, sensitivity
and specificity of the best performing models with a decision threshold
value of 0.5. The LSTM deep learning model had the highest sensi-
tivity of 0.95 with a specificity of 0.44. The XgBoost had the highest
specificity of 0.75 with a sensitivity of 0.51. Accuracy was also highest
for the XgBoost model at this threshold. This value cannot be used to
compare model performances as accuracy is threshold dependent.

3.5. Feature importance

The results for the permutation feature importance are reported
in Tables 4 and 5. For the best performing model built using only
behavioural sensor data, walking time caused the biggest decrease in
accuracy of 0.075 when permuted. Eating and standing were the least
important, with a decrease of 0.03. The accuracy of the best performing
model was most influenced by parity. The most important behavioural
feature was rumination, proven by a decrease in accuracy of 0.012. In
6

Table 3
Performance of the best models tasked to predict the calcium categories of the test
set. Sensitivity, specificity and accuracy were calculated using a decision threshold of
0.5 when predicting. Selection of the best model was based on the mean AUC values
on the bootstraps of the validation set per model type.

Model AUC AP Sensitivity Specificity Accuracy

Logistic regression 0.66 0.50 0.88 0.43 0.59
XgBoost 0.67 0.49 0.51 0.75 0.66
LSTM model 0.71 0.47 0.95 0.44 0.62

this model, walking, summer, eating, autumn and day of measurement
relative to calving did not decrease the accuracy of the model when
imputed, indicating no predictive power.

4. Discussion

4.1. What was achieved?

The proposed models predict the probability at parturition that a
cow will be in the low calcium category post-partum, and thereby the
risk of hypocalcaemia. To our knowledge, this is the first study that
shows that prediction of the risk of hypocalcaemia with behavioural
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Fig. 4. The residuals of the calcium prediction by the linear mixed-effects model,
plotted with their corresponding calcium concentration in mmol/L. The two clusters
are determined by k-Means clustering and are visualized by a colour difference.

Table 4
Feature importance of the best performing LSTM deep learning model
with only sensor features, based on 50 permutations of each of the
behavioural features. The importance is defined as the mean decrease
in model accuracy based on the values of the validation set when
comparing the original model with the permuted models. A bigger
decrease means a higher reliability of the model to the feature.

Behavioural feature Mean decrease in accuracy

Walking time 0.075
Rumination time 0.048
Lying time 0.043
Standing time 0.030
Eating time 0.030

Table 5
Feature importance of the best performing LSTM deep learning model.
This model used behavioural sensor values but also parity, calving
season and day of measurement relative to calving. The reported values
are based on 50 permutations of each of the features. The importance is
defined as the mean decrease in model accuracy based on the values of
the validation set when comparing the original model with the permuted
models. A bigger decrease means a higher reliability of the model to the
feature. A negative result means the model accuracy does not decrease
due to the permutation and this feature was therefore irrelevant for the
model.

Input feature Mean decrease in accuracy

Parity 1 0.136
Parity 3+ 0.082
Parity 2 0.047
Rumination time 0.012
Winter 0.010
Standing time 0.008
Spring 0.003
Lying time 0.001
Walking time −0.001
Summer −0.003
Eating time −0.005
Autumn −0.005
Day of Calcium Measurement −0.027

sensor data is possible. However, the best performing model still per-
forms far from perfect for practical decision support. An AUC of 0.5 can
be expected when a coin is tossed in order to predict whether a cow
7

has hypocalcaemia or not, while a perfect model assigning each cow to
the correct group would have an AUC of 1. With an AUC of 0.71 the
model performs better than random, but still far from 1. In order to be
able to use this model in practice, the model performance will have to
increase.

The difference between traditional machine learning models and
the deep learning model is that the LSTM can discover sequential
patterns in the data. The applied machine learning models use flattened
data, therefore the time dimension is lost. The deep learning model
was the best performing model based on AUC. This finding could
indicate that the temporal patterns in the sensor data, and not only
the absolute occurrence of behaviour, differ between normocalcaemic
and hypocalcaemic cows and that these patterns have a predictive
value. A finding corresponding with Hendriks et al. (2020), who found
that relative changes in daily and hourly daytime lying time in the
two weeks before calving were negatively associated with the blood
calcium concentration within 24 h after calving, in contradiction to
the relative change in daily and hourly daytime steps, which were pos-
itively associated with the blood calcium concentration after calving.
In this study, however, the differences in model performance between
the three models were small and the conclusion that the deep learning
clearly outperformed the other models cannot be drawn based upon
the bootstrap results. However, our confidence in the superiority of the
deep learning model remains steadfast, as it achieved the highest test
set result of an AUC of 0.71 and demonstrated a substantial sensitivity
of 0.95. The high sensitivity indicates few false negative values when
predicting hypocalcaemia. This is important because false negatives can
be especially dangerous since they could delay the detection of clinical
hypocalcaemia and other transition diseases, thereby quickly lowering
the user’s confidence in the model (Petticrew et al., 2000).

4.2. Back to hypocalcaemia

Clinical hypocalcaemia impairs animal welfare, farm economics and
has a long-lasting impact on transition success. It is associated with nu-
merous postpartum health events including dystocia, retained placenta,
ketosis, and mastitis (Curtis et al., 1983; Erb et al., 1985; Correa et al.,
1990; Klerx and Smolders, 1997) In addition, CH affected cows produce
less milk and have an increased time to pregnancy (Venjakob, 2018;
Hostens et al., 2012; Pascottini et al., 2020; Probo et al., 2018). On
the other hand, for subclinical hypocalcaemia, the effect on transition
success is not as easily defined and depends on the day of calcium
sampling, the duration of low blood calcium values and parity (Neves
et al., 2018; McArt and Oetzel, 2023). Transient hypocalcaemia; only
at 1 day after calving, does not lead to increased disease events and
is associated with higher milk yield than normocalcaemic cows, while
chronic or delayed SCH does lead to adverse events (McArt and Neves,
2020). It has been hypothesized that hypocalcaemia beyond 48 h
after parturition is not caused by a primary problem of adapting to
a new calcium demand, but rather by reduced feed intake or/and
inflammation (Serrenho et al., 2021; Horst et al., 2021). This turns
hypocalcaemia into a symptom rather than an individual disease, and
could therefore be an indicator of an impaired transition period.

There is, however, no distinction made by the model between
transient, chronic or delayed hypocalcaemia, since blood measurements
were not taken at several fixed moments, but varied between the 48 h
after calving and only one blood sample was taken from each cow. It is
therefore plausible that cows were assigned to the risk group while in
fact be a healthy, high producing cow with transient hypocalcaemia.
The model also does not distinguish between subclinical and clinical
hypocalcaemia, because there were too few clinically affected cows to
train the model this distinction.

We believe that, for future research, it is important to change the
way of calcium categorization. Multiple blood samples should be taken
instead of only one calcium measurement. This makes it possible to
differentiate between chronic, delayed and transient hypocalcaemia
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and then train the model to predict clinical, chronic or delayed hypocal-
caemia only. Moreover, from a practical point of view, it would be
useful to differentiate between different forms of hypocalcaemia, since
the best course of action for disease prevention could differ between
variants.

Others have proposed predictive models for hypocalcaemia using
different data. Ma et al. (2022) proposed a multivariate logistic re-
gression model using blood analytes to predict the risk of subclinical
hypocalcaemia. The authors report a very high model AUC of 0.90,
suggesting high model performance, but the model did not evaluate
using a test set and the results can therefore not be interpreted as pre-
dictions and the model is therefore likely overfitted. Besides, from each
cow 2 blood samples were taken at different time points antepartum,
making it a very labour-intensive method for prediction not suitable for
practice. Using genomic information, Cavani et al. (2022) employed a
multiple linear regression model to predict blood calcium concentration
after calving. The authors reported a predictive correlation average
of 0.463 ±0.056, 0.396 ±0.052, and 0.297 ±0.057 for blood calcium
concentrations on day 1, day 2, and day 3 after calving, respectively.
The strongest association was observed on day 1, indicating the highest
predictability. Although the model by Cavani et al. (2022) did not
achieve high accuracy, it demonstrated the potential of genomics for
prediction.

4.3. Suggestions to improve model performance

As stated before, this study showed that it is possible to predict
hypocalcaemia, but the AUC value is too low for practical imple-
mentation. Fortunately, there are multiple ways to improve model
performance. The first element of a good performing model is high
input and output quality. The behaviour as recorded by the sensors
agrees with true behaviour, but with a range of error (Borchers et al.,
2021; Nielsen et al., 2018). In combination with uncertainty in calcium
measurements, BCS scoring and locomotion scoring, this results in an
overall relatively low precision due to propagation of uncertainty. On
top of this, 14.6% of the sensor values were missing from the dataset
and had to be imputed. The imputation uses a mean value and does
not take into account the values before and after the missing value. The
imputation therefore causes a disruption in the sequential patterns of
the sensor data, which makes them more difficult to analyse. In a study
by Liseune et al. (2021) an improved way of missing value imputation
was proposed using deep learning to fill in missing values based on the
values observed in the same sensor sequence as well as the recorded
values of the other features. This method led to a significant increase
in model performance for a methodology-wise similar predictive model,
and is therefore a promising method to use for model improvement.

A second important factor in model performance is the number of
animals. As stated before, neural networks are prone to overfitting. A
neural network quickly becomes very complicated compared to other
models due to its many connections and weights. In the proposed
model, many input variables were used; 5 different sensor features
and 10 static features, complexing the model even more. The general
rule is that as the complexity of a model increases, the noise of the
training set is better memorized and the model performance on new
data decreases (Alpaydin, 2020). Many measures were therefore taken
when constructing the model in order to prevent overfitting. Although,
another effective way to prevent overfitting is to increase the amount
of training data. Besides, with 365 cows in the training set, there is a
chance that the sample is not a correct representation of the population
of cows in the Netherlands and that the models consequently cannot
be generalized. Increasing the number of observations could therefore
increase model performance and reliability, but unfortunately is also
expensive and labour-intensive.

A possibility to assess model performance for representativeness
would have been to leave one of the eight herds out and use the cows
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of this herd as a test set. It would then have been known how the
model would perform on a new farm, and thus it would have said
something about the generalizability of the model. This is a difficult
trade-off because on the other hand to make the model as generalizable
as possible, it is beneficial to train the model on cows from as many
herds as possible. And therefore this method was not applied in this
study.

The sensitivity of the LSTM deep learning model was high (0.95),
which means the model performed well on identifying true positives
as positive. For the XgBoost, however, the specificity was high (0.75),
indicating a high performance on correctly identifying true negatives
as negatives. Future research could combine these two models through
ensemble learning, to benefit from the high sensitivity of the LSTM deep
learning model but use the XgBoost to validate the samples qualified as
negative.

A cow displays many kinds of behaviour, for instance social be-
haviour, which are not included in the model. Furthermore, a lot
of different other variables are associated with the risk of hypocal-
caemia and could therefore explain a part of the variability between
cows. For instance, the weather is associated with the risk of hypocal-
caemia (Roche and Berry, 2006) and the cow’s diet (Thilsing-Hansen
et al., 2002). In the future, these variables could be added to the pre-
dictive model to enhance its performance. At the same time, previous
research suggested that sometimes a model with equal reliability can
be made while using fewer features, provided that for each feature a
correlation with milk fever was previously proved (de Mol et al., 2015).

It was already mentioned that differentiating between different
forms of hypocalcaemia is useful. It is thereby necessary to define
which calcium concentration is too low. Serrenho et al. (2021) already
pointed out that the cut-off value of 2.0 mmol/L is dubiously evidence
based. The clusters proposed in this study are an alternative to the
cut-off value, as they correct for parity and day of measurement and
have a more fluent context based cut-off. This clustering is not defined
based upon a direct association with post-partum disease, and therefore
could lack clinical relevance. Besides, it proved to be more difficult to
predict the clusters, although the difference in model performance is
minimal. Future research could use the association with the outcome
of interest to define a better cut-off value. In addition to taking multiple
blood samples from each cow on day 1, 2 and 4 after calving in order
to differentiate between different hypocalcaemia variants (Serrenho
et al., 2021; McArt and Oetzel, 2023). Both suggestion can be used to
increase the clinical relevance of the prediction, and we believe that
improving the calcium categorization will ameliorate the AUC values
of the models the most.

4.4. Feature importance

DeGaris and Lean (2008) stated that age increases the risk of milk
fever by approximately 9% per lactation. Furthermore, McArt and
Neves (2020) suggested that the calcium concentration patterns differ
between primiparous and multiparous cows. It is not surprising that
parity was the most important feature jugged by the cross-validated
permutation feature importance. For the behavioural features it de-
pended on the model which feature was most important. Rumination
time was important for both the model trained only on the sensor
values as for the model which included static features. Contrarily,
walking time was the most important for the ’only sensor’ model but
irrelevant for the model with static features. This finding suggests that
the importance of features differs between model configurations, and
further research is necessary to identify which behavioural feature is
the most informative for the prediction of hypocalcaemia. In this study
both a neck and a leg sensor were used, but because of the reason stated
above it is not possible to say which provides more useful information
and should be used in the future.

Lameness is a known risk factor for SCH (Neves et al., 2017) and
can be quantified using the locomotion score. In addition, there is

a known correlation between BCS and hypocalcaemia (Heuer et al.,
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Fig. 5. Visualization illustrating the preprocessing steps applied to features following the train–validation–test split. Daily minutes spent per behaviour before calving were recorded
and underwent scaling, imputation, and transformation into a 3D matrix. This matrix served as input for the LSTM deep learning model, and after flattening, for the logistic
regression and XgBoost models. The 𝑥-axis represents days before calving (T), the 𝑦-axis displays various behaviours, and the 𝑧-axis corresponds to different cows. This process
was repeated with upsampling to create a second matrix. Static features for each cow were documented, with imputation applied to missing values in BCS and Locomotion score.
The categorical variables calving season and parity were converted to binary format. All variables were merged in an array encompassing all static features per cow. Notably, BCS
and locomotion score are delineated with dashed boundaries, as they are unused in the small static features set. This process was also repeated with upsampling.
Fig. 6. Distribution of missing values per behavioural feature. In this study 609 cows participated, meaning that for each day and each behavioural feature 609 observations were
recorded, wherefrom some were missing. The amount was visualized with a colour, a brighter colour means more missing values.
1999; Roche and Berry, 2006). One would therefore expect that adding
BCS and locomotion score as input variables would improve model
performance. It turned out that this was not the case, as there was no
significant difference in mean AUC between the best performing model
with BCS and locomotion score and the best performing model without.
This contradiction could be explained by two phenomena. Firstly, as
stated before, when increasing the complexity of the model, the noise
of the training set is better memorized and the model performance on
new data decreases. Adding two extra input features leads to many
extra connections and weights, and therefore adds extra complexity,
potentially causing overfitting. The second reason could be that the
model already recognizes lameness through the sensor data for instance
from the walking, standing and lying features and as a consequence
the locomotion score does not provide extra information to use for the
prediction. In this study the locomotion score and BCS were scored
by the same trained veterinarian, but when implementing this model
in practice there will not always be trained personnel to assess these
scores. This makes it inconvenient for use in a future model.
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4.5. Use in practice

The model predicts the probability for a cow to belong in the low
calcium category. An ameliorated version of this model could serve
as a tool to identify high-risk animals. A high-risk animal would be
one with a high probability to fall within the low calcium category.
As stated before, there is a known correlation between hypocalcaemia
and transition diseases (Curtis et al., 1983; Erb et al., 1985; Correa
et al., 1990; Klerx and Smolders, 1997). Early detection of high-risk
animals could augment early detection of other associated diseases or
underlying causes of reduced transition success. From a management
perspective, this tool could serve as a method to keep track of calcium
status of the herd. Nowadays, the only tool to evaluate total calcium
concentration is to regularly take blood samples and measure calcium
using quantitative analysis. A method not often applied due to costs,
labour and an inability of on-farm testing (McArt and Oetzel, 2023).
An improved model could provide insights in calcium status, evaluate
preventive measures, review diet changes or be used as a screening tool.
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Fig. 7. Changes in average daily minutes spent on a behaviour per calcium categorization method during the 21 days before calving. On the left based on the cut-off value and
on the right based on the cluster method. 1 = Hypocalcaemic (red/orange), 0 = Normocalcaemic (green/blue).
5. Conclusion

We were able to predict the risk of hypocalcaemia using behavioural
sensor data and measured calcium concentrations, with an AUC value
of 0.71 and an AP of 0.47. The behavioural patterns of the 21 days
10
before calving contain valuable insights to predict hypocalcaemia after
parturition, as do the static features: parity and calving season. The
predictions of an ameliorated version of the model can be used to mon-
itor herd calcium status and to identify animals at risk for transition
diseases. Although there is still a long way to go to develop a model
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suitable for widespread practical implementation, the proposed model
provides a first step towards achieving that goal.
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