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A B S T R A C T   

The urban natural environment provides numerous benefits, including augmenting the aesthetic appeal of urban 
landscapes and improving mental well-being. While diverse methods have been used to evaluate urban greenery, 
the assessment of eye-level greenness visibility using street-view level images is emerging due to its greater 
compatibility with human perception. Many existing studies predominantly rely on proprietary street view 
images provider such as Google Street View (GSV) data; the usage restrictions and lack of alignment with FAIR 
(Findability, Accessibility, Interoperability, and Reusability) principles present challenges in using proprietary 
images at scale. Therefore, incorporating Volunteered Street View Imagery (VSVI) platforms, such as Mapillary, 
is emerging as a promising alternative. In this study, we present a scalable and reproducible methodological 
framework for utilising Mapillary images for Green View Index (GVI) assessment using image segmentation 
approach and evaluate the completeness and usefulness of such data in diverse geographical contexts, including 
eleven cities (i.e., Amsterdam, Barcelona, Buenos Aires, City of Melbourne, Dhaka, Ho Chi Minh, Kampala, Kobe, 
Mexico City, Seattle, and Tel Aviv). We also evaluate the use of globally available satellite-based vegetation 
indices (e.g., Normalised Difference Vegetation Index-NDVI) to estimate GVI in locations where street-view 
images are unavailable. Our approach demonstrates the applicability of Mapillary data for GVI assessments, 
although revelling considerable disparities in image availability and usability between cities located in devel
oped and developing countries. We also identified that the NDVI could be used effectively to estimate GVI values 
in locations where direct street-level imagery is limited. Additionally, the analysis reveals notable differences in 
greenness visibility across cities, particularly in high-density, lower-income cities in Africa and South Asia, 
compared to low-density, high-income cities in the USA and Europe.   

1. Introduction 

Greenspaces play a crucial role in urban environments, offering a 
wide array of social, environmental, and ecological benefits (Bain et al., 
2012; Gómez-Baggethun & Barton, 2013; Barona et al., 2023; Saw et al., 
2015). As the urban population is projected to increase by 60 % by 2050 
(United Nations, Department of Economic, & Social Affairs, 2019), 
sustainable development becomes imperative in addressing pressing 
issues, including climate change mitigation and improving the quality of 
life for urban residents (Nieuwenhuijsen, 2020; Labib et al., 2020a). 
Urban green spaces provide multifunctionality to enhance the environ
mental quality within cities. They effectively mitigate the heat island 
effect (Keeley, 2011; Lafortezza et al., 2009), improve air quality by 

reducing pollutants (Akbari et al., 2001; Jim & Chen, 2008), reduce 
noise pollution (Attal et al., 2021; Wong et al., 2010), and minimise 
stormwater runoff (Armson et al., 2013; Berland et al., 2017). Moreover, 
the visual perception of street greenery is recognised as a vital sensory 
function that positively influences individuals’ experiences in urban 
settings (Lu et al., 2018; Wolf, 2005). Urban greenery serves as a pro
tective barrier against visual intrusion (Li et al., 2015a). Furthermore, 
the presence of vegetation in urban landscapes often leads to higher 
aesthetic perception of streetscapes (Lindemann-Matthies & Brieger, 
2016), promoting physical activities (Zijlema et al., 2020) and fostering 
social cohesion among residents (Root et al., 2017). From a health 
perspective, visual contact with greenery also evokes positive emotions, 
reduces stress, and facilitates the recovery of mental fatigue (Kaplan, 
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1995; Ulrich, 1984; Wang et al., 2022). 
Different assessment methods have been employed to measure and 

evaluate urban greenery, including surveys, interviews, and audits, to 
gain insights into people’s opinions and attitudes toward street-level 
views of urban greenery (Falfán et al., 2018; Li et al., 2015b). Howev
er, each of these methods has its advantages and limitations. Surveys 
using questionnaires may be more reflective of people’s personal expe
rience on the ground but may be affected by response bias (Downs & 
Stea, 1977). Additionally, audits require skilled evaluators and specific 
criteria to assess visual aesthetic quality (Ellaway et al., 2005; Tang & 
Long, 2019). Such approaches may involve physically transporting 
evaluators to real locations for direct evaluation of environmental at
tributes, which can be time-consuming, expensive, and subjective to 
each participant (Gupta et al., 2012; Meitner, 2004; Yao et al., 2012). In 
contrast to interview approaches, recent advances in computational 
advances (e.g., Deep learning image analysis) along with high-resolution 
data from multiple sources such as geospatial data and street view image 
data allowed computational modelling of eye-level greenery at scales. 

One example is the geospatial viewshed model using high-resolution 
light detection and ranging (LiDAR) based data, which has been exten
sively employed to map and quantify vegetation cover in urban areas, 
benefiting from their advantages in terms of repeatability, synoptic 
view, and wide area coverage (Li et al., 2015b). These methods involve 
three-dimensional data sets derived from high-resolution remotely 
sensed images and LiDAR, enabling the detection of tree species and the 
vertical dimensions of urban trees (Alonzo et al., 2014; Edson & Wing, 
2011; Shrestha & Wynne, 2012). According to Yu et al. (2016), these 
approaches offer several advantages, such as the capacity to adjust the 
relative height of the observer to simulate different vertical horizons and 
the potential to model artificial buildings to simulate future landscapes. 
Nevertheless, the results depend on the original resolution and accuracy 
of the utilised datasets (Labib et al., 2021), and there is a risk of infor
mation loss when compressing point cloud data into a two-dimensional 
raster surface (Yang et al., 2020). Additionally, high-resolution LiDAR 
data and digital elevation raster surfaces are mostly unavailable in most 
cities or countries worldwide, making it difficult to use such models in 
diverse geographic contexts (Labib et al., 2021; 2020b). 

In contrast to the viewshed-based approach, Li et al. (2015) made 
significant advances in this field by utilising automatically extracted 
Google Street View (GSV) images and employing image segmentation 
techniques for automating the greenery calculation process. This 
breakthrough has led to the emergence of several innovative computa
tional approaches that have demonstrated a high level of agreement 
with human perception (Aikoh et al., 2023; Suppakittpaisarn et al., 
2022; Torkko et al., 2023), offering several benefits such as reduced 
research time and workloads, increased accessibility, and the ability to 
study urban greenery without the need for physical visits to field sites 
(Lu et al., 2023; Rangel et al., 2022; Seiferling et al., 2017). 

Another widely adopted approach is computational image segmen
tation, which is categorised into colour-segmentation and semantic- 
segmentation. Colour-segmentation method classifies images accord
ing to colour values of individual pixels, effectively identifying and 
delineating areas with green vegetation (Chen et al., 2020; Dong et al., 
2018; Larkin & Hystad, 2019; Long & Liu, 2017). On the other hand, 
semantic-segmentation is a machine learning-based approach that le
verages contextual information to understand and segment images (Xia 
et al., 2021). By assigning semantic levels to individual pixels, this 
method allows to comprehend the image content, facilitating precise 
identification and mapping of green vegetation (Cai et al., 2018; Helbich 
et al., 2019; Ki & Lee, 2021; Kido et al., 2021; Xia et al., 2021; Ye et al., 
2019. Recently, Torkko et al. (2023) investigated different eye-level 
greenery extraction methods and found the image segmentation 
approach aligns better with human perception than colour-based seg
mentation. The colour-based segmentation approach is sensitive to 
lighting conditions (Batlle et al., 2000; Pietikainen et al., 1996), and 
they also tend to misclassify green paint as greenery, leading to 

overestimating green areas (Larkin & Hystad, 2019; Li et al., 2015b). 
Numerous recent studies employing image segmentation for vege

tation analysis heavily rely on data from GSV (Cai et al., 2018; Chen & 
Biljecki, 2023; Jimenez et al., 2022; Rzotkiewicz et al., 2018). However, 
it is crucial to acknowledge the barriers and limitations surrounding 
data access and usage (Inoue et al., 2022; Zheng & Amemiya, 2023). In 
particular, GSV imposes restrictions on the use of imagery, including 
limitations on data analysis and extraction (Google, 2018b, 2020). As 
stated by Rundle et al. (2022), the restriction on certain uses of Google 
Maps is not grounded in copyright law, which would potentially allow 
researchers to invoke the "Fair" use principles. Rather, these limitations 
are based on the contractual agreement that users must adhere to when 
accessing Google Maps (Google, 2018a). The enforceability of such 
contracts is currently subject to ongoing legal disputes, making it un
certain. Consequently, researchers engaging in this type of research and 
the journals publishing the resulting papers assume some legal risk as 
long as the legal status remains unsettled (Rundle et al., 2022; Stringam 
et al., 2023). In addition, using such data might hinder the adoption of 
FAIR (Findable, Accessible, Interoperable, and Reusable) data principles 
in scientific research (Wilkinson et al., 2016). GSV is often easy to find, 
usually has more extensive geographic coverage than other street view 
image sources, and is interoperable with other data (e.g., mostly pro
vided by Google). Additionally, GSV uses more consistent image capture 
methods and instruments, thus usually maintaining high consistency 
and image quality. However, they are not widely accessible due to re
strictions on the number of free downloads; there is a limit to the 
quantity of data that can be obtained without incurring charges (Zheng 
& Amemiya, 2023; Google, 2023). This means that researchers who 
require a considerable amount of GSV data may encounter financial 
barriers. This inaccessibility also results in a lack of reusability of such 
data by others. These attributes do not align with the open-access data 
characteristics, which need to be freely accessible without any restric
tion for everyone. Considering these aspects, it can be argued that 
although GSV has some characteristics that match a few aspects of FAIR 
principles, the whole GSV data does not meet the FAIR and open-access 
data principles. 

To overcome GSV limitations, integrating Volunteered Street View 
Imagery (VSVI) platforms, such as Mapillary and Open Street Cam, has 
been developed over the years (Alvarez Leon & Quinn, 2019; Yu et al., 
2019; Zheng & Amemiya, 2023). Mapillary, in particular, stands out as 
the largest crowdsourcing-based street view platform, boasting a com
munity of over 20,000 users who contribute street-level photos using 
GPS-enabled cameras or smartphones (Ma et al., 2020). Notably, 
Mapillary adopts an open data approach by realising imagery under the 
Creative Commons Attribution-ShareAlike 4.0 International license 
(Alvarez Leon & Quinn, 2019). This open data policy enables re
searchers to utilise the imagery more freely, including for commercial 
purposes, fostering innovation and collaboration in studying urban 
greenery and related phenomena (Alvarez Leon & Quinn, 2019). 

While Mapillary provides an alternative solution through its open 
data approach, researchers are aware of its limitations, as these can 
affect the reliability and accuracy of the data (Antequera et al., 2020; 
D’Andrimont et al., 2018; Juhász & Hochmair, 2016; Krylov & Dahyot, 
2019). Firstly, the quality of the imagery contributed by users on 
Mapillary may vary significantly due to differences in camera proper
ties, including various camera models (with varying sensors) and set
tings (e.g., focal length) used by contributors (Antequera et al., 2020). 
These variations can result in differences in resolution, blurring, 
restricted field of view, and reduced visibility (D’Andrimont et al., 
2018). Secondly, Mapillary primarily relies on forward-facing cameras 
mounted on vehicles driven on roads, resulting in linear motion without 
rotation, limiting the perspectives captured in the imagery and poten
tially limiting the comprehensive understanding of the surroundings 
(Antequera et al., 2020; Krylov & Dahyot, 2019). Finally, the level of 
engagement and participation from users can vary across different re
gions and communities, leading to disparities in data availability, in 
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particular cities in developing countries often have low volunteer 
engagement in data collection (D’Andrimont et al., 2018; Nielsen, 
2006). As a result, researchers relying solely on Mapillary may 
encounter gaps in the coverage of specific locations or road segments 
that can limit the ability to obtain a complete and representative sample 
of the desired study area (Juhász & Hochmair, 2016). 

In contrast to missing street view image in certain locations, satellite- 
derived top-down measures of greenery, such as the Normalised Dif
ference Vegetation Index (NDVI), is globally available at any place and 
often widely used in measuring greenness modelling (Martinez & Labib, 
2023). It can be argued that for situations where there is insufficient 
street image data to determine the GVI, an alternative approach is to 
utilise NDVI to estimate GVI using statistical models. Although NDVI is a 
top-down measure and may not capture the actual visibility of greenery 
(Labib et al., 2021), as NDVI represents available vegetation, it can be 
assumed that a model can learn from the relation between known GVI 
and NDVI within a certain distance zone to impute GVI for unknown 
locations. In this regard, Torkko et al. (2023) indicated that mean NDVI 
values within smaller distances (e.g., 50 m) from observation points 
might represent perceived visible greenery. In a different research, 
O’Regan et al. (2022) demonstrated a methodology to estimate air 
pollution, incorporating GVI, NDVI, and other variables. Thus, using 
NDVI to estimate GVI can be a potential solution to fill the street view 
data gaps for modelling greenness visibility. 

A few studies have demonstrated the potential of utilising Mapil
lary’s images for evaluating and quantifying urban greenness visibility 
(Liang et al., 2022; Yap et al., 2022), and numerous studies have used 
NDVI to measure the presence of greenery (Martinez & Labib, 2023). 
Despite these promising findings regarding the potential use of the data 
source, there remains an absence of systematic evaluation regarding the 
usability of Mapillary data in different urban contexts for estimating 
greenness visibility and the potential of using NDVI to estimate green
ness visibility in missing locations. Additionally, there is a lack of 
complete methodological workflow to use Mapillary data in different 
places and reproduce these analyses, hindering the usage of such 
open-source and FAIR data in modelling greenness visibility in diverse 
geographic contexts. 

To address the methodological limitations and exiting research gaps 
noted above, this study aims to provide a scalable, reproducible meth
odological framework for utilising Mapillary data for greenness visibil
ity modelling as well as evaluate the completeness and usefulness of 
such data in diverse geographical contexts. The primary objective is to 
establish a robust and replicable methodology that can be applied for 
greenness visibility modelling at any location. Additionally, the sec
ondary objective of this study is to evaluate the use of NDVI to estimate 
GVI in locations where street-view images are unavailable. To achieve 
these objectives, this study will examine the following research 
questions: 

RQ(1) How does the image availability and usability of Mapillary 
data for green view assessments varies across different cities 
worldwide? 
RQ(2) To what extent is the NDVI suitable for filling in missing data 
points in the GVI assessment? 
RQ(3) Are there differences in street-level greenness visibility be
tween cities located in different geographic contexts? 

To answer these questions, we will conduct a comparative analysis of 
the GVI across different cities worldwide, allowing to assess the quality 
and completeness of the data available through Mapillary. This 
comparative approach will provide insights into the reliability and 
applicability of the platform for greenness visibility assessments in 
different parts of the world. The development of this methodology aims 
to democratise the analysis of urban greenness, making it FAIR for re
searchers, urban planners, and policymakers interested in assessing and 
monitoring the visibility of greenery in their cities. By establishing such 

a methodology, our project seeks to foster a better understanding of the 
relationship between urban natural environments, human well-being, 
and urban sustainability. 

2. Methodology 

2.1. Study areas 

Our study examines a diverse range of cities across diverse 
geographic, demographic, and socioeconomic contexts and located in 
multiple countries and continents. The cities included in our research 
are Amsterdam, Netherlands; Barcelona, Spain; Buenos Aires, 
Argentina; City of Melbourne, Australia; Dhaka, Bangladesh; Ho Chi 
Minh, Vietnam; Kampala, Uganda; Kobe, Japan; Mexico City, Mexico; 
Seattle, USA; and Tel Aviv, Israel. Amsterdam, Barcelona, City of Mel
bourne, Kobe, Seattle, and Tel Aviv are known for their advanced urban 
planning and commitment to environmental sustainability initiatives 
(Bush et al., 2021; Dierwechter, 2017; Herscovici et al., 2022; Mora & 
Bolici, 2017). These cities, situated in developed nations, have been able 
to invest significantly in their infrastructure, incorporating technology 
and innovation to enhance their urban environments (Bush et al., 2021; 
Dierwechter, 2017; Herscovici et al., 2022; Mora & Bolici, 2017). In 
contrast, Buenos Aires, Ho Chi Minh, Dhaka, Kampala, and Mexico City, 
located in developing regions, face unique challenges related to rapid 
urbanization (Abebe, 2013; Aguilar & Lopez, 2018; Mortoja & Yigit
canlar, 2022). These cities experience high population growth and often 
face issues of limited resources in terms of infrastructure and public 
services (Abebe, 2013; Aguilar & Lopez, 2018; Mortoja & Yigitcanlar, 
2022; Labib et al., 2020a). Their inclusion in the study provides a con
trasting perspective on urban development and the role of Volunteered 
Street View Imagery (VSVI), such as Mapillary, in dynamic and 
resource-constrained contexts. Since one of our aims is to evaluate the 
quality and completeness of the data available through Mapillary, we 
assume that these diverse cities will provide valuable insights into the 
reliability and applicability of the platform for assessing greenness vis
ibility in different parts of the world using open-source images. It will 
also allow identifying variations or limitations in the data between 
cities. 

2.2. Data sources 

The data sources for this study primarily consisted of open-source 
platforms, which provided access to a wide range of geospatial data. 
Three major data sets were utilised in this research, namely: the Street 
Network with OSMnx, the VSVI with Mapillary, and the Satellite- 
Derived NDVI. 

2.2.1. Street network with OSMnx 
Street network data was retrieved using OSMnx, an open-source 

Python library specifically developed for working with Open Street 
Map (Boeing, 2017). OSMnx provides a convenient set of functions and 
methods for downloading and processing street network graphs for 
specific regions. Our research employed this library to extract simplified 
street network data, with a specific focus on obtaining street link 
information. 

2.2.2. VSVI with Mapillary 
The VSVI data was obtained by using the Mapillary API (Mapillary, 

2021). We selected Mapillary as it is the largest VSVI source, with more 
than one billion nine hundred million images available globally. Ac
cording to Ma et al. (2020), as of February 2019, Mapillary had a sub
stantial user base of 21,948 contributors worldwide, with a considerable 
concentration in Europe and North America. These regions have abun
dant street view imagery, particularly in the United States, Germany, 
Sweden, and Italy, as a few major users continually contributed to col
lecting a large share of images. In contrast, data remains notably sparse 
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across several Asian and African countries (Ma et al., 2020; Juhász & 
Hochmair, 2016). The number of consistent contributors has steadily 
grown by more than 100 annually, ensuring the project’s continued 
healthy evolution, but it is expected that disparities in image coverage 
will remain. In particular cities in developing countries, Maplliary data 
quality and unavailability are continuing challenges. Despite such lim
itations, this is the largest VSVI data source that follows FAIR data 
principles; therefore, we considered Maplliary in this study. Further 
details on the overall evaluation of Mapillary data completeness and 
user contribution can be found in Ma et al. (2020). 

The API provides access to vector tiles endpoints that contain in
formation such as the position of images and sequences with their 
original geometries. Within the coverage tiles endpoint, three layers are 
available: overview, sequence, and image. For our research, we focused 
on the image layer, which contains details such as the compass angle of 
the image, the timestamp of image capture, the image ID, and a flag 
indicating whether it is a panoramic image. 

2.2.3. Satellite-derived Normalised Difference Vegetation Index 
The Satellite-Derived NDVI data were used in our study to determine 

the GVI on points in areas where images were unavailable. Specifically, 
the NDVI data was derived from Sentinel-2 satellite imagery, which 
offers a resolution of 10 m (Satellite Imaging Corporation, 2022) and 
often performs better in detecting urban vegetation than other satellite 
images such as Landsat and MODIS (Labib & Harris, 2018; Markevych 
et al., 2017). Certain criteria were applied in selecting satellite imagery 
to ensure the quality and reliability of the NDVI data. Firstly, the chosen 
imagery had a cloud cover of less than 10 % to mitigate the potential 
distortion caused by clouds, which can obstruct the accurate assessment 
of vegetation indices (Meraner et al., 2020). Secondly, the selected 
satellite imagery was collected considering the best pixel over the course 
of the year 2020. This approach involved selecting the image with the 
most favourable conditions for vegetation analysis within the given time 
frame, maximising the accuracy and representativeness of the NDVI data 
for the analysis (Corbane et al., 2020). We used estimate NDVI Google 
Earth Engine (GEE) to identify images within the period spanning the 
first and last day of 2020, from which a composite image was generated. 

Fig. 1. Methodology overview, which is openly accessible in GitHub: https://github.com/Spatial-Data-Science-and-GEO-AI-Lab/StreetView-NatureVisibility.  
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The composite image consisted of pixels with the median value across all 
identified pixels based on the criteria noted above. The NDVI values 
range from -1 to +1, where a value of -1 represents water, values around 
0.2 suggest vegetation coverage, and higher values indicate denser 
forest coverage (Martinez & Labib, 2023). To ensure that only image 
pixels potentially containing vegetation were considered, values below 
0 were removed from the analysis. 

2.3. Modelling GVI using open source data 

2.3.1. Step 1. Retrieve street road network and generate sample points 
Fig. 1 shows an overview of our methodology. First, the simplified 

street network data, represented as a graph object with nodes and edges, 
was obtained from OSMnx by indicating the name of the city to be 
analysed (e.g., "Amsterdam, Netherlands"). It is worth noting that bidi
rectional streets are represented as two separate overlapping roads, with 
the starting and ending nodes inverted. To avoid analysing the same 
road twice, we implemented a filtering strategy to retain only one of the 
duplicate roads and geographically projected the cleaned network. Once 
the street network data was cleaned, we proceeded to conduct point 
sampling at regular intervals of 50 m along the roads. These sampled 
points serve as reference locations for selecting the corresponding im
ages from Mapillary, which were then used to analyse the GVI. It should 
be noted that the sampling intervals determine the number of locations 
sampled, which might impact the estimated distribution of GVI values 
based on the number of sample locations that have been generated in 
each study area, which can vary depending on the size of the city. 
However, as it is computationally challenging to sample at every 1 or 5 
m, we selected 50 m as a reasonable sample interval to extract images. 
Our selection of 50 m intervals aligns with several previous studies 
which analysed GVI at 50–100 m sampling distances along the streets 
(Ki & Lee, 2021; Wang et al., 2021; Chen et al., 2019; Helbich et al., 
2019). 

2.3.2. Step 2. Assign images to each sample point based on proximity 
To access the VSVI data, requests need to be made to the Mapillary 

API using the tile coordinates and zoom level of 14 (Mapbox, 2023). 
Therefore, to implement the data retrieval, we divided the area covered 
by the obtained road network into tiles. For each tile, we accessed the 
metadata of all the available images within it. Subsequently, we 
assigned one image to each sample point in the road network based on 
their proximity using the cKDTree algorithm (SciPy, 2022). In our case, 
the algorithm was queried to identify the closest neighbour within a 
maximum distance of 25 m from each sample point. This distance was 
chosen based on the spacing of the sample points, which are 50 m apart. 
By using this distance, we can ensure that no two points will be assigned 
the same image. Once we had determined the image ID of the closest 
image to each sample point, we were able to access the corresponding 
image by using the URL provided by the image endpoint (Mapillary, 
2021). 

2.3.3. Step 3. Image cleaning and segmentation 
After obtaining the image, the subsequent step involved semantic 

image segmentation and image filtering process to clean and segment 
the images for further processing. To begin, for panoramic images, we 
performed a cropping operation, illustrated in Fig. 2, to remove the 
bottom 20 % of the image (Fig. 2a, b). This area corresponds to a band 
captured by the camera that is present in all panoramic images. By 
removing this band, we ensured that only the relevant portions of the 
image were retained for further analysis. 

In the next stage, we applied the Masked-attention Mask Transformer 
(Mask2Former) architecture-based image segmentation model (Cheng 
et al., 2022) to segment the images into different objects. The Mask2
Former (Fig. 3) is a powerful architecture designed for universal image 
segmentation, encompassing tasks such as panoptic segmentation, 
instance segmentation, and semantic segmentation (Cheng et al., 2022). 

The Mask2Former model incorporates several key components to ach
ieve its capabilities. One of the central elements is the use of masked 
attention, a mechanism that enables the extraction of localised features 
by constraining cross-attention within predicted mask regions. By doing 
so, the model can focus on relevant regions and capture fine-grained 
details, resulting in highly accurate segmentation results (Cheng et al., 
2022). 

The performance of Mask2Former was evaluated on four popular 
datasets: Common Objects in Context (COCO), Cityscapes, ADE20K, and 
Mapillary Vistas (Cheng et al., 2022). Notably, when tested on the 
Mapillary Vistas dataset, the model achieved impressive mean inter
section over union (mIoU) scores of 57.4 for small objects and 59.0 for 
medium and large objects. These results underscore the competitive 
performance of Mask2Former compared to other state of-the-art 
methods on Mapillary Vistas (Cheng et al., 2022). In our study, 
Mask2Former enabled the identification and classification of different 
objects within the images, including vegetation and roads, that were 
used for subsequent analysis. 

To determine the suitability of each image for analysis, we employed 
an algorithm designed to identify the road centres from the segmented 
image (Fig. 2c). If road centres were detected, then the image was 
considered suitable and retained for further calculation (Fig. 4a, b). 
Conversely, if no road centres were identified, the image was deemed 
unsuitable and subsequently discarded (Fig. 4c, d). This technique was 
applied to ensure we extracted the most representative viewing angle 
from the images, as many Mapillary images often have poor orientation 
and irregular camera angles (Fig. 4c, d). Therefore, excluding such 

Fig. 2. Processing images, (a) raw panoramic image without any cropping, (b) 
cropping the bottom part of the image, (c) copped images from panorama. 
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images may improve the overall data quality and visibility estimation 
because irrelevant or less informative images were removed. In cases 
where an image was both suitable and panoramic, we performed an 
additional cropping operation (Fig. 4 a1, a2). The image was divided 
into "N" parts based on the identified road centres (Fig. 2c). This division 
allowed for a more focused examination of specific sections of the 
panoramic image and provided a holistic representation of the sur
rounding area. 

2.3.4. Step 4. Calculate GVI 
The GVI equation used in this study was based on Eq. (1), proposed 

by Yang et al. (2009) for evaluating the visibility of urban forests. Their 
GVI calculates the ratio of the total green area from four pictures taken 
at a street intersection to the total area of the four pictures. 

GVI =
∑4

i=1Areagreen pixels i
∑4

i=1Areatotal pixels i
⋯ (1)  

Where Areagreen_pixels_i represents the count of green pixels in the image 
captured in the ith direction (north, east, south, or west) at a specific 
intersection, and Areatotal_pixels_i corresponds to the total number of 
pixels in the image captured in the ith direction. However, due to the 
unavailability of images captured in all four directions for all sample 
points in our dataset, we made a slight modification to the formula. The 
modified GVI we used can be expressed with Eq. (2). 

GVI =

∑N
i=1

Areagreen pixels i
Areatotal pixels i

N
⋯ (2)  

Where Areagreen_pixels_i is the number of green pixels in the ith picture 
found in the sample point, Areatotal_pixels_i is the total pixel number of the 
ith picture found in the sample point, and N is the number of analysed 
pictures in the sample point. For non-panoramic images, N is equal to 1 
since there is only one image available at the sample point. However, for 
panoramic images, N corresponds to the number of road centres iden
tified at the sample point, indicating the number of cropped images. 

2.4. Evaluate image availability and image usability 

In assessing image availability, we examined the presence of an 
assigned image for each sample point. Any sample point that did not 
have a corresponding image found within a 25 m buffer was excluded. 
The availability of images in the dataset is expressed in Eq. (3) as the 

ratio of the number of sample points with assigned images (Nimg assigned) 
to the total number of sample points Ntotal. 

Image Availability Score (IAS) =
Nimg assigned

Ntotal
⋯ (3) 

Similarly, in evaluating image usability, we focused on points that 
had assigned images and a known GVI value. This indicated that the 
image met the expected criteria for inclusion in the analysis. The quality 
of the data is represented in Eq. (4) as the ratio of the number of sample 
points with assigned images and known GVI values 
(Nimg assigned ∧ GVI known) to the total number of sample points with 
assigned images (Nimg assigned). 

Image Usability Score (IUS) =
Nimg assigned∧GVI known

Nimg assigned
⋯ (4) 

Then, to enable a more meaningful comparison between cities of 
varying sizes, an adjustment was made to both scores by incorporating 
the natural logarithm of the road length in kilometres, as shown in Eqs. 
(5) and (6). By applying this logarithmic transformation, the adjustment 
places greater emphasis on the relative differences in road lengths be
tween cities, rather than absolute values. 

Adjusted Image Availability Score (AIAS)

=
Nimg assigned

Ntotal
× ln(road length)⋯ (5)  

Adjusted Image Usability Score (AIUS)

=
Nimg assigned∧GVI known

Nimg assigned
× ln

(
road length

)
⋯ (6) 

In addition to the availability and usability assessment, we con
ducted further analysis to provide additional insights. Firstly, we 
measured the proportion of panoramic images in each city. This 
assessment allows us to evaluate the availability and coverage of 
panoramic imagery, which can provide a more comprehensive view of 
the surrounding locations. Furthermore, we examined the types of roads 
(e.g., residential, primary, secondary roads) with the most missing im
ages. By identifying the specific road types where the image coverage is 
limited, we can gain insights into potential gaps in the dataset. This 
information is valuable for understanding the limitations and areas that 
require further attention in improving the availability of images for 
analysis. 

Fig. 3. Mask2Former architecture (Cheng et al., 2022).  
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2.5. Model GVI for missing image points 

To estimate the GVI values for the missing data points, we employed 
two modelling approaches per city: Linear Regression and Linear 
Generalised Additive Models (GAM). In both cases, we utilised the NDVI 
raster file of each city. For each point in the dataset, we computed the 
average NDVI value within a fixed-size buffer surrounding the point. 
After conducting tests with multiple buffers of 100, 50, and 25 m, it was 
determined that the buffer of 25 m exhibited the best model perfor
mance. Subsequently, we employed the points with known GVI values 
and their corresponding calculated NDVI values to train both the Linear 
Regression and the Linear GAM models. The performance of these 
models was evaluated using the Root Mean Square Error (RMSE) 
through cross-validation with five folds. Additionally, we computed the 
Akaike Information Criterion (AIC) score to facilitate a comparison be
tween the two models. Finally, both models allowed us to estimate GVI 
values based on the available GVI and NDVI data in each city, thereby 
completing the information for the missing points. 

2.6. Computational resources 

The data processing and analysis for this study were implemented 
using the Python programming language. Python provides a wide range 
of libraries and tools that facilitate the handing and manipulation of de 
data, as well as the implementation of various algorithms and models. 
We utilised Google Colab to execute the code. The Google Colab envi
ronment provided several advantages, including the availability of a 
high amount of RAM and GPU acceleration, which significantly 
contributed to the efficiency of the image segmentation process. For this 
research, we employed a computational system with 25.5 GB of RAM 
and a T4 GPU accelerator with a 15 GB memory capacity. This config
uration allowed us to handle large datasets and smoothly execute 
memory-intensive operations, resulting in a substantial reduction in 
processing time for each image. Additionally, we implemented parallel 
processing techniques to enhance the efficiency of the image segmen
tation process and maximise the utilisation of the available computa
tional resources. Through the combination of these implemented 
techniques and computational resources described above, we achieved 

Fig. 4. Example of image segmentation and filtering criteria for suitable image selection.  
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high processing capabilities that enabled us to analyse approximately 
4000 images within a span of 40 min. 

2.7. Evaluating Mapillary GVI 

In order to assess the consistency and reliability of GVI, we compared 
the GVI values obtained from Mapillary images to those derived from 
GSV images to evaluate the degree of agreement between both datasets. 
This comparison was conducted on both city-specific and all-case city 
levels to provide a comprehensive assessment of our methodology. To 
evaluate the GVI agreement on a city-specific basis, we sampled 100 
random locations in each city. We extracted Mapillary and GSV data on 
the sample locations using the same methodology in Section 2.3. Then, 
we computed the Pearson correlation coefficient for each city for these 
sample locations. The correlation coefficient quantifies the degree of 
similarity between GVI values derived from Mapillary and GSV images 
for each city. In addition to this, we also calculated the overall corre
lation coefficient, encompassing the sample points from all case cities. 
This aggregate correlation coefficient provides a general measure of the 
comprehensive assessment of the relation between GVI scores obtained 
using Mapillary and GSV images. Furthermore, for external validation, 
we compared our overall Mapillary-driven street-level GVI values with 
data from MIT’s Treepedia project (https://senseable.mit.edu/ 
treepedia) conducted by the Senseable City Lab (Cai et al., 2018; MIT 
Senseable City Lab, 2023). The Treepedia project utilized Google Street 
View (GSV) data to model GVI in various cities, including some of the 
cities in our study (i.e., Amsterdam, Buenos Aires, Kobe, Tel Aviv, and 
Seattle). 

3. Results 

3.1. Image availability and image usability of Mapillary data 

After designing and implementing the methodology to calculate the 
GVI using Mapillary data in any city worldwide, we obtained the GVI 
information for eleven different cities. In order to provide a compre
hensive overview of our findings, we will first address Research Ques
tion 1, which involves comparing the GVI across different cities and 
evaluating the availability and usability of image data obtained through 
Mapillary. Fig. 5 provides a visual representation of the calculated GVI 
values using exclusively Mapillary image data, highlighting disparities 
in image availability across the selected cities. As illustrated, Fig. 5a, 
corresponding to Seattle, Fig. 5b to Barcelona, Fig. 5c to Amsterdam, 
and Fig. 5k to the City of Melbourne, consistently exhibit the highest 
degree of image availability. This observation aligns with the high AIAS 
achieved by cities, as shown in Table 1. On the other hand, our findings 
reveal a contrasting situation for Ho Chi Minh (Fig. 5g), Buenos Aires 
(Fig. 5h), Kampala (Fig. 5i), and Dhaka (Fig. 5j) which exhibit consid
erably lower AIAS compared to cities like Amsterdam and Seattle. 
Intriguingly, Fig. 5f shows a remarkable disparity in image availability 
within Mexico City, with its southern region displaying substantially 
fewer images compared to the central area. Interestingly, Fig. 5e and 
d show that Kobe and Tel Aviv exhibit a low AIAS (Table 1) compared to 
other cities that are part of developed countries. Such a pattern high
lights that Mapillary has considerable spatial variability in data avail
ability among and between cities. 

Regarding the usability, as presented in Table 1, our findings provide 
intriguing insights into the usability of street-view imagery, adjusted for 
city size, in our eleven cities of interest. Notably, Ho Chi Minh and 

Fig. 5. Calculated GVI across different cities using Mapillary Image Data.  
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Mexico City stand out with the highest AIUS, suggesting that despite the 
uneven distribution of image availability, as indicated in Table 1, the 
proportion of usable images remains high. Similarly, Tel Aviv exhibits a 
relatively high IUS despite having the lowest availability in Table 1, 
indicating that although the volume of images in this city was lower, the 
proportion of usable images was high. Furthermore, Amsterdam once 
again demonstrates a high AIUS, consistent with its high Image Usability 
Score. This consistency indicates that the robustness of the usable image 
data in this city is largely maintained, even after accounting for city size. 

In terms of panoramic images, the data presented in Table 2 reveals a 
considerable difference in the availability of panoramic images. 
Amsterdam stands out prominently with the highest number, as more 
than 80 % of its images are panoramic. In contrast, the remaining cities 
exhibit considerably lower proportions of panoramic images. For 
instance, Dhaka did not have any panoramic images in its dataset. In 
contrast, Mexico City, the City of Melbourne, Barcelona, Kampala, Tel 
Aviv, and Buenos Aires all have approximately 2 % or less of their total 
images classified as panoramic. 

Next, we analysed the presence of missing values in each street of the 
cities, identifying the top five highway types with the highest number of 
missing images. Furthermore, we calculated the proportion of missing 
images corresponding to each category in every city. Our analysis 
revealed a consistent trend across all cities, with residential streets 
displaying the highest proportion of missing images, as depicted in 
Fig. 6. Fig. 6 illustrates that not only do residential streets have the 
highest volume of missing images in each city, but this deficit is notably 
significant, with all cities surpassing a 30 % mark. This consistent and 
substantial percentage underscores a significant data gap within resi
dential areas. 

3.2. Modelled GVI for missing points using NDVI 

Regarding Research Question 2, the viability of using NDVI to fill in 
missing data points was assessed by utilising Linear Regression and 
Linear GAM. Our results, shown in Table 3, reveal some key insights. 
Across cities, Linear Regression consistently resulted in lower RMSE 

values compared to Linear GAM, indicating a more accurate model with 
smaller residuals. The AIC scores highlight a consistent preference for 
the linear regression models over the linear GAM models across all cities. 
For instance, in Seattle, the Linear Regression model resulted in an AIC 
of -161,384.4018, while the Linear GAM model yielded a less effective 
AIC of -136175.2627. This pattern is repeated across all examined cities, 
indicating a more favourable balance of fit and simplicity for the Linear 
Regression models when predicting GVI with NDVI. 

Furthermore, Fig. 7 shows the trend line and R-squared values 
observed across the tested cities, showing a relatively low value for most 
of them. However, the comparatively lower RMSE values obtained in 
our study indicate that, despite the low R-squared values suggesting a 
degree of unexplained variability, the RMSE values provide a more 
optimistic outlook on the utility of our models for predicting GVI using 
NDVI. 

Fig. 8 provides a visual comparison between missing GVI values and 
their predictions using Linear Regression models for two contrasting 
cities: Amsterdam and Kampala. The black squares in the zoomed im
ages show that the predicted GVI values closely align with the calculated 
GVI values using street-view imagery for the surrounding points in both 
cities. 

3.3. Mean and median GVI comparison between cities 

For Research Question 3, Fig. 9 provides a visualisation of the mean 
and median GVI value for each street in the studied cities indicating the 
differences in street-level greenness visibility between cities. The GVI 
values show clear variations between developed and developing cities 
across continents in terms of green visibility. Seattle in North America 
has a higher value of 30.05 % (Fig. 9a), indicating abundant visible 
green spaces. In Europe, Amsterdam follows closely with a GVI of 22.38 
% (Fig. 9c). However, Asian, and African cities like Dhaka and Kampala 
have lower GVI values of 16.62 % (Fig. 9j) and 18.52 % (Fig. 9i), 
respectively. These variations underscore the disparities in green view 
visibility between developed and developing cities, with the former 
having a better supply. 

3.4. Evaluations of Mapillary GVI 

The correlation coefficients presented in Table 4 represent the degree 
of agreement between GVI values derived from Mapillary images and 
those obtained from GSV in the exact 100 locations within each city. The 
cities of Buenos Aires and Kampala demonstrate exceptionally strong 
and significant positive correlations of 0.6471 and 0.6329, respectively. 
This suggests a high level of agreement between GVI values from both 
data sources in these cities. On the other hand, Barcelona and Kobe, 
while still showing positive correlations, have comparatively weaker 
values, and for Kobe, the correlation was not statistically significant. 
These cities exhibit some degree of agreement. However, the low cor
relation values might be attributed to the availability of Mapillary data. 
For instance, in Barcelona, our sample has only a few panoramic images, 
whereas all the GSV images were panoramic. Thus, more green pixels 
might have been extracted from GSV from multiple directions on the 
same location compared to unidirectional Mapillary images. Addition
ally, the Mapillary image availability in Kobe was one of the lowest 
(Table 1); the sample locations might not obtain enough variability in 
GVI values. In contrast, several cities, including Seattle, Tel Aviv, 
Mexico, Ho Chi Minh, Dhaka, and the City of Melbourne, exhibit sig
nificant moderate positive correlations ranging from 0.3593 to 0.4645. 
Finally, we observed a significant strong positive correlation between 
Mapillary and GSV-driven GVI estimates when all cities are considered 
together. These results indicate that mapillary data can provide results 
similar to GSV-based GVI modelling; the reliability of Mapillary GVI 
would be context-specific and depends on the availability and types of 
images. 

Moreover, for external validation, we compared our estimated 

Table 1 
Image availability score, adjusted availability score, image usability score and 
adjusted image usability score for each analysed city.  

City IAS AIAS IUS AIUS 

Ho Chi Minh 0.1209 1.3404 0.9531 10.5620 
Kobe 0.1749 1.8578 0.8392 8.9114 
Tel Aviv 0.3739 3.0118 0.7829 6.3064 
Kampala 0.3461 3.1067 0.5499 4.9362 
Dhaka 0.3764 3.6895 0.8355 8.1887 
Buenos Aires 0.4174 3.9423 0.7807 7.3697 
Barcelona 0.5204 4.5773 0.8222 7.2312 
Mexico City 0.4468 4.9863 0.8469 9.4514 
City of Melbourne 0.8371 6.4510 0.8906 6.8629 
Seattle 0.7610 7.2340 0.8271 7.8632 
Amsterdam 0.9871 9.2057 0.9570 8.9252  

Table 2 
Proportion of panoramic images for each analysed city.  

City Panoramic Images Total Images Proportion 

Dhaka 0 31,078 0 
Mexico City 689 137,994 0.0049 
City of Melbourne 52 8693 0.0059 
Barcelona 128 14,993 0.0085 
Kampala 197 14,162 0.0139 
Tel Aviv 128 6325 0.0202 
Buenos Aires 682 28,395 0.0240 
Seattle 7069 47,031 0.1503 
Kobe 4831 20,125 0.2401 
Ho Chi Minh 20,525 30,848 0.6653 
Amsterdam 32,216 38,040 0.8468  
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median street-level GVI, and the median city-specific values provided by 
Treepedia using GSV images (Table 5). Our assessment for cities such as 
Amsterdam, Buenos Aires, Kobe, and Tel Aviv revealed slight over
estimations in our median GVI values compared to Treepedia’s esti
mates. Notably, the disparities in GVI values for these cities generally 
remained within the range of approximately 3 % or less. Although we 
used different datasets, the median GVI values are similar to Treepe
dia’s. However, in the case of Seattle, our approach overestimated the 
overall GVI score by about 10 %. This discrepancy can be attributed to 
the limited availability of panoramic images in the Mapillary dataset 
(only 15 % coverage in Seattle) compared to the predominantly pano
ramic GSV images used by Treepedia. Additionally, our study employed 
NDVI to estimate GVI in areas where data was missing, which was not 
implemented in the Treepedia project (Cai et al., 2018). Furthermore, 
the difference may be attributed to temporal variations in image 
collection between GSV and Mapillary. The results of our external 
validation indicate that using Mapillary images can produce similar 
results to GSV-based GVI estimation, with a reasonable margin of dif
ference between these two datasets. 

4. Discussion 

4.1. Main findings 

In this study, we aimed to develop a methodological framework for 
utilising open-source image data for greenness visibility modelling and 
evaluate the completeness and usefulness of such data in multiple cities 
in different countries worldwide. To the best of our knowledge, no 
previous studies have developed such a methodology using open-source 
images (e.g., Mapillary) and implemented similar approaches in diverse 
geographic contexts. Our study revealed novel insights into using 
Mapillary data to calculate GVI across different cities, effectively 
addressing our first research question. We found that image availability, 
represented by the AIAS, varied significantly among the selected cities. 
Seattle, Amsterdam, and the City of Melbourne consistently had high 
image availability. By contrast, cities like Ho Chi Minh, Dhaka, Kobe, 
and Kampala had much lower scores, as indicated in Fig. 5 and Table 1. 
For Ho Chi Minh and Kobe, the lower availability of images indicates 
that in image-scarce contexts, the use of Mapillary for GVI analysis 
might be restricted, and widespread public effort should be promoted to 
encourage more image collection. However, interestingly, we found that 
the usability of images did not necessarily correlate with their volume or 
image availability. Table 1 shows that despite having fewer images, 
Mexico City and Tel Aviv had high AIUS, indicating that a large pro
portion of the available imager was usable. This suggests meaningful 
GVI assessments are possible for places with usable images even though 
the city’s overall image availability is limited. The distribution of 
panoramic images also showed a remarkable contrast across cities 
(Table 2). The disparity could impact the depth and breadth of GVI 
analysis, as panoramic images typically provide a more comprehensive 
view of greenery in the surrounding area than a single image with a 
limited view angle. Furthermore, our study pinpointed a considerable 
data gap in residential areas. We observed that these areas consistently 
showed the highest volume of missing images, as illustrated in Fig. 6. 
This consistent deficit could pose potential challenges for comprehen
sive GVI assessments, highlighting the need for effective data supple
mentation methods. Our results are consistent with the previous study 
by Juhász and Hochmair (2016), who also demonstrated that the 
availability of images varies considerably between countries and street 
types. 

Fig. 6. Top 5 OSM highway types with most missing images.  

Table 3 
Linear regression and linear GAM model evaluation.  

City Linear Regression Linear GAM 

RMSE AIC RMSE AIC 

Tel Aviv 0.1271 -20,422.5508 0.1458 -19,060.8670 
Kampala 0.1222 -32,733.2024 0.1449 -30,080.0228 
Barcelona 0.1291 -50,461.6461 0.1496 -46,833.4747 
Kobe 0.1157 -73,035.0463 0.1326 -68,219.0919 
Buenos Aires 0.1126 -96,800.8352 0.1339 -89,114.0967 
Dhaka 0.1242 -108,314.5968 0.1434 -100,829.2755 
Mexico City 0.1239 -488,017.0528 0.1621 -425,206.4704 
City of Melbourne 0.1305 -31,516.7640 0.1505 -29,316.2603 
Seattle 0.1256 -161,384.4018 0.1737 -136,175.2627 
Amsterdam 0.1660 -130,717.0516 0.1832 -123,572.8984 
Ho Chi Minh 0.1053 -132,332.5372 0.1249 -122,321.0675  
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Despite having varying image availability and usability scores in 
different cities, our evaluation of the Mapillary image-driven analysis 
indicates that, usually, GVI estimated using Mapillary images have 
positive significant correlations with GVI values estimated utilising 
Google Street View (GSV) images (Table 4). Moreover, our estimated 
city-level median GVI values are comparable to the Treepedia project’s 
median GVI values (Table 5). It should be noted that Treepedia used GSV 
(Cai et al., 2018; Li et al., 2015), whereas utilised open-source images. 

These insights are critical to argue that considering growing concerns 
about GSV not adhering to FAIR principles and lacking open-access 
availability (Rundle et al., 2022), more focus should be given to using 
VSVI sources by developing innovative methods to increase the usability 
of such images for GVI estimation with improved accuracy. Addition
ally, more public efforts and resources should be employed to support 
and expand VSVI initiatives by protecting existing VSVI images and 
increasing the quality and consistency of image collection to ensure 

Fig. 7. Linear regression trend lines and equations for each city.  

Fig. 8. Comparing image availability between Amsterdam and Kampala, with GVI estimation for missing points using a linear regression model for each city.  
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VSVI can become a reasonable substitute to commercial street view 
images. 

Addressing our second research question, our analysis also suggests 
that the NDVI can be used to calibrate a linear regression model for each 
city to fill in missing GVI data points with reasonable errors. In Fig. 8, we 
illustrated that even in cities like Kampala, where the number of missing 

images is significantly high, estimated GVI values from NDVI align 
closely with those derived from street-view images. We argue that even 
though NDVI does not directly represent the visibility of greenery, as 
they indicate the presence of vegetation from a top-down viewing 
perspective (Labib et al., 2021; Larkin & Hystad, 2019), the modelled 
relations can reasonably estimate potential GVI values. Moreover, 

Fig. 9. Mean and Median GVI per city along with their density plot, showing the different levels of street-level greenness visibility in diverse geographical contexts.  
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Torkko et al. (2023) also observed that NDVI values might correspond to 
perceived visibility greenery. Considering these aspects, accounting for 
the wider availability of NDVI at varying spatial and temporal resolu
tions, using NDVI to estimate potential GVI values with reasonable ac
curacy can be useful in many urban contexts where street view image 
coverage is limited. However, these results should be interpreted 
cautiously considering the temporal and spatial mismatch between 
NDVI and street view images, the potential presence of objects 
obstructing views (e.g., buildings), the local vegetation types, and 
topographic contexts. 

Finally, for the third research question, our analysis underscores a 
notable disparity in GVI across cities, particularly in high-density cities 
in Asia and Africa. As Fig. 9 illustrates, these densely populated, lower- 
income cities exhibit considerably less green visibility than low-density, 
high-income cities in the USA and Europe; such results are consistent 
with Treepedia data. This disparity may be attributed to various factors, 
including the differences in urbanisation rate, urban planning strategies 
and investment in public spaces, the socioeconomic development level, 
as well as the historical and cultural values assigned to green spaces in 
these regions (Dierwechter, 2017; Mora & Bolici, 2017; Abebe, 2013; 
Mortoja & Yigitcanlar, 2022). 

4.2. Urban planning and policy implications of GVI modelling 

The methods and results presented in this study have several appli
cations in urban planning, design, and policy formulation. For instance, 
urban planners and designers could use maps to pinpoint locations in the 
city streets where urban greening interventions are most crucial to in
crease visual contact with greenery. By strategically incorporating trees 
and other nature-based solutions (e.g., pocket parks, green walls) along 
transportation routes, cities can positively increase nature exposure as 
people move within the city, ensuring that transportation systems are 
not only attractive but also contribute to overall urban greenery, which 
in turn may reduce the air and noise pollution impacts and lower the 
high-temperature exposures (Wu et al., 2020; Deng et al., 2023; Nour
mohammadi et al., 2021; Song et al., 2023). Our estimated GVI score on 
each street segment clearly indicates the street to prioritise for such 
interventions. Furthermore, our results can be valuable for transport 

planning; for instance, our GVI values can be integrated within transport 
routing modelling to evaluate and select greener routes for various trips 
(Willberg et al., 2023; Staves et al., 2023). In addition to these practical 
implications, our empirical results can also aid in formulating urban 
greening policies based on cities in different geographic contexts. Our 
results demonstrated disparities in visible greenery between cities, 
which can assist in developing new urban greening policies in cities with 
low vegetation coverage and high pressure of urbanisation. Although 
the results of GVI and its implications in urban planning are not exclu
sive to the image data we used in this study, compared to the commercial 
data (e.g., Google Street View), which often restrict free and large-scale 
usage of images and does not adhere to the FAIR data principles, we 
argue that our methods will allow developing free and efficient ap
proaches of using VSVI images to facilitate urban planning policies at 
large scale while ensuring FAIR principles in the process. 

4.3. Strengths and limitations 

Our study exhibits multiple strengths that reinforce its relevance 
within green visibility research. Firstly, it used open-source, free, and 
FAIR data from Mapillary, making a significant stride in democratising 
and promoting open science in GVI assessments. Our method considered 
the vertical aspects of urban vegetation and modelled greenness from a 
human perspective, which provides an improved way to estimate 
greenness compared to the top-down measures of greenness based on 
satellite and land use datasets (Larkin & Hystad, 2019; Labib et al., 
2020b). We also demonstrated that the GVI estimated in this study could 
be comparable to results produced by commercial Google Street View 
data, which pose financial constraints and exclusion in using such data. 
Our method establishes an example for subsequent research, high
lighting the effectiveness of open data for scientific purposes. Secondly, 
the scalability of the designed methodology in our research is a note
worthy aspect. Our approach to calculating GVI is not confined to the 
selected cities but can be replicated and scaled for any city worldwide. 
This scalability is particularly significant considering the growing need 
for GVI assessments in urban spaces, particularly in cities in the global 
south, where similar studies are rarely conducted. Thirdly, our innova
tive approach to modelling visibility by combining GVI and NDVI rep
resents a step forward in the field. By using NDVI and known GVI points, 
we developed models that allow us to fill in the missing GVI data points 
in a city; we provide a novel solution that holds the potential to expand 
and enhance the depth of GVI studies, even in contexts where 
street-view imagery data may be limited. Fourthly, it is important to 
emphasise that the code used in this study is reproducible. The imple
mented code is publicly available, encouraging transparency, peer 
verification, and further innovation in the field. Reproducibility re
inforces the validity of our findings and empowers other researchers to 
build upon our work, advancing our collective understanding of urban 
green spaces and human well-being. 

Nevertheless, our research had certain limitations that need to be 
acknowledged for a comprehensive understanding of our results. 
Despite the utility of Mapillary, we encountered poor image availability 
in Dhaka, Kampala, Mexico City, Tel Aviv, Kobe, and Ho Chi Minh which 
can limit the assessment of GVI solely with Mapillary street-view images. 
However, Amsterdam, City of Melbourne, and Seattle exhibited a more 
favourable situation regarding image availability. These disparities in 
image availability can be attributed to the socioeconomic backgrounds 
of the cities (Fry et al., 2020), which may potentially lead to a less 
engaged community contributing to a crowd-sourced database. Also, it 
is important to note that user-contributed images on platforms such as 
Mapillary exhibit significant variability in image quality, which can be 
linked to factors like lighting conditions, camera equipment specifica
tions, and image resolutions (Ma et al., 2020). As a result, even though 
our study employed a segmentation algorithm to assess image usability 
based on image orientation and camera angles, other image quality 
concerns, including variations in lighting, blurriness, and distortion, 

Table 4 
Correlations between Mapillary and GSV image-based GVI values at sample 
locations.  

City N Correlation Coefficient 

Seattle 100 0.4458** 
Barcelona 100 0.2387* 
Amsterdam 100 0.3183** 
Tel Aviv 100 0.3593** 
Kobe 100 0.2069 
Mexico City 100 0.4233** 
Ho Chi Minh 100 0.4305** 
Buenos Aires 100 0.6471** 
Kampala 100 0.6329** 
Dhaka 100 0.4645** 
City of Melbourne 100 0.4606** 
All city together 1100 0.6311** 

** p < 0.001, * < 0.05. 

Table 5 
Comparisons between Mapillary image based median GVI and Treepedia’s 
estimation.  

City Mapillary median street-level GVI Treepedia’s city-specific GVI 

Amsterdam 18.57 20.6 
Buenos Aires 17.57 14.5 
Kobe 12.13 9.4 
Tel Aviv 17.59 17.5 
Seattle 30.63 20.0  
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could have influenced the quality of retained images and thus might 
have impacted the GVI estimation (Zheng & Amemiya, 2023). 

Furthermore, our method relies on the assumption that interference 
factors are minimized due to the way we sampled locations on streets to 
capture images. In this approach, we utilise selected images at intervals 
of 50 m, which allows us to collect multiple viewing perspectives from 
the same location, facilitating the analysis of the same area from 
different angles and viewpoints. This multi-perspective approach can 
reveal details that might be missed in a single image due to obstructive 
features (e.g., cars, persons). However, it does not eliminate potential 
interference factors efficiently, which requires further development of 
our method. 

Another considerable limitation was the temporal nature of our 
study, given that the Mapillary data were sourced at a specific point in 
time, and it may not be updated frequently or uniformly. The dynamic 
character of crowd-sourcing databases could mean that the image data 
might have been augmented, updated, or even rendered obsolete since 
our data collection. However, these issues are not exclusively to 
Mapillary; even GSV imagery exhibits significant variability in avail
ability and quality (Biljecki & Ito, 2021; Hara et al., 2013). Further, the 
infrequent updating of images impedes temporal assessment, as certain 
regions may remain unchanged for years (Hara et al., 2013). Such lim
itations are particularly evident in lower-income regions, rural areas, 
and countries in Africa, South America, and Southeast Asia, where GSV 
imagery remains unavailable or limited (Biljecki & Ito, 2021; Rzotkie
wicz et al., 2018). An additional limitation regarding the temporal na
ture of our study relates to the inherent disparities in seasons, climates, 
and other contextual factors existing across the different cities at the 
same point in time. The timing of our data collection spans various 
geographic locations, each with its own unique seasonal patterns and 
climatic conditions. This temporal divergence can introduce some ef
fects that must be considered. For instance, varying seasons and climatic 
factors can result in distinct states of urban greenery. During spring and 
summer months, cities may exhibit lush greenery, while the fall and 
winter seasons may see a reduction in green cover. Such phenological 
patterns could vary considerably depending on the cities’ location and 
climate zones (Gardner et al., 2020; Rathcke & Lacey, 1985). The 
presence of different seasons and climates among the selected cities may 
pose challenges when extracting the best images for GVI modelling and 
comparing their GVI results across cities. 

Moreover, a few specific limitations of using OSMnx for urban 
studies have been identified. One limitation is related to data avail
ability and consistency, which are recurrent issues in urban planning 
and street network analysis literature (Boeing, 2017). The data used by 
OSMnx, sourced from OpenStreetMap (Boeing, 2017), is provided by a 
community of contributors and, thus, might not always be consistent or 
up-to-date. This means that any changes to the street networks that have 
occurred since the last update would not be reflected in the analysis. 
Furthermore, the reliance on OSMnx data quality and accuracy can vary 
considerably based on the location. The coverage of OSMnx is good 
across the United States and Europe, but developing countries might 
have less thorough street network coverage (Boeing, 2017). 

Finally, while our study presented the use of NDVI to fill in missing 
GVI data points effectively, this approach is not devoid of challenges. 
NDVI primarily quantifies vegetation from bird’s eye view and may not 
fully capture the nuances of human perception of greenery (Labib et al., 
2021; Larkin & Hystad, 2019), which is central to GVI. Thus, utilising 
NDVI to calculate missing GVI data points could introduce inherent 
errors, such as the temporal mismatch between satellite and street view 
images used to estimate NDVI and GVI. This might lead to over or un
derestimation of modelled GVI values in the missing location based on 
NDVI images used and surrounding built environment contexts. 

4.4. Future research 

While this study has provided valuable insights into the usability of 

Mapillary data for calculating GVI, there are several promising avenues 
for further investigation. One potential area of investigation is obtaining 
a weighted average GVI value using population density in determined 
areas, which can provide a more accurate reflection of green visibility 
within a city. This approach can provide a more precise depiction of 
green visibility within a city, considering areas where the presence of 
greenery might be less perceptible due to low or negligible population 
density. In addition to recognising the positive impact of green spaces on 
well-being, research has also highlighted the potential of blue spaces, 
such as bodies of water, in promoting human health (Labib et al., 2020b; 
McDougall et al., 2020). Therefore, exploring the feasibility of inte
grating Mapillary data to calculate the Blue View Index for cities would 
be valuable. This integration would enable researchers to investigate the 
influence of both green and blue spaces on various health indicators, 
providing a more comprehensive understanding of the relationships 
between urban environments, natural features, and human well-being 
(Markevych et al., 2017). 

Furthermore, to improve the estimation of GVI for missing points 
using mean NDVI values, it is worth considering the inclusion of more 
variables, such as building density, height, and orientation. However, 
such building data are primarily unavailable globally, but more and 
more data on buildings, such as OSM buildings and Microsoft Building 
Footprints, are becoming available. Finally, to improve the consistency 
between street-view images and satellite-derived NDVI data and ensure 
data comparability across different cities for GVI comparisons, a viable 
approach can be to filter images based on their capture timestamp to 
account for seasonal variations. This method holds the potential to 
improve the quality of our analysis by aligning the timing of street-level 
image data more closely with the corresponding environmental condi
tions reflected in the NDVI data. Additionally, future studies should 
employ new approaches to select images with higher quality and con
sistency. For instance, further studies can use images of a specific res
olution or only select images from a certain camera if sufficient images 
are available in the study area to ensure that chosen images have 
consistent and comparable image quality. Exploring these future 
research directions will not only expand upon the findings of this study 
and improve the robustness and reliability of this research but also 
contribute to the development of approaches for urban planning and 
public health interventions. 

5. Conclusions 

This research has developed and demonstrated a scalable, repro
ducible framework for utilising open-source and FAIR Mapillary image 
data to assess greenness visibility in diverse geographical contexts. 
Importantly, this research effectively addressed its research questions, 
demonstrating that despite variations in image availability across 
different cities, a robust methodology for GVI assessment can be estab
lished using images from Mapillary. Our study identified disparities in 
Mapillary data availability and usability across the selected global cities, 
bringing to light an uneven global distribution of open-source and free 
image data. Nonetheless, these disparities did not diminish the potential 
of Mapillary for GVI evaluations. Additionally, our findings accentuate 
Mapillary’s adherence to FAIR principles, an asset in scientific research 
in this domain. This feature makes Mapillary an advantageous free and 
FAIR alternative to Google Street View for GVI assessments despite the 
discrepancies and temporal limitations that are not only inherent to 
crowd-sourced data. Our methodology enables new avenues to make 
urban greenness analysis accessible to all. A key innovation of our study 
was using globally available NDVI data to estimate GVI values at missing 
locations. Although not without limitations, this approach proved to be 
a promising method for augmenting street-level GVI analyses in data- 
scarce areas. The successful application of NDVI in our study paves 
the way for future research to refine and expand on this method, further 
enhancing the robustness of GVI analyses. 

Additionally, this study provided a comparative analysis between 
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cities of varying socioeconomic contexts, finding a notably lesser 
greener visibility in densely populated, lower-income cities in Asia and 
Africa as compared to their low-density, affluent counterparts in the 
USA and Europe. Overall, this study is a critical contribution to urban 
planning and environmental research, providing an accessible, scalable, 
and innovative approach to greenness visibility assessment. Our findings 
and established framework, founded on open-source data and repro
ducibility, facilitate comparative studies, and establish guidelines for 
green view assessments across the globe using free images. Through this, 
we hope to foster a greater understanding of the relationships between 
urban natural environments and human well-being, driving toward 
healthier, more equitable, and sustainable cities. 
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