
Journal of Public Economics 234 (2024) 105113

0

Contents lists available at ScienceDirect

Journal of Public Economics

journal homepage: www.elsevier.com/locate/jpube

Social preferences on networks✩

Sarah Rezaei a,∗, Stephanie Rosenkranz a, Utz Weitzel b,c,d, Bastian Westbrock e

a Utrecht University School of Economics, Netherlands
b Free University of Amsterdam, Netherlands
c Tinbergen Institute, Netherlands
d Radboud University, Institute for Management Research, Netherlands
e Hamburg University, Department of Economics and Social Sciences, Germany

A R T I C L E I N F O

JEL classification:
D85
C70
C91
H41

Keywords:
Social preferences
Network games
Public goods

A B S T R A C T

Social preferences are a powerful determinant of human behavior. We study their behavioral implications
within the context of a network game. A key feature of our game is the existence of multiple equilibria
that widely differ in terms of their payoff distributions. Determining which equilibrium is most plausible is
thus a key concern. We show that introducing social preferences into the game can resolve the problem of
equilibrium multiplicity. However, the selected equilibria do not necessarily yield more efficient or egalitarian
payoff distributions. Rather, they just reinforce the inequality that is already inherent in a network structure.
We validate these predictions in an experiment and discuss their implications for managerial practice and
behavior in larger networks.
1. Introduction

In our daily lives, we are involved in many social interactions and
constantly struggle to divide our time, effort, and resources with others.
The time and effort we spend in this way can be viewed as a local
public good that we share with our interaction partners. To give some
examples, the preventive measures we take in a pandemic to protect
our contacts, the time we dedicate to a joint project with our co-
workers, or our experimentation with new technologies, which reduces
the adoption costs for others, all these investments can be viewed as
our contribution to a local public good.

Not all of us have access to the same interaction partners, however,
and so, not all of us have access to the same public goods invest-
ments by others. The network structure of social interactions thus
has major consequences for the distribution of the costs and benefits
within a group or society. This is where social preferences come into
play. Numerous experimental and empirical studies have consistently
demonstrated that social preferences shape our behavior in the provi-
sion of public goods, especially within small groups. A recurring finding
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is that individuals contribute higher and more equitable amounts to
these groups than what would be anticipated from a purely selfish
viewpoint (see, e.g., Andreoni and Bernheim, 2009; Eckel and Harwell,
2015). As such, social preferences may indeed have the potential to also
overcome the inequalities in our social interactions.

It is not clear, however, how social preferences play out in a
network of interdependent public goods. We study this topic for the first
time in both theory and experiment. Our starting point is the seminal
public goods game by Bramoullé and Kranton (2007), which shares
many similarities with the social dilemmas described above: Players
are embedded in a fixed network and make investments in a local
public good shared with their direct network neighbors. In particular,
there exists a privately optimal level of the good that even a pure
payoff maximizer would contribute to. The key question, therefore, is
who is willing to provide the public good and who is going to free
ride. To frame it in game theory terms, the game has multiple Nash
equilibria that significantly differ in terms of total welfare and the
payoff distributions they induce.
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Three important questions emerge from here: Do social prefer-
ences help to maintain public good investments beyond the private
optima? Do they resolve the problem of equilibrium multiplicity in
this game? And, if so, do they facilitate more equitable or more ef-
ficient payoff distributions when a network structure itself is asym-
metric? To structure our thoughts on these questions, we first extend
the Bramoullé and Kranton (2007) game by allowing the players to
possess other-regarding preferences. Specifically, we adopt the utility
model proposed by Charness and Rabin (2002), which encompasses
various different social preference types that real people have been
shown to care about, including altruism, inequity aversion, and com-
petitiveness, among others.1 We then study the Nash equilibria of our
modified game.

Our main result is as follows: Many of the Nash equilibria that
emerge in the original game with payoff-maximizing players are no
longer sustainable when players possess social preferences. Specifically,
the key insight is that when players’ social preferences satisfy certain
conditions explained below, their strive for a certain payoff ordering in
their local network neighborhood leads to a significant simplification
and sharpening of the equilibrium predictions. In a Nash equilibrium
on a star network, for instance, an inequity-averse player in the center
position must earn more than the players in the periphery positions
when at least one of them is inequity-averse as well. In the original
game, by contrast, a second equilibrium exists where the center player
earns less than everybody else. Similarly, in any equilibrium on a fully
connected network, a group of inequity-averse players will invest the
same and consequentially earn the same, while in the original game,
a wide range of investment profiles can be supported. The underlying
mechanism in both examples is that the socially concerned players
share a common understanding of which equilibrium to play.

There are two important aspects of this result that we would like to
stress here. Firstly, many of our predictions are robust to the ‘‘strength’’
of players’ social preferences, that is, the weights they assign to other
players’ payoffs. This is important because it means that our predictions
can be applied to various social contexts, irrespective of whether social
comparison concerns play a prominent or minor role there. Neverthe-
less, our predictions become actually even sharper when players have
weaker social preferences. In fact, in the limit of marginal comparison
concerns, our predicted equilibrium set is even a proper subset of the
equilibrium set in the original game for many of the networks we study.
In this sense, introducing social preferences into the Bramoullé and
Kranton (2007) game results in equilibrium selection.

Secondly, however, we find that social preferences do not always
lead to a refined equilibrium set across all networks and for all types
of social preferences. Rather, this is tied to two conditions. First, players
must have what we term compatible social preferences, which means
that their preferences need to align with their positions in a network.
Preference compatibility is satisfied, for instance, when all players in
a network are competitive, inequity averse, or have social welfare
concerns. It is violated, by contrast, when an altruistic player in the
center position of a star interacts with a group of competitive players in
the periphery positions. In such cases, the equilibrium set might even be
larger than in the original game. Second, the network in which players
are embedded must be nested in the sense that the neighborhoods of
some players in the network must be contained in the neighborhoods of
others (Mariani et al., 2019). In particular, the ideal constellation for
our predictions to apply is when one player nests the neighborhoods
of all other players, as in the star. In contrast, our theory predicts no
refined equilibrium set when no player nests the neighborhood of any
other player, such as in the circle network. Here, players cannot agree
on the equilibrium to be played, irrespective of their social preferences.

1 See Bruhin et al. (2019) and Falk et al. (2018) for empirical evidence
n the diversity of social preferences, and Kerschbamer and Müller (2020)
nd Reuben and Riedl (2013) for how this diversity can, for instance, explain
ifferences in political attitudes or contribution norms.
2

r

In the second part of our paper, we validate the key predictions and
mechanisms behind our theory in an experiment. Our tests leverage
one of the useful features of the two conditions behind our predictions,
nestedness and preference compatibility, namely that they are readily
measurable. Consequently, we compare investment profiles across net-
works with varying degrees of nestedness and among subject groups
exhibiting different a-priori elicited social preference combinations
to assess whether the observed investments move as predicted. Our
experimental design incorporates two additional features to facilitate
the test: first, a large strategy space allowing for the full set of Nash
equilibria and deviations thereof to emerge and, second, a continuous-
time framework, enabling subjects to freely adjust their choices over a
specific time interval.

To provide an outlook on our findings, we do not observe any
evidence suggesting that social preferences lead to a more equitable
or more efficient payoff distribution than expected from a group of
purely payoff-maximizing players. Instead, the majority of investments
in our experiment closely align with the equilibrium predictions for the
original game. Nevertheless, groups with compatible social preferences
managed to coordinate their choices in two aspects better: they reached
the predicted equilibrium profiles more frequently, and they converged
to their final investments in a shorter time.

In the next section, we relate our contribution to the existing
literature. Section 3 develops our theoretical predictions, Section 4
outlines the experimental design, and Section 5 analyzes our findings.
In Section 6, we explore the practical implications of our results for
managerial practices and the broader social interaction networks that
inspired our study. Section 7 concludes. The proofs of all our for-
mal statements, supplementary evidence from the experiment, and the
replication instructions can be found in the appendix.

2. Related literature

Our paper relates to the literature on social preferences and social
networks. In the domain of social networks, our primary contribu-
tion lies in being the first to theoretically explore a network game
with socially concerned players. While a few earlier theories have
studied settings of socially concerned agents in a network, most no-
tably Ghiglino and Goyal (2010), Immorlica et al. (2017), and Bourlès
et al. (2017), a key distinction lies in their focus on contexts devoid of
any strategic interactions between agents, if it were not for their social
comparison concerns. Their motivations stem from peer comparisons
in otherwise anonymous markets, financial transfers between family
members, or an individual’s status in a large neighborhood. In contrast,
we study a network game where players not only observe but also influ-
ence each other, resulting in complex interactions and multiple strategy
profiles in Nash equilibrium.2 By resolving the issue of equilibrium
multiplicity, social preferences thus play an entirely different role in
our theory.

With this finding, we also contribute to another important branch
in the theoretical networks literature that aims to tackle the pervasive
problem of equilibrium multiplicity. As emphasized by Bramoullé et al.
(2014) and Allouch (2015), the issue is most severe in games where
players’ actions are strategic substitutes, so precisely the class of games
looked at in our study. Previous efforts to resolve the problem have

2 One other notable exception of a network game with socially concerned
layers is the paper by Richefort (2018). Nevertheless, similar to all the other
heories, also his game yields a unique equilibrium point regardless of whether
he players are socially concerned or not. As such, social preferences merely
‘shift’’ the unique equilibrium point in his theory, whereas in our theory, they
lay a crucial role in helping players decide which equilibrium to coordinate
n. Another noteworthy distinction lies in the fact that all earlier theories,
ncluding Richefort’s, focus on one specific type of social preference, such
s altruism or competitiveness. We, in contrast, look at the empirically more

elevant case of preference heterogeneity.
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considered Nash tâtonnement stability (Bramoullé and Kranton, 2007),
stochastic stability (Boncinelli and Pin, 2012), and limited information
about the network structure (Galeotti et al., 2010) as equilibrium
refinement concepts. While their predictions broadly coincide with
those derived from our theory for all the star-like networks, our theory
provides additional insights into phenomena unexplained by previous
theories. For instance, it is able to explain why individuals tend to split
their investments equally when they interact in pairs or why they fail
to coordinate their choices within loosely connected local interaction
structures, such as the circle network. Both these phenomena, while
empirically very relevant, remained previously unaddressed.3

In the experimental networks literature, the central question mir-
ors that of the theory: which equilibrium prevails on which network
tructure, and why? Yet, the empirical support for the aforementioned
heories remains, at best, mixed. For instance, Charness et al. (2014)
tudy the role of incomplete information about the network structure,
inding that it does not inherently facilitate coordination. Instead, in
heir experiment, risk dominance emerges as the guiding principle to
quilibrium selection. Moreover, in an experimental design similar to
urs, Rosenkranz and Weitzel (2012) compare the predictions of Nash
âtonnement stability, risk dominance, and quantal-response theory,
roviding no more than partial support for all three concepts.

Both of these experiments share a common limitation: social prefer-
nces have never been given a chance to reveal their full potential as
n equilibrium-refinement device.4 One reason is that much of their

evidence is derived from games on asymmetric networks, where all
the existing refinement concepts, including ours, predict just the same
equilibrium. Another issue arises from their use of a binary strategy
space that precludes equal divisions by design and their implemen-
tation of a simultaneous choice format, making coordination difficult
in the complex environment of a network game. In contrast, we fol-
low Berninghaus et al. (2002) and Goyal et al. (2017) in implementing
a continuous-time version of the Bramoullé and Kranton game. This
version offers the advantage of retaining the large strategy space of the
original game while still facilitating coordination, as players have the
opportunity to observe each others’ investments before the final payout
period.

Our paper is finally related to the extensive literature on social
preferences. It is particularly close to an emerging group of studies that
goes beyond the influence of social-comparison concerns in standard
linear public goods or bargaining games. Similar to us, also these
studies emphasize the major role that social preferences can have in
coordinating our choices. Binmore (2005), for example, argues that
they help us navigate unfamiliar social dilemmas, Reuben and Riedl
(2013) and Fehr and Schurtenberger (2018) demonstrate how they
influence the foundation of our social norms, and Kahneman et al.
(1986) and Eyster et al. (2021) illustrate their impact on a market’s
resistance to change. Closest to our study, Dufwenberg and Patel (2017)
present a theoretical model showing how social preferences can reduce
the number of Nash equilibria in a threshold-level public goods game.

3 For instance, equal sharing is the by far most common outcome in the
wo-player public goods games reviewed in Andreoni and Bernheim (2009).
oreover, the experiments of Berninghaus et al. (2002) and Cassar (2007)
ade clear how difficult it is to coordinate on loosely connected local

nteraction structures.
4 The only other experimental study on the role of social preferences in

etworks that we are aware of is Zhang and He (2021). However, much
ike the theory papers mentioned above, they study a dominant-strategy
ame, where social preferences merely shift the observed investments. Social
references in our context, by contrast, make up the difference between
center- or a periphery-specialized equilibrium and, thus, between being

he sole contributor to a public good or a free rider. Moreover, we should
ention another related line of experimental work investigating the influence

f communication in network games (Choi and Lee, 2014; Charness et al.,
023). This work has revealed another effective means of coordination.
3

h

However, the arguments underlying their result differ entirely from
ours. Moreover, while their theory speaks to public goods provision in
small communities, the application we have in mind is the allocation
of scarce resources in a network of interdependent public goods.

3. Theory

3.1. The rules of the basic game

We study the role of social preferences in the Bramoullé and Kranton
(2007) local public goods game. The rules are as follows: 𝑛 players
are embedded in a fixed network 𝑔. Some of these networks, which
play an important role in our experiment, are illustrated in Fig. 1. The
players simultaneously select an investment 𝑒𝑖 ∈ [0, 𝑒]. This investment
contributes to their own local public good and to that of their direct
neighbors in 𝑔.5 Let 𝑒−𝑖 = (𝑒𝑗 )𝑗≠𝑖 represent the investments of all players
except player 𝑖, and let 𝑁𝑖 = {𝑗 ∈ 𝑁∖{𝑖} ∶ 𝑖𝑗 ∈ 𝑔} indicate the set of
players in 𝑖’s neighborhood. Player 𝑖’s payoff is then determined by the
following expression:

𝜋𝑖(𝑒𝑖, 𝑒−𝑖) = 𝑏
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐𝑒𝑖 . (1)

ere, 𝑐 > 0 denotes the investment cost per unit and 𝑏(⋅) the social
enefit function, which is a strictly increasing and concave function
n [0, 𝑛𝑒] satisfying 𝑏(0) = 0 and 𝑏′(0) > 𝑐 > 𝑏′(𝑒). In most parts of our
heory, we will more concretely assume that 𝑏(⋅) is a quadratic function
ith |𝑏′′| > (2𝑏′(0) − 𝑐)∕𝑒, so that, regardless of a player’s ‘‘strength’’ of

social preferences, no player ever invests 𝑒.
There are two important observations to be made about the Bram-

oullé and Kranton game. First, there exists a positive investment level
𝑒∗, defined by 𝑒∗ = (𝑏′)−1(𝑐), that even a payoff-maximizing player
would be willing to contribute to if the sum of her neighbors’ invest-
ments is smaller. As a result, the investments of any two neighbors are
strategic substitutes because the higher the investment of a neighbor,
the less a player has to contribute herself to fill the gap until 𝑒∗.

Second, every network structure has multiple Nash equilibria. More-
over, the equilibria widely differ in terms of both the investment and
payoff distributions they induce among players. Fig. 2 illustrates the
equilibria for three of the networks in our experiment (where 𝑒∗ = 12).
Most strikingly, in the star network, the set of Nash equilibria includes
both a center-specialized public good, where the center player invests
𝑒𝑐 = 𝑒∗ and all the other players free ride, as well as a periphery-
specialized public good, where the center player free rides on the
investments of the others. In the complete network, the equilibrium
set even encompasses an entire continuum of profiles, ranging from an
equal-split profile to a specialized equilibrium, where 𝑒∗ is provided by
a single player.

Hence, a major shortcoming of the Bramoullé and Kranton game is
that it fails to predict any systematic relationship between the structure
of a network and players’ behavior within it. However, as we will see
below, this problem can be overcome by introducing social preferences
into the game.

3.2. The social preference function

Social preferences are commonly understood as the human tendency
to take the well-being of others into account when making a deci-
sion (e.g., Fehr and Schmidt, 1999). Yet, beneath this general tendency,

5 One might think of these partner-independent investments as the efforts
n organizing parties for friends, the experimentation with new tools, or
eighborhood beautification efforts, all vis-à-vis the time a person spends on
er own personal projects.
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Fig. 1. Networks in the experiment.
Fig. 2. Nash equilibria on three networks
Notes: For the complete network, only two out of a continuum of Nash equilibria (with ∑

𝑖∈𝑁 𝑒𝑖 = 𝑒∗ = 12 as the only condition) are illustrated. In the circle network, there exists
a third equilibrium where the players in the upper left and the lower right corners each invest 12.
there is much heterogeneity in terms of when and how individuals take
other’s well-being into account.6

To address this heterogeneity, the theoretical literature has devel-
ped various utility models to capture the effects of social preferences
ithin different contexts (see Fehr and Charness, 2023, for a review).
ur preferred model is an 𝑛-player extension of the distributional

preference model by Charness and Rabin (2002) and Schulz and May
(1989), as it nests many of the empirically identified social preference
types in a very parsimonious way.7

According to this model, a player’s utility is given by

𝑖(𝑒𝑖, 𝑒−𝑖) = 𝜋𝑖 +
𝜎𝑖
|𝑅𝑖|

∑

𝑗∈𝑅−
𝑖

(

𝜋𝑗 − 𝜋𝑖
)

+
𝜌𝑖
|𝑅𝑖|

∑

𝑗∈𝑅+
𝑖

(

𝜋𝑗 − 𝜋𝑖
)

, (2)

here 𝑅𝑖 denotes the player’s reference group, and 𝜌𝑖 and 𝜎𝑖 her social
reference parameters, which satisfy (i): 1 > 𝜌𝑖 ≥ 𝜎𝑖 > −1 and (ii):
𝜎𝑖| ≥ |𝜌𝑖| if 𝜌𝑖 > 0 > 𝜎𝑖.

A player’s utility is thus a linear combination of her own material
ayoff 𝜋𝑖 and a social preference component. The latter reflects the
dis-)utility a player derives from comparing her payoff with that of
ther players. With whom a player compares is defined by her reference
roup 𝑅𝑖. In our network context, it is reasonable to assume that this
roup just comprises the direct neighbors in a network (i.e., 𝑅𝑖 = 𝑁𝑖),
s these players can be directly influenced. Alternatively, a player
ay also compare herself with players beyond her direct neighbor-
ood, which is particularly reasonable in small networks. Our theory
s flexible enough to accommodate both scenarios.

6 For empirical evidence on the heterogeneity of social preferences, see Falk
t al. (2018) and Bruhin et al. (2019) .

7 Our distributional preference model also nests several of the utility func-
ions in the aforementioned literature on social networks. Notably, Ghiglino
nd Goyal (2010) assume what we term spiteful players, while Immorlica et al.
2017) assume competitive players. Bourlès et al. (2017), by contrast, develop
model wherein players know each other well, and accordingly incorporate
4

ach others’ utilities, rather than just payoffs, into their own utility functions.
Regardless of the reference group’s size, a player distinguishes
between peers who are behind (𝑗 ∈ 𝑅+ = {𝑗 ∈ 𝑅 ∶ 𝜋𝑗 < 𝜋𝑖}) and
peers who are ahead (𝑗 ∈ 𝑅− = {𝑗 ∈ 𝑅 ∶ 𝜋𝑗 > 𝜋𝑖}). The parameters 𝜌𝑖
and 𝜎𝑖 then govern the (dis-)utility from comparing with those behind
and those ahead. In combination, these two parameters define various
meaningful social preference types: Unconditional altruists (𝜌𝑖 ≥ 𝜎𝑖 >
0), for instance, always assign a positive weight to their peers’ payoffs,
regardless of whether they are ahead or behind. Also, social welfare
types (𝜌𝑖 > 𝜎𝑖 = 0) assign a positive weight to their peers’ payoffs
unless they earn less than everybody else in their reference group.
In such a case, they behave like ordinary payoff maximizers, aiming
to fill the gap between their neighbors’ investments and 𝑒∗. In the
negative domain, spiteful players (0 > 𝜌𝑖 ≥ 𝜎𝑖) always assign a negative
weight to their peers’ payoffs. Competitive types (0 = 𝜌𝑖 > 𝜎𝑖), by
contrast, behave like ordinary payoff maximizers when their payoffs
are higher than everybody else’s. The two domains are connected by
the inequity-averse types (𝜌𝑖 > 0 > 𝜎𝑖) who assign a positive or negative
weight to their peers’ payoffs depending on whether they are ahead or
behind them. In sum, utility function (2) captures a broad spectrum of
empirically relevant preference types and, as we will see shortly, it is
also simple enough to generate sharp predictions within the context of
a network game.

3.3. The rules of the modified game

Consistent with the broader empirical reality, and the specific con-
text of our experiment, we envision a game wherein players differ in
their social preferences. More concretely, we assume that the social
preference type of each player, denoted by 𝜏𝑖 = (𝜌𝑖, 𝜎𝑖, 𝑅𝑖), is determined
before the start of the game through a random draw from the common
support 𝑇 , which we assume is a finite subset of the set of all types
compatible with utility function (2). All players become aware of their
own types, but they may only possess partial information about the
types of the other players.
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This prompts the question of how much players know about the
social preferences of the others. Throughout the main text, we make
the simple assumption that all players are completely informed about
the preference types of every other player. As we will see in Section 5.1,
this assumption, albeit highly stylized, yields predictions that are read-
ily applicable in the context of our experimental game. Moreover, as
demonstrated in Appendix A.2.5, our key results also carry over to a
richer setting wherein players have incomplete information about each
other.

3.4. Equilibrium predictions

Here, we present the Nash equilibrium predictions for our modified
game featuring socially concerned players, henceforth referred to as the
other-regarding equilibria (ORE).

A first observation is that, just as the original Bramoullé and
Kranton game, also our modified game readily lends itself to well-
established fixed-point results, as summarized in Dasgupta and Maskin
(1986). As a result, we can be sure that the game has at least one
pure-strategy ORE for any combination of player types 𝜏 = (𝜏1,… , 𝜏𝑛):

Proposition 1 (Equilibrium Existence). The Bramoullé and Kranton game
with socially concerned players and a quadratic social benefit function has
at least one Nash equilibrium in pure strategies for every network 𝑔.

See Appendix A.1 for the proof.
What remain less clear from the existing results is: How many OREs

oes the game exhibit on each network? How are the investments and
ayoffs distributed in these equilibria? And, crucially, how do both
hese aspects depend on the social preferences of the players? The
ollowing examples elucidate the fundamental intuition behind our own
esults.

xample 1 (Star with an Altruist in the Center).
Let us first consider the 4-player star network depicted in Fig. 1.

uppose that the center position is occupied by an unconditional al-
ruist (with 𝜌𝑐 = 𝜎𝑐 > 0), while the three players in the periphery are
ayoff maximizers (i.e., 𝜌𝑝 = 𝜎𝑝 = 0). Then, one can readily show that

the following three profiles describe all possible OREs:8

1. center-specialized: 𝑒𝑐 = 𝑒(𝜌𝑐 ) , 𝑒𝑝 = 0
2. distributed: 𝑒𝑐 =

3𝑒∗−𝑒∗(𝜌𝑐 )
2 , 𝑒𝑝 =

𝑒∗(𝜌𝑐 )−𝑒∗

2 if 𝑒∗(𝜌𝑐 ) < 3𝑒∗

3. periphery-specialized: 𝑒𝑐 = 0 , 𝑒𝑝 = 𝑒∗ if 𝑒∗(𝜌𝑐 ) < 3𝑒∗

where 𝑒∗(𝜌𝑐 ) denotes the altruist’s total desired investment when the
ayoff maximizers each make a positive investment, while 𝑒(𝜌𝑐 ) depicts

his total desired investment when the payoff maximizers do not invest,
with 𝑒∗(𝜌𝑐 ) > 𝑒(𝜌𝑐 ) > 𝑒∗.

The example illustrates one of the complicating factors when the
players are socially concerned. Not only can the original Nash equilibria
of the Bramoullé and Kranton game be sustained as ORE, but additional
equilibria may emerge that are not Nash when the players are pure
payoff maximizers. In Example 1, this is exemplified by the distributed
profile, which is an equilibrium because the altruist in the center is
willing to maintain a total desired investment in her neighborhood
that is greater than 𝑒∗. Hence, even if all the peripheral players invest

8 For the distributed ORE profile, just use the first-order conditions

𝜕𝑈𝑐 (𝑒)
𝜕𝑒𝑐

=
(

𝑏′(𝑒𝑐 + 3𝑒𝑝) − 𝑐
)(

1 − 𝜎𝑐
)

+ 𝜎𝑐𝑏
′(𝑒𝑐 + 𝑒𝑝) = 0

𝜕𝜋𝑝(𝑒)
𝜕𝑒𝑝

= 𝑏′(𝑒𝑐 + 𝑒𝑝) − 𝑐 = 0.
5

c

𝑒𝑝 = 𝑒∗ − 𝑒𝑐 > 0, the altruist is still inclined to make a positive
ontribution.9

Nevertheless, as demonstrated in our next example, social prefer-
ences also have the potential to narrow the equilibrium set.

Example 2 (Star with a Spiteful Player in the Center).
Let us revisit the star network again, with three payoff maximizers

in the peripheral positions. However, this time, the center player is of
a competitive or spiteful type (with 𝜎𝑐 < 0). In this case, the game has
a unique periphery-specialized ORE, where 𝑒𝑐 = 0 and 𝑒𝑝 = 𝑒∗.

Why are the other two profiles of Example 1 no equilibria anymore
when the star center player is of a competitive or spiteful type? Suppose
the center player would make a positive contribution as in these
profiles. His total desired investment would be no larger than 𝑒∗ when
he is competitive, and it would even be less than 𝑒∗ when he is spiteful
or when he invests the lion’s share so that 𝜋𝑐 (𝑒) < 𝜋𝑝(𝑒). Hence, the
periphery players would have to make a contribution themselves to fill
the gap until their desired 𝑒∗. Yet, for each contribution made in the
periphery, the center player is inclined to reduce his own investment
even further, thereby triggering additional investment increases in
the periphery, and so forth. Hence, a competitive or spiteful player
in the center position of a star destabilizes any center-specialized or
distributed profiles.

Nevertheless, as our following example makes clear, this does not
mean that competitive or spiteful players free ride in all network
positions alike.

Example 3 (Circle with Spiteful Players). Consider a circle network with
players labeled 1–4. Suppose that players 1 and 3 are of a spiteful type
(with 𝜌𝑖 = 𝜎𝑖 < 0) and suppose they compare their payoffs only with
their direct neighbors 2 and 4, who are again payoff maximizers. The
set of ORE is in this case given by

1. 1-and-3-specialized: 𝑒1 = 𝑒3 = 𝑒(𝜎) , 𝑒2 = 𝑒4 = 0 if 2𝑒(𝜎) > 𝑒∗

2. distributed: 𝑒1 = 𝑒3 =
2𝑒∗−𝑒∗(𝜎)

3 , 𝑒2 = 𝑒4 =
2𝑒∗(𝜎)−𝑒∗

3 if 2𝑒∗(𝜎) > 𝑒∗

3. 2-and-4-specialized: 𝑒1 = 𝑒3 = 0 , 𝑒2 = 𝑒4 = 𝑒∗

here 𝑒∗(𝜎) denotes the total desired investment of the spiteful players
hen the payoff maximizers make a positive contribution, and 𝑒(𝜎)

heir total desired investment when the payoff maximizers refrain
rom investing, with 𝑒∗(𝜎) < 𝑒(𝜎) < 𝑒∗. In other words, as long as
layers 1 and 3 are not too spiteful (i.e., 2𝑒(𝜎) > 𝑒∗), the same large
quilibrium set emerges on the circle as in the original game with
ayoff-maximizing players. In particular, there is an ORE where the
ublic good is entirely provided by the spiteful players 1 and 3.

Our final example illustrates that the same large equilibrium set
merges on the circle under other preference constellations as well:

xample 4 (Circle with Inequity Averse Players).
Consider the circle network again, but with inequity averse players

with 𝜌𝑖 > 0 > 𝜎𝑖 and |𝜎𝑖| = |𝜌𝑖|) in all four positions. The ORE set is
hen given by10

9 Only in the extreme case where the altruist cares a lot about the payoffs
f the other players (i.e., when 𝑒∗(𝜌𝑐 ) ≥ 3𝑒∗) does the ORE set in Example 1
ollapse to a unique equilibrium where the altruist provides the public good
n his own. We do not pay much attention to this extreme case because it
s unlikely that any individual is so altruistic. See, for instance, Fig. 4 for
vidence on this.
10 Note that there is no other distributed equilibrium profile besides the
qual-split equilibrium. In particular, there is no ORE with 𝑒1 = 𝑒3 > 𝑒2 = 𝑒4
ecause the necessary first-order conditions,
𝜕𝑈1

𝜕𝑒1
(𝑒) =

(

𝑏′(𝑒1 + 2𝑒2) − 𝑐
)(

1 − 𝜎
)

+ 𝜎𝑏′(𝑒2 + 2𝑒1) = 0

𝜕𝑈2

𝜕𝑒2
(𝑒) =

(

𝑏′(𝑒2 + 2𝑒1) − 𝑐
)(

1 − 𝜌
)

+ 𝜌𝑏′(𝑒1 + 2𝑒2) = 0 ,

an only be satisfied simultaneously when 𝑒 = 𝑒 .
1 2
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1. 1-and-3-specialized: 𝑒1 = 𝑒3 = 𝑒(𝜎) , 𝑒2 = 𝑒4 = 0 if 2𝑒(𝜎) > 𝑒(𝜌)
2. distributed: 𝑒∗(𝜎)

3 ≤ 𝑒𝑖 = 𝑒𝑗 ≤
𝑒∗(𝜌)
3

3. 2-and-4-specialized: 𝑒1 = 𝑒3 = 0 , 𝑒2 = 𝑒4 = 𝑒(𝜎) if 2𝑒(𝜎) > 𝑒(𝜌)

So, why can the equilibria from the original game be supported as
ORE on the circle regardless of the players’ preference types, while
only one of them survives on the star when a spiteful player occupies
the center position? The answer lies in the distinct network structures.
In the circle, each player’s neighbors have one neighbor of their own
which they do not need to share with the player. As a consequence,
players 2 and 4 can access the investments of the spiteful players 1
and 3 in the 1-and-3-specialized equilibrium, while the latter only have
access to their own investments. And as the total investment received
by players 2 and 4 is beyond 𝑒∗, they are unwilling to make the extra
contribution that would make players 1 and 3 reduce theirs.

The situation is different for the peripheral players in the star
network of Example 2. These players do not receive any investment
that the spiteful player in the center position would not have access to
as well. As a consequence, the public good must be entirely sponsored
by them in an ORE.

Thus, the decisive difference between the star network and the circle
network is that the center player in the star nests the neighborhoods of
all the other players, where nestedess is defined in the following sense:

Definition 1 (Nestedness). Player 𝑖 nests the neighborhood of player 𝑗
when 𝑁𝑗 ∪ {𝑗} ⊆ 𝑁𝑖 ∪ {𝑖}.

However, the stark contrast in the predictions of Examples 1 and 2
makes clear that this is not the complete picture, and that an additional
condition must be satisfied for social preferences to refine the equilib-
rium set. While Example 2 demonstrated that a spiteful player in the
center helps refine this set, Example 1 suggested that an altruist in the
center does not. The fundamental reason is that the spiteful player is
determined to undo any payoff differences in his own disadvantage if
there is a need to, whereas the altruist is not.

More generally, equilibrium selection through social preferences
requires that the more powerful nesting positions of a network are
occupied by competitive or spiteful players. Conversely, the weaker
nested positions should be filled by social-welfare or altruistic types
because these types are willing to undo any payoff disadvantages for
their more powerful neighbors (even though Example 2 demonstrated
that payoff maximizers suffice as well). Inequity-averse types, finally,
fit into any network position, as they are willing to rectify both their
own and their neighbors’ payoff disadvantages.

The following definition summarizes all combinations of preference
types that are sufficient for a refined ORE set:

Definition 2 (Preference Compatibility). Consider two neighbors 𝑖 and 𝑗
in a network such that 𝑖 nests the neighborhood of 𝑗. We say that their
preferences are compatible with their network positions if 𝜏𝑖 ∈ 𝑇𝑐 and
𝜏𝑗 ∈ 𝑇𝑝, where

(

𝑇𝑐 =
{

inequity averse, competitive, spite
}

AND 𝑇𝑝 = 𝑇 ∖
{

spite
}

)

OR
(

𝑇𝑐 = 𝑇 ∖
{

altruist
}

AND 𝑇𝑝 =
{

altruist, social welfare, inequity averse
}

)

.

Our next definition is not crucial for our main results, but it helps to
simplify the equilibrium characterization. As demonstrated by our ex-
amples, the Nash equilibria of the original game and the corresponding
ORE of the same type can differ quite substantively in terms of their
precise investment levels, depending on the strength of the players’
social preferences (i.e., the absolute size of the 𝜌𝑖- and 𝜎𝑖-parameters).
Moreover, this difference grows larger the stronger the social prefer-
ences are. Determining the exact ORE investment levels can, therefore,
become an intricate task. Nevertheless, for our purposes, it oftentimes
suffices to confine the ORE set based on the maximum deviation that
6

players are willing to maintain in these OREs from the best-response
investments in the corresponding equilibria of the original game. We
refer to this as the players’ social preference strengths.

For a formal definition, let 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) denote the best-response invest-
ment of a type-𝜏𝑖 player in network position 𝑖, and let 𝑓𝑖(𝑒−𝑖) denote the
best response of a payoff maximizer in the same position. We say that

Definition 3 (Social Preference Strength). The social preference strength
of a type-𝜏𝑖 player in network position 𝑖 is given by the smallest 𝜖𝑖 ∈ R+
to satisfy

𝜖𝑖 = max
{

|

|

|

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) − 𝑓𝑖(𝑒−𝑖)
|

|

|

∶ ∀ 𝑒−𝑖 ∈ [ 0, 𝑒 ]𝑛−1
}

.

The social preference strength of all players in a network is then given
by 𝜖 ≡ max𝑖∈𝑁{𝜖𝑖}.

In the following, we will employ our three definitions to provide a
complete characterization of the ORE sets for the seven networks in
our experiment. While we present the intuitive explanations for our
arguments in the text, we refer the interested reader to Appendix A.2
for the full proofs.

3.4.1. Star, core–periphery, and d-box
The star, core–periphery, and d-box are the three networks in our

experiment where one or more players nest the neighborhoods of all
the other players. Yet, when all players are payoff maximizers or are
socially concerned but of the wrong type, this fact has little impact
on the structure of equilibria, as both periphery- and center-sponsored
public goods can emerge in equilibrium.

By contrast, the ORE set can be significantly refined when the
players’ social preferences are compatible with their respective network
positions, meaning that

• in the star: 𝜏𝑐 ∈ 𝑇𝑐 for the center player and 𝜏𝑝 ∈ 𝑇𝑝 for at least
one peripheral player 𝑝,

• in the core–periphery: 𝜏𝑐 ∈ 𝑇𝑐 for the center player and 𝜏𝑗 ∈
𝑇𝑝∖{inequity averse, competitive} for at least one non-center playe
𝑗,

• in the d-box: 𝜏𝑐 ∈ 𝑇𝑐∖{inequity averse, social welfare} for both
centers 𝑐 ∈ 𝐶 and 𝜏𝑝 ∈ 𝑇𝑝∖{inequity averse, competitive} for at
least one peripheral player 𝑝.

In these cases, no center-specialized profile (with 𝑒𝑗 = 0 for all 𝑗 ∈
𝑁∖𝐶) can emerge in an ORE because the center player(s) must earn
more than at least one other player:

𝜋𝑐 (𝑒) ≥ min
𝑗∈𝑁∖𝐶

{𝜋𝑗 (𝑒)} for all 𝑐 ∈ 𝐶 . (3)

The intuition extends immediately from Example 2.
The ORE set can be refined even further on these networks when

all four players possess small social preference concerns. The intuition
for this is simple as well because condition (3) cannot be satisfied in
any distributed investment profile when 𝜖 is smaller than some critical
value 𝜖, with 𝜖𝑑𝑏𝑜𝑥 < 𝜖𝑠𝑡𝑎𝑟 = 𝜖𝑐𝑜𝑟𝑒 (defined in Appendix A.2). In other
words, when the social preferences of the players are sufficiently small,
an ORE must entail a periphery-specialized profile, where the public
good is entirely sponsored by the non-center players:

periphery-specialized: 𝑒𝑐 = 0 , 𝑒𝑝 ∈ [𝑒∗ ± 𝜖] , and
∑

𝑑∈𝐷
𝑒𝑑 ∈ [𝑒∗ ± 𝜖] . (4)

This, in turn, means that in the limit of 𝜖 → 0, the ORE set even becomes
a proper subset of the Nash equilibria of the original game.

3.4.2. Line
The two center players in the line network each have one periphery

player whose neighborhood they nest. When all four players are payoff
maximizers, this has, just as in the star, core–periphery, or d-box, little
impact on the structure of equilibria because the only requirement on a
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Nash equilibrium is that 𝑒𝑝𝑖 = 𝑒∗, 𝑒𝑐𝑖 = 0, and 𝑒𝑐𝑗 + 𝑒𝑝𝑗 = 𝑒∗ for 𝑖 ∈ {1, 2}
and 𝑗 ≠ 𝑖.

Again, the same holds true when players are socially concerned but
have the wrong preference types, because also in this case, an ORE may
either entail a periphery-specialized (with 𝑒𝑝𝑗 ≥ 𝑒𝑐𝑗 ) or a distributed
(with 𝑒𝑝𝑗 < 𝑒𝑐𝑗 ) investment profile. However, when players’ social
preferences are compatible with their respective line positions, and they
possess sufficiently weak social preference, that is, when 𝜏𝑐 ∈ 𝑇𝑐 for
both line middle players, 𝜏𝑝 ∈ 𝑇𝑝 for both end players, and 𝜖 < 𝜖𝑙𝑖𝑛𝑒 =
𝑒∗∕5, then an ORE must satisfy

periphery-specialized: 𝜋𝑐𝑖 (𝑒) ≥ 𝜋𝑝𝑖 (𝑒) and 𝑒𝑝𝑖 ≥ 𝑒𝑐𝑖 for 𝑖 ∈ {1, 2} . (5)

Hence, social preferences can also resolve the problem of equilibrium
multiplicity on the line network. Yet, they do so less effectively than
on the star, core–periphery, or d-box because the fact that each cen-
ter player only nests one other player’s neighborhood means that all
four players need to have compatible preferences for our equilibrium
selection argument to apply.

3.4.3. Dyad and complete network
On the dyad and complete network, a wide range of investment

profiles can be supported in a Nash equilibrium when players are payoff
maximizers. The only requirement is that ∑𝑖∈𝑁 𝑒𝑖 = 𝑒∗.

Social preferences lead, in the first instance, to even more equilibria,
as any profile can be supported in an ORE with arbitrary preference
types that satisfies ∑𝑖∈𝑁 𝑒𝑖 ∈ [𝑒∗±𝜖]. However, when each player meets
both compatibility conditions of Definition 2, that is11

• in the dyad: 𝜏𝑖 ∈ 𝑇𝑐 ∩ 𝑇𝑝 for both 𝑖 ∈ {1, 2},
• in the complete network: 𝜏𝑖 ∈ 𝑇𝑐 ∩𝑇𝑝 for all 𝑖 ∈ 𝑁 and, moreover,

the 𝜌𝑖- and 𝜎𝑖-parameters are sufficiently close together for all
players,

then our theory predicts a unique ORE where all players split their total
investment equally,

equal-split: 𝑒𝑖 = 𝑒𝑗 = 𝑒 , with 𝑒 ∈
[ 𝑒∗ ± 𝜖

𝑛
]

. (6)

The intuition is straightforward, because suppose the investments
re not equal. The fact that players’ neighborhoods are mutually nested
eans that the player with the highest investment earns weakly less

han everybody else, while the player with the lowest investment
arns weakly more. At least one of them thus feels insulted in her
nderstanding of fairness and, accordingly, adjusts her investment up-
r downward. Such adjustments can only be avoided when all players
nvest exactly the same.12

.4.4. Circle
As already highlighted in Examples 3 and 4 the absence of nested

eighborhoods in the circle puts an end to the equilibrium selection
roperty of social preferences. All that can be said about the ORE set is

11 The condition 𝜏𝑖 ∈ 𝑇𝑐 ∩ 𝑇𝑝 for all 𝑖 ∈ 𝑁 means that in the dyad and
omplete network (i) no player should be altruistic or spiteful, (ii) no two or
ore players should be payoff maximizers, and (iii) no two or more players

hould have distinct types from the set {payoff maximizer, social welfare,
ompetitive}.
12 Note that the strength of social preferences does not play a role for the
mergence of an equal-split equilibrium on the dyad or complete network. It
olely affects the extent by which the players’ total investment differs from
∗. A total investment of 𝑛𝑒 > 𝑒∗ can, for instance, be maintained by the
version to guilt. As long as the material benefits from a downward deviation
re smaller than the moral cost of guilt, and thus as long as 𝑛𝑒 is not too far
way from 𝑒∗, players prefer their equilibrium investment 𝑒.
Note also that this equal-split prediction does not derive from any of the

ther established equilibrium refinement concepts, such as Nash tâtonnement
tability, efficiency, or stochastic stability.
7

ummarized in these examples: It is as large as the equilibrium set of the
riginal game, and it collapses with it when players’ social preferences
ecome small (𝜖 → 0). A refined ORE set can only be achieved when
layers have certain combinations of strong social preferences, for
nstance, when two spiteful types interact with two payoff maximizers.

.4.5. General networks
The previous insights can be generalized to an arbitrarily large

etwork structure, provided that a network has some nested neighbor-
oods and the players within these neighborhoods hold some compat-
ble social preferences. When these conditions are met, the following
esult applies:

roposition 2. Consider two players 𝑖 and 𝑗 in a nested neighborhood of
a network 𝑔 who have compatible social preferences, that is, 𝜏𝑖 ∈ 𝑇𝑐 and
𝑗 ∈ 𝑇𝑝. Then, in an ORE, player 𝑖 (𝑗) must earn weakly more (less) than
t least one other player in 𝑖’s (𝑗’s) neighborhood:

𝜋𝑖(𝑒) ≥ min
𝑘∈𝑁𝑖

{𝜋𝑘(𝑒)} OR 𝜋𝑗 (𝑒) ≤ max
𝑙∈𝑁𝑗

{𝜋𝑙(𝑒)} . (7)

While this result establishes a rather weak bound on the relative
payoffs within a local neighborhood of a network, we already know
how to strengthen it under some additional conditions on the network
structure: when player 𝑗 is solely connected to player 𝑖, for instance,
such as in the periphery position of a star, then 𝜋𝑖(𝑒) ≥ min𝑘∈𝑁𝑖

{𝜋𝑘(𝑒)}.
And, when 𝑖 is also exclusively connected to 𝑗, then we even have
𝜋𝑖(𝑒) = 𝜋𝑗 (𝑒).

.4.6. Network ranking
So far, we have seen that social preferences allow one to signifi-

antly refine the equilibrium predictions in the Bramoullé and Kranton
2007) game for most of the networks in Fig. 1. Most importantly, our
heory successfully eliminated all those equilibria that go against the
ntuitively expected ranking of investments and payoffs in these net-
orks, namely center-sponsored public goods in the star-like networks
nd unequal contributions in the dyad and complete network.

Our theory offers more, however. It also suggests systematic dif-
erences between the networks in terms of how likely a refined ORE
an be expected to emerge on them when their positions are randomly
illed with players from a large player pool 𝑇 , as in our experiment. A
irst implication of this pertains to the dyad and the complete network.

hen network positions are randomly filled, it is easier to assemble
sufficient number of players who share a common understanding

f fairness and, thus, a common understanding of which equilibrium
o play in the dyad than in the complete network. Hence, under the
lausible assumption that the actual players in a network coordinate
n a random profile from the set of all ORE profiles consistent with
heir social preference types 𝜏 = (𝜏1,… , 𝜏𝑛), then we arrive at our first
rediction: the likelihood of observing an equal-split ORE is higher on
he dyad than on the complete network,
(

equal-split ∣ 𝑔𝑑𝑦𝑎𝑑
)

≥ 𝑃
(

equal-split ∣ 𝑔𝑐𝑜𝑚𝑝
)

. (8)

However, our theory offers even more because it also predicts
marked differences among all the other networks. We already know
from the circle that in the absence of any nested neighborhoods, a
network is prone to multiple equilibria. Thus, at least some degree
of nestedness is a prerequisite for a refined ORE set. But even among
the nested networks of Fig. 1, there are some important differences. In
particular, there is some asymmetry with regard to the ideal number of
central positions (𝑛𝑐) in a network, which nest other positions’ neigh-
borhoods, and the ideal number of peripheral positions (𝑛𝑝), whose
neighborhoods are nested. The larger 𝑛𝑐 (e.g., comparing the star and
the d-box), the more likely it is that an incompatible altruist or social-
welfare type is assigned to one of the center positions, thus a type
who is willing to provide the public good on her own. The larger 𝑛𝑐 ,

therefore, the smaller the likelihood of a periphery-specialized ORE.
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The number of peripheral positions has the opposite effect. The larger
𝑛𝑝, the more likely it is that at least one altruist or social-welfare type
is assigned to such a position, so a type who is willing to contribute
to the public good if the central players invest less than 𝑒∗. The
arger 𝑛𝑝, therefore, the higher the likelihood of a periphery-specialized
quilibrium in a network.

Applied to our networks, we thus arrive at the following rankings:13

𝑖) 𝑃
(

periphery-spec. ∣ 𝑔𝑠𝑡𝑎𝑟
)

≥

max
{

𝑃
(

periphery-spec. ∣ 𝑔𝑑𝑏𝑜𝑥
)

; 𝑃
(

periphery-spec. ∣ 𝑔𝑙𝑖𝑛𝑒
)}

, (9)
𝑖𝑖) 𝑃

(

periphery-spec.|𝑔𝑐𝑜𝑟𝑒
)

≥ 𝑃
(

periphery-spec.|𝑔𝑑𝑏𝑜𝑥
)

.

oreover, a refined ORE set is easier achieved in an asymmetric than in
symmetric nested network because, in the latter, players must match

he preference compatibility requirements for both the nesting as well
s the nested positions. We, therefore, expect that14

(

periphery-spec. ∣ 𝑔𝑑𝑏𝑜𝑥
)

≥ 𝑃 (equal-split ∣ 𝑔𝑐𝑜𝑚𝑝) . (10)

ltogether, we thus arrive at the following testable predictions:

ypothesis 1. In the networks of Fig. 1, except the circle, a group of
layers with compatible social preferences is more likely to coordinate
n a refined ORE, i.e., a profile satisfying (3)–(6), than a group without
ompatible preferences

ypothesis 2. Suppose that players are randomly assigned to network
ositions from a common pool of players. Then, the likelihood of
bserving a refined ORE on the seven networks of Fig. 1 can be ranked
ccording to the inequalities in (8)–(10).

Finally, for the circle network, our theory predicts that even if all
he preference requirements of Definition 2 are met by a player group,
his group does nevertheless not coordinate more likely on either a
pecialized or a distributed profile than a group that does not match
he criteria.

. Experiment

We tested our hypotheses in an experiment, wherein we imple-
ented a dynamic extension of the original Bramoullé and Kranton

ame. Our choice was motivated by the insights gained from prior
xperiments on this game, which made it clear that many subjects
ind it difficult to coordinate their choices in any meaningful manner,
specially in experiments that adopted the original large strategy space
e.g., Rosenkranz and Weitzel, 2012). As some equilibrium play is es-
ential for our theory testing, however, we opted for a continuous-time
ersion of the game.

In particular, following the approaches of Callander and Plott
2005) and Berninghaus et al. (2006), every round of our game lasted
etween 30 and 90 s. During that time, the players could continuously
djust their choices, choosing from the full set of positive integer val-
es. Moreover, players received full information about the momentary

13 Beyond the intuition provided in the text, the rankings can be readily
erived from the compatibility requirements outlined in Sections 3.4.1 and
.4.2. These conditions also make clear why the line cannot be unambiguously
ompared to neither the core–periphery nor the d-box.
One can furthermore not rank the star and the core–periphery network

ecause even though the compatibility requirements are stronger in the latter,
he likelihood that a group with incompatible preferences hits a refined ORE
rofile by chance is higher on the core–periphery, as there are just more of
hese profiles.
14 There is no comparable ordering of the line and the complete network
ecause, for a compatible preference combination in the line, one requires that
< 𝜖𝑙𝑖𝑛𝑒, while there is no such restriction on the social preference strength in

he complete network.
8

investments and payoffs of every other player, which were updated five
times per second (see Appendix C.2 for a screenshot).

Nevertheless, to adhere to the static environment of our theory, the
actual payoffs in a round were solely determined by the momentary
investments at the round ends. These ends were randomly determined
by a draw from the uniform distribution on [30, 90]. At that point in
time, investments were frozen and points were calculated based on the
following linear–quadratic payoff function:

𝜋𝑖(𝑒) =

⎧

⎪

⎨

⎪

⎩

(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗
)(

29 − 𝑒𝑖 −
∑

𝑗∈𝑁𝑖
𝑒𝑗
)

− 5𝑒𝑖 if 𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗 ≤ 14

196 + 𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗 − 5𝑒𝑖 otherwise

. (11)

As we will see below, equilibrium play was greatly facilitated by
these design choices. A major factor certainly is that the participants
in our experiment did not need to formulate beliefs about the payoffs
and investments of the other player because they could observe them
directly.15 At the same time, our implemented random stopping rule
eliminated last-round effects.

4.1. Experimental procedure

We administered our experiment at the Experimental Laboratory for
Sociology and Economics (ELSE) at Utrecht University, the Netherlands,
in June 2008. The experiment was programmed in z-tree 3.0 (Fis-
chbacher, 2007) and students were recruited via ORSEE (Greiner,
2015). A total of 120 students participated in eight sessions. No student
attended more than once. In a typical session, participants played each
one of the seven networks illustrated in Fig. 1 in one trial round
and four payoff-relevant rounds. The participants were thereby ran-
domly reassigned to new groups and new network positions after every
round.16

This resulted in a total of 960 network-level observations that
we could use for our hypothesis testing: 120 rounds per four-player
network (120 participants divided by 4 players times 4 payoff-relevant
rounds) and 240 rounds from the dyad. Each participant engaged in 28
payoff-relevant rounds, spent approximately 80 min in our laboratory,
and earned, on average, 11.82 Euros, including a 3 Euro show-up fee.

4.2. Social preference elicitation

Key to our testing of Hypothesis 1 is that we also have an estimate
of the social preference parameters of our participants at hand. We
estimated these parameters directly from their behavior in our network

15 From a theoretical viewpoint, the observation of other players’ invest-
ments and payoffs is, in fact, all a socially concerned player needs to know to
formulate her own best-response investment. The reason is that utility function
(2) is solely affected by the investments but not the preference parameters of
the other players.

16 Clearance for this experiment has been granted by the Ethical Review
Committee of Utrecht University’s Faculty of Law, Economics, and Governance.
Further experimental details can be found in Appendix C.

Our choice for a within-subject design was motivated by two reasons:
firstly, experimental efficiency and, secondly, because it allowed us to directly
estimate the social preference parameters of our participants from our network
game. The cost of our choice is that it may introduce certain confounding
factors into our findings. To address them as good as possible, we implemented
two additional measures. Firstly, we adopted a balanced treatment order,
ensuring that each network appeared equally often at different points in our
sessions (see Table 11 in Appendix C.1). This way, we aimed to minimize the
impact of between-treatment spillovers on our findings. Secondly, to alleviate
repeated game effects that typically emerge when the same player groups
interact multiple times (Andreoni, 1995; Fehr and Gächter, 2000), we relied
on the random reassignment of our participants.
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game.17 Concretely, we assumed that in each round 𝑟 and at each time
point 𝑡, a participant chose an investment level 𝑥 ∈ N+ to maximize

𝑈𝑖(𝑥, 𝑒−𝑖,𝑡−1,𝑟) + 𝜃𝑖,𝑥,𝑡,𝑟 , (12)

where 𝑈𝑖(⋅) is the utility function presented in (2) and 𝜃𝑖,𝑥,𝑡,𝑟 an iid type-
1 extreme value distributed random utility component. We thereby
assumed that a participant only compared her payoff with that of her
direct network neighbors, i.e., 𝑅𝑖,𝑟 = 𝑁𝑖,𝑟.

The econometric model that logically follows from here is the condi-
tional logit model. As a result, we estimated, for each participant, the
(𝜌̂𝑖, 𝜎̂𝑖)-pair that maximized the conditional likelihood for their actual
sequence of investments (𝑒𝑖𝑡) to be favored over any alternative se-
uence. For our estimations, we used all the available information from
ur experiment and, accordingly, estimated a participant’s parameters
ased on her choices during all decision moments 𝑡 ∈ [30, 𝑡𝑚𝑎𝑥] in all the

28 payoff-relevant rounds in our experiment. For practical reasons, we
limited the alternative investments to 𝑥 ∈ {0, 1, 2,… , 15}, however.18

With our estimated (𝜌̂𝑖, 𝜎̂𝑖)-pairs at hand, we then categorized our
articipants based on their revealed social preference types and re-
ealed preference strengths. For the preference type classification, we
imply applied the parameter cutoffs presented in Section 3.2. For
he preference strength classification, in turn, we made use of the
heoretical result developed in Appendix A.3, which shows how to map
(𝜌̂𝑖, 𝜎̂𝑖)-pair into an upper bound 𝜖𝑖 for a participant’s true strength 𝜖𝑖.19

. Results

We first provide an overview of our experimental findings before
e turn to our hypothesis tests.

.1. Descriptive findings

We begin with a brief assessment of whether our static theory
redictions make sense in the context of our dynamic experimental
ame. To this end, we plot in Fig. 3 the evolution of the median in-
estments and the 10–90 percentile investment ranges for each position
n our seven networks over time. Clearly, with the exception of maybe
he d-box edge position, the median investments converged to some
teady-state values in all positions, which were typically reached within
he first 30 s already.20 Moreover, with the exception of possibly the
ositions in the circle network, the 10–90 percentile ranges shrank con-
istently over time, with an investment at the 90th-percentile that never

17 There is mainly a practical reason for this. Our experiment was already
0 min long and we worried that participants’ fatigue would jeopardize the
uality of our data collection if we added additional preference elicitation
asks. In fact, achieving the necessary precision in the parameter estimates
ould demand a considerable amount of time for these additional tasks. Bruhin

t al. (2019), for instance, estimate a comparable utility model from 39
ictator games, a process that consumed at least 20 additional minutes in their
xperiment.
18 This constraint is anyhow satisfied by 99.9% of all investments. Moreover,
e ensured that the estimated (𝜌̂𝑖, 𝜎̂𝑖)-pair falls into the feasible range 1 > 𝜌𝑖 ≥
𝑖 > −1. Accordingly, we replaced the parameters of (2) by inverse logistic
ransformations of some deeper, unconstrained parameters 𝜌𝑟𝑖 , 𝜎

𝑟
𝑖 ∈ R:

𝜌𝑖 = −1 + 2
exp(𝜌𝑟𝑖 )

1 + exp(𝜌𝑟𝑖 )
and 𝜎𝑖 = −1 + 2

exp(𝜎𝑟
𝑖 )

1 + exp(𝜎𝑟
𝑖 )
,

and then solved our maximum likelihood function for 𝜌̂𝑟𝑖 and 𝜎̂𝑟
𝑖 , computing

heteroskedasticity-consistent standard errors.
19 Obviously, we made several choices during our preference elicitation

procedure, each carrying potential consequences for the precision of our
parameter estimates. We discuss their implications for the purpose of our study
at the end of Section 5.2.

20 The seeming disturbance in this pattern after the 70-second mark, which
is most pronounced in the d-box edge position, is simply due to the fact that
9

many rounds ended before that time.
surpasses the total desired investment of 𝑒∗ = 12, which maximizes our
experimental payoff function (11). All this confirms our view that the
participants in our experiment were myopically updating their choices
in an attempt to reach an individually optimal investment within the
payoff-relevant decision interval after 30 s. Accordingly, we interpret
the evolution of investments as a best-response dynamic converging to
a static equilibrium of the Bramoullé and Kranton game.

In support of this view, Fig. 4 shows that also the distributions
of investments in each network position are consistent with the static
equilibrium predictions at the random round ends. Even more impor-
tant, the figure supports our refined predictions for socially concerned
players.21 The unique distributional modes in the two-player dyad and
the complete network are, with three and six units respectively, for
instance, consistent with the predicted equal-split equilibrium. More-
over, the prevalent zero contributions in the central positions of the
star, core–periphery, d-box, and line, coupled with the substantial
investments made in the peripheral positions of these networks, lend
strong support to our anticipated periphery-specialized equilibrium.
Even the somewhat dispersed pattern in the circle network, marked
by minor peaks at zero, three, and twelve units, is in line with our
predicted coordination problem on this network. Thus, a first glance
at the data suggests a pattern much in line with our refined ORE
predictions.

Nonetheless, this statement requires further verification because,
in equilibrium, the investments of all players need to ‘‘fit’’ together.
For this reason, Table 1 describes the investment patterns in our
experiment at the network level. In particular, it presents the shares
of investment profiles per network that are either consistent with the
wider class of ORE, which we predicted for any group of socially
concerned players, or the narrower class of refined ORE, which we
just predicted for a group with compatible preferences. The profiles are
further subdivided based on participants’ maximal deviation from the
best-response predictions in a payoff-maximizing equilibrium, and we
distinguish between zero (𝜒 = 0), two (𝜒 < 3), and any unit (any 𝜒) of
deviation from these equilibria.22

We first have a look at column 3 (ORE with 𝜒 = 0). There, we
see that, on the asymmetric networks (star, core–periphery, d-box, and
line), our earlier position-level findings are fully confirmed: Virtually
all groups concluding their rounds on an ORE profile (52 in total)
coordinated their investments on a periphery-specialized public good.
The only exception is two groups playing the line network (1.6% of all
groups playing the line), who coordinated on a distributed equilibrium
where one of the end players earned more than her neighbor in the line
middle.

A similar conclusion can be drawn for the dyad and the circle
network. On the dyad, a large majority of groups (32.1%) coordinated
on an equal-split equilibrium, a pattern that was already visible in
Fig. 4. Moreover, on the circle, we observe the same dispersed invest-
ment pattern that we already saw before: 7.5% of groups converged
on a specialized equilibrium, that is, a profile with (12, 0, 12, 0) or
0, 12, 0, 12), and another 3.3% on a fully distributed equilibrium, with
4, 4, 4, 4). Only on the complete network, merely one group (0.8%)

21 The patterns in Fig. 4 are highly robust, as very similar pictures reemerge,
for instance, when looking at the investment distributions across all payoff-
relevant decision moments, 𝑡 ∈ [30, 𝑡𝑚𝑎𝑥], or when examining the investment
distributions in the first and second halves of our experimental sessions
separately. This reinforces our view that the findings are not just driven by
last-round effects or the specific order of networks in our sessions.

22 We chose a critical value of 𝜒 < 3 because a deviation of up to two units is
the maximum deviation for which a periphery-specialized public good emerges
as the unique refined ORE in all asymmetric networks (except in the d-box,
where the critical value is already at 𝜒 < 2). A comprehensive summary of
the standard Nash equilibria and our (refined) ORE predictions for the seven

networks in our experiment can be found in Table 7 in Appendix A.
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Fig. 3. Investments by network position over time.
reached the predicted equal-split equilibrium, as opposed to 25 groups
(20.8%) who ended their rounds with an uneven distribution of a total
investment of twelve units. Nonetheless, even this low share of refined
ORE is not entirely surprising from the viewpoint of our theory. As
we already hypothesized, the size of the complete network renders
coordination a challenging task, in particular for a group of players who
differ in their social preferences (see Hypothesis 2).

Columns 4 and 5 of Table 1 tell a very similar story. There, we
look at the wider classes of ORE where some deviations from a payoff-
maximizing equilibrium are considered consistent with our theory as
well as long as these deviations are in line with the conditions in (3)–
(6). In the star, core, d-box, and line, the vast majority of investment
profiles (87% across the four networks) were either consistent with
a periphery-specialized ORE or with a distributed ORE profile where,
however, the center player earned more than at least one peripheral
player. Similarly, on the dyad, 49.2% of all round-end investment
profiles were consistent with our predicted equal-split equilibrium,
while on the circle, the shares of specialized and distributed investment
profiles remain both on a high level.23

23 To put these findings into perspective, we also compared the predictive
power of our theory with that of several alternative equilibrium refinement
concepts previously applied to the Bramoullé and Kranton game, notably
efficiency, Nash tâtonnement stability, and quantal-response equilibrium. Our
findings are detailed in Appendix B.1. To sum them up here, our key finding is
that our refined ORE concept predicts the observed investment profiles at least
as well as any of the alternative refinement concepts across all the networks
investigated in our experiment. The specific power of our theory is that it
selects the ‘‘natural’’ equilibria in most of these networks, such as an equal-split
equilibrium on the dyad and a periphery-specialized equilibrium on the star,
core–periphery, line, and d-box. At the same time, it can explain the dispersed
investment pattern on the circle network, something that the other concepts
are incapable of.
10
5.2. Test of Hypothesis 1: The role of preference compatibility

So far, we have seen that many of the participant groups in our
experiment coordinated their choices on our predicted equilibria. Nev-
ertheless, this observation does not apply to all groups alike because
there was also a sizeable number of groups who failed to converge
to a refined ORE, in particular when we look at the class of ORE
in the narrower sense (with 𝜒 < 3). That heterogeneity is, however,
part of our theory as well. Specifically, Hypothesis 1 posited that
coordination is only easy to achieve for groups with compatible social
preferences. Groups with incompatible preferences have, in contrast,
a much harder time to coordinate their choices because they face at
least the same large number of equilibria to coordinate on as a group
of payoff maximizing players.

Social preference estimates: To test this, we first estimated the so-
cial preferences of our participants based on the strategy outlined in
Section 4.2. Table 2 summarizes the resulting point estimates and
categorizes them into their revealed preference types.24 Consistent
with the findings from earlier experiments (e.g., Bruhin et al., 2019;
Kerschbamer and Müller, 2020), the table indicates some substantive
heterogeneity among the participants in our experiment. In particular,
there was a sizeable number of individuals who displayed a behavior
consistent with each one of the different preference types outlined in
Section 3.2.

Preference compatibility: In the next step, we thus used our prefer-
ence estimates to classify all participant groups playing one of the
six nested networks into whether their members met the network-
specific compatibility requirements or not. The criteria were presented
in Sections 3.4.1–3.4.3, and the classification results are shown in
Table 3.

24 The somewhat lengthy Table 9 that also categorizes the estimated (𝜌̂𝑖, 𝜎̂𝑖)-
pairs into their revealed preference strengths is relegated to Appendix A.3.
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Fig. 4. Investments by network position

Notes: Observations from random round ends in the 960 payoff-relevant rounds of the experiment. One investment in the dyad with value 29 dropped for better display.
Clearly, the table indicates that, in at least four of the six networks,
we could find a sizable number of groups that satisfied the compat-
ibility requirements, while another large number of groups did not.
As expected as well, the number of groups meeting the compatibility
requirements decreased, in some networks quite substantively, when
we focus on those groups who displayed at most small or moderate
11
social preference concerns in addition. With this classification at hand,
we can thus turn to our main question.

Hypothesis test: Do groups with compatible social preferences play a
refined ORE more often than groups without the required preference
combination? To answer this question, we refer to Table 3 again. There,
we also contrast the shares of refined ORE played by groups with and
without a compatible preference combination, as percentage shares of
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Table 1
Frequencies of other-regarding equilibria.

Network Equilibrium type Deviation from payoff-
maximizing equilibrium

zero moderate any
(𝜒 = 0) (𝜒 < 3) (any 𝜒)

Dyad equal split (rfd) 32.1% 45.8% 49.2%
other 8.8% 33.0% 50.8%

Complete equal split (rfd) 0.8% 0.8% 0.8%
other 20.8% 62.5% 99.2%

Star per-spec. (rfd) 15.8% 33.3% 62.5%
distr. with 𝜋𝑐 ≥ 𝜋𝑗 (rfd) – – 36.6%
cent-spec. or distr. 0% 0.8% 0.8%

Circle specialized 7.5% 16.7% 29.2%
distributed 3.3% 27.5% 55.0%

Core per-spec. (rfd) 17.5% 43.3% 68.3%
distr. with 𝜋𝑐 ≥ 𝜋𝑗 (rfd) – – 31.7%
cent-spec. or distr. 0% 0% 0%

D-box per-spec. (rfd) 8.3% 15.0% 25.8%
distr. with 𝜋𝑐 ≥ 𝜋𝑗 (rfd) – 1.7% 64.2%
cent-spec. or distr. 0% 9.2% 10.0%

Line end-spec. (rfd) 0.8% 40.1% 49.2%
distr. with 𝜋𝑚 ≥ 𝜋𝑒 (rfd) 8.3% 13.3% 16.7%
mid-spec. or distr. 1.6% 8.3% 34.1%

Notes: Percentages of investment profiles consistent with an other-regarding equilibrium
(ORE) at random round ends. 240 observations for the dyad, and 120 for all other
networks. Refined OREs are indicated with ‘‘(rfd)’’.

Table 2
Social preference types.

Preference type Share

altruism (𝜌̂𝑖 ≥ 𝜎̂𝑖 > 0) 11.7%
social welfare (𝜌̂𝑖 > 𝜎̂𝑖 = 0) 15.0%
inequity averse (𝜌̂𝑖 > 0 > 𝜎̂𝑖) 29.2%
competitive (0 = 𝜌̂𝑖 > 𝜎̂𝑖) 10.0%
spiteful (0 > 𝜌̂𝑖 ≥ 𝜎̂𝑖) 23.3%
payoff maximizer (𝜌̂𝑖 = 𝜎̂𝑖 = 0) 4.2%
asocial (𝜎̂𝑖 > 0 > 𝜌̂𝑖) 6.7%

100.0%

Notes: Categorization of estimated (𝜎̂𝑖 , 𝜌̂𝑖)-pairs into their revealed preference types.
Insignificant estimates (i.e., p-values ≥ 0.05) or estimates with −0.05 ≤ 𝑥 ≤ 0.05 for
∈ {𝜎̂𝑖 , 𝜌̂𝑖} are set to zero because a participant with such a small preference parameter
ould make a decision indistinguishable from a payoff maximizer in our experiment.

heir total number of payoff-relevant investment profiles during 𝑡 ∈
30, 𝑡𝑚𝑎𝑥]. The results by and large lend support to Hypothesis 1: While
reference compatibility does not guarantee refined ORE play, it clearly
acilitated coordination on these profiles. In the top panel of Table 3,
hich compares refined ORE play in the widest sense (any 𝜒), the
ifference is still hardly visible for three of the six networks: star, core–
eriphery, and complete network.25 Nevertheless, when we focus on
he refined ORE in the narrower sense (with 𝜒 < 3 or 𝜒 = 0)—–
nd consequently narrow our sample to groups with moderate social
reference strengths (𝜖 < 3)— , we find a noticeable gap for four of the
ix nested networks: dyad, star, core–periphery, and line.26

This gap in refined ORE play between groups with compatible and
ncompatible preferences can further be corroborated in multinomial
ogit regressions. Table 4 presents the coefficients and test statistics for
wo such models, both with the same dependent variable. The variable
ategorizes all conceivable investment profiles into six different out-
ome classes: Outcomes (1)–(3) capture our refined ORE predictions,
hile outcomes (4)–(6) encompass the remaining non-refined ORE.27

25 This is not at all surprising. As we already saw in Table 1, nearly all
roups coordinated their choices on such a broadly defined ORE in the star
nd core–periphery.
26 The only two exceptions are the d-box and the complete network, where
meaningful comparison was impossible due to the limited number of groups
eeting the demanding compatibility and preference-strength criteria for these
etworks.
27
12

All other out-of-equilibrium profiles are subsumed under outcome (6).
Both outcome classes are further subdivided into the same deviations
from a payoff-maximizing equilibrium that we already considered in
Table 1.

The main explanatory variable in Model 1 is our social preference
compatibility indicator. Model 2 further distinguishes between compat-
ible groups with at most moderate and strong social preferences. Both
models include an additional set of control variables to address several
alternative explanations for why a certain investment profile might be
chosen more often than another. In particular, we included one network
indicator per network and four group-level variables (gender, national-
ity, number of friends, and experience with the experimental game) to
capture various other group characteristics that may be correlated with
the social preferences of its members.

The results of these regressions lend further support to Hypothesis 1.
The most compelling evidence comes from a series of post-estimation
Wald tests following Model 1, where we test the impact of preference
compatibility on various broader outcome classes. For instance, the
Wald test (1–3) versus (rest) examines whether groups with compatible
preferences played a refined ORE in the broadest sense (any 𝜒) more of-
ten than any other profile. This is indeed confirmed, with a 𝜒2-statistic
significant at the 0.01-level. The other two Wald tests concentrate on
refined ORE play in a narrower sense (𝜒 < 3). Consistent with our
earlier observations, the results are more mixed here. As we already
saw in Table 3, there was a sizable number of participant groups in
our experiment that exhibited strong social preference concerns. We
would thus expect that many of these groups coordinated on profiles
with 𝜒 ≥ 3, explaininng the lower 𝜒2-statistics in the tests (1–2) versus
(rest) and (1) versus (rest).

To assess whether also these groups behaved as predicted, we devel-
oped Model 2. Here, we further subdivided all groups with compatible
social preferences into those with at most moderate (𝜖 < 3) and strong
(𝜖 ≥ 3) social preferences. In line with our expectations, the associated
post-estimation Wald tests indicate that the strongly concerned groups
(compatibility (𝜖 ≥ 3)), indeed, tended to coordinate on the investment
profiles contained within the outcome classes (2–3), while the less
concerned groups leaned toward the OREs within the classes (1–2).

Thus, in sum, the regression results largely support our theoret-
ical prediction that, within the class of nested networks, preference
compatibility facilitates group coordination on a small set of potential
investment profiles. Combined with our earlier findings from Sec-
tion 5.1, this furthermore suggests that it was primarily the groups with
compatible social preferences who played the most frequently observed
refined ORE profiles in our experiment.

Time to convergence: Based on the above findings, one might wonder
whether preference compatible also has an impact on the time a
group needs to coordinate its choices. Even though not explicit part
of our theory, it is very plausble that a shared understanding of the
expected investment profile also reduces the time required for a group
to converge to its final investments.

This question is looked at in Fig. 5. It examines, for all the six
nested networks combined, how many groups reached already at time
𝑡 the final investment profile they played in 𝑡𝑚𝑎𝑥. Clearly, the figure
supports the expected positive impact of preference compatibility, in
particular for the investments profiles in the middle of the rounds
between 30 and 50 s (left panel). The advantage becomes even more
pronounced when we focus on those groups who displayed at most
moderate social preference concerns (𝜖 < 3). There, the difference is
already visible as early as 10 s after a round commenced (right panel).
From the viewpoint of our theory, this is not surprising because we
even predicted a unique ORE for these groups.

Discussion: Undeniably, the evidence presented above regarding the
relationship between observed investments in the experiment and our
preference compatibility concept ultimately relies on the precision of

our social preference estimates. For pragmatic reasons, we chose for an
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Preference compatibility and refined ORE.
Networks Dyad Star Core D-box Line Complete

Groups

Any preference strength (any 𝜖):
No. of groups 240 120 120 120 120 120

Groups with com-
patible preferences 31.3% 80.0% 40.0% 4.2% 26.7% 4.2%

Refined ORE share (any 𝜒):
Compatible groups 61.2%** 99.8%** 100%** 100%** 77.9%** 0%
Incompatible groups 41.4% 95.8% 98.9% 88.8% 70.2% 1.7%

Moderate preference strength (𝜖 < 3):
No. of groups 240 48 49 22 49 120

Groups with com-
patible preferences 31.3% 75.0% 42.9% 0% 28.6% 4.2%

Refined ORE share (𝜒 < 3):
Compatible groups 57.9%** 27.1% 34.6%** – 57.2%** 0%
Incompatible groups 35.9% 25.7% 28.8% 8.2% 42.6% 1.4%

Refined ORE share (𝜒 = 0):
Compatible groups 40.1%** 15.7%** 11.8% – 10.5%** 0%
Incompatible groups 22.7% 7.3% 10.3% 8.2% 2.2% 1.4%

Notes: Preference compatibility and shares of refined ORE for all participant groups playing a nested network. Refined ORE shares are separately
shown for groups with compatible and incompatible social preferences: ∗∗ indicates a significant difference at 𝑝 < 0.05. To satisfy the additional
preference strength requirements in the complete network (see Section 3.4.3), we demand that all four participants in a group must exhibit
either small (𝜖 < 1), moderate (1 ≤ 𝜖 < 3), or strong (3 ≤ 𝜖) social preferences.
Fig. 5. Preference compatibility and time to convergence
Notes: Shares of groups within the six nested networks converging already at time 𝑡 to their final investment profile at 𝑡𝑚𝑎𝑥. Shares are shown separately for groups with compatible

nd incompatible preferences. Gray solid lines indicate between-group differences, and gray dashed lines their 90% confidence intervals.
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n-game measurement of these preferences, with the potential downside
hat our estimates may be confounded by some other social preference
oncerns, such as our participants’ concerns for reciprocity (Charness
nd Rabin, 2002; Dufwenberg and Patel, 2017). It is important to
ote, however, that any imprecision at this stage only works against us
ecause it introduces measurement error into our preference compati-
ility indicator. In other words, we likely classified several participant
roups incorrectly as having the right or wrong preference combination
or a certain network. However, such misclassifications only introduce
ownward bias in our estimates for the true effect of preference com-
atibility because groups that truly had an easy time coordinating their
hoices might have been mistakenly mixed up with those facing greater
oordination challenges, and vice versa.

Nevertheless, despite this potential source of error, we also have
ood reasons to believe that its impact on our findings is relatively mild.
ne part of the reason is that in all the asymmetric networks (star, core,
-box, line), a wide range of social preference types is compatible with
he requirements in the critical central positions, rendering it unlikely
hat we have erroneously misclassified a large number of participants
s having the wrong preference types for these positions. Moreover, it
s equally unlikely that we have misclassified a significant number of
articipant groups with genuinely incompatible social preferences as
aving a proper preference combination for the dyad or the complete
13

o

etwork. The stringent requirements for these networks would necessi-
ate major measurement errors for multiple group members for this to
ccur. Thus, we expect our above results to be quite robust.

To substantiate this claim, we conducted further sensitivity checks.
pecifically, we drew on the wealth of social preference estimates
rom prior experiments with comparable student populations (Fehr
nd Charness, 2023) and simulated the impact of various degrees
f measurement error on our preference compatibility indicator. The
esults of these checks are detailed in Appendix B.3. Overall, they
ndicate that any additional 10% chance of measurement error at the
ndividual level reduces, on average across all networks, the effect of
reference compatibility on the probability that a group plays a refined
RE by no more than 3 percentage points. For a sizeable measurement
rror chance of 30%, for instance, this amounts to an average effect
eduction by 9 percentage points, so a distortionary effect well below
he one found in other contexts (e.g. Gillen et al., 2019).

.3. Test of Hypothesis 2: The impact of network nestedness

Our second hypothesis posited systematic differences in the capacity
f a network to promote coordination. More concretely, we conjec-
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Table 4
Test of Hypothesis 1—Multinomial logit estimations.

Refined ORE Non-refined ORE
𝜒 = 0 0 < 𝜒 < 3 3 ≤ 𝜒 𝜒 = 0 0 < 𝜒 < 3 3 ≤ 𝜒
(1) (2) (3) (4) (5) (6)

Model 1:
Compatibility 0.92 0.78 0.81 −0.91 0.19 base

(0.32) (0.31) (0.31) (0.45) (0.27) outcome

Wald test of Compatibility=0:
(1) versus (rest) 4.08**
(1–2) versus (rest) 6.02**
(1–3) versus (rest) 13.53***

Model 2:
Compatibility (𝜖 ≥ 3) 0.17 0.59 0.52 −11.73 −1.05 –

(0.72) (0.67) (0.65) (0.89) (0.89)
Compatibility (𝜖 < 3) 1.07 0.76 0.78 −0.81 0.29 –

(0.33) (0.31) (0.32) (0.45) (0.28)

Wald tests:
Compatibility (𝜖 ≥ 3)=0

(1) versus (rest) 0.33
(1–2) versus (rest) 0.38
(2–3) versus (rest) 2.95*

Compatibility (𝜖 < 3)=0
(1) versus (rest) 6.93***
(1–2) versus (rest) 8.54***
(2–3) versus (rest) 0.76

Notes: Coefficients and standard errors (clustered at group level) of two multinomial
ogit models. 24,299 observations from all payoff-relevant decision moments (𝑡 ∈
[30, 𝑡𝑚𝑎𝑥]) in all networks but the circle. Models include five unreported network
indicators, seven session indicators, group characteristics (same sex, same nationality,
number of friends), and two measures of group experience: general experience with
our experiment (measured by the round number in a session) and experience with the
current network (measured by the number of repetition). Wald tests report 𝜒2-statistics:
∗∗∗𝑝 < 0.01,∗∗ 𝑝 < 0.05,∗ 𝑝 < 0.1.

Table 5
Placebo test on the circle.

Preference strength Strong (𝜖 ≥ 3) Weak (𝜖 < 3)

Compatibility requirements Complete Line Complete Line

No. of groups 103 103 17 17

Groups with com-
patible preferences 2.9% 27.2% 11.7% 35.3%

Refined ORE share: widest (any 𝜒) narrow (𝜒 < 3)
Compatible groups 100%** 9.8% 53.1% 4.3%
Incompatible groups 52.6% 10.4% 60.7% 0%

Notes: Preference compatibility and shares of refined ORE for all participant groups
playing the circle network. Shares are shown separately for groups with preference
combinations that are (are not) compatible with the criteria for the complete network
or the line: ∗∗ indicates a significant difference at 𝑝 < 0.05.

tured that a refined ORE profile would be reached more easily within
the class of nested networks in our experiment, particularly in those
networks where a single player nests the neighborhoods of all the other
players. Two pieces of evidence support this conjecture.

Placebo test on the circle: According to our theory, social preferences
should not facilitate group coordination on any one of the three possible
Nash equilibrium profiles on the circle network, even not when all four
players are inequity-averse, competitive, or social-welfare types. The
fundamental reason is the absence of any nested neighborhoods in this
network, which can support all three types of investment profiles in an
ORE. Only in cases where all four players possess strong social prefer-
ence concerns may an impact of their social preferences be expected.
Examples 3 and 4 illustrate this point most clearly.

To put this to a test, we classified all participant groups playing the
circle network, identifying those who held a preference combination
that had already proven effective in other networks. Specifically, we
searched for groups whose preferences aligned with the compatibility
14
Table 6
Frequency of refined ORE per network.

Shares of refined ORE Star Core D-box Line Complete

any 𝜒 : 0.99 0.99 0.89 0.72 0.02
𝜒 < 3: 0.29 0.30 0.17 0.52 0.01
𝜒 = 0: 0.12 0.10 0.08 0.08 0.01

Notes: Data from all payoff-relevant decision moments in a network. All between-
network differences of size |𝑑| > 0.01 are statistically significant in two-sided t-tests
t 𝑝 < 0.05.

equirements for the dyad or complete network and asked whether
hese were the groups that played the frequ distributed ORE profiles on
he circle. Similarly, we searched for groups matching the preference
equirements for the line network and investigated whether they were
ore likely to play the equally frequent specialized OREs on the circle.
ccording to our theory, a systematic relationship can only be expected
hen a group exhibited strong social preferences in addition.

Our findings, summarized in Table 5, support this hypothesis. As
ndicated in the right panel, there was no discernible relationship be-
ween the social preferences and the behavior of the participant groups
laying the circle network when these groups had at most moderate
ocial preference concerns. However, we observed a systematic rela-
ionship when a group exhibited strong social preferences. Specifically,
roups that matched the preference compatibility requirements for the
omplete network consistenly played the predicted distributed ORE
rofile.

etwork comparisons: Our second piece of evidence on Hypothesis 2
omes from a cross-network comparison of the numbers of refined OREs
mong all the other networks. We posited a negative impact of the
omplete network’s size but a positive impact of a network’s nested-
ess, especially when all players’ neighborhoods are nested within the
eighborhood of a single player, such as in the star or core–periphery
etwork.

As we already saw in Section 5.1, a significantly higher proportion
f participant groups coordinated on an equal-split profile in the dyad
han in the complete network, so this aspect of our theory is fully
onfirmed. Regarding the role of a network’s nestedness, Table 6 repro-
uces the shares of refined ORE profiles for the star, core–periphery,
-box, line, and complete network. Consistent with our hypothesized
anking, the shares are highest in the star and core–periphery network,
ntermediate in the d-box and line, and lowest in the complete network.

ith a single exception, the ranking can also be confirmed in two-sided
-tests.28

ime to convergence: Similar to the previous section, it seems plausible
o argue that the structure of a network also has an impact on the time
group needs to coordinate its choices. This is examined in Fig. 6.

The upper left panel clearly confirms the detrimental impact of the
omplete network’s size, which can be seen most clearly among the
nvestment profiles stabilizing before 60 s. The other three panels, in
urn, demonstrate how a network’s nestedness helps expedite coordina-
ion time. The best illustration of this can be found in the lower right
anel, where it becomes evident that our participants took much longer
o coordinate their choices on the circle compared to even the complete
etwork. Altogether, thus, our findings also provide strong support for
ur second key prediction that coordination is more readily achieved
n the class of networks.

28 The exception here is the number of refined OREs played on the star and
the line network, which is higher on the line when we consider the class of
refined ORE in a narrower sense (𝜒 < 3), but not when we focus on the refined
ORE in the narrowest sense (𝜒 = 0).
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Fig. 6. Time to convergence per network
Notes: Shares of groups per network converging already at time 𝑡 to their final investment profile at 𝑡𝑚𝑎𝑥. Solid gray lines indicate between-network differences, gray dashed lines
their 90% confidence intervals. Shares for star, core–periphery, and d-box are merged because of small within-differences.
6. Implications

Social preferences are widely recognized as a powerful trait in
human behavior that can help foster cooperation, increase public goods
provisions, or establish norms of good behavior. Social networks, by
contrast, impose a constraint on the feasible distributions of the gains
and costs within a group or society. Our theory and experiment indicate
that, at least in the realm of public goods provisions in small-scale
networks, these network constraints prevails. In particular, one of
our main findings is that socially concerned players do not deviate
much from the level of public goods investments that also a group
of pure payoff-maximizing players would make. Nevertheless, when
players’ social preferences align with their positions in a network, they
coordinate their investments more easily and swiftly towards one of the
game’s Nash equilibria.

In the following, we discuss two domains where these insights find
practical applications: the organization of co-worker teams and public
goods provisions in larger networks.

6.1. Organization of co-worker teams

Teams have gained increasing prominence in work settings, es-
pecially within knowledge-intensive organizations (e.g., Jones, 2021;
Jarosch et al., 2021). Our findings may provide insights into the
optimal management of such organizations, where workers typically
engage in multiple teamwork projects, and the network of teams shapes
the knowledge spillovers between them.

In these organizations, managers often lack direct means to enforce
individual efforts from workers. However, they can shape the spillover
network by, for instance, fixing the reporting lines or creating collabo-
rative workspaces. Moreover, the managers have the power to appoint
15
the ideal candidates to the various positions in the network, taking
(proxies for) their social preference types into account.

Our findings highlight the importance of finding suitable combina-
tions of network structures and workers’ social preferences. Depending
on the management’s objectives, different combinations may be opti-
mal. For instance, if the managers aim to maximize the total effort
of their workers in the shortest possible time, a star network with
a competitive or spiteful worker in the central position is the ideal
combination. On the other hand, if the goal is to maintain ‘‘social
peace’’ and achieve the highest total effort under a fair distribution of
inputs, then a complete network with inequity-averse or social-welfare
types in each position is preferable.

6.2. Public goods in larger networks

Our empirical findings primarily speak to public goods provisions
within the context of small-scale network games, such as the one
implemented in our experiment. However, informed by our theory,
they might also offer insights into the behavior in the larger social
interaction networks that motivated our study. Can we expect so-
cial preferences to mitigate the (in-)equality that is likely inherent in
the structure of these network? In particular, do social preferences
support more equitable payoff distributions when a network itself is
asymmetric?

Proposition 2 allows us to make clear-cut predictions under two
conditions: first, the individuals should reside in the same nested
neighborhood within a network, and second, their social preferences
must align with their network positions. In this case, our theory predicts
that individuals’ payoffs and behaviors simply reflect their centrality in
the network, so that more central individuals earn more and invest less.

In fact, the first of the two conditions is satisfied in many social
contexts, as nestedness is a well-documented topology of many social
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networks (Mariani et al., 2019) and emerges as the outcome of various
network formation processes (e.g., König et al., 2014). While little is
known about the distribution of social preferences within networks, our
theory suggests a closer relationship between network structure and
payoff distributions in more homogeneous (e.g., same-sex, same-age)
groups or societies with shared social preferences.

7. Conclusion

We set out to study how social preferences shape behavior in a
complex network game with multiple equilibria. Toward this end, we
endowed the players in the seminal public goods game by Bramoullé
and Kranton (2007) with social preferences and conducted an exper-
iment to test our game’s predictions. The results largely confirm the
central prediction from our theory that social preferences can facilitate
coordination on specific investment profiles, provided the players’ net-
works are mutually nested and their social preferences are compatible
with their respective positions in the network. However, our findings
also reveal that social preferences do not lead to more equitable or
efficient payoff distributions; rather, they just reinforce the inequality
that is already inherent in the network structure.

As suggested by our theory, the key mechanism underlying our find-
ings is that preference compatibility fosters a common understanding
among players regarding which equilibrium to play. In the small-scale
networks of our experiment, numerous player groups indeed appeared
to share this common understanding. However, the question remains
whether the same logic also extends to larger networks. We leave this
question for future studies to explore.
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Appendix A. Theory appendix

A.1. Existence of other-regarding equilibrium (ORE)

Proof of Proposition 1 We verify that the modified Bramoullé and Kran-
on game, featuring socially concerned players, satisfies the sufficient
onditions for the existence of a pure-strategy Nash equilibrium by
ebreu, Glicksberg and, Fan: convexity and compactness of the strategy

pace, along with continuity and quasiconcavity of the utility function.
Obviously, [0, 𝑒] is convex and compact. Moreover, utility function

(2) is continuous for all 𝑒 = (𝑒𝑖)𝑖∈𝑁 . It remains to show that 𝑈𝑖(𝑒)
is also strictly quasiconcave in 𝑒𝑖. Since 𝑈𝑖(𝑒) is differentiable almost
everywhere, this means that for all 𝑒−𝑖 ∈ [0, 𝑒]𝑛−1 and any two 0 ≤ 𝑒′𝑖 <
𝑒′′𝑖 ≤ 𝑒, we require that

𝑈𝑖(𝑒′′𝑖 , 𝑒−𝑖) ≥ 𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖) ⇒
𝜕𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖)

𝜕𝑒𝑖
> 0 , (A.1)

whenever 𝑈𝑖(⋅) is differentiable at 𝑒′𝑖 .
29

To prove this, suppose, to the contrary, that 𝜕𝑈𝑖
𝜕𝑒𝑖

≤ 0 at some 𝑒′𝑖 . We
will show that then 𝑈𝑖(𝑒′′𝑖 , 𝑒−𝑖) < 𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖) for all 𝑒′𝑖 < 𝑒′′𝑖 ≤ 𝑒. To show

29 Clearly, 𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖) is not differentiable whenever 𝜋𝑖(𝑒′𝑖 , 𝑒−𝑖) = 𝜋𝑗 (𝑒′𝑖 , 𝑒−𝑖) for
ome 𝑗 ∈ 𝑅𝑖. Nevertheless, in these cases, condition (A.1) must hold for all 𝑒𝑖
n a small open neighborhood around 𝑒′.
16

𝑖

this, suppose, first, that no corner point (with 𝜋𝑖 = 𝜋𝑗 for some 𝑗 ∈ 𝑅𝑖) is
passed when player 𝑖’s investment is increased from 𝑒′𝑖 to 𝑒′′𝑖 . Let 𝑅−

𝑖 (𝑒𝑖)
𝑅+
𝑖 (𝑒𝑖)) denote the sets of players who earn strictly more (less) than 𝑖

at investment levels 𝑒𝑖 ∈ [𝑒′𝑖 , 𝑒
′′
𝑖 ]. Likewise, let 𝑁−

𝑖 (𝑒𝑖) (𝑁+
𝑖 (𝑒𝑖)) denote

the subsets of 𝑖’s neighbors who earn strictly more (less) than 𝑖 at 𝑒𝑖.
Under the assumption of a quadratic payoff function, we then get for
any 𝑒𝑖 ∈ [𝑒′𝑖 , 𝑒

′′
𝑖 ]:

𝜕2𝑈𝑖

𝜕𝑒2𝑖
= 𝑏′′

(

1 − 𝜌𝑖
|𝑅+

𝑖 (𝑒𝑖)|
|𝑅𝑖|

− 𝜎𝑖
|𝑅−

𝑖 (𝑒𝑖)|
|𝑅𝑖|

)

+
𝜌𝑖
|𝑅𝑖|

∑

𝑗∈𝑁+
𝑖 (𝑒𝑖)

𝑏′′ +
𝜎𝑖
|𝑅𝑖|

∑

𝑗∈𝑁−
𝑖 (𝑒𝑖)

𝑏′′

= 𝑏′′
(

1 − 𝜌𝑖
|𝑅+

𝑖 (𝑒𝑖)| − |𝑁+
𝑖 (𝑒𝑖)|

|𝑅𝑖|
− 𝜎𝑖

|𝑅−
𝑖 (𝑒𝑖)| − |𝑁−

𝑖 (𝑒𝑖)|
|𝑅𝑖|

)

(A.2)

< 0 ,

ecause 𝑏′′ < 0 and 1 > 𝜌𝑖 ≥ 𝜎𝑖 > −1. We therefore also get

𝑈𝑖(𝑒′′𝑖 , 𝑒−𝑖) − 𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖) = ∫

𝑒′′𝑖

𝑒′𝑖

𝜕𝑈𝑖
𝜕𝑥

𝑑𝑥 <
𝜕𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖)

𝜕𝑒𝑖
(𝑒′′𝑖 − 𝑒′𝑖) < 0.

A contradiction to (A.1).
Next, suppose that we do pass a corner point (with 𝜋𝑖 = 𝜋𝑗 for

some 𝑗 ∈ 𝑅𝑖) when we increase 𝑖’s investment from 𝑒′𝑖 to 𝑒′′𝑖 . Let 𝑒𝑖
denote the first corner point to pass. Because 𝑈𝑖(𝑒) is strictly concave
in 𝑒𝑖 whenever it is differentiable (see (A.2)), we have 𝜕𝑈𝑖

𝜕𝑒𝑖
< 0 for all

𝑒𝑖 ∈ [𝑒′𝑖 , 𝑒𝑖). We will now show that it must then also be 𝜕𝑈𝑖
𝜕𝑒𝑖

< 0 for all
𝑒𝑖 > 𝑒𝑖.

To do so, let 𝑅−
𝑖 (𝑒𝑖) (𝑅+

𝑖 (𝑒𝑖)) denote, as before, the sets of players
who earn strictly more (less) than 𝑖 at 𝑒𝑖. Likewise, let 𝑁−

𝑖 (𝑒𝑖) (𝑁+
𝑖 (𝑒𝑖))

enote the sets of 𝑖’s neighbors who earn strictly more (less) than 𝑖 at
̃𝑖. Moreover, let 𝛥𝑅+

𝑖 (𝛥𝑅−
𝑖 ) denote the sets of players who migrate

rom 𝑅−
𝑖 (𝑒𝑖) to 𝑅+

𝑖 (𝑒𝑖) (respectively, from 𝑅+
𝑖 (𝑒𝑖) to 𝑅−

𝑖 (𝑒𝑖)) at the corner
oint 𝑒𝑖, and let 𝛥𝑁+

𝑖 (𝛥𝑁−
𝑖 ) be similarly defined. Note first that at

east one of the migration sets must, by definition of a corner point, be
on-empty. Note next that at 𝑒𝑖 ∈ [𝑒′𝑖 , 𝑒𝑖) it must be

𝜕𝜋𝑖(𝑒𝑖, 𝑒−𝑖)
𝜕𝑒𝑖

> (<)
𝜕𝜋𝑗 (𝑒𝑖, 𝑒−𝑖)

𝜕𝑒𝑖
or every 𝑗 who migrates from 𝑅−

𝑖 (𝑒𝑖) to 𝑅+
𝑖 (𝑒𝑖) (respectively, from

+
𝑖 (𝑒𝑖) to 𝑅−

𝑖 (𝑒𝑖)). Otherwise, 𝑗 would not migrate. Note finally that it
s possible to write 𝜕𝜋𝑗 (𝑒𝑖)

𝜕𝑒𝑖
= 𝜕𝜋𝑗 (𝑒𝑖)

𝜕𝑒𝑖
+ 𝑏′′(𝑒𝑖 − 𝑒𝑖) for any 𝑗 ∈ 𝑁𝑖 ∪ {𝑖} and

𝜕𝜋𝑗
𝜕𝑒𝑖

= 0 for any 𝑗 ∈ 𝑅𝑖∖𝑁𝑖. Altogether, this means that for any 𝑒𝑖 larger
than the first corner point 𝑒𝑖 (and smaller than the second corner point)
that
𝜕𝑈𝑖(𝑒𝑖)
𝜕𝑒𝑖

=
𝜕𝜋𝑖(𝑒𝑖)
𝜕𝑒𝑖

(

1 − 𝜌𝑖
|𝑅+

𝑖 (𝑒𝑖)| + |𝛥𝑅+
𝑖 | − |𝛥𝑅−

𝑖 |

|𝑅𝑖|

− 𝜎𝑖
|𝑅−

𝑖 (𝑒𝑖)| − |𝛥𝑅+
𝑖 | + |𝛥𝑅−

𝑖 |

|𝑅𝑖|

)

+
𝜌𝑖
|

|

𝑅𝑖
|

|

∑

𝑗∈𝑁+
𝑖 (𝑒𝑖)

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒𝑖

+
𝜎𝑖
|

|

𝑅𝑖
|

|

∑

𝑗∈𝑁−
𝑖 (𝑒𝑖)

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒𝑖

+
𝜌𝑖 − 𝜎𝑖
|

|

𝑅𝑖
|

|

(

∑

𝑗∈𝛥𝑅+
𝑖

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒𝑖

−
∑

𝑗∈𝛥𝑅−
𝑖

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒𝑖

)

+
𝜕2𝑈𝑖(𝑒𝑖)
𝜕𝑒2𝑖

(𝑒𝑖 − 𝑒𝑖)

=
𝜕𝑈𝑖(𝑒𝑖)
𝜕𝑒𝑖

+
𝜕2𝑈𝑖(𝑒𝑖)
𝜕𝑒2𝑖

(𝑒𝑖 − 𝑒𝑖)

−
𝜌𝑖 − 𝜎𝑖
|𝑅𝑖|

(

𝜕𝜋𝑖(𝑒𝑖)
𝜕𝑒𝑖

|𝛥𝑅+
𝑖 | −

∑

𝑗∈𝛥𝑅+
𝑖

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒𝑖

−
𝜕𝜋𝑖(𝑒𝑖)
𝜕𝑒𝑖

|𝛥𝑅−
𝑖 |

+
∑

−

𝜕𝜋𝑗 (𝑒𝑖)
𝜕𝑒

)

,

𝑗∈𝛥𝑅𝑖

𝑖
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Table 7
Predictions.

Payoff-max. equilibria ORE Refined ORE

Dyad and ∑

𝑖∈𝑁 𝑒𝑖 = 12 (S,E) ∑

𝑖∈𝑁 𝑒𝑖 ∈ [12 ± 𝜖] 𝑒𝑖 = 𝑒𝑗 ∈ [ 12±𝜖
𝑛

]
complete (Q: 𝑒𝑖 = 𝑒𝑗 =

12
𝑛

) if 𝜏𝑖 ∈ 𝑇𝑐 ∩ 𝑇𝑝 ∀𝑖 ∈ 𝑁
and 𝜌𝑖 ≈ 𝜌𝑗 , 𝜎𝑖 ≈ 𝜎𝑗
in complete network

Star (i) 𝑒𝑐 = 0, 𝑒𝑝 = 12 (i) 𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖] 𝜋𝑐 ≥ min𝑝∈𝑃 {𝜋𝑝}
(ii) 𝑒𝑐 = 12, 𝑒𝑝 = 0 (ii) 𝑒𝑐 ∈ [12 − 7𝜖

3
, 12 + 𝜖], if 𝜏𝑐 ∈ 𝑇𝑐 and ∃ 𝑝 ∈ 𝑃 ∶ 𝜏𝑝 ∈ 𝑇𝑝

(E: (ii) selected)
If also 𝜖 < 3:

𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖]

Core (i) 𝑒𝑐 = 0, 𝑒𝑝 = 12, (i) 𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖], 𝜋𝑐 ≥ min𝑗≠𝑐{𝜋𝑗}
periphery ∑

𝑑∈𝐷 𝑒𝑑 = 12
∑

𝑑∈𝐷 𝑒𝑑 ∈ [12 ± 𝜖] if 𝜏𝑐 ∈ 𝑇𝑐 and ∃ 𝑗 ≠ 𝑐 ∶
(ii) 𝑒𝑐 = 12, 𝑒−𝑐 = 0 (ii) 𝑒𝑐 ∈ [12 − 7𝜖

3
, 12 + 𝜖], 𝜏𝑗 ∈ 𝑇𝑝∖{𝑖𝑛𝑒𝑞.𝑎𝑣. , 𝑐𝑜𝑚𝑝.}

(S: (i) selected) ∑

𝑗≠𝑐 𝑒𝑗 ≤ 4𝜖
(Q: (i) with 𝑒𝑑 = 6) If also 𝜖 < 3:
(E: (ii) selected) 𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖],

∑

𝑑∈𝐷 𝑒𝑑 ∈ [12 ± 𝜖]

D-box (i) 𝑒𝑐 = 0, 𝑒𝑝 = 12 (E) (i) 𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖] 𝜋𝑐 ≥ min𝑝∈𝑃 {𝜋𝑝}
(ii) 𝑒𝑝 = 0, (ii) ∑

𝑒𝑐 ∈ [12 − 3𝜖, 12 + 𝜖], if 𝜏𝑐 ∈ 𝑇𝑐∖{𝑤𝑒𝑙𝑓𝑎𝑟𝑒} ∀𝑐 ∈ 𝐶
∑

𝑒𝑐 = 12 (E) ∑

𝑒𝑝 ≤ 4𝜖 and ∃𝑝 ∈ 𝑃 ∶
(S,Q: (i) selected) 𝜏𝑝 ∈ 𝑇𝑝∖{𝑖𝑛𝑒𝑞.𝑎𝑣. , 𝑐𝑜𝑚𝑝.}

If also 𝜖 < 2:
𝑒𝑐 = 0, 𝑒𝑝 ∈ [12 ± 𝜖]

Line (i) 𝑒𝑝𝑖 = 12, 𝑒𝑐𝑖 = 0, ∀𝑖 ∶ 𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗 ≥ 𝑒∗ − 𝜖 𝜋𝑐 ≥ 𝜋𝑝 and 𝑒𝑐 ≤ 𝑒𝑝

𝑒𝑐𝑗 + 𝑒𝑝𝑗 = 12 (S) if 𝜖 < 3 and
(ii) 𝑒𝑝𝑖 = 12, 𝑒𝑐𝑖 = 0, (Q) If also 𝜖 < 4: 𝜏𝑐 ∈ 𝑇𝑐 ∀𝑐 ∈ 𝐶 and

𝑒𝑐𝑗 = 0, 𝑒𝑝𝑗 = 12 (i) 𝑒𝑝𝑖 ∈ [12 ± 𝜖], 𝑒𝑐𝑖 = 0, 𝜏𝑝 ∈ 𝑇𝑝 ∀𝑝 ∈ 𝑃
(iii) 𝑒𝑝𝑖 = 12, 𝑒𝑐𝑖 = 0, 𝑒𝑐𝑗 + 𝑒𝑝𝑗 ∈ [12 ± 𝜖]

𝑒𝑐𝑗 = 12, 𝑒𝑝𝑗 = 0 (E) (ii) 𝑒𝑝 ∈ [12 − 3𝜖, 12 + 𝜖],
𝑒𝑐 ≤ 2𝜖

Circle (i) 𝑒𝑖 = 0, 𝑒𝑖+1 = 12 ∀𝑖 ∶ 𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗 ≥ 𝑒∗ − 𝜖

(ii) 𝑒𝑖 = 4
(S,E: (i) selected) If also 𝜖 < 3:
(Q: (ii) selected) (i) 𝑒𝑖 = 0, 𝑒𝑖+1 ∈ [12 ± 𝜖]

(ii) 𝑒𝑖 ∈ [4 ± 𝜖]

Notes: (Other-regarding) equilibria for the seven networks in our experiment with payoff function (11) and 𝑒∗ = 12. For comparison, the
equilibria selected by several alternative refinement concepts are highlighted as well: (S) asymptotic stability, (Q) quantal response equilibria
with marginal decision errors, (E) efficient equilibria.
d
c
s

𝑑

I
t
t
o

𝑗

D
a

where 𝜕2𝑈𝑖(𝑒𝑖)∕𝜕𝑒2𝑖 denotes the expression in (A.2) evaluated at 𝑒𝑖.
Because all three summands in the final two lines are negative (and
at least one of them is strictly negative), we get 𝜕𝑈𝑖(𝑒𝑖)

𝜕𝑒𝑖
< 0.

Applying the same argument to all further corner points to pass,
e thus get more generally 𝜕𝑈𝑖(𝑒𝑖)

𝜕𝑒𝑖
< 0 for any 𝑒𝑖 ∈ [𝑒′𝑖 , 𝑒

′′
𝑖 ] whenever

𝑖(𝑒) is differentiable. This, in turn, means that 𝑈𝑖(𝑒′′𝑖 , 𝑒−𝑖)−𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖) =
𝑒′′𝑖
𝑒′𝑖

𝜕𝑈𝑖
𝜕𝑥 𝑑𝑥 < 0 or, in other words, 𝑈𝑖 is strictly quasiconcave in 𝑒𝑖.

Moreover, it follows from here that player 𝑖 possesses a unique best
response on every 𝑒−𝑖. ■

A.2. ORE characterization

Here, we provide a complete characterization of the set of other-
regarding equilibria (ORE) for the seven networks in our experiment.
Moreover, we provide a partial characterization for a general network
structure.

A.2.1. Star, core–periphery, d-box
ORE set: Building on Definition 3 (preference strength), we first show
that an ORE on the star, core–periphery, or d-box must either result in
a center-specialized, periphery-specialized, or distributed public good.

Suppose, first, that 𝑒𝑐 = 0 for all players in the center position(s)
𝑐 ∈ 𝐶 (periphery-specialization). A payoff maximizer in a periphery
position 𝑝 ∈ 𝑃 would then respond with 𝑓𝑝(𝑒−𝑝) = 𝑒∗. By Definition 3, a
socially concerned player responds with 𝑒𝑝 ≡ 𝑓𝑝(𝜏𝑝, 𝑒−𝑝) ∈ [𝑒∗ ± 𝜖𝑝],
and two social concerned players in the duo positions of the core–
periphery with 𝑒 ≡ 𝑓 (𝜏 , 𝑒 ), where ∑

𝑒 ∈ [𝑒∗ ± 𝜖 ]. Using
17

𝑑 𝑑 𝑑 −𝑑 𝑑∈𝐷 𝑑 𝑑
𝜖 ≡ max{𝜖𝑝, 𝜖𝑑}, we immediately arrive at the asserted investment
boundaries in a periphery-specialized ORE.

Next, suppose that 𝑒𝑐 > 0 for at least one 𝑐 ∈ 𝐶 (center-specialized or
istributed). By Definition 3, the best-response investments of socially
oncerned players in the center, periphery, and duo positions must
atisfy

𝑒𝑐 ∈ [𝑒∗ −
∑

𝑗≠𝑐
𝑒𝑗 ± 𝜖𝑐 ] , (A.3)

𝑒𝑝 ∈ [𝑒∗ −
∑

𝑐∈𝐶
𝑒𝑐 ± 𝜖𝑝] , (A.4)

∑

∈𝐷
𝑒𝑑 ∈ [𝑒∗ − 𝑒𝑐 ± 𝜖𝑑 ] . (A.5)

t follows from (A.3) that ∑

𝑖∈𝑁 𝑒𝑖 ≤ 𝑒∗ + 𝜖𝑐 and from (A.4) and (A.5)
hat 𝑒𝑝 +

∑

𝑐∈𝐶 𝑒𝑐 ≥ 𝑒∗ − 𝜖𝑝 and 𝑒𝑐 +
∑

𝑑∈ 𝑒𝑑 ≥ 𝑒∗ − 𝜖𝑑 . In combination,
his means that the periphery players in the star and d-box (except for
ne peripheral player 𝑝1) jointly contribute at most
∑

∈𝑃∖{𝑝1}
𝑒𝑗 =

∑

𝑗∈𝑃
𝑒𝑗 +

∑

𝑐∈𝐶
𝑒𝑐 −

(
∑

𝑐∈𝐶
𝑒𝑐 + 𝑒𝑝1

)

≤ 𝑒∗ + max
𝑐∈𝐶

{𝜖𝑐} −
(

𝑒∗ − max
𝑝∈𝑃

{𝜖𝑝}
)

= max
𝑐∈𝐶

{𝜖𝑐} + max
𝑝∈𝑃

{𝜖𝑝} .

rawing the same conclusion for any other periphery player 𝑝2, we
gain get ∑

𝑗∈𝑃∖{𝑝2} 𝑒𝑗 ≤ max𝑐∈𝐶{𝜖𝑐} + max𝑝∈𝑃 {𝜖𝑝} and, thus, the total
contribution received by the center player(s) is at most
∑

𝑒𝑝 ≤
∑

𝑒𝑗 +
∑

𝑒𝑗 ≤ 2(max
𝑐∈𝐶

{𝜖𝑐} + max
𝑝∈𝑃

{𝜖𝑝}) . (A.6)

𝑝∈𝑃 𝑗∈𝑃∖{𝑝1} 𝑗∈𝑃∖{𝑝2}
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(

Similarly, in the core–periphery, the periphery and duo players con-
tribute at most

𝑒𝑝 =
∑

𝑙∈𝑁∖{𝑐}
𝑒𝑙 + 𝑒𝑐 −

(

𝑒𝑐 + 𝑒𝑝
)

≤ 𝜖𝑝 + 𝜖𝑐 ,

∑

𝑑∈𝐷
𝑒𝑑 =

∑

𝑙∈𝑁∖{𝑐}
𝑒𝑙 + 𝑒𝑐 −

(

𝑒𝑐 +
∑

𝑑∈𝐷
𝑒𝑑
)

≤ max
𝑑∈𝐷

{𝜖𝑑} + 𝜖𝑐 .

he total contribution received by the center player is thus at most
∑

𝑑∈𝐷
𝑒𝑑 + 𝑒𝑝 < 2𝜖𝑐 + 𝜖𝑝 + max

𝑑∈𝐷
{𝜖𝑑} . (A.7)

For the peripheral player(s), (A.4) implies that their total investment
received is constrained from below by min𝑝∈𝑃 {𝑒𝑝} +

∑

𝑐∈𝐶 𝑒𝑐 ≥ 𝑒∗ −
max𝑝{𝜖𝑝}. Similarly, in the core–periphery, (A.5) implies that ∑𝑑∈𝐷 𝑒𝑑
is constrained from below by min𝑑∈𝐷

{
∑

𝑑∈𝐷 𝑒𝑑
}

+𝑒𝑐 ≥ 𝑒∗−max𝑑∈𝐷{𝜖𝑑}.
hus, the center players’ investments in the star and d-box are larger
han
∑

𝑐∈𝐶
𝑒𝑐 ≥ 𝑒∗ − max

𝑝∈𝑃
{𝜖𝑝} − max{min

𝑝∈𝑃
{𝑒𝑝}} (A.8)

≥ 𝑒∗ − max
𝑝∈𝑃

{𝜖𝑝} −
2(max𝑐∈𝐶{𝜖𝑐} + max𝑝∈𝑃 {𝜖𝑝})

𝑛 − |𝐶|

,

here the lower bound in the second line is determined by a situation
here all peripheral players equally share 2(max𝑐∈𝐶{𝜖𝑐}+max𝑝∈𝑃 {𝜖𝑝}).

Similarly, in the core–periphery, define 𝜖𝑗 ≡ max{𝜖𝑝, 𝜖𝑑}. Then, the
center’s investment is larger than

𝑒𝑐 ≥ 𝑒∗ − 𝜖𝑗 − max{min{𝑒𝑝,
∑

𝑑∈𝐷
𝑒𝑑}} ≥ 𝑒∗ − 𝜖𝑗 −

2(𝜖𝑐 + 𝜖𝑗 )
𝑛 − 1

. (A.9)

inally, (A.3) implies that the center player(s)’ investment is smaller
han
∑

𝑐∈𝐶
𝑒𝑐 ≤ 𝑒∗ + max

𝑐∈𝐶
{𝜖𝑐} . (A.10)

ogether, thus, conditions (A.6)–(A.10) define the investment bound-
ries in a center-specialized or distributed ORE.

efined ORE on star: We next show that when 𝜏𝑐 ∈ 𝑇𝑐 for the center
layer 𝑐 and 𝜏𝑝 ∈ 𝑇𝑝 for at least one peripheral player 𝑝, then

𝑐 (𝑒) ≥ min
𝑗∈𝑁∖𝐶

{𝜋𝑗 (𝑒)} . (A.11)

To see this, suppose that, contrary to (A.11), 𝜋𝑐 (𝑒) < 𝜋𝑝(𝑒) for
ll 𝑝 ∈ 𝑃 . For this to occur in an ORE, we require for the center
layer 𝑐 and any periphery player 𝑝 that their first-order conditions are
atisfied:30

(𝑖)
𝜕𝑈𝑐 (𝑒)
𝜕𝑒𝑐

= (𝑏′𝑐 − 𝑐)(1 − 𝜎𝑐 ) +
𝜎𝑐
3

∑

𝑝∈𝑃
𝑏′𝑝 = 0

𝑖𝑖)
𝜕𝑈𝑝(𝑒)
𝜕𝑒𝑝

= (𝑏′𝑝 − 𝑐)
(

1 − 𝜌𝑝
|𝑅+

𝑝 |

|𝑅𝑝|
− 𝜎𝑝

|𝑅−
𝑝 |

|𝑅𝑝|

)

+
𝜌𝑝
|𝑅𝑝|

𝑏′𝑐 ≤ 0 .

Here, 𝑏′𝑐 and 𝑏′𝑝 are our shorthand notations for 𝑏′(𝑒𝑐 +
∑

𝑝∈𝑃 𝑒𝑝) and
′(𝑒𝑝 + 𝑒𝑐 ) respectively. Moreover, player 𝑝 may either just compare
ith 𝑐 (i.e., |𝑅𝑝| = |𝑅+

𝑝 | = 1) or with some other peripheral players
n addition (i.e., |𝑅𝑝| > 1).

In either case, it follows from the compatibility of their social
references (i.e., 𝜏𝑐 ∈ 𝑇𝑐 and 𝜏𝑝 ∈ 𝑇𝑝) that 𝜎𝑐 ≤ 0 and 𝜌𝑝 ≥ 0 with
t least one inequality being strict. As a result, condition (i) implies
′
𝑐−𝑐 ≥ 0. And because 𝑏′𝑝 ≥ 𝑏′𝑐 > 0, we also get 𝑏′𝑝−𝑐 ≥ 0. Yet, this means

that 𝜕𝑈𝑝∕𝜕𝑒𝑝 > 0. A contradiction to the other necessary equilibrium
condition (ii). We must therefore have 𝜋𝑐 (𝑒) ≥ min𝑗∈𝑁∖𝐶{𝜋𝑗 (𝑒)}.

30 Here, we have assumed that 𝜋𝑝 ≠ 𝜋𝑙 for all 𝑙 ∈ 𝑅𝑝. Nevertheless, because
𝑈𝑝(𝑒) is continuous, a very similar first-order condition to (ii) must hold for
some small ℎ > 0 and all 𝑒′ ∈ (𝑒 , 𝑒 + ℎ).
18

𝑝 𝑝 𝑝
Refined ORE on core–periphery: We again show that when 𝜏𝑐 ∈ 𝑇𝑐 for
the center player 𝑐 and 𝜏𝑗 ∈ 𝑇𝑝∖{inequity averse, competitive} for at
east one non-center player 𝑗 ≠ 𝑐, then payoff ranking (A.11) must
pply in an ORE.

To do this, suppose, to the contrary, that 𝜋𝑐 (𝑒) < 𝜋𝑗 (𝑒) for all 𝑗 ≠ 𝑐.
or this to arise in an ORE, we need to have for the center 𝑐 and the
layer 𝑗 with 𝜏𝑗 ∈ 𝑇𝑝 that their first-order conditions are satisfied. By
he same argument as for the star network, this cannot be true when 𝑗 is
periphery player. When 𝑗 is a duo player, the most ideal constellation

or an ORE is the one where 𝜋𝑗 (𝑒) = 𝜋𝑘(𝑒) for 𝑗, 𝑘 ∈ 𝐷. But even in this
ase, the following two conditions must hold for some small ℎ > 0 and

any 𝑒′𝑗 ∈ (𝑒𝑗 , 𝑒𝑗 + ℎ):

(𝑖)
𝜕𝑈𝑐 (𝑒)
𝜕𝑒𝑐

= (𝑏′𝑐 − 𝑐)(1 − 𝜎𝑐 ) +
𝜎𝑐
3

∑

𝑖≠𝑐
𝑏′𝑖 = 0

(𝑖𝑖)
𝜕𝑈𝑗 (𝑒′𝑗 , 𝑒−𝑗 )

𝜕𝑒𝑗
= (𝑏′𝑗 − 𝑐)

(

1 − 𝜌𝑗
|𝑅+

𝑗 |

|𝑅𝑗 |
− 𝜎𝑗

|𝑅−
𝑗 |

|𝑅𝑗 |

)

+
𝜌𝑗
2
𝑏′𝑐 +

𝜎𝑗
2
𝑏′𝑘 ≤ 0 .

owever, when 𝜏𝑐 ∈ 𝑇𝑐 and 𝜏𝑗 ∈ 𝑇𝑝∖{inequity averse, competitive}, it
ollows that 𝜎𝑐 ≤ 0 and 𝜌𝑗 ≥ 𝜎𝑗 ≥ 0. Thus, we can again apply the
ame argument as for the star network to conclude that (i) implies
𝑈𝑗 (𝑒′𝑗 , 𝑒−𝑗 )∕𝜕𝑒𝑗 > 0. A contradiction to the necessary equilibrium
ondition (ii). In an ORE, 𝜋𝑐 (𝑒) ≥ min𝑗∈𝑁∖𝐶{𝜋𝑗 (𝑒)} therefore needs to
old.

efined ORE on d-box: Next, we show that when 𝜏𝑐 ∈ 𝑇𝑐∖{inequity avers
ocial welfare} for both centers 𝑐 ∈ 𝐶 and 𝜏𝑝 ∈ 𝑇𝑝∖{inequity averse, com
etitive} for at least one 𝑝 ∈ 𝑃 , then payoff ranking (A.11) must apply
o both center players in the d-box as well.

To show this, suppose, to the contrary, that for at least one 𝑐1 ∈ 𝐶
t holds 𝜋𝑐1 (𝑒) < 𝜋𝑝(𝑒) for both 𝑝 ∈ 𝑃 . For this to occur in an ORE,
e require for the center 𝑐1 and some periphery player 𝑝1 that their

irst-order conditions are satisfied. In particular, one of the favorable
quilibrium constellations is the one where the other center player 𝑐2
arns more than 𝑝1, i.e., 𝜋𝑐1 (𝑒) < min{𝜋𝑝1 (𝑒), 𝜋𝑝2 (𝑒)} < 𝜋𝑐2(𝑒). In this
ase, the following conditions need to apply:

(𝑖)
𝜕𝑈𝑐1 (𝑒)
𝜕𝑒𝑐1

= (𝑏′𝑐1 − 𝑐)(1 − 𝜎𝑐1 ) +
𝜎𝑐1
3

∑

𝑖≠𝑐1

𝑏′𝑖 = 0

(𝑖𝑖)
𝜕𝑈𝑝1 (𝑒)
𝜕𝑒𝑝1

=
(

𝑏′𝑝1 − 𝑐
)(

1 − 𝜌𝑝1
|𝑅+

𝑝1
|

|𝑅𝑝1 |
− 𝜎𝑝1

|𝑅−
𝑝1
|

|𝑅𝑝1 |

)

+
𝜌𝑝1
2

𝑏′𝑐1 +
𝜎𝑝1
2

𝑏′𝑐2 ≤ 0 .

However, when 𝜏𝑐1 ∈ 𝑇𝑐 and 𝜏𝑝1 ∈ 𝑇𝑝∖{inequity averse, competitive},
we get 𝜎𝑐1 ≤ 0 and 𝜎𝑝1 ≥ 0 and, thus, by the same arguments as made for
the star network, condition (i) implies 𝜕𝑈𝑝1 (𝑒)∕𝜕𝑒𝑝1 > 0. A contradiction
to an ORE.

The other favorable equilibrium constellation is the one where
𝜋𝑐1(𝑒) = 𝜋𝑐2(𝑒) < min{𝜋𝑝1 (𝑒), 𝜋𝑝2 (𝑒)}. For this to establish an ORE, we
require for some small ℎ > 0 and any 𝑒′𝑐1 ∈ (𝑒𝑐1 − ℎ, 𝑒𝑐1 ):

𝑖)
𝜕𝑈𝑐1

(𝑒′𝑐1 , 𝑒−𝑐1 )

𝜕𝑒𝑐1
= (𝑏′𝑐1 − 𝑐)

(

1 −
2𝜎𝑐1
3

−
𝜌𝑐1
3

)

+
𝜎𝑐1
3

∑

𝑝∈𝑃
𝑏′𝑝 +

𝜌𝑐1
3

𝑏′𝑐2 ≥ 0

(𝑖𝑖)
𝜕𝑈𝑝1

(𝑒)

𝜕𝑒𝑝1
= (𝑏′𝑝1 − 𝑐)

(

1 − 𝜌𝑝1
|𝑅+

𝑝1
|

|𝑅𝑝1
|

− 𝜎𝑝1
|𝑅−

𝑝1
|

|𝑅𝑝1
|

)

+
𝜌𝑝1
2

(

𝑏′𝑐1 + 𝑏′𝑐2
)

≤ 0 .

Yet, when 𝜏𝑐1 ∈ 𝑇𝑐∖{inequity averse, social welfare} and 𝜏𝑝1 ∈ 𝑇𝑝,
we have 𝜎𝑐1 ≤ 𝜌𝑐1 ≤ 0 and 𝜌𝑝1 ≥ 0. Hence again, we arrive at
a contradiction between the two necessary ORE conditions. Payoff
ranking condition (A.11) thus needs to hold for both center players in
the d-box as well.

Refined ORE with limited preference strength: Payoff ranking condi-
tion (A.11) even translates into an investment ranking when the social
preference of all players in the star, core–periphery, or d-box are
sufficiently weak.

To see how, note that in a center-specialized or distributed equilib-
rium, the center’s investment converges, by (A.8) and (A.10), to

lim
∑

𝑒𝑐 = 𝑒∗.

(𝜖𝑝 ,𝜖𝑐 ,𝜖𝑑 )→(0,0,0) 𝑐∈𝐶
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Moreover, the investments of the non-center players 𝑗 ∈ 𝑁∖𝐶 converge,
by (A.6) and (A.7), to

lim
(𝜖𝑝 ,𝜖𝑐 ,𝜖𝑑 )→(0,0,0)

𝑒𝑗 = 0.

Thus, there exist 𝜖𝑠𝑡𝑎𝑟 = 𝜖𝑐𝑜𝑟𝑒 ≡ max{𝜖𝑝, 𝜖𝑐 , 𝜖𝑑} and 𝜖𝑑𝑏𝑜𝑥 ≡ max{𝜖𝑝, 𝜖𝑐}
such that for any smaller 𝜖, condition 𝜋𝑐 (𝑒) ≥ min𝑗∈𝑁∖𝐶{𝜋𝑗 (𝑒)} cannot
be fulfilled.

The critical values can be determined as follows: in a center-special-
ized or distributed equilibrium on the star or core–periphery, the center’s
payoff is, by (A.6) and (A.7), lower than

𝜋𝑐 (𝑒) ≤ 𝑏
(

𝑒∗
)

− 𝑐
(

𝑒∗ − 4𝜖𝑠𝑡𝑎𝑟
)

≡ max𝜋𝑐 (𝑒).

Moreover, because the center invests, by (A.8) and (A.9), more than
𝑒∗−(7𝜖𝑠𝑡𝑎𝑟)∕3 and each non-center player less than 2𝜖𝑠𝑡𝑎𝑟, the non-center
players’ payoffs are larger than

𝜋𝑗 (𝑒) ≥ 𝑏
(

𝑒∗ − 7𝜖𝑠𝑡𝑎𝑟

3
)

≡ min𝜋𝑗 (𝑒).

Hence, the critical value is defined by the largest 𝜖𝑠𝑡𝑎𝑟 to satisfy
max𝜋𝑐 (𝑒) < min𝜋𝑗 (𝑒) or equivalently,

>
𝑏(𝑒∗) − 𝑏

(

𝑒∗ − 7
3 𝜖

𝑠𝑡𝑎𝑟)

𝑒∗ − 4𝜖𝑠𝑡𝑎𝑟
.

On the d-box, the critical value is given as follows: in a center-
pecialized or distributed equilibrium, the center players’ payoffs are,
y (A.6), smaller than

in
𝑖∈𝐶

{𝜋𝑖(𝑒)} ≤ 𝑏
(

𝑒∗
)

− 𝑐 𝑒
∗ − 4𝜖𝑑𝑏𝑜𝑥

2
≡ max{min𝜋𝑐 (𝑒)}.

At the same time, because the centers invest, by (A.8), jointly more than
𝑒∗ − 3𝜖𝑑𝑏𝑜𝑥 and each periphery player less than 2𝜖𝑑𝑏𝑜𝑥, the peripherals’
ayoffs are larger than

𝑝(𝑒) ≥ 𝑏
(

𝑒∗ − 3𝜖𝑑𝑏𝑜𝑥
)

≡ min𝜋𝑝(𝑒).

Hence, the critical value is defined by the largest 𝜖𝑑𝑏𝑜𝑥 to satisfy
max{min𝜋𝑐 (𝑒)} < min𝜋𝑗 (𝑒) or equivalently,

>
𝑏(𝑒∗) − 𝑏

(

𝑒∗ − 3𝜖𝑑𝑏𝑜𝑥
)

𝑒∗ − 4𝜖𝑑𝑏𝑜𝑥
.

.2.2. Line
RE set: Here, we show that an ORE on the line network must either
ntail an end-specialized or a distributed investment profile, provided
hat players’ social preferences are sufficiently weak.

Fix the sequence of players in the order 𝑝1, 𝑐1, 𝑐2, and 𝑝2, and
uppose that 𝜖 ≡ max{𝜖𝑐 , 𝜖𝑝} < 𝑒∗∕3. Then, all ORE fall into one of
he following two classes:

end-sponsored) ∶
(

[𝑒∗ − 3𝜖, 𝑒∗ + 𝜖] , [0, 2𝜖] , [0, 2𝜖] , [𝑒∗ − 3𝜖, 𝑒∗ + 𝜖]
)

,

(distributed) ∶
(

[𝑒∗ ± 𝜖] , 0 , 𝑒𝑝𝑖 + 𝑒𝑐𝑖 ∈ [𝑒∗ ± 𝜖]
)

. (A.12)

o show this, exclude out-of-equilibrium profiles:

(a) Obviously, no investment profile can be an ORE where three or
more players invest nothing.

(b) There are three possible ORE where two players invest nothing:

(𝑖) ∶
(

[𝑒∗ ± 𝜖] , 0 , 0 , [𝑒∗ ± 𝜖]
)

,

(𝑖𝑖) ∶
(

[𝑒∗ ± 𝜖] , 0 , [𝑒∗ ± 𝜖] , 0
)

,

(𝑖𝑖𝑖) ∶
(

0 , [𝑒∗ ± 𝜖] , [𝑒∗ ± 𝜖] , 0
)

.

Profiles (i) and (ii) are contained in the classes of ORE described
above. In profile (iii), the sum of 𝑐1’s and 𝑐2’s investments must,
by Definition 3, be weakly smaller than 𝑒∗ + 𝜖. Hence, profile (iii)
is not an ORE when 2(𝑒∗ − 𝜖) > 𝑒∗ + 𝜖 and thus when 𝜖 < 𝑒∗∕3.
19
(c) There are two ORE where one player invests nothing:

(𝑖𝑣) ∶
(

[𝑒∗ ± 𝜖] , 0 , 𝑒𝑐2 + 𝑒𝑝2 ∈ [𝑒∗ ± 𝜖]
)

,

(𝑣) ∶
(

0 , [𝑒∗ ± 𝜖] , 𝑒𝑐2 + 𝑒𝑝2 ∈ [𝑒∗ ± 𝜖]
)

.

Profile (iv) is contained in the classes of ORE described above.
Profile (v) is not an equilibrium when for player 𝑐2:

max{𝑒𝑐2} = 𝑒∗ + 𝜖 < min
{
∑

𝑖∈𝑁
𝑒𝑖
}

= 2(𝑒∗ − 𝜖)

and hence when 𝑒∗ + 𝜖 < 2(𝑒∗ − 𝜖) ⇔ 𝜖 < 𝑒∗∕3.
(d) When all players make a positive investment, it follows from the

best-response conditions of the end players 𝑝1 and 𝑝2 that

𝑒𝑝𝑖 + 𝑒𝑐𝑖 ∈ [𝑒∗ ± 𝜖] . (A.13)

At the same time, the best response of a middle player requires

𝑒𝑝𝑖 + 𝑒𝑐𝑖 + 𝑒𝑐𝑗 ∈ [𝑒∗ ± 𝜖] . (A.14)

Combining (A.13) and (A.14) gives

𝑒𝑝𝑖 ≥ 𝑒∗ − 𝜖 − 𝑒𝑐𝑖 ≥ 𝑒∗ − 𝜖 − (𝑒∗ + 𝜖 − 𝑒𝑐𝑗 − 𝑒𝑝𝑖 ) ⇔ 𝑒𝑐𝑗 ≤ 2𝜖

Hence, we arrive at 0 < 𝑒𝑐𝑖 ≤ 2𝜖. Using (A.13) again, we moreover
get 𝑒∗ − 3𝜖 ≤ 𝑒𝑝𝑖 < 𝑒∗ + 𝜖 and, thus, a profile that is contained in
the classes of ORE described above.

efined ORE: We next show that when 𝜏𝑐 ∈ 𝑇𝑐 for both center players
∈ 𝐶, 𝜏𝑝 ∈ 𝑇𝑝 for both peripheral players 𝑝 ∈ 𝑃 , and 𝜖 < 𝑒∗∕5, then it
olds on the line network:

𝑐𝑖 (𝑒) ≥ 𝜋𝑝𝑖 (𝑒) ∀ 𝑖 ∈ {1, 2} . (A.15)

To see this, suppose, to the contrary, that 𝜋𝑐1 (𝑒) < 𝜋𝑝1 (𝑒) (or 𝜋𝑐2 (𝑒) <
𝑝2 (𝑒) or both). Then, we must have a distributed profile with

𝑒𝑝2 = [𝑒∗ ± 𝜖] , 𝑒𝑐2 = 0 , 𝑒𝑝1 + 𝑒𝑐1 ∈ [𝑒∗ ± 𝜖]) ,

ecause 𝜖 < 𝑒∗∕5 implies that in an end-specialized profile it must be
𝑐𝑖 < 𝑒𝑝𝑖 and thus 𝜋𝑐𝑖 (𝑒) > 𝜋𝑝𝑖 (𝑒). In particular, for such a distributed
rofile to arise in an ORE, the first-order conditions for the center
layer 𝑐1 and the periphery player 𝑝1 need to be satisfied, while at the
ame time, it must be 𝜋𝑐1 (𝑒) < 𝜋𝑐2 (𝑒).

31 Hence, we require

(𝑖)
𝜕𝑈𝑐1 (𝑒)
𝜕𝑒𝑐1

= (𝑏′𝑐1 − 𝑐)
(

1 − 𝜌𝑐1
|𝑅+

𝑐1
|

|𝑅𝑐1 |
− 𝜎𝑐1

|𝑅−
𝑐1
|

|𝑅𝑐1 |

)

+
𝜎𝑐1
2

(

𝑏′𝑝1 + 𝑏′𝑐2
)

= 0

(𝑖𝑖)
𝜕𝑈𝑝1 (𝑒)
𝜕𝑒𝑝1

= (𝑏′𝑝1 − 𝑐)
(

1 − 𝜌𝑝1
|𝑅+

𝑝1
|

|𝑅𝑝1 |
− 𝜎𝑝1

|𝑅−
𝑝1
|

|𝑅𝑝1 |

)

+ 𝜌𝑝1𝑏
′
𝑐1

≤ 0 .

However, it follows from the same argument as made for the star
network that condition (i) implies 𝜕𝑈𝑝1 (𝑒)∕𝜕𝑒𝑝1 > 0. A contradiction to
he necessary equilibrium condition (ii). In an ORE on the line network,
ayoff ranking (A.15) must therefore apply.

efined ORE with limited preference strength: Payoff ranking (A.15) even
ranslates into an investment ranking on the line network when 𝜖 <
∗∕5. To see this, note that, by (A.12), 𝑒𝑐𝑖 < 𝑒𝑝𝑖 must hold for both
∈ {1, 2} in an end-specialized equilibrium. Moreover, to satisfy payoff

ranking condition (A.15), we also need to have 𝑒𝑐𝑖 ≤ 𝑒𝑝𝑖 for both
𝑖 ∈ {1, 2} in a distributed equilibrium. Thus, in any refined ORE, we
have 𝜋𝑐𝑖 (𝑒) ≥ 𝜋𝑝𝑖 (𝑒) and 𝑒𝑝𝑖 ≥ 𝑒𝑐𝑖 for 𝑖 ∈ {1, 2}.

31 It must be 𝜋𝑐1 (𝑒) < 𝜋𝑐2 (𝑒) because in a distributed profile, it is

𝜋𝑐2 (𝑒) ≥ 𝑏(𝑒𝑐1 + 𝑒∗ − 𝜖)

and

𝜋𝑐1 (𝑒) = 𝑏(𝑒𝑐1 + 𝑒𝑝1 ) − 𝑐𝑒𝑐1 .

Moreover, in a distributed profile, 𝜋𝑐1 (𝑒) < 𝜋𝑝1 (𝑒) implies that 𝑒𝑐1 > 𝑒𝑝1 . Thus,
suppose to the contrary that 𝜋𝑐1 (𝑒) ≥ 𝜋𝑐2 (𝑒). Then 𝑒𝑐1 > 𝑒𝑝1 > 𝑒∗ − 𝜖 must hold.
This is however incompatible with 𝑒 + 𝑒 ∈ [𝑒∗ ± 𝜖] whenever 𝜖 < 𝑒∗∕3.
𝑝1 𝑐1
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A.2.3. Dyad and complete network
ORE set: It immediately follows from Definition 3 that ∑𝑖∈𝑁 𝑒𝑖 ∈ [𝑒∗±𝜖]
must hold.

Refined ORE on dyad: We show that when 𝜏𝑖 ∈ 𝑇𝑐 ∩ 𝑇𝑝 holds for both
layers 𝑖, then it must be

𝑖 = 𝑒𝑗 = 𝑒 ∈
[ 𝑒∗ ± 𝜖

𝑛
]

. (A.16)

To see this, note that utility in the dyad can be written as

𝑖(𝑒) = 𝑏
(

𝑒𝑖 + 𝑒𝑗
)

− 𝑐𝑒𝑖 + 𝜌𝑖|𝑁
+
𝑖 |(𝑒𝑖 − 𝑒𝑗 )𝑐 + 𝜎𝑖|𝑁

−
𝑖 |(𝑒𝑖 − 𝑒𝑗 )𝑐,

where |𝑁+
𝑖 | = 1 and |𝑁−

𝑖 | = 0 iff 𝜋𝑖(𝑒) > 𝜋𝑗 (𝑒) ⇔ 𝑒𝑖 < 𝑒𝑗 . Suppose now
that, contrary to (A.16), 𝑒𝑖 > 𝑒𝑗 ≥ 0. For this to be an ORE, we require

(𝑖)
𝜕𝑈𝑖(𝑒)
𝜕𝑒𝑖

= 𝑏′ − 𝑐 + 𝜎𝑖𝑐 = 0

(𝑖𝑖)
𝜕𝑈𝑗 (𝑒)
𝜕𝑒𝑗

= 𝑏′ − 𝑐 + 𝜌𝑗𝑐 ≤ 0 .

owever, since 𝜌𝑗 ≥ 0 ≥ 𝜎𝑖 (where at least one inequality is strict
ince 𝜏𝑖, 𝜏𝑗 ∈ 𝑇𝑐 ∩ 𝑇𝑝), conditions (i) and (ii) cannot be satisfied
imultaneously. Hence, in an ORE, 𝑒𝑖 = 𝑒𝑗 needs to hold.

efined ORE on complete network: Suppose that 𝜏𝑖 ∈ 𝑇𝑐 ∩ 𝑇𝑝 for all
layers 𝑖 in the complete network. Suppose moreover that 𝜌𝑖 and 𝜌𝑗 ,
espectively 𝜎𝑖 and 𝜎𝑗 , are sufficiently close together for all 𝑖, 𝑗 ∈ 𝑁 .
hen, an ORE must entail the equal split in (A.16).

To show this, note that utility in the complete network can be
ritten as

𝑖(𝑒) = 𝑏
(
∑

𝑖∈𝑁
𝑒𝑖
)

− 𝑐𝑒𝑖 +
𝜌𝑖
3

∑

𝑗∈𝑁+
𝑖

(𝑒𝑖 − 𝑒𝑗 )𝑐 +
𝜎𝑖
3

∑

𝑗∈𝑁−
𝑖

(𝑒𝑖 − 𝑒𝑗 )𝑐.

Suppose now that, contrary to the statement, there are some players 𝑖
and 𝑗 with 𝑒𝑖 < 𝑒𝑗 . For this to be an ORE, it must hold for player 𝑖 (𝑗)
with the lowest (highest) investment, for some small ℎ > 0, and any
𝑒′𝑖 ∈ (𝑒𝑖 + ℎ, 𝑒𝑖) and 𝑒′𝑗 ∈ (𝑒𝑗 − ℎ, 𝑒𝑗 ) that

(𝑖)
𝜕𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖)

𝜕𝑒𝑖
= 𝑏′ − 𝑐 + 𝜌𝑖

|𝑁+
𝑖 |

3
𝑐 + 𝜎𝑖

|𝑁−
𝑖 |

3
𝑐 ≤ 0

(𝑖𝑖)
𝜕𝑈𝑗 (𝑒′𝑗 , 𝑒−𝑗 )

𝜕𝑒𝑗
= 𝑏′ − 𝑐 + 𝜌𝑗

|𝑁+
𝑗 |

3
𝑐 + 𝜎𝑗

|𝑁−
𝑗 |

3
𝑐 ≥ 0 .

These two conditions cannot be met simultaneously, however, when 𝜌𝑖
nd 𝜌𝑗 , respectively 𝜎𝑖 and 𝜎𝑗 , are sufficiently close together because
or (i) and (ii) to be satisfied we need that

𝑁+
𝑖 |𝜌𝑖 + |𝑁−

𝑖 |𝜎𝑖 ≤ |𝑁+
𝑗 |𝜌𝑗 + |𝑁−

𝑗 |𝜎𝑗 . (A.17)

nd since |𝑁+
𝑖 | ≥ |𝑁+

𝑗 | + 1 and |𝑁−
𝑖 | ≤ |𝑁−

𝑗 | − 1, (A.17) requires

𝑖 − 𝜎𝑖 ≤ |𝑁+
𝑗 |(𝜌𝑗 − 𝜌𝑖) + |𝑁−

𝑗 |(𝜎𝑗 − 𝜎𝑖) . (A.18)

ote now that 𝜏𝑖 ∈ 𝑇𝑐 ∩𝑇𝑝 implies 𝜌𝑖 − 𝜎𝑖 > 0. This however means that
A.18) cannot be met by any 𝑖 ∈ 𝑁 when 𝜌𝑗 − 𝜌𝑖 ≤ 𝑥 and 𝜎𝑗 − 𝜎𝑖 ≤ 𝑦 for
ll 𝑖, 𝑗 ∈ 𝑁 and some small 𝑥, 𝑦 > 0. We thus arrive at a contradiction
etween the two necessary equilibrium conditions (i) and (ii). In an
RE, it must therefore be 𝑒𝑖 = 𝑒𝑗 .

.2.4. Circle
RE set: Suppose that 𝜖 < 𝑒∗∕5. Then, the ORE set on the circle

esembles the Nash equilibrium set from the original game, that is, an
RE entails either a specialized or a fully distributed investment profile.

To show this, fix the sequence of players in the order 𝑖, 𝑗, 𝑘, 𝑙.
Suppose first that 𝑒𝑚 > 0 for all 𝑚 ∈ 𝑁 (fully distributed). Based on

efinition 3, every 𝑒𝑚 must lie inside an interval 𝑒 ≤ 𝑒𝑚 ≤ 𝑒, where

+ 2𝑒 = 𝑒∗ − 𝜖 and 𝑒 + 2 𝑒 = 𝑒∗ + 𝜖.

olving these equations and simplifying gives

∈
[ 𝑒∗ ± 𝜖

]

for all 𝑚 ∈ 𝑁.
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Next, suppose that 𝑒𝑖 = 0 for some player 𝑖 (specialized). It follows
that 𝑖’s neighbors, 𝑗 and 𝑙, must make a positive investment because
suppose, to the contrary, that 𝑒𝑗 = 0 (or 𝑒𝑙 = 0, or both are equal to
zero). Then, 𝑒𝑘 > 0 since otherwise 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑘 = 0. In fact, we need
𝑒𝑘 ≥ 𝑒∗ − 𝜖 and 𝑒𝑙 ≥ 𝑒∗ − 𝜖 for this to be a best-response profile for 𝑖 and
𝑗. This however leads to a contradiction to the best-response condition
of player 𝑘 because when 𝑒𝑙 ≥ 𝑒∗ − 𝜖 player 𝑘 invests at most 2𝜖. Yet,
this is at odds with 𝑒𝑘 ≥ 𝑒∗ − 𝜖 when 𝜖 < 𝑒∗∕3. Thus, when 𝑒𝑖 = 0 then
it must be 𝑒𝑗 > 0 and 𝑒𝑙 > 0.

In fact, 𝑒𝑖 = 0, 𝑒𝑗 > 0, and 𝑒𝑙 > 0 implies that 𝑒𝑘 = 0 because suppose,
o the contrary, 𝑒𝑘 > 0. As the total investments received by players 𝑗,
, and 𝑙 must satisfy

𝑗 + 𝑒𝑘 ∈ [𝑒∗ ± 𝜖] , 𝑒𝑗 + 𝑒𝑘 + 𝑒𝑙 ∈ [𝑒∗ ± 𝜖] , and 𝑒𝑘 + 𝑒𝑙 ∈ [𝑒∗ ± 𝜖]

espectively, it follows that 𝑒𝑗 ≤ 2𝜖 and 𝑒𝑙 ≤ 2𝜖. This however means
hat the total investment received by player 𝑖 is no larger than 4𝜖. And
hen 𝜖 < 𝑒∗∕5, then 𝑒𝑗 + 𝑒𝑙 ≤ 4𝜖 < 𝑒∗ − 𝜖. A contradiction to 𝑒𝑖 = 0.
hus, in a specialized ORE on the circle, it must be 𝑒𝑘 = 0 when 𝑒𝑖 = 0.
n particular, together with the equilibrium conditions for 𝑗 and 𝑙, we
et (0 , [𝑒∗ ± 𝜖] , 0 , [𝑒∗ ± 𝜖]).

.2.5. General networks and incomplete information
In this appendix, we generalize our basic model from the main text

o allow for incomplete information regarding the social preference
ypes of the other players. Moreover, we provide the missing proof of
roposition 2 for a general network structure.

To incorporate incomplete information, suppose that the exact pref-
rence type 𝜏𝑖 of each player is privately known only to that individual.
uppose, however, that each player possesses a vague impression of
he other players’ types, possibly gained through prior encounters.
ormally, let 𝜏 = (𝜏𝑖)𝑖∈𝑁 represent one potential type constellation in
= 𝑇1 ×⋯ × 𝑇𝑛, where the type sets 𝑇𝑖 are potentially heterogeneous.

hen, our assumption is that the probability function 𝑝(𝜏) ∶ 𝛺 → (0, 1)
s common knowledge.

Now, in line with our basic model from the text, each player’s utility
epends on her relative standing among the players in her reference
roup, but we assume that a player compares her expected payoff with
hat of her peers. Formally, let 𝜏−𝑖 = (𝜏𝑗 )𝑗≠𝑖 denote one potential type
onstellation for all the other players 𝑗 ≠ 𝑖, and let 𝑒−𝑖 = (𝑒𝜏𝑗 )𝜏−𝑖∈𝛺−𝑖
enote a profile of investments for all possible types of 𝑗 ≠ 𝑖. The
xpected utility of a type-𝜏𝑖 of player 𝑖 at investments (𝑒𝜏𝑖 , 𝑒−𝑖) shall be
iven by

𝜏−𝑖 [𝑈𝑖|𝜏𝑖] = E𝜏−𝑖 [𝜋𝑖|𝜏𝑖] +
𝜎𝜏𝑖
|𝑅𝑖|

∑

𝑗∈𝑅−
𝑖

(

E𝜏−𝑖 [𝜋𝑗 |𝜏𝑖] − E𝜏−𝑖 [𝜋𝑖|𝜏𝑖]
)

(A.19)

+
𝜌𝜏𝑖
|𝑅𝑖|

∑

𝑗∈𝑅+
𝑖

(

E𝜏−𝑖 [𝜋𝑗 |𝜏𝑖] − E𝜏−𝑖 [𝜋𝑖|𝜏𝑖]
)

,

where 𝑅−
𝑖 (𝑅+

𝑖 ) denote the subsets of players in 𝑖’s reference group
who earn more (less) in expectation than her, with expected payoffs
given by E𝜏−𝑖 [𝜋𝑖|𝜏𝑖] =

∑

𝜏−𝑖∈𝛺−𝑖
𝑝(𝜏−𝑖|𝜏𝑖)𝑏(𝑒𝜏𝑖 +

∑

𝑘∈𝑁𝑖
𝑒𝜏𝑘 ) − 𝑐𝑒𝜏𝑖 and

E𝜏−𝑖 [𝜋𝑗 |𝜏𝑖] =
∑

𝜏−𝑖∈𝛺−𝑖
𝑝(𝜏−𝑖|𝜏𝑖)𝑏(𝑒𝜏𝑗 +

∑

𝑘∈𝑁𝑗
𝑒𝜏𝑘 ) − 𝑐𝑒𝜏𝑗 .

The following result, which generalizes Proposition 2 from the main
ext, can be verified in this extended setting:

roposition 3. Consider two players 𝑖 and 𝑗 in a nested neighborhood
of a network 𝑔 such that all their types have compatible social preferences
(i.e., 𝑇𝑖 ⊂ 𝑇𝑐 and 𝑇𝑗 ⊂ 𝑇𝑝). In an ORE, it must then hold for at least one
𝑖 ∈ 𝑇𝑖 and 𝜏𝑗 ∈ 𝑇𝑗 that

E𝜏−𝑖 [𝜋𝑖|𝜏𝑖] ≥ min
𝑘∈𝑁𝑖

{E𝜏−𝑖 [𝜋𝑘|𝜏𝑖]} OR E𝜏−𝑗 [𝜋𝑗 |𝜏𝑗 ] ≤ max
𝑙∈𝑁𝑗

{E𝜏−𝑗 [𝜋𝑙|𝜏𝑗 ]}.

roof. Suppose that, contrary to the statement, all types of player 𝑖
arn strictly less in expectation than all 𝑘 ∈ 𝑁𝑖 and all types of player

earn strictly more in expectation than all 𝑙 ∈ 𝑁𝑗 . One immediate
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implication is that E𝜏−𝑖 [𝜋𝑖|𝜏𝑖] < E𝜏−𝑖 [𝜋𝑗 |𝜏𝑖] ∀ 𝜏𝑖 ∈ 𝑇𝑖. Because player 𝑗’s
eighborhood is nested in player 𝑖’s, we moreover have for all 𝜏 ∈ 𝛺
hat

𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘 ≥ 𝑒𝜏𝑗 +
∑

𝑙∈𝑁𝑗

𝑒𝜏𝑙 . (A.20)

In combination, 𝑒𝜏𝑖 > 0 ∀ 𝜏𝑖 ∈ 𝑇𝑖 thus needs to hold because 𝑖 has access
o more investments than 𝑗 in any 𝜏−𝑖 ∈ 𝛺−𝑖, while at the same time 𝑖
arns less in expectation.

The first-order conditions for all possible types 𝜏𝑖 ∈ 𝑇𝑖 of player 𝑖
nd all possible 𝜏𝑗 ∈ 𝑇𝑗 of player 𝑗 thus become32

(𝑖)
𝜕E𝜏−𝑖 [𝑈𝑖|𝜏𝑖]

𝜕𝑒𝜏𝑖

=
∑

𝜏−𝑖∈𝛺−𝑖

𝑝(𝜏−𝑖|𝜏𝑖)
[(

𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘
)

− 𝑐
)(

1 −
|𝑅−

𝜏𝑖
|

|𝑅𝜏𝑖 |
𝜌𝜏𝑖 −

|𝑅−
𝜏𝑖
|

|𝑅𝜏𝑖 |
𝜎𝜏𝑖

)

+
𝜎𝜏𝑖
|𝑅𝜏𝑖 |

∑

𝑘∈𝑁𝑖

𝑏′
(

𝑒𝜏𝑘 +
∑

𝑚∈𝑁𝑘

𝑒𝜏𝑚
)

]

= 0

(A.21)

(𝑖𝑖)
𝜕E𝜏−𝑗 [𝑈𝑗 |𝜏𝑗 ]

𝜕𝑒𝜏𝑗

=
∑

𝜏−𝑗∈𝛺−𝑗

𝑝(𝜏−𝑗 |𝜏𝑗 )
[(

𝑏′
(

𝑒𝜏𝑗 +
∑

𝑙∈𝑁𝑗

𝑒𝜏𝑙
)

− 𝑐
)(

1 −
|𝑅−

𝜏𝑗
|

|𝑅𝜏𝑗 |
𝜌𝜏𝑗 −

|𝑅−
𝜏𝑗
|

|𝑅𝜏𝑗 |
𝜎𝜏𝑗

)

+
𝜌𝜏𝑗
|𝑅𝑗 |

∑

𝑙∈𝑁𝑗

𝑏′
(

𝑒𝜏𝑙 +
∑

𝑚∈𝑁𝑙

𝑒𝜏𝑚
)

]

≤ 0 .

ecause all 𝜏𝑖 ∈ 𝑇𝑖 and 𝜏𝑗 ∈ 𝑇𝑗 have compatible social preferences,
it is 𝜎𝜏𝑖 ≤ 0 and 𝜌𝜏𝑗 ≥ 0 with at least one inequality being strict. For
condition (i) to be satisfied for all 𝜏𝑖 ∈ 𝑇𝑖, we thus need that
∑

𝜏−𝑖∈𝛺−𝑖

𝑝(𝜏−𝑖|𝜏𝑖) 𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘
)

≥ 𝑐 ∀ 𝜏𝑖 ∈ 𝑇𝑖 .

Summing up over all 𝜏𝑖, this gives ∑

𝜏∈𝛺 𝑝(𝜏) 𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖
𝑒𝜏𝑘

)

≥ 𝑐, or
equivalently
∑

𝜏𝑗∈𝑇𝑗

𝑝(𝜏𝑗 )
∑

𝜏−𝑗∈𝛺−𝑗

𝑝(𝜏−𝑗 |𝜏𝑗 ) 𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘
)

≥ 𝑐 . (A.22)

Because 𝑖 nests the neighborhood of 𝑗 (see (A.20)) and because 𝑏(⋅) is
strictly concave, we additionally have

𝑏′
(

𝑒𝜏𝑗 +
∑

𝑙∈𝑁𝑗

𝑒𝜏𝑙
)

≥ 𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘
)

∀ 𝜏 ∈ 𝛺 . (A.23)

In combination, (A.22) and (A.23) imply
∑

𝜏−𝑗∈𝛺−𝑗

𝑝(𝜏−𝑗 |𝜏𝑗 ) 𝑏′
(

𝑒𝜏𝑖 +
∑

𝑘∈𝑁𝑖

𝑒𝜏𝑘
)

≥ 𝑐

for at least one 𝜏𝑗 ∈ 𝑇𝑗 because otherwise the weighted average on
the left-hand side of (A.22) could not be greater than 𝑐. Yet, together
with the parameter conditions for preference compatibility, this means
that the first-order condition in (A.21) is violated for at least one 𝜏𝑗 .
In an ORE, payoffs must therefore be ordered as stated in the propos-
ition. ■

At least two aspects of Proposition 3 are noteworthy: Firstly, for
social preferences to result in the predicted payoff ranking, it is im-
perative that all potential types of players 𝑖 and 𝑗 have compatible
social preferences (i.e., 𝑇𝑖 ⊂ 𝑇𝑐 and 𝑇𝑗 ⊂ 𝑇𝑝). Otherwise, there could
be a type of player 𝑗 in 𝑇𝑗 who is unwilling to contribute to the

32 Here, we have implicitly assumed that E𝜏−𝑖 [𝜋𝑖(𝑒𝜏𝑖 , 𝑒−𝑖)|𝜏𝑖] ≠
E𝜏−𝑖 [𝜋𝑘(𝑒𝜏𝑖 , 𝑒−𝑖)|𝜏𝑖] for all 𝑘 ∈ 𝑅𝑖 and that the same holds for player 𝑗
and her peers. Nevertheless, because 𝑈𝑖(𝑒𝜏𝑖 , 𝑒−𝑖) is continuous, very similar
first-order conditions must hold for all 𝑒′𝜏𝑖 and 𝑒′𝜏𝑗 in some small open
neighborhoods around 𝑒 and 𝑒 .
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public good in case that player 𝑖’s investment falls short of 𝑒∗. As a
consequence, player 𝑖 could not afford to lower his investment below
𝑒∗, even though the ‘‘real’’ type of player 𝑗 is willing to fill the gap.
Secondly, the assumption that the type sets of 𝑖 and 𝑗 are common
knowledge is essential as well. Otherwise, a player 𝑗 of the correct
type might mistakenly believe that player 𝑖 is in need, or player 𝑖 might
wrongly believe that 𝑗 is not willing to contribute, etc. In other words,
equilibrium refinement through social preferences not only requires a
compatible preference combination but also a common understanding
of this.

A.3. Measuring social preference strengths

Here, we establish a result to map a pair of social preference
parameters, (𝜌𝑖, 𝜎𝑖), into an upper bound 𝜖𝑖 for a player’s true preference
strength 𝜖𝑖, which is valid for all the two- and four-player networks in
our experiment.

Lemma 1. Consider a player with utility function (2) and a quadratic
payoff function (1) who occupies a position in one of the seven networks of
Fig. 1. An upper bound 𝜖𝑖 for the player’s true social preference strength 𝜖𝑖
is given by:

• for 𝑖 in a nested position (e.g., periphery position in the star, core,
d-box, or line, duo position in the core, or position in the dyad or
complete network):

altruists and social-welfare types ∶
𝜌𝑖𝑐𝑒∗

𝑏′(0) − 𝑐

inequity-averse types ∶ max
{ −𝜎𝑖|𝑅𝑖|𝑐𝑒∗

(|𝑅𝑖| − 𝜌𝑖(|𝑅𝑖| − |𝑁𝑖|))(𝑏′(0) − 𝑐)
;

𝜌𝑖𝑐𝑒∗

𝑏′(0) − 𝑐
}

competitive and spiteful types ∶
−𝜎𝑖𝑐𝑒∗

𝑏′(0) − 𝑐

• for 𝑖 in a non-nested position (e.g., center position in the star, core–
periphery, d-box, or line, or position in the circle):

altruists and social-welfare types ∶
𝜌𝑖𝑏′

(

𝑒∗∕|𝑁𝑖|
)

𝑒∗

𝑏′(0) − 𝑐

inequity-averse types ∶ max
{ −𝜎𝑖((|𝑁𝑖| − 1)𝑏′(0) − 𝑐)𝑒∗

(|𝑁𝑖| − 𝜎𝑖(|𝑁𝑖| − 1) − 𝜌𝑖
(|𝑅𝑖 |−|𝑁𝑖 |) |𝑁𝑖 |

|𝑅𝑖 |
)(𝑏′(0) − 𝑐)

;

𝜌𝑖𝑏′
(

𝑒∗∕|𝑁𝑖|
)

𝑒∗

𝑏′(0) − 𝑐
}

competitive and spiteful types ∶
−𝜎𝑖((|𝑁𝑖| − 1)𝑏′(0) − 𝑐)𝑒∗

(|𝑁𝑖| − 𝜎𝑖(|𝑁𝑖| − 1))(𝑏′(0) − 𝑐)
.

roof. Our aim is to determine, for a given (𝜌𝑖, 𝜎𝑖) and a given
etwork position 𝑖, an upper bound 𝜖𝑖 for the difference between that

player’s best-response investment, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖), and a payoff-maximizing
est response, 𝑓𝑖(𝑒−𝑖), for all possible 𝑒−𝑖. More concretely, we aim to
etermine an 𝑒𝑖 that constrains the deviation-maximizing best response
n the following way:

̂𝑖 ≡ |

|

|

𝑒𝑖 −𝑓𝑖(𝑒−𝑖)
|

|

|

≥ 𝜖𝑖 ≡ max
{

|

|

|

𝑓𝑖(𝜏𝑖, 𝑒−𝑖)−𝑓𝑖(𝑒−𝑖)
|

|

|

∶ ∀ 𝑒−𝑖 ∈ [ 0, 𝑒 ]𝑛−1
}

nd that satisfies (|𝜌𝑖|, |𝜎𝑖|) < (|𝜌′𝑖|, |𝜎
′
𝑖 |) ⇒ 𝜖𝑖(|𝜌𝑖|, |𝜎𝑖|) < 𝜖𝑖(|𝜌′𝑖|, |𝜎

′
𝑖 |).

Nevertheless, as utility function 𝑈𝑖(𝑒) is not differentiable at invest-
ents where 𝜋𝑖(𝑒) = 𝜋𝑗 (𝑒) for some 𝑗 ∈ 𝑅𝑖, we need to make some case
istinctions.

I) deviation-maximizing interior solutions: Suppose first that the devia-
ion-maximizing 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) is such that 𝜋𝑖(𝑓𝑖(𝜏𝑖, 𝑒−𝑖), 𝑒−𝑖) ≠ 𝜋𝑗 (𝑓𝑖(𝜏𝑖, 𝑒−𝑖),
−𝑖) for all 𝑗 ∈ 𝑅𝑖. Then, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) needs to satisfy the first-order
ondition
𝜕𝑈𝑖
𝜕𝑒𝑖

=
(

𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
|𝑅+

𝑖 |

|𝑅𝑖|
− 𝜎𝑖

|𝑅−
𝑖 |

|𝑅𝑖|

)

+
𝜎𝑖
|𝑅 |

∑

−
𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + 𝑒𝑗 +
∑

𝑒𝑙
)

(A.24)

| 𝑖| 𝑗∈𝑁𝑖 𝑙∈𝑁𝑗∖{𝑖}
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𝑒
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𝑒

⇔

(
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m
p

T
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𝜌
t

(
t
M
p

+
𝜌𝑖
|

|

𝑅𝑖
|

|

∑

𝑗∈𝑁+
𝑖

𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∖{𝑖}
𝑒𝑙
)

≤ 0 ,

where 𝑁+
𝑖 (𝑁−

𝑖 ) denotes the set of neighbors with 𝜋𝑖 > (<)𝜋𝑗 , and 𝑅+
𝑖

(𝑅−
𝑖 ) the set of peers with 𝜋𝑖 > (<)𝜋𝑗 . The corresponding condition for

a payoff-maximizing investment 𝑓𝑖(𝑒−𝑖) is
′(𝑓𝑖(𝑒−𝑖) +

∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐 ≤ 0 . (A.25)

In the first step, we determine an upper bound for a positive devi-
tion, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) > 𝑓𝑖(𝑒−𝑖), before we proceed to a lower bound for a

negative deviation, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) < 𝑓𝑖(𝑒−𝑖).

IA) positive deviations: By definition of a positive deviation, it must
e 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) > 0 so that the condition in (A.24) must be satisfied with

equality and, moreover, 𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖
𝑒𝑗
)

− 𝑐 < 0 in the first line
of (A.24).

Hence, to establish an upper bound for them, set 𝑅+
𝑖 = 𝑅𝑖 and

𝑅−
𝑖 = ∅ in the first line of (A.24). Moreover, set 𝑁+

𝑖 = 𝑅𝑖 = 𝑁𝑖 and
𝑁−

𝑖 = ∅ in the second and third lines of (A.24). Because 𝜌𝑖 ≥ 𝜎𝑖, this
esults in an increase in the terms in lines 1–3 and, consequentially, in
𝑖(𝜏𝑖, 𝑒−𝑖), while leaving the condition in (A.25) and, by extension, the
alue for 𝑓𝑖(𝑒−𝑖) unaffected.

Our upper bound 𝑒𝑖 for 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) thus satisfies33

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
)

(A.26)

+
𝜌𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖

𝑏′
(

𝑒𝑖 + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∖{𝑖}
𝑒𝑙
)

= 0 .

This immediately implies that 𝑒𝑖 − 𝑓𝑖(𝑒−𝑖) > 0 if and only if 𝜌𝑖 > 0. Yet,
o be able to continue from here, we need to make some additional case
istinctions.

IA1) positive deviations in nested positions: When 𝑖 is in a nested net-
ork position, i.e., 𝑁𝑖 ∪ {𝑖} ⊆ 𝑁𝑗 ∪ {𝑗} for all 𝑗 ∈ 𝑁𝑖, Eq. (A.26)

implifies to

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
)

(A.27)

+
𝜌𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗 +
∑

𝑙∈𝑁𝑗∖(𝑁𝑖∪{𝑖})
𝑒𝑙
)

= 0 .

Because we have 𝑏′′(𝑒) = 𝑏′′(𝑒′) for all 𝑒, 𝑒′ ∈ [0, 𝑒], the total derivative
of (A.27) gives for any player 𝑙 who is not a neighbor of 𝑖 (i.e., 𝑙 ∈
𝑁𝑗∖(𝑁𝑖 ∪ {𝑖})):

𝑑𝑒𝑖
𝑑𝑒𝑙

≤ −
𝜌𝑖
|𝑁𝑖|

< 0.

Hence, to maximize 𝑒𝑖 − 𝑓𝑖(𝑒−𝑖), set 𝑒𝑙 = 0. As a result, (A.27) further
implifies to

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

−
(

1 − 𝜌𝑖
)

𝑐 = 0

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗 = (𝑏′)−1
(

(1 − 𝜌𝑖)𝑐
)

. (A.28)

Now, because 𝑒𝑖 and ∑

𝑗∈𝑁𝑖
𝑒𝑗 are perfect strategic substitutes in both

A.25) and (A.28) and because (𝑏′)−1
(

(1 − 𝜌𝑖)𝑐
)

> 𝑒∗, decrease ∑

𝑗∈𝑁𝑖
𝑒𝑗

rom an initial high level down to the point where the first-order
ondition (A.25) becomes just binding. We then get 𝑓𝑖(𝑒−𝑖) = 0 and
𝑗∈𝑁𝑖

𝑒𝑗 = 𝑒∗ and, thus, an upper bound of

̂𝑖 = 𝑒𝑖 − 𝑓𝑖(𝑒−𝑖) = (𝑏′)−1
(

(1 − 𝜌𝑖)𝑐
)

− 𝑒∗.

33 Obviously, we ignore at this point the constraints on 𝑒𝑖 and 𝑒−𝑖 that are
necessary for 𝜋𝑖(𝑒) > 𝜋𝑗 (𝑒) for all 𝑗 ≠ 𝑖. For this reason, 𝑒𝑖 is just an upper bound
for a best-response investment, but it may not be supported as a best response
itself. However, as we will see below, our identified 𝑒𝑖 is in fact a best-response
investment for a certain player type in a certain network position.
22
When we finally leverage the quadratic nature of function 𝑏(⋅), (A.28)
can be written as 𝑒𝑖 +

∑

𝑗∈𝑁𝑖
𝑒𝑗 = (𝑏′(0) − (1 − 𝜌𝑖)𝑐)∕|𝑏′′| and (A.25) as

∗ = (𝑏′(0) − 𝑐)∕|𝑏′′|. So, we get

𝜖𝑖 = 𝜌𝑖
𝑐

𝑏′(0) − 𝑐
𝑒∗ . (A.29)

It is important to note that this bound (along with all bounds to come)
is even the smallest possible upper bound because 𝑒𝑖 = 𝜖𝑖 represents
the best response on ∑

𝑗∈𝑁𝑖
𝑒𝑗 = 𝑒∗ of, for instance, an altruistic player

in a complete network. Note, moreover, that our assumption |𝑏′′| >
2𝑏′(0) − 𝑐)∕𝑒 ensures that 𝜖𝑖 + 𝑒∗ < 𝑒.

IA2) positive deviations in non-nested positions: Suppose next that 𝑖’s
neighborhood is not nested in the neighborhoods of all players in 𝑖’s
neighborhood (i.e., 𝑁𝑖 ∪ {𝑖} ⊄ 𝑁𝑗 ∪ {𝑗} for some 𝑗 ∈ 𝑁𝑖). Starting
from Eq. (A.26) again, the total derivative gives in this case
𝑑𝑒𝑖
𝑑𝑒𝑙

≤ −
𝜌𝑖
|𝑁𝑖|

< 0

for any 𝑙 ∈ 𝑁𝑗∖{𝑖}. Hence, for a maximal positive deviation, set 𝑒𝑙 = 0.
The total derivative, furthermore, gives for any 𝑗 ∈ 𝑁𝑖

𝑑𝑒𝑖
𝑑𝑒𝑗

= −
(

1 − 𝜌𝑖 +
𝑥 𝜌𝑖
|𝑁𝑖|

)

≥ −1 =
𝑑𝑓𝑖(𝑒−𝑖)
𝑑𝑒𝑗

,

where 𝑥 ∈ {1,… , |𝑁𝑖|}, depending on how often player 𝑗 is herself a
eighbor of other 𝑘 ∈ 𝑁𝑖∖{𝑗}. Hence, because 𝑑𝑓𝑖(𝑒−𝑖)∕𝑑𝑒𝑗 is the total
erivative of the first-order condition (A.25) for a payoff maximizer,
ecrease ∑

𝑗∈𝑁𝑖
𝑒𝑗 from an initial high level down to the point where

he first-order condition of a payoff maximizer is just satisfied with
quality, that is, where ∑

𝑗∈𝑁𝑖
𝑒𝑗 = 𝑒∗ and 𝑓𝑖(𝑒−𝑖) = 0.

Now, as 𝑏′(𝑒) > 𝑏′(𝑒′) for 𝑒 < 𝑒′ and as the term in line two of
A.26) increases in 𝑏′(𝑒𝑖+𝑒𝑗+

∑

𝑙∈𝑁𝑗∖{𝑖} 𝑒𝑙), a maximal positive deviation
s attained in a network position 𝑖, where none of 𝑖’s neighbors are
eighbors themselves (e.g., the star center). Our upper bound 𝜖𝑖 =
𝑖 − 𝑓𝑖(𝑒−𝑖) = 𝑒𝑖 thus satisfies
(

𝑏′
(

𝜖𝑖 + 𝑒∗
)

− 𝑐
)(

1 − 𝜌𝑖
)

+
𝜌𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖

𝑏′
(

𝜖𝑖 + 𝑒𝑗
)

= 0

⇔
(

𝑏′
(

𝜖𝑖 + 𝑒∗
)

− 𝑐
)(

1 − 𝜌𝑖
)

+ 𝜌𝑖𝑏
′(𝜖𝑖 + 𝑒∗∕|𝑁𝑖|

)

= 0

𝜖𝑖 = 𝜌𝑖
𝑏′
(

𝑒∗∕|𝑁𝑖|
)

𝑏′(0) − 𝑐
𝑒∗ . (A.30)

where, in lines 2 and 3, we made use of the quadratic nature of 𝑏(⋅).

IB) negative deviations: Start from Eqs. (A.24) and (A.25), again. Note
irst that since 𝜌𝑖 ≥ 𝜎𝑖 and 𝑏′ > 0, it must be 𝜎𝑖 < 0. Moreover, there
ust be at least one 𝑗 ∈ 𝑁−

𝑖 for player 𝑖 to deviate downwards from a
ayoff-maximizing best response. Now, rewrite (A.24) as
(

𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
|𝑅+

𝑖 | − |𝑁+
𝑖 |

|𝑅𝑖|
− 𝜎𝑖

|𝑅−
𝑖 | − |𝑁−

𝑖 |

|𝑅𝑖|

)

+
𝜎𝑖
|

|

𝑅𝑖
|

|

∑

𝑗∈𝑁−
𝑖

(

𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∖{𝑖}
𝑒𝑙
)

− 𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

+ 𝑐
)

+
𝜌𝑖
|

|

𝑅𝑖
|

|

∑

𝑗∈𝑁+
𝑖

(

𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∖{𝑖}
𝑒𝑙
)

− 𝑏′
(

𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

+ 𝑐
)

≤ 0 . (A.31)

o establish our lower bound 𝑒𝑖 for 𝑓𝑖(𝜏𝑖, 𝑒−𝑖), the expressions in lines
–3 need to be minimized, while leaving condition (A.25) for a payoff
aximizer unaffected. To achieve this, set |𝑅−

𝑖 | = |𝑁−
𝑖 | in line 1 because

𝑖 ≥ 𝜎𝑖 and 𝑏′(𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖
𝑒𝑗 ) > 𝑐. To proceed from here, we need

o make some further case distinctions.

IB1) negative deviations when 𝑖 is linked to everyone: When 𝑖 is linked
o every other player, it is |𝑅+

𝑖 | = |𝑁+
𝑖 | in the first line of (A.31).

oreover, the expressions in parentheses in lines 2 and 3 are strictly
ositive because 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + 𝑒𝑗 +

∑

𝑙∈𝑁𝑗∖{𝑖} 𝑒𝑙 ≤ 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) +
∑

𝑗∈𝑁𝑖
𝑒𝑗 and

′ ∑

𝑒 ) ≥ 𝑏′(𝑓 (𝜏 , 𝑒 )+
∑

𝑒 ). Therefore,
thus 𝑏 (𝑓𝑖(𝜏𝑖, 𝑒−𝑖)+𝑒𝑗+ 𝑙∈𝑁𝑗∖{𝑖} 𝑙 𝑖 𝑖 −𝑖 𝑗∈𝑁𝑖 𝑗
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𝑁

to minimize 𝑓𝑖(𝜏𝑖, 𝑒−𝑖), set 𝑁+
𝑖 = ∅ and 𝑁−

𝑖 = 𝑁𝑖 = 𝑅𝑖 in lines 2 and 3
because 𝜌𝑖 ≥ 𝜎𝑖.

Suppose, now, that 𝑖 is linked to every other player because 𝑖 is
in the dyad or complete network. Based on the above steps, (A.31)
simplifies to

𝑏′
(
∑

𝑖∈𝑁
𝑒𝑖
)

−
(

1 − 𝜎𝑖
)

𝑐 ≤ 0 . (A.32)

Because 𝑒𝑖 and ∑

𝑗∈𝑖
𝑒𝑗 are perfect strategic substitutes in both (A.26)

nd (A.32), i.e., 𝑑𝑒𝑖∕(𝑑
∑

𝑗∈𝑖
𝑒𝑗 ) = 𝑑𝑓𝑖(𝑒−𝑖)∕(𝑑

∑

𝑗∈𝑖
𝑒𝑗 ) = −1, decrease

∑

𝑗∈𝑁𝑖
𝑒𝑗 from an initial high level down to the point where condi-

tion (A.32) is just satisfied with equality, that is, where 𝑒𝑖 = 0. Our
lower bound 𝜖𝑖 is thus given by 𝜖𝑖 = 𝑓𝑖(𝑒−𝑖) = 𝑒∗ −

∑

𝑗∈𝑁𝑖
𝑒𝑗 , where, by

(A.32),
∑

𝑗∈𝑁𝑖

𝑒𝑗 = (𝑏′)−1
(

(1 − 𝜎𝑖)𝑐
)

.

When we finally make use of the quadratic nature of 𝑏(⋅), we get

̂𝑖 =
−𝜎𝑖𝑐

𝑏′(0) − 𝑐
𝑒∗,

Suppose, next, that 𝑖 is linked to every other player because 𝑖 resides
n the center position of the star, core, or d-box. Inequality (A.31) then
ecomes

𝑏′
(
∑

𝑖∈𝑁
𝑒𝑖
)

− 𝑐
)(

1 − 𝜎𝑖
)

+
𝜎𝑖

𝑛 − 1
∑

𝑗∈𝑁∖{𝑖}
𝑏′
(

𝑒𝑖 + 𝑒𝑗
)

≤ 0 . (A.33)

Moreover, its total derivative with respect to 𝑒𝑗 (when (A.33) is satisfied
with equality) gives for any 𝑗 ∈ 𝑁𝑖

𝑑𝑒𝑖
𝑑𝑒𝑗

= −(1 − 𝜎𝑖 +
𝑥𝜎𝑖
𝑛 − 1

) ≤
𝑑𝑓𝑖(𝑒−𝑖)
𝑑𝑒𝑗

= −1,

where 𝑥 ∈ {1,… , 𝑛 − 1}, depending on how often 𝑗 is a neighbor of
ther 𝑘 ∈ 𝑁𝑖∖{𝑗}. Hence, to obtain a maximal negative deviation,
ecrease ∑

𝑗∈𝑁𝑖
𝑒𝑗 from an initial high level down to the point where

ondition (A.33) is just satisfied with equality, that is, where 𝑒𝑖 = 0.
More concretely, because 𝑏′(𝑒) > 𝑏′(𝑒′) for 𝑒 < 𝑒′ and since (A.33)

is declining in 𝑏′(𝑒𝑖 + 𝑒𝑗 ), a maximal negative deviation is obtained
n the star center position where none of 𝑖’s neighbors are neighbors

themselves. Our lower bound 𝜖𝑖 is then given by 𝜖𝑖 = 𝑓𝑖(𝑒−𝑖) = 𝑒∗ −
𝑗∈𝑁𝑖

𝑒𝑗 , where

𝑏′(
∑

𝑗∈𝑁𝑖

𝑒𝑗 ) − 𝑐
)(

1 − 𝜎𝑖
)

+
𝜎𝑖

𝑛 − 1
∑

𝑗∈𝑁𝑖

𝑏′
(

𝑒𝑗
)

= 0.

Making use of the quadratic function nature of 𝑏(⋅), again, we can write

(

𝑏′(
∑

𝑗∈𝑁𝑖

𝑒𝑗 ) − 𝑐
)(

1 − 𝜎𝑖
)

+ 𝜎𝑖𝑏
′(
∑

𝑗∈𝑁𝑖
𝑒𝑗

𝑛 − 1
)

= 0

∑

𝑗∈𝑁𝑖

𝑒𝑗 =
𝑏′(0) − 𝑐(1 − 𝜎𝑖)

(1 − 𝜎𝑖 +
𝜎𝑖
𝑛−1 )(𝑏

′(0) − 𝑐)
𝑒∗ .

We thus get

̂𝑖 = −𝜎𝑖
(𝑛 − 2)𝑏′(0) − 𝑐

(𝑛 − 1 − 𝜎𝑖(𝑛 − 2))(𝑏′(0) − 𝑐)
𝑒∗.

IB2) negative deviations when 𝑖 has a single neighbor: Start from (A.31),
gain. Because for a negative deviation (i.e., 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) < 𝑓𝑖(𝑒−𝑖)) we
equire |𝑁−

𝑖 | > 0, we immediately get |𝑁−
𝑖 | = |𝑁𝑖| = 1 and |𝑁+

𝑖 | = 0 in
ines 2 and 3 of (A.31). Moreover, for our maximal negative deviation,
n line 1, set |𝑅+

𝑖 | = |𝑅𝑖| − |𝑁𝑖| if 𝜌𝑖 > 0, and |𝑅+
𝑖 | = |𝑁+

𝑖 | if 𝜌𝑖 ≤ 0.
Now, because the total derivative of (A.31) with respect to 𝑒𝑙, 𝑙 ∈

𝑗∖{𝑖} (when (A.31) is satisfied with equality) is

𝑑𝑒𝑖
𝑑𝑒𝑙

=

⎧

⎪

⎨

⎪

⎩

− 𝜎𝑖
|𝑅𝑖|−𝜌𝑖(|𝑅𝑖|−|𝑁𝑖|)

if 𝜌𝑖 > 0

− 𝜎𝑖
|𝑅𝑖|

otherwise
,

we have, 𝑑𝑒𝑖∕𝑑𝑒𝑙 > 0. Hence, to minimize 𝑒𝑖, set 𝑒𝑙 = 0 for all 𝑙 ∈
𝑁 ∖{𝑖}.
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𝑗

As a result, the term in parentheses in line 2 of (A.31) becomes
strictly positive. Hence, set |𝑅𝑖| = |𝑁−

𝑖 | = 1 in this line, so that
inequality (A.31) reduces to

⎧

⎪

⎨

⎪

⎩

(

𝑏′
(

𝑒𝑖 + 𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
|𝑅𝑖|−|𝑁𝑖|

|𝑅𝑖|

)

+ 𝜎𝑖𝑐 ≤ 0 if 𝜌𝑖 > 0

𝑏′
(

𝑒𝑖 + 𝑒𝑗
)

− 𝑐
(

1 − 𝜎𝑖
)

≤ 0 otherwise .
(A.34)

Now, as 𝑒𝑖 and 𝑒𝑗 are perfect strategic substitutes in both (A.26) and
(A.34), decrease ∑

𝑗∈𝑁𝑖
𝑒𝑗 from an initial high level down to the point

where (A.34) is just satisfied with equality, that is, where 𝑒𝑖 = 0. Our
lower bound 𝜖𝑖 is, thus, given by 𝜖𝑖 = 𝑓𝑖(𝑒−𝑖) = 𝑒∗ − 𝑒𝑗 , where

𝑒𝑗 =

⎧

⎪

⎨

⎪

⎩

(𝑏′)−1
(

(1 − |𝑅𝑖|𝜎𝑖
|𝑅𝑖|−𝜌𝑖(|𝑅𝑖|−|𝑁𝑖|)

)𝑐
)

if 𝜌𝑖 > 0

(𝑏′)−1
(

(1 − 𝜎𝑖)𝑐
)

otherwise .

For a quadratic function 𝑏(⋅), we then get

̂𝑖 =

⎧

⎪

⎨

⎪

⎩

−|𝑅𝑖|𝜎𝑖𝑐
(|𝑅𝑖|−𝜌𝑖(|𝑅𝑖|−|𝑁𝑖|))(𝑏′(0)−𝑐)

𝑒∗ if 𝜌𝑖 > 0
−𝜎𝑖𝑐

𝑏′(0)−𝑐 𝑒
∗ otherwise .

(A.35)

(IB3) negative deviations when 𝑖 has two neighbors: Start from (A.31),
again. Suppose first that 𝜎𝑖 ≤ 𝜌𝑖 ≤ 0. Then, to minimize the term in
ine 1 of (A.31), set |𝑅+

𝑖 | = |𝑁+
𝑖 |. Moreover, for the same reasons as in

IB2), set 𝑒𝑙 = 0 for 𝑙 ∈ 𝑁𝑗∖(𝑁𝑖∪{𝑖}) and 𝑁−
𝑖 = 𝑁𝑖 = 𝑅𝑖 in lines 2 and 3.

herefore, we have ∑

𝑙∈𝑁𝑗∖{𝑖} 𝑒𝑙 =
∑

𝑙∈𝑁𝑗∩𝑁𝑖
𝑒𝑙 so that (A.31) simplifies

o
′(𝑒𝑖 +

∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐 (A.36)

+
𝜎𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖

(

𝑏′
(

𝑒𝑖 + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∩𝑁𝑖

𝑒𝑙
)

− 𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

+ 𝑐
)

≤ 0 .

Suppose next that 𝜌𝑖 > 0 > 𝜎𝑖. To minimize the term in line 1 of
A.31), now, set |𝑅+

𝑖 | = |𝑅𝑖|− |𝑁−
𝑖 |. Regarding the terms in lines 2 and

, note that in all network positions with two neighbors (i.e., the line
enter, the circle, the d-box periphery, or the duo positions of the core),
’s neighbors have no more than one neighbor 𝑙, 𝑙 ∈ 𝑁𝑗∖(𝑁𝑖 ∪ {𝑖}), of
heir own. Remember, moreover that we require |𝑁−

𝑖 | > 0. Because
e have |𝜌𝑖| ≤ |𝜎𝑖| when 𝜌𝑖 > 0 > 𝜎𝑖 and because 𝑏(⋅) is a quadratic

unction, set 𝑒𝑙 = 0, 𝑁+
𝑖 = ∅, and 𝑁−

𝑖 = 𝑁𝑖. Therefore, we get similar to
A.36):

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

− 𝑐
)(

1 − 𝜌𝑖
|𝑅𝑖| − |𝑁𝑖|

|𝑅𝑖|

)

(A.37)

+
𝜎𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖

(

𝑏′
(

𝑒𝑖 + 𝑒𝑗 +
∑

𝑙∈𝑁𝑗∩𝑁𝑖

𝑒𝑙
)

− 𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖

𝑒𝑗
)

+ 𝑐
)

≤ 0 .

hen we now assume that 𝑖 has two neighbors because 𝑖 resides in
he d-box periphery or a core duo position, we get 𝑒𝑗 +

∑

𝑙∈𝑁𝑗∩𝑁𝑖
𝑒𝑙 =

𝑗∈𝑁𝑖
𝑒𝑗 . Hence, (A.36) and (A.37) simplify to the condition (A.34) for

player with a single neighbor. Hence, our lower bound 𝜖𝑖 is given by
A.35).

Assume, next, that 𝑖 is in a line center or circle position. Then,
𝑗 ∩𝑁𝑖 = ∅. Moreover, (A.36) and (A.37) become

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗
)

− 𝑐
)(

1 − 𝜎𝑖 − 𝜌𝑖
|𝑅𝑖|−|𝑁𝑖|

|𝑅𝑖|

)

+ 𝜎𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖
𝑏′
(

𝑒𝑖 + 𝑒𝑗
)

≤ 0 if 𝜌𝑖 > 0
(

𝑏′
(

𝑒𝑖 +
∑

𝑗∈𝑁𝑖
𝑒𝑗
)

− 𝑐
)(

1 − 𝜎𝑖
)

+ 𝜎𝑖
|𝑁𝑖|

∑

𝑗∈𝑁𝑖
𝑏′
(

𝑒𝑖 + 𝑒𝑗
)

≤ 0 if 𝜌𝑖 ≤ 0

(A.38)

Now, because
𝑑𝑒𝑖 <

𝑑𝑓𝑖(𝑒−𝑖) = −1,

𝑑𝑒𝑗 𝑑𝑒𝑗
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decrease ∑

𝑗∈𝑁𝑖
𝑒𝑗 from an initial high level down to the point where

ondition (A.38) is just satisfied with equality, that is, where 𝑒𝑖 = 0.
ur lower bound 𝜖𝑖 is then given by 𝜖𝑖 = 𝑓𝑖(𝑒−𝑖) = 𝑒∗ −

∑

𝑗∈𝑁𝑖
𝑒𝑗 , where

∑

𝑗∈𝑁𝑖
𝑒𝑗 solves

⎧

⎪

⎨

⎪

⎩

(

𝑏′(
∑

𝑗∈𝑁𝑖
𝑒𝑗 ) − 𝑐

)(

1 − 𝜎𝑖 − 𝜌𝑖
|𝑅𝑖|−|𝑁𝑖|

|𝑅𝑖|

)

+ 𝜎𝑖𝑏′
(

∑

𝑗∈𝑁𝑖 𝑒𝑗
|𝑁𝑖|

)

= 0 if 𝜌𝑖 > 0
(

𝑏′(
∑

𝑗∈𝑁𝑖
𝑒𝑗 ) − 𝑐

)(

1 − 𝜎𝑖
)

+ 𝜎𝑖𝑏′
(

∑

𝑗∈𝑁𝑖 𝑒𝑗
|𝑁𝑖|

)

= 0 if 𝜌𝑖 ≤ 0

hen we now make use of the quadratic function nature of 𝑏(⋅), we get

̂𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝜎𝑖((|𝑁𝑖|−1)𝑏′(0)−𝑐)

(|𝑁𝑖|−𝜎𝑖(|𝑁𝑖|−1)−𝜌𝑖
(|𝑅𝑖 |−|𝑁𝑖 |)|𝑁𝑖 |

|𝑅𝑖 |
)(𝑏′(0)−𝑐)

𝑒∗ if 𝜌𝑖 > 0

−𝜎𝑖((|𝑁𝑖|−1)𝑏′(0)−𝑐)
(|𝑁𝑖|−𝜎𝑖(|𝑁𝑖|−1))(𝑏′(0)−𝑐)

𝑒∗ if 𝜌𝑖 ≤ 0 .

(II) deviation-maximizing corner solutions: In a final step, we establish
upper bounds for a deviation-maximizing 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) for the cases where
𝑖(𝜏𝑖, 𝑒−𝑖) involves at least one player 𝑗 in 𝑖’s reference group with
𝑗 (𝑓𝑖(𝜏𝑖, 𝑒−𝑖), 𝑒−𝑖) = 𝜋𝑖(𝑓𝑖(𝜏𝑖, 𝑒−𝑖), 𝑒−𝑖).

We start with the case of a positive deviation, i.e., 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) >
𝑖(𝑒−𝑖). Note that even though 𝑈𝑖(⋅) is not differentiable at 𝑓𝑖(𝜏𝑖, 𝑒−𝑖),
best-response investment must still satisfy for some small ℎ > 0 and

ll 𝑒′𝑖 ∈ (𝑓𝑖(𝜏𝑖, 𝑒−𝑖) − ℎ, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖)):

𝜕𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖)
𝜕𝑒𝑖

≥ 0 . (A.39)

Let us ignore the requirements on 𝑒′𝑖 and 𝑒−𝑖 for a moment that lead
to 𝜋𝑗 (𝑒′𝑖 , 𝑒−𝑖) < (>)𝜋𝑖(𝑒′𝑖 , 𝑒−𝑖) and assume that 𝑅+

𝑖 (𝑒
′
𝑖) = 𝑅+

𝑖 (𝑓𝑖(𝜏𝑖, 𝑒−𝑖)) and
𝑅−
𝑖 (𝑒

′
𝑖) = 𝑅−

𝑖 (𝑓𝑖(𝜏𝑖, 𝑒−𝑖)) for all 𝑒′𝑖 ∈ (𝑓𝑖(𝜏𝑖, 𝑒−𝑖) − ℎ, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖)).34 Then,
the inequality in (A.39) suggests that our upper bound is given by the
(weakly) larger 𝑒𝑖 that satisfies the first-order condition (A.24) for an
interior solution in (IA) with equality. In other words, an upper bound
for a deviation-maximizing corner solution is just given by the upper
bound developed in (IA).

Next, consider the case of a negative deviation, 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) < 𝑓𝑖(𝑒−𝑖).
best-response investment must then satisfy for some small ℎ > 0 and

ll 𝑒′𝑖 ∈ (𝑓𝑖(𝜏𝑖, 𝑒−𝑖), 𝑓𝑖(𝜏𝑖, 𝑒−𝑖) + ℎ):

𝜕𝑈𝑖(𝑒′𝑖 , 𝑒−𝑖)
𝜕𝑒𝑖

≤ 0 . (A.40)

That condition is, however, identical to condition (A.24) in (IB). A
lower bound for a deviation-maximizing corner solution is just the
lower bound of (IB). ■

Appendix B. Experimental appendix

B.1. Alternative refinement concepts

Here, we compare the predictive power of our refined ORE con-
cept with that of several alternative equilibrium refinement concepts.
Table 8 summarizes the predictions of the most relevant concepts:

• Asymptotically stable equilibria based on the idea that, in our
continuous-time experiment, a best-response dynamic leads back
to a stable equilibrium following a single player’s mistake.

• Efficient equilibria rooted in the idea that the participants utilized
the time we gave them to coordinate on a welfare-maximizing
equilibrium.

• Quantal response (logit) equilibria (McKelvey and Palfrey, 1995)
based on the idea that participants played best responses to the
fluctuating choices of their network neighbors.

As demonstrated in Table 8, particularly in Column 3 (𝜒 = 0), the
alternative concepts do not explain our experimental data better than

34 We (implicitly) made this same assumption at several places before.
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Table 8
Frequency of refined equilibria.

Network Equilibrium type Deviation from
payoff-maximizing equilibrium
zero moderate any
(𝜒 = 0) (𝜒 < 3) (any 𝜒)

Dyad equal split 32.1% (S,E,Q,rfd) 45.8% (rfd) 49.2% (rfd)
other 8.8% (S,E) 33.0% 50.8%

Complete equal split 0.8% (S,E,Q,rfd) 0.8% (rfd) 0.8% (rfd)
other 20.8% (S,E) 62.5% 99.2%

Star per-spec. 15.8% (S,Q,rfd) 33.3% (rfd) 62.5% (rfd)
distr.: 𝜋𝑐 ≥ 𝜋𝑗 – – 36.6% (rfd)
cent-sp. or distr. 0% (E) 0.8% 0.8%

Circle specialized 7.5% (S,E,rfd) 15.8% (rfd) 29.2% (rfd)
distributed 3.3% (Q,rfd) 27.5% (rfd) 55.0% (rfd)

Core per-spec. 17.5% (S,Q,rfd) 43.3% (rfd) 68.3% (rfd)
distr.: 𝜋𝑐 ≥ 𝜋𝑗 – – 31.7% (rfd)
cent-sp. or distr. 0% (E) 0% 0%

D-box per-spec. 8.3% (S,E,Q,rfd) 15.0% (rfd) 25.8% (rfd)
distr.: 𝜋𝑐 ≥ 𝜋𝑗 – 1.7% (rfd) 64.2% (rfd)
cent-sp. or distr. 0% (E) 9.2% 10.0%

Line per-spec. 0.8% (S,Q,rfd) 40.1% (rfd) 49.2% (rfd)
distr: 𝜋𝑚 ≥ 𝜋𝑒 8.3% (S,rfd) 13.3% (rfd) 16.7% (rfd)
cent-sp. or distr. 1.6% (S,E) 8.3% 34.1%

Notes: Percentages of (refined) Nash equilibrium profiles at the random round ends.
Refined equilibria are: (Q) quantal response, (S) stable, (E) efficient, (rfd) refined
other-regarding equilibria.

our preferred theory in any network structure. On the contrary, the
efficiency concepts fares worse across all networks, either because it
fails to refine the equilibrium set in certain networks or because it
selects the ‘‘wrong’’ equilibria. The predictive power of efficiency is
particularly low in the star and the core–periphery network, where
it is efficient when the public good is provided by the center player
but where most investments are made in the peripheral positions (see
Table 8).35

Asymptotic stability fares better than efficiency, especially in the
tar, core–periphery, and d-box. Nevertheless, it fails to predict the
mpirically highly relevant equal-split equilibria on the dyad, as all
quilibrium profiles are asymptotically stable on this network.

Only the quantal-response concept comes close to our refined ORE
redictions. As demonstrated by Rosenkranz and Weitzel (2012), the
heory selects a unique Nash equilibrium profile on all the seven
etworks in our experiment when players make marginal decision
rrors. Moreover, the selected equilibria align with our refined ORE
redictions in most of these networks. Yet, quantal-response theory
ends to generate a too fine-grained selection for the circle network,
here it predicts an equal split of twelve units as the only equilibrium
utcome, even though a specialized equilibrium is even more prevalent
n the data. Similarly, on the line network, quantal-response theory
redicts a periphery-specialized equilibrium even though a partially
istributed public good is more frequently observed.

.2. Distribution of social preference types and strengths

Table 9 outlines the results of our classification of each participant’s
𝜌̂𝑖, 𝜎̂𝑖)-pair into its revealed preference type and its revealed preference
trength.

.3. Measurement error in tests of Hypothesis 1

In this appendix, we present the outcomes of our sensitivity checks
or Hypothesis 1, where we introduced measurement error in our social
reference estimates.

35 This is not entirely surprising. As suggested by Charness et al. (2014),
efficiency concerns are particularly powerful in games where equilibrium
outcomes can be Pareto ranked. Such a ranking is, however, not possible in
our game with strategic substitutes.
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Table 9
Revealed preference types and strengths.

Preference type Preference strength
in nested positions in center positions in line middle and circle

any moderate marginal moderate marginal moderate marginal
(any 𝜖𝑖) (𝜖𝑖 < 3) (𝜖𝑖 < 1) (𝜖𝑖 < 3) (𝜖𝑖 < 1) (𝜖𝑖 < 3) (𝜖𝑖 < 1)

altruism 11.7% 11.7% 10.0% 9.2% 2.5% 10.0% 4.2%
social welfare 15.0% 15.0% 14.2% 11.7% 0.8% 10.0% 0.8%
inequity averse 29.2% 29.2% 5.8% 4.2% 0% 12.5% 0%
competitive 10.0% 10.0% 2.5% 2.5% 0% 5.8% 0%
spiteful 23.3% 15.8% 9.2% 10.0% 6.7% 15.0% 6.7%
payoff maximizer 4.2% 4.2% 4.2% 4.2% 4.2% 4.2% 4.2%
asocial 6.7% 6.7% 6.7% 1.7% 0% 1.7% 0%

100.0% 100.0% 47.5% 41.7% 14.2% 62.5% 15.8%

Notes: Categorization of estimated (𝜎̂𝑖 , 𝜌̂𝑖)-pairs into revealed preference types and revealed preference strengths. Insignificant estimates (i.e.,
p-values ≥ 0.05) or estimates with −0.05 ≤ 𝑥 ≤ 0.05 for 𝑥 ∈ {𝜎̂𝑖 , 𝜌̂𝑖} are set to zero because a participant with such a small parameter would
make a decision indistinguishable from a payoff maximizer in our experiment.
The underlying assumption behind all our checks is that our ran-
dom assignment of participants to groups and network positions has
effectively worked so that our preference compatibility indicator is
truly exogenous. Hence, without measurement error, a comparison
between the shares of refined OREs played by groups with compatible
and incompatible social preferences yields an unbiased and consistent
estimate for the true effect of preference compatibility. Denote this
effect as 𝑃 (ref ORE ∣ 𝑐)−𝑃 (ref ORE ∣ 𝑖), where 𝑐 stands for compatible
and 𝑖 for incompatible.

With measurement error, a simple comparison of the shares is
misleading because it is likely that we misclassified several participant
groups as having the right or wrong preference combination for a
certain network. To assess the resulting bias, let 𝑃 (𝑐) and 𝑃 (𝑖) = 1 −
𝑃 (𝑐) denote the likelihoods that a group truly has an (in-)compatible
preference combination. Moreover, let 𝑃 (𝑖|𝑐) and 𝑃 (𝑐|𝑖) denote the
conditional likelihoods of a misclassification, which depend on the
measurement error in our preference estimates. The shares of refined
OREs played by groups with seemingly compatible or incompatible
preferences, 𝑟𝑐 and 𝑟𝑖, were then measuring in expectation:

E[𝑟𝑐] =
𝑃 (ref ORE ∣ 𝑐)𝑃 (𝑐|𝑐)𝑃 (𝑐) + 𝑃 (ref ORE ∣ 𝑖)𝑃 (𝑐|𝑖)𝑃 (𝑖)

𝑃 (𝑐|𝑐)𝑃 (𝑐) + 𝑃 (𝑐|𝑖)𝑃 (𝑖)

E[𝑟𝑖] =
𝑃 (ref ORE ∣ 𝑖)𝑃 (𝑖|𝑖)𝑃 (𝑖) + 𝑃 (ref ORE ∣ 𝑐)𝑃 (𝑖|𝑐)𝑃 (𝑐)

𝑃 (𝑖|𝑖)𝑃 (𝑖) + 𝑃 (𝑖|𝑐)𝑃 (𝑐)
,

where 𝑃 (𝑐|𝑐) = 1 − 𝑃 (𝑖|𝑐) and 𝑃 (𝑖|𝑖) = 1 − 𝑃 (𝑐|𝑖). Thus, it follows from
here that if our theory is correct and 𝑃 (ref ORE ∣ 𝑐) > 𝑃 (ref ORE ∣ 𝑖),
then 𝑟𝑐 − 𝑟𝑖 underestimates the true effect of preference compatibil-
ity (higher type II error). In contrast, if our theory is incorrect and
𝑃 (ref ORE ∣ 𝑐) = 𝑃 (ref ORE ∣ 𝑖), measurement error does not distort
the estimated effect (same type I error).

For our sensitivity checks, we solved the above equation system for
𝑃 (ref ORE ∣ 𝑐) − 𝑃 (ref ORE ∣ 𝑖). We then used the social preference
estimates reviewed in Table 1 of Fehr and Charness (2023) to determine
the likelihoods 𝑃 (𝑐) and 𝑃 (𝑖) for a typical WEIRD student population,
assuming that our own subject pool is a representative sample of this
population.36 Subsequently, we simulated the misclassification proba-
bilities 𝑃 (𝑖|𝑐) and 𝑃 (𝑐|𝑖) based on various assumptions regarding the un-
derlying measurement error at the individual level. In one specification,
we simulated slight measurement error, assuming that an ill-measured
preference type is only one type ‘‘to the right’’ from a participant’s
true preference type on the scale: altruist—social welfare—inequity

36 The estimates in Table 1 of Fehr and Charness (2023) suggest a combined
hare of 40% altruists and social-welfare types, 10% inequity-averse types,
5% payoff maximizers, and 5% competitive and spiteful types. Using the
stimates from Bruhin et al. (2019) in addition, we then parsed the first group
nto 15% altruists and 25% social-welfare types and the last group into 2.5%
25

ompetitive types and 2.5% altruists.
averse—payoff maximizer—competitive—spiteful. This one-sided devi-
ation is motivated by the fact that our own preference estimates suggest
a more ‘‘competitive’’ subject pool than the typical WEIRD student
population. For our second specification, we simulated more significant
measurement error, assuming that an ill-measured type is randomly
drawn from the other five preference types. In both specifications, we
additionally varied the misclassification probabilities 𝑝.

The results of our sensitivity checks are summarized in Table 10.
Columns 2 and 7 reproduce the observed ORE shares (𝑟𝑐 and 𝑟𝑖) for the
four asymmetric networks that lent support to our Hypothesis 1. These
shares were already shown in Table 3. Columns 3–6 and 8–11 then
present the estimated ORE shares, 𝑃 (ref ORE ∣ 𝑐) and 𝑃 (ref ORE ∣ 𝑖),
corrected for measurement error.

Appendix C. Replication instructions

C.1. Experimental design

Our computerized experiment was programmed in z-tree 3.0 (Fis-
chbacher, 2007) and took place at the Experimental Laboratory for
Sociology and Economics (ELSE) at Utrecht University between June
9 and June 18, 2008. We used the ORSEE recruitment system (Greiner,
2015) to invite over 1,000 potential subjects for our study via email.

During the experiment, the participating students played a local
public goods game on the seven networks illustrated in Fig. 1. A total
of eight experimental sessions, each lasting approximately one-and-a-
half hours, were scheduled and successfully completed. On average,
15 students participated in each session, resulting in a total of 120
participants across eight sessions. No student attended more than one
session.

A typical session encompassed seven treatments (networks) with the
treatment-ordering detailed in Table 11. At the commencement of each
session, participants received general instructions, as shown below.
Following the instructions, they played the local public goods game on
each of the seven networks, repeating the same treatment five times in
a row. Each set of five repetitions, referred to as rounds, included one
trial round and four payoff-relevant rounds. To ensure anonymity, all
choices were made in a manner that precluded their association with
individual participants after the rounds or at the end of the experiment.

At the onset of each round, participants were randomly assigned to
new groups, consisting of either one (in the dyad) or three other par-
ticipants (in all other networks). Participants were visually represented
as circles on their computer screens, with self-identification facilitated
by color (see screenshot below for an illustration).

Every round followed the same structure and lasted between 30 and
90 s. Starting from zero investments, participants could freely adjust
their investments by clicking on two buttons at the bottom of their

screens. Full information about the momentary investments of all other
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Table 10
Measurement error in tests of Hypothesis 1.

Error type observed neighbor random observed neighbor random
Error probability refined ORE 0.1 0.3 0.1 0.3 refined ORE 0.1 0.3 0.1 0.3

Groups with Any preference strength (any 𝜖) Moderate preference strength (𝜖 < 3)

Star
Compatible pref. 1.00 1.00 1.00 1.00 1.00 0.16 0.16 0.16 0.16 0.17
Incompatible pref. 0.96 0.96 0.95 0.95 0.93 0.07 0.07 0.06 0.06 0.02
Dyad
Compatible pref. 0.61 0.65 0.79 0.64 0.79 0.58 0.63 0.78 0.61 0.78
Incompatible pref. 0.41 0.41 0.35 0.39 0.24 0.36 0.35 0.29 0.33 0.17
Line
Compatible pref. 0.78 0.79 0.8 0.79 0.84 0.57 0.58 0.60 0.59 0.67
Incompatible pref. 0.70 0.70 0.7 0.70 0.69 0.43 0.43 0.43 0.43 0.41
Core–periphery
Compatible pref. 1.00 1.00 1.00 1.00 1.00 0.35 0.35 0.35 0.35 0.35
Incompatible pref. 0.99 0.99 0.99 0.99 0.99 0.29 0.28 0.27 0.28 0.27

Avg. diff. 0.08 0.10 0.15 0.10 0.20 0.13 0.15 0.21 0.15 0.28

Notes: Observed shares of refined ORE and estimated shares of refined ORE (corrected for measurement error) for the four asymmetric networks
supporting Hypothesis 1. Shares are shown separately for groups with compatible and incompatible social preferences.
Table 11
Order of treatments by session.

Session Ordering Treatment

1 2 3 4 5 6 7

1 1 Dyad Line Star Circle Core D-box Complete
2 2 Complete D-box Core Circle Star Line Dyad
3 3 Dyad Star Line Core Circle D-box Complete
4 4 Complete D-box Circle Core Line Star Dyad
5 3 Dyad Star Line Core Circle D-box Complete
6 2 Complete D-box Core Circle Star Line Dyad
7 1 Dyad Line Star Circle Core D-box Complete
8 4 Complete D-box Circle Core Line Star Dyad

participants was continuously provided and updated five times per
second. Also, the resulting payoffs of all participants were continuously
displayed on their screens. Nevertheless, the actual points earned in a
round were solely determined by the momentary investments of the
players at the random round end, where investments were frozen and
payoffs were counted. These round ends were randomly determined
by the computer through a draw from the uniform distribution on the
interval [30, 90].

Taking the seven treatments together, each participant took part in
35 rounds within 35 distinct groups, of which 28 were payoff-relevant.
At the end of the experiment, the experimental points were converted
into euros at a rate of 400 points = 1 Euro and discretely disbursed
to the participants. In addition, participants received a 3 Euro show-up
fee.

C.2. Experimental instructions

-Instructions- Please read the following instructions carefully. These
instructions state everything you need to know in order to participate
in the experiment. If you have any questions, please raise your hand.
One of the experimenters will approach you to answer your question.
The rules are equal for all the participants.

You can earn money by means of earning points during the experi-
ment. The number of points that you earn depends on your own choices
and the choices of other participants. At the end of the experiment, the
total number of points that you earn will be exchanged at an exchange
rate of:

400 points = 1 Euro

The money you earn will be paid out in cash at the end of the
experiment without other participants being able to see how much you
earned. Further instructions on this will follow in due time. During the
26
Fig. 7.

experiment, you are not allowed to communicate with other partici-
pants. Turn off your mobile phone and put it in your bag. Also, you
may only use the functions on the screen that are necessary for the
functioning of the experiment. Thank you very much.

-Overview of the experiment- The experiment consists of seven scenar-
ios. Each scenario consists again of one trial round and four paid rounds
(altogether 35 rounds, of which 28 are relevant for your earnings).

In all scenarios, you will be grouped with either one or three
other randomly selected participants. At the beginning of each of the
35 rounds, the groups and the positions within the groups will be
randomly changed. The participants that you are grouped within one
round are very likely different participants from those you will be
grouped within the next round. It will not be revealed with whom you
were grouped at any moment during or after the experiment.

The participants in your group (of two or four players, depending
on the scenario) will be shown as circles on the screen (see Fig. 7).
You are displayed as a blue circle, while the other participants are
displayed as black circles. You are always connected to one or more
other participants in your group. These other participants will be called
your neighbors. These connections differ per scenario and are displayed
as lines between the circles on the screen (see also Fig. 7).

Each round lasts between 30 and 90 s. The end will be at an
unknown and random moment in this time interval. During this time
interval, you can earn points by producing know-how, but producing
know-how also costs points. The points you receive in the end depend
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Table 12

Your investment plus 0 1 2 3 4 5 6 7 8 9 10
your neighbors’ investments

Points 0 28 54 78 100 120 138 154 168 180 190
Table 13

Your investment plus 11 12 13 14 15 16 17 18 19 20 21
your neighbors’ investments

Points 198 204 208 210 211 212 213 214 215 216 217
T
T
i
f

on your own investment in know-how and the investments of your
neighbors.

By clicking on one of the two buttons at the bottom of the screen,
you increase or decrease your investment in know-how. At the end of
the round, you receive the amount of points that is shown on the screen
at that moment in time. In other words, your final earnings only depend
on the situation at the end of every round. Note that this end can be at
any time between 30 and 90 s after the round is started, and that this
moment is unknown to everybody. Also, different rounds will not last
equally long.

The points you will receive can be seen as the top number in your
blue circle. The points others will receive are indicated as the top
number in the black circles of others. Next to this, the size of the
circles changes with the points that you and the other participants will
receive: a larger circle means that the particular participant receives
more points. The bottom number in the circles indicates the amount
invested in know-how by the participants in your group.

Remarks.

• It can occur that there is a time-lag between your click and the
changes of the numbers on the screen. One click is enough to
change your investment by one. A subsequent click will not be
effective until the first click is effectuated.

• Therefore wait until your investment in know-how is adapted
before making further changes!

Your earnings- Now we explain how the number of points that you
arn depends on the investments. Read this carefully. Do not worry if
ou find it difficult to grasp immediately. We also present an example
ith calculations below. Next to this, there is a trial round for each

cenario to gain experience with how your investment affects your
oints.

In all scenarios, the points you receive at the end of each round
epend in the same way on two factors:

1. Every unit that you invest in know-how yourself will cost
you 5 points.

2. You earn points for each unit that you invest yourself and
for each unit that your neighbors invest.

If you sum up all units of investment of yourself and your neighbors,
he following table gives you the points that you earn from these
nvestments (See Tables 12 and 13):

The higher the total investments, the lower are the points earned
rom an additional unit of investment. Beyond an investment of 21,
ou earn one extra point for every additional unit invested by you or
ne of your neighbors.

Note: if your and your neighbors’ investments add up to 12 or
ore, earnings increase by less than 5 points for each additional
nit of investment.

Example- Suppose

1. you invest 2 units;
27
2. one of your neighbors invests 3 units and another neighbor
invests 4 units.

hen you have to pay 2 times 5 = 10 points for your own investment.
he investments that you profit from are your own plus your neighbors’

nvestments: 2 + 3 + 4 = 9. In the table, you can see that your earnings
rom this are 180 points. In total, this implies that you receive 180−10 =
170 points if this would be the situation at the end of the round. Fig. 1
shows this example as it would appear on the screen. The investment
of the fourth participant in your group does not affect your earnings. In
the trial round before each of the seven scenarios, you will have time
to get used to how the points you will receive change with investments.

-Scenarios- All rounds are basically the same. The only thing that
changes between scenarios is whether you are in a group of two or four
participants and how participants are connected to each other. Also,
your own position randomly changes within scenarios and between
rounds. We will notify you each time on the screen when a new scenario
and trial round starts. At the top of the screen, you can also see when
you are in a trial round (see top left in Fig. 1). Paying rounds are
just indicated by ‘‘ROUND’’ while trial rounds are indicated by ‘‘TRIAL
ROUND’’.

-Questionnaire- After the 35 rounds, you will be asked to fill in a ques-
tionnaire. Please take your time to fill in this questionnaire accurately.
In the meantime, your earnings will be counted. Please remain seated
until the payment has taken place.
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