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Abstract: In this paper we propose a definition of torsion refined Gopakumar–Vafa
(GV) invariants for Calabi–Yau threefolds with terminal nodal singularities that do not
admit Kähler crepant resolutions. Physically, the refinement takes into account the charge
of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose
a mathematical definition of the invariants in terms of the geometry of all non-Kähler
crepant resolutions taken together. The invariants are encoded in the A-model topological
string partition functions associated to non-commutative (nc) resolutions of the Calabi–
Yau. Our main example will be a singular degeneration of the generic Calabi–Yau double
cover of P

3 and leads to an enumerative interpretation of the topological string partition
function of a hybrid Landau–Ginzburg model. Our results generalize a recent physical
proposal made in the context of torus fibered Calabi–Yau manifolds by one of the authors
and clarify the associated enumerative geometry.
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1. Introduction

Topological string theory describes BPS protected subsectors of Type II string com-
pactifications, as well as of M-theory, F-theory and other string compactifications that
are related via a rich network of dualities [1,2]. The theory is usually studied on gener-
ically smooth families of Calabi–Yau 3-folds with no torsion in their homology and
trivial Neveu–Schwarz B-field background in their large volume limit. Already here the
complexification of the classical Kähler parameter by the B-field in string theory leads
to the notion of string geometry and string theory behaves very differently on singular
geometries than a point particle.

Early examples appear in [3,4], where it was argued solely on the genus zero results
that in the complexified Kähler moduli space one can pass through classically singular
geometries, while the instanton corrected correlation functions determining the effective
action can remain perfectly smooth. In the (2, 2) supersymmetric gauged linear σ model
(GLSM) description of the world-sheet theory, this was explained by a second order phase
transition in which a non-vanishing B field (a Fayet–Iliopoulos term from the GLSM
perspective) protects the correlation function from acquiring singularities [4]. However,
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in these examples the B-field is a continuous parameter and in the large volume limit all
the singularities of the geometry are resolved.

In this paper we study topological strings on singular Calabi–Yau 3-folds X that do
not have a Kähler parameter associated to the resolution of the singularities. Instead the
choice of the corresponding part of the B-field becomes quantized and different values
correspond to distinct large volume limits. The latter are, in general, limiting points
in different moduli spaces and only connected to each other via sequences of conifold
transitions of the Calabi–Yau.1 From a physical perspective, following [6], we will use
mirror symmetry to study the topological string A-model on backgrounds (̂X , [k]), where
̂X is a small2 non-Kähler resolution of a nodal Kähler Calabi–Yau 3-fold and

[k] ∈ Tors H3(̂X ,Z) � ZN , (1.1)

is the cohomology class of a flat but topologically non-trivial B-field on ̂X . In the
following such a B-field will be referred to as fractional. As we will discuss in detail, this
background admits an interpretation in terms of two distinct but closely related notions
of non-commutative resolutions from mathematics, Kuznetsov’s crepant categorical
resolutions (CCR) [7] on the one hand (see e.g. [8] for a review) and van den Bergh’s
non-commutative crepant resolutions (NCCR) [9–11] on the other.

Recently an enumerative interpretation of the A-model topological string partition
function on non-commutative resolutions of certain compact torus fibered Calabi–Yau
threefolds with nodal singularities has been proposed by one of the authors [6]. We
are going to sharpen this proposal, apply it to non-torus fibered Calabi–Yau threefolds
and conjecture a precise mathematical definition of the associated invariants in terms of
twisted derived categories of non-Kähler Calabi–Yau threefolds.

In open string theory, non-commutative geometry generally3 arises in the presence
of a non-vanishing B-field along the worldvolume of a D-brane [15]. If the B-field is
large, the worldvolume theory of a stack of D-branes is governed by non-commutative
Yang–Mills theory [16–18]. On the other hand, in the simplest case of a constant B-field
on flat space, one can show that the commutator of the coordinates xi (τ ) of the open
string boundary takes the form [15,19]

[xi (τ ), x j (τ )] = i Bi j . (1.2)

The algebra (1.2) can be interpreted as defining a deformation of R
n on which the

multiplication in the algebra of functions is replaced by the non-commutative Moyal
star-product [14]. D-branes on the deformed space are represented by complexes of
modules over this non-commutative algebra [20].

The non-commutative description is valid when the B-field is large relative to the
metric [15]. In the extreme case, where the volume of a subspace shrinks to zero but
the B-field is non-vanishing, this leads to the concept of non-commutative resolutions

1 The expectation that such sequences always exist can be seen as a generalization of “Reid’s fantasy” [5],
taking into account the existence of topologically non-trivial B-fields.

2 We will use the terms small- and crepant resolution interchangeably, to refer to a birational resolution
π : ̂X → X of a singular space X that does not affect the canonical class, i.e. K

̂X = π∗K X . Similarly, a
resolution is large if the Kähler class changes.

3 We should also mention the work [12,13] describing spectral triples in conformal field theory, realizing
Connes’s ideas [14] in physics. Furthermore, beyond D-branes, there is also a question of the interpretation
of closed-string sectors.
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of singularities [21–23]. A classical example are compactifications on orbifolds M/�
with discrete torsion [24], classified by

γ ∈ H2 (�,U (1)) . (1.3)

The presence of discrete torsion obstructs the deformation of some of the orbifold sin-
gularities while at the same time it can not be fully resolved via blow-ups. Nevertheless,
the closed string worldsheet theory is regular while the D-branes see a non-commutative
deformation of the singularity [21,25]. One can in this sense say that discrete torsion
“stabilizes” some of the singularities. Moreover, on the smooth locus of M/�, a non-
zero choice of discrete torsion maps to the cohomology class of a flat topologically
non-trivial B-field. This suggests the interpretation of discrete torsion as a fractional
B-field on the entire orbifold M/� [26].

It has already been observed in [24] that orbifolds with discrete torsion can admit
complex structure deformations to Calabi–Yau manifolds X with conifold singularities
that are similarly stabilized due to the presence of a B-field. The corresponding world-
sheet theories can, at least in principle, be interpreted and studied as infrared fixed points
of non-linear sigma models on a large resolution X̃ [27], replacing each node by P

1×P
1.

The large resolution X̃ is not Calabi–Yau but, in the example studied in [27], exhibits
torsional 3-cohomology and therefore supports a fractional B-field.

There also exist analytic small resolutions ̂X that are Calabi–Yau, in the sense that
their first Chern class vanishes, but are not Kähler. The small resolutions have the same
torsion in cohomology as X̃ , thus equally support a fractional B-field, and it has been
suggested that they flow to the same string sigma model [28]. This expectation was
motivated by the observation that for certain examples the category of topological B-
branes on ̂X in the presence of a fractional B-field [k] ∈ H3(̂X ,Z) is derived equivalent
to the category of topological B-branes on some different smooth Calabi–Yau 3-fold Y
without a B-field. Mathematically speaking, this amounts to a so-called twisted derived
equivalence

Db(̂X , [k]) � Db(Y ) , (1.4)

and, at least in all examples that we are aware of, ̂X admits an interpretation as a coarse
moduli space of sheaves on Y [29,30].

The sigma model on (̂X , [k]) is expected to flow to a sigma model on the singular
Calabi–Yau X itself, that is stabilized by a corresponding B-field background. We will
argue that this infrared fixed point can naturally be interpreted as a non-commutative
resolution Xn.c.k of X . Since the non-Kähler volume of the exceptional curves, but
not the B-field holonomy, decouples from the topological A-model, we will usually
not distinguish between (̂X , [k]) and Xn.c.k and call (̂X , [k]) itself a non-commutative
resolution of X . In the absence of a B-field, the decoupling implies that Xn.c.0 = X .
This provides a unified perspective on several mathematically rather different notions of
non-commutative resolutions and in particular suggests a local interpretation in terms
of the non-commutative conifold studied e.g. in [31].

Let us point out that strictly speaking, actual non-commutativity only arises in the
open string sector, although the closed string sector is also non-singular in the presence
of the B-field. We will use the term non-commutative resolution to refer to a singular
Calabi–Yau background with a fractional B-field, independent of the type of strings that
are being considered.
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A first class of examples arises from the IR fixed points of Landau–Ginzburg Z2-
orbifolds with quadratic superpotentials that are fibered over Fano threefolds [32]. These
models naturally correspond to non-commutative resolutions of singular double covers
in terms of sheaves of Clifford algebras on the base which encode the endomorphisms
of 0-branes [33–36], [37, chapter 14]. In mathematics, such non-commutative spaces
appeared in the context of homological projective duality [38,39] and are expected to fit
into the framework of crepant categorical resolutions [40]. Nevertheless, we will argue
that these backgrounds can also be interpreted in terms of small analytic resolutions
̂X with a fractional B-field [1] ∈ H3(̂X ,Z)tors. = Z2 such that (̂X , [1]) � Xn.c.1. A
combinatorial construction of these non-commutative resolutions was developed in [41]
and leads to a rich class of geometries with duals Y that are complete intersections in
toric ambient spaces. More general examples have been obtained from GLSMs with a
non-Abelian gauge group and are twisted derived equivalent to Pfaffian Calabi–Yaus
[42]. We refer to the non-commutative resolutions that arise in this context as being of
Clifford type.

A second class of examples arises in the context of torus fibrations. The elliptic
Jacobian fibration X = J (Y ) that is associated to a smooth genus one fibered Calabi–Yau
3-fold Y without a section is generically singular. However, a small analytic resolution
̂X of X again exhibits torsion 3-cocycles and is twisted derived equivalent to Y [29]. It
was recently discovered that the corresponding non-commutative resolutions Xn.c.k are
also realized as large volume limits in the stringy Kähler moduli spaces of Y and of other
torus fibered Calabi–Yau 3-fold that share the same Jacobian [6]. The torsion that can
arise in these examples is more general and includes cases with Zn for n = 2, . . . , 5.
Moreover, the presence of the singularities as well as of a fractional B-field along the
exceptional curves in ̂X can be explicitly demonstrated using extremal transitions. On
the other hand, finding an explicit realization of the non-commutative resolution in terms
of a sheaf of non-commutative algebras is mostly an open problem and we refer to those
resolutions as being of general type. The only exceptions in this class are given by
certain singular genus one fibrations with a 2-section that, as we discuss in Sect. 6, are
also singular double covers of uniruled threefolds (i.e. P

1 bundles) and admit a Clifford
type non-commutative resolution.

In all of the previously mentioned examples, there is a twisted derived equivalence
between the non-commutative resolution Xn.c.k and some dual smooth Calabi–Yau 3-
fold Y , that is physically realized by brane transport along paths between inequivalent
large volume limits in the stringy Kähler moduli space. This implies that both Xn.c.k and
Y share the same mirror, which itself is in general an ordinary smooth Calabi–Yau. The
usual machinery of mirror symmetry can then be applied to Y and, via analytic contin-
uation, also be used to study topological strings on Xn.c.k [6,43]. In particular, standard
techniques (see e.g. [44–47]) can in principle be used to calculate the A-model topologi-
cal string free energies Fg(t) associated to Xn.c.k as a function of the complexified Kähler
parameters t . However, the question arises if there is an enumerative interpretation for
the coefficients in the instanton expansion.

On an ordinary smooth Calabi–Yau threefold, the GV-GW correspondence relates
the topological string amplitudes, which can mathematically defined as generating func-
tions of rational Gromov–Witten (GW) invariants, to integer Gopakumar–Vafa (GV)
invariants nβg ∈ Z. From a physical perspective, integrality follows from the definition
of GV-invariants as traces of multiplicities of BPS states in a five dimensional M-theory
compactification [48,49]. The invariants depend on the class β ∈ H2(X) of a curve in
the Calabi–Yau, physically corresponding to the electric U (1)b2(X) charge of the BPS
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particles, and the genus g ∈ N, that determines the representation under the M-theory
SU (2)L ⊂ SO(4) little group and is related to the genus of the corresponding topo-
logical string string amplitude. When defined via this correspondence in terms of GW
invariants, it is by now proven that the GV-invariants are indeed integers [50] and further
satisfy the so-called Castelnuovo vanishing condition, which posits the existence of a
function gmax(β) such that nβg = 0 for g > gmax(β) [51]. A mathematical formula for
the GV-invariants for genera that are very close to this Castelnuovo bound was given
in [52] and can be used to explicitly calculate such invariants in many cases. Finding a
general mathematical definition of GV-invariants has proven to be a difficult problem
but significant progress has been made in recent years. In particular, a definition in terms
of the cohomology of a certain perverse sheaf on the moduli space of stable sheaves
supported on a curve was proposed in [53].4

Using duality with F-theory, it was argued in [6] that for a large class of nodal torus
fibered Calabi–Yau threefolds X , the topological string partition function

Z top.,k(t, λ) = exp

⎛

⎝

∞
∑

g=0

λ2g−2 F top.,k
g (t)

⎞

⎠ , (1.5)

on Xn.c.k , where λ is the topological string coupling, encodes torsion refinements nβ,	g of
the usual Gopakumar–Vafa invariants from [48,49]. These integer invariants are labelled
not only by the genus g and a U (1)b2(X) charge β ∈ H2(X,Z), but also by a discrete
charge 	 ∈ {0, . . . , N − 1} under a Tors H3(̂X ,Z) � ZN gauge symmetry which M-
theory develops on the singular Calabi–Yau X . More precisely, it was proposed that the
topological string partition function takes the form

log
[

Z top.,k
(

t, λ
)]

=
∞
∑

g=0

∑

β∈H2(X)

N−1
∑

l=0

∞
∑

m=1

nβ,lg · 1

m

(

2 sin
mλ

2

)2g−2

e2π imlk/N qmβ ,
(1.6)

where qβ = e2π i t ·β . Knowledge of Z top.,k for all k = 0, . . . N − 1 then enables one

to extract the individual integer invariants nβ,lg . By the universal coefficient theorem
Tors H3(̂X ,Z) � Tors H2(̂X ,Z), and the full M-theory charge lattice can be identified
with H2(̂X ,Z). In the ordinary smooth case, k = 0 and the phase is trivial such that (1.6)
reduces to the usual GV-GW correspondence.

Note that the appearance of the fractional B-field as a phase in the Type IIA instan-
ton action was already anticipated in [27], before the discovery of Gopakumar–Vafa
invariants, as well as for the Gopakumar–Vafa expansion on smooth Calabi–Yau 3-folds
with torsion homology [55], but had only been applied in one example to genus zero
Gromov–Witten invariants in the presence of torsion classes on a smooth Calabi–Yau
3-fold [56–58]. On the other hand, torsion-refined Gopakumar–Vafa invariants for many
singular torus-fibered examples have been calculated in [6]. Particularly interesting is
the case N = 5, where Xn.c.k with k = 1, . . . 4 lead to free energies with irrational
coefficients that take values in Q[√5]. Only after the contributions from all the large

4 The consistency of the more general mathematical definition with the formulae of [52] was proven in
[54] for local P

2, but the argument applies more generally.
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volume limits associated to Xn.c.k, k = 0, . . . , 4 are correctly combined one finds inte-
ger invariants nβ,lg . From an M-theory perspective, the phase in (1.6) has recently been
interpreted in terms of a discrete holonomy along the M-theory circle [59].

In this paper, we will propose a mathematical definition of the refined Gopakumar–
Vafa invariants in terms of the derived categories Db(̂X) of any small non-Kähler reso-
lution ̂X . A striking implication will be that the invariants do not capture the geometry
of one particular small non-Kähler resolution but, in a sense that will be made precise,
see all of the possible resolutions simultaneously. We will also derive closed expres-
sions for the constant map contributions to the topological string partition function on
Xn.c.k , using the non-commutative conifold as a local model around the singularities
and specializing the corresponding Donaldson–Thomas partition function from [31] to
fractional values of the B-field.

Our main example will be the singular octic double solid X , a singular Calabi–Yau
double coverof P

3 that is ramified over the vanishing locus of the determinant of an
8 × 8 matrix A8×8(	x) with entries that are linear in the homogeneous coordinates. The
geometry has 84 conifold singularities that do not admit a crepant Kähler resolution.
The dual Calabi–Yau Y = X (1,65)

2222 (1
8) is a complete intersection of four quadrics in

P
7 [30] while the smooth deformation Xdef. = X (1,149)

8 (11114) of X is a generic octic
hypersurface in P(1, 1, 1, 1, 4). A non-commutative resolution Xn.c.1 of X in terms of
a sheaf of Clifford algebras on P

3 was constructed explicitly in [38] and the GLSM
description as well as D0-brane probes were studied in [32,43,60]. We will argue that
Xn.c.1 can be equivalently interpreted in terms of a non-Kähler resolution ̂X of X with
a fractional B-field

[1] ∈ H3(̂X ,Z)tors. � Z2 . (1.7)

We use mirror symmetry and analytic continuation from the large complex structure
limit that is mirror to the dual Calabi–Yau Y to study the topological string A-model on
Xn.c.1. Directly integrating the holomorphic anomaly equations [61] we then calculate
the free energies on Xn.c.1. We then apply the proposal from [6], taking into account the
free energies associated to the smooth deformation Xn.c.0 = Xdef. from [47], to obtain
the Z2 refined Gopakumar–Vafa invariants associated to the singular Calabi–Yau X .
Following the analysis in [47], the usual boundary behaviour of the free energies and the
Castelnuovo vanishing for X (1,65)

2222 (1
8) can be used to fix the holomorphic ambiguity up

to genus 17. However, we find that the Z2-refined GV-invariants also exhibit Castelnuovo
like vanishing and this allows us to explicitly carry out the direct integration and fix the
holomorphic ambiguity, that arises at each genus in the direct integration method, up to
genus 32. In many cases we can calculate the prediction from our proposed enumera-
tive definition of the invariants and find exact agreement with the results from mirror
symmetry.

The outline of the paper is as follows. In Sect. 2 we review the mathematical notions of
non-commutative crepant resolutions and crepant categorical resolutions as well as the
non-commutative conifold. We relate this to our notion of non-commutative resolution
in terms of a fractional B-field and provide an overview of the examples that have
appeared in the literature and that we study in this paper. Section 3 is the heart of the
paper where we discuss the physical notion of torsion refined GV-invariants and propose
a mathematical definition. We also review their relation to the A-model topological string
partition functions on non-commutative resolutions and derive closed expressions for
the constant map contributions. In Sect. 4 we discuss in detail the geometry of our
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main example, the singular octic double solid, a nodal Calabi–Yau double cover of
P

3 that is ramified over a determinantal octic. We also give a brief introduction to the
Brauer group, twisted sheaves and Azumaya algebras and review how a sheaf of non-
commutative algebras arises from a physical perspective, by considering D0-branes
in a hybrid Landau–Ginzburg models with quadratic superpotential. In Sect. 5 we use
mirror symmetry and integrate the holomorphic anomaly equations to calculate Z2-
refined GV-invariants for the singular octic double. We also discuss the behaviour of the
topological B-branes under monodromies and homological projective duality. Section 6
briefly reviews a class of torus fibered examples and also elaborates on the relation of
the fractional B-field to discrete torsion. In Sect. 7 we apply our proposed mathematical
definition of the torsion refined GV-invariants to various examples and find perfect
agreement with the predictions from mirror symmetry. Section 8 outlines open question
that we would like to address in future work.

Some additional aspects are relegated to appendices. “Appendix A” contains the
derivation of the Brauer group for a small analytic resolution of the singular octic double
solid. “Appendix B” summarizes the direct integration procedure and the transformation
of the propagator ambiguities under Kähler transformations. “Appendix C” summarizes
four additional examples that arise as duals of Pfaffian Calabi–Yau threefolds. In “Ap-
pendix D” we list some of the Z2-refined GV-invariants for a torus fibered example.

The torsion refined Gopakumar–Vafa invariants for the singular octic double solid,
as well as the corresponding topological string free energies for the non-commutative
resolution, the generic degree eight hypersurface and the dual complete intersection of
four quadrics are provided online [62].

2. Non-commutative Resolutions and the Conifold

This section has two goals. The first goal is to introduce the various notions of non-
commutative resolution that will appear in this paper. From the mathematical side, the
two relevant notions are non-commutative crepant resolutions (NCCRs) as discussed
in e.g. [10,11,63], and crepant categorical resolutions (CCRs) as discussed in e.g. [7,
38–40,64–69]. In Sect. 2.4 we will then clarify our use of the term non-commutative
resolution as referring to a singular Calabi–Yau with a fractional B-field and also provide
an overview of the different examples that have appeared in the literature and that are
covered by our proposal, some of which we are then studying in more detail in the rest
of the paper.

The second goal is to review how these different notions can be applied to the conifold
singularity

{xy − zw = 0} ⊂ C
4 , (2.1)

and naturally arise from physics. In fact, they are related by a duality and we therefore
collectively refer to them as the non-commutative conifold. However, they are different
from the two ordinary small resolutions A+, A− that are in turn both isomorphic to

O(−1)⊕O(−1)→ P
1 , (2.2)

and related by a flop. As we will argue in Sect. 3.3, the non-commutative conifold appears
to describe the local geometry around non-commutatively resolved nodes in compact
Calabi–Yaus.
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2.1. Non-commutative crepant resolutions. The first type of resolution that we discuss
arises in physics from worldvolume theories of D-branes on singularities that admit a
description in terms of a quiver gauge theory [70]. The nodes of the quiver Q correspond
to factors of the gauge group while arrows encode bi-fundamental matter. The theory is
also equipped with a superpotential W . Vacua of the theory, and therefore stable brane
configurations, correspond to (stable) representations of a certain non-commutative al-
gebra, the Jacobi algebra associated to (Q,W ).

Mathematically, this is a special case of the more general notion of a non-commutative
crepant resolution (NCCR). The mathematical definition in [10] is local and defined for
an affine variety X = Spec(R), where R is a normal Gorenstein domain (which simply
means that X is reduced and irreducible, and has a well-defined canonical bundle K X ):

A non-commutative crepant resolution of R is a homologically homogenous R-
algebra of the form A = EndR(M) where M is a reflexive R-module.

Recall that an R-algebra A is homologically homogeneous if all simple A-modules have
projective dimension n = dim(R) and an R-module M is reflexive if the natural map
M → HomR(HomR(M, R), R) is an isomorphism of R-modules. The first part of the
definition is motivated by the fact that an irreducible algebraic variety is non-singular ex-
actly if the coordinate ring is homologically homogeneous. Similarly, reflexivity should
be thought of as generalizing the notion of crepancy in this context. For introductions
we refer to [10,11,71,72].

In the case of the conifold

{xy − zw = 0} ⊂ C
4 , (2.3)

R = C[x, y, w, z]/(xy − wz) and the NCCR of the conifold is defined by the ring
[10,63]

A = EndR(R ⊕ I ) =
[

R I
I−1 R

]

. (2.4)

This algebra coincides with the Jacobi algebra of a two-node quiver, with (Klebanov-
Witten) superpotential

W = 1

2
εi jεk	Ai Bk A j B	, (2.5)

as in [73, equ’n (17)], and it is in this form that this algebra arises in worldvolumes of
D-branes at conifolds [73].

It was noted by Szendrői in [31] that the NCCR of the conifold is also realized in
the stringy Kähler moduli space of the resolved conifold and that there is a well defined
notion of Donaldson–Thomas invariants as well as a corresponding topological string
partition function. The stringy Kähler moduli space is a three-punctured sphere

MK = P
1\{0, 1,∞} , (2.6)

that is parametrized by z = e2π i t , with t = b + iv being the complexified volume of the
exceptional 2-cycle. The two small projective resolutions A± respectively correspond
to the limits t → ±i∞. At the conifold point t = 0 the exceptional curve has zero
volume and the conifold singularity is restored. However, turning on a non-trivial B-
field t ∈ R�=0 regularizes the string worldsheet theory without affecting the classical
volume.
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The only non-vanishing Gopakumar–Vafa invariants on either resolution A± are
nd=1

g=0 = 1, corresponding to the P
1 base, and the constant map contribution nd=0

g=0 = −2,
given by minus the Euler characteristic of the resolved conifold [74]. The topological
string partition function in the large volume limits Im(t)→ ±i∞ then takes the form

Z A±(t, λ) =
∏

d=0,1

∞
∏

k=1

(

1 − e−kλe±2π idt
)knd

0
, (2.7)

and the Gopakumar–Vafa invariants can be interpreted in terms of Donaldson–Thomas
invariants on A±. However, on the equator Im(t) = 0 the partition function becomes

Z A(t, λ) =
∞
∏

k=1

[

(

1 − e−kλ
)−2 (

1 − e−kλe2π i t
) (

1 − e−kλe−2π i t
)

]k

, (2.8)

and encodes non-commutative Donaldson–Thomas invariants associated to the conifold
quiver, essentially counting semistable representations of the non-commutative algebra
A [31,75]. Formally, the non-commutative partition function Z A appears to count the
compact curves of both A+ and A− simultaneously. Indeed one can check that there
are representations of the algebra which correspond to branes that probe either of the
associated exceptional curves.

There is a natural extension of the notion of a NCCR to compact projective varieties
X . If X admits a projective small resolution, then an NCCR of X exists globally [63].
However, it is not clear whether NCCRs always exist for projective varieties with terminal
singularities. Nevertheless, we will argue in Sect. 3.3 that the non-commutative conifold
is at least a good local model for non-commutative resolutions of certain nodal compact
Calabi–Yau 3-folds.

The relationship of NCCRs to orbifolds with discrete torsion has been discussed in
[23], while a systematic construction of the quiver with potential from matrix factor-
izations of the singularity was described in [76]. For a more detailed discussion of the
non-commutative Donaldson–Thomas invariants of the conifold and other local Calabi–
Yau singularities we refer e.g. to [77] and the references therein.

2.2. Crepant categorical resolutions. The second relevant class of “non-commutative”
resolutions are the categorical resolutions, which we outline next. Examples naturally
arise in physics as infrared fixed points of hybrid gauged linear sigma models, in which
a Landau–Ginzburg Z2-orbifold with quadratic superpotential is fibered over a Fano
threefold base [27,32].

The mathematical definition is slightly more involved. Let X be any singular alge-
braic variety, and let Db(X) be its derived category. We also let Db(X)perf ⊂ Db(X)
denote the subcategory of complexes of sheaves which can be represented by a finite
complex of vector bundles.5 Following [7], a categorical resolution of Db(X) is a smooth
triangulated category D̃ and a pair of adjoint functors

π∗ : D̃ → Db(X), π∗ : Db(X)perf → D̃, (2.9)

π∗ being the left adjoint of π∗, such that the natural adjunction morphism idperf
Db(X)

→
π∗π∗ is an isomorphism of functors. A categorical resolution is crepant if π∗ is also the
right adjoint of π∗.

5 On a smooth variety, Db(X)perf = Db(X) but this is not true for general X .
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The justification for the terminology is that if π : X̃ → X is an ordinary resolution
of singularities, then D = Db(X̃) together with the usual maps π∗, π∗ is a categorical
resolution of Db(X). If π is crepant, then Db(X̃) is a crepant categorical resolution.
A common situation for us is when X has a sheaf C of non-commutative OX -algebras
such that the derived category Db(X, C) of coherent sheaves of C-modules is a crepant
categorical resolution of Db(X).

While there are competing notions of the smoothness of D in the literature, as is
discussed e.g. in [7, Sect. 1], we ignore these issues here and simply assert that the
smoothness condition can be checked whenever we state that we have a crepant cate-
gorical resolution.

It is often difficult to prove that a triangulated category is a crepant categorical reso-
lution, and many of the expected examples are still conjectural. Following [40], in which
it is stated that (X, C) can be thought of as a crepant categorical resolution, we will refer
to this example as a crepant categorical resolution or nc-resolution of X , even though
this has not been proven to our knowledge.

The derived category of an NCCR is conjectured to also be a crepant categorical
resolution. The conjecture is proven if dim X ≤ 3 [11], and therefore holds for the non-
commutative conifold discussed above. We emphasize however, that the crucial feature
for us in a crepant categorical resolution is the category of branes. In principle we could
have the same category of branes corresponding to different nc-resolutions.

Crepant categorical resolutions naturally arise as hybrid phases in GLSMs, see e.g.
[32,42,43,60,78–90], essentially as a prediction of homological projective duality [7,
38–40,64–69]. The basic pattern [32] is that in some GLSMs, one has phases given
by hybrid Landau–Ginzburg models in which, generically on the base B, there is a Z2
one-form symmetry. The presence of such a symmetry implies a decomposition [91]
into two universes, which in this context means that the hybrid Landau–Ginzburg model
RG flows to a double cover, branched over the locus where the Z2 one-form symmetry
is broken.

In such phases, one often finds apparent singularities in the target space while the
GLSM is perfectly regular, as can be verified by the absence of a non-compact Coulomb-
branch. This implies that the CFT in the IR limit is seeing some sort of resolution. A
detailed analysis of the branes in the theory, which can be described as families of
equivariant matrix factorizations over B, demonstrates that they are modules over a
sheaf of Clifford-algebras B on B (of derived automorphisms of D0-branes) [32–36],
[37, chapter 14]. The pair (B,B) then conjecturally defines the categorical resolution.
We will discuss this in greater detail in Sect. 4.6.

2.3. Non-commutative conifolds from GLSMs. Both a crepant categorical resolution as
well as the NCCR of the conifold naturally arise in GLSMs and their equivalence can be
seen as a special case of a Seiberg-like duality [78]. While the former description can be
used to explicitly construct matrix factorizations associated to 0-branes that probe the
exceptional curves from both small resolutions, the relation to the latter demonstrates
the presence of the fractional B-field.

A GLSM that realizes a categorical resolution of the conifold in a hybrid phase has
been described in [78, Sect. 2.4]. Briefly, this is a U (1)GLSM with six fields of charges

p x y a b c
−2 1 1 0 0 0

,
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with superpotential

W = p
(

ax2 + 2cxy + by2
)

. (2.10)

The phase with FI-parameter r  0 describes an ordinary small resolution of the coni-
fold; the r � 0 phase, for the same reasons as in [32], describes a categorical resolution
of a branched double cover of C

3 = Spec C[a, b, c], branched over the locus

{c2 − ab = 0} ⊂ C
3. (2.11)

The hybrid point exhibits a Z2-quantum symmetry that acts by exchanging the two sheets
of the cover. The matrix factorizations that correspond to 0-branes have been analyzed
in [60, Sect. 5.1]. Away from the conifold singularity a = b = c = 0, the branes indeed
see the branched double cover. However, at the singularity itself one can construct two
P

1 families of branes which can be interpreted as 0-branes that probe the exceptional
curves in each of the two small resolutions.

On the other hand, the typical Atiyah flop can be described by a U (1) GLSM with
four fields of charges

x1 x2 x3 x4
−1 −1 1 1

,

and with vanishing superpotential [4, Sect. 5.5]. The complexified Kähler parameter is
not renormalized and can be directly expressed as

t = θ + ir , (2.12)

in terms of the FI-parameter r and the theta angle θ . Following the discussion in Sect. 2.1,
the NCCR of the conifold is realized at the values t ∈ R�=0. It was argued in [78], that the
hybrid phase of the first GLSM corresponds in fact to the value t = 1/2. This can be seen
utilizing a Seiberg-like duality [78, Sect. 4.2]. It also follows by observing that t = 1/2
is the only smooth point with the correct symmetries, namely a Z2 action t → −t which
is identified with the quantum Z2 of the LG orbifold at the r � 0 limit [78, Sect. 2.4].

2.4. Non-commutative resolutions of compact Calabi–Yau. In most of the paper we will
use the term “non-commutative resolution,” as opposed to non-commutative crepant
resolution or crepant categorical resolution, to refer to a Calabi–Yau X with terminal
nodal singularities that is equipped with a fractional B-field, as well as to a small analytic
resolution ̂X of X that carries a lift α ∈ Br(̂X) of that B-field. We expect that a sheaf
of non-commutative algebras on X can be constructed from a pair (̂X , α) and that the
twisted derived categories Db(̂X , α) are examples of crepant categorical resolutions.
Moreover, we will argue that locally around the nodes the geometry is described by a
non-commutative crepant resolution of the conifold. We will discuss several examples
and provide both mathematical and physical evidence for these claims. However, we will
not attempt to make these statements fully precise let alone to prove them in general.

We now give an overview of the different types of geometries and their non-commutative
resolutions that have been studied in the literature and that are covered by our proposal.
In each case, there is associated to a Calabi–Yau threefold X with terminal nodal singu-
larities a set of closely related geometries (Xdef., Xn.c.k,Y ). Their relationship is outlined
in Fig. 1. We distinguish between two classes:
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Fig. 1. The generic relationships between the various geometries that are associated to a Calabi–Yau 3-fold
X with terminal nodal singularities that are resolved by torsion curves in a non-Kähler small resolution ̂X

Clifford type (CT) non-commutative resolutions
The unresolved Calabi–Yau X is a singular double cover over a Fano base B. The non-
commutative resolution can be described in terms of a sheaf S of Clifford algebras on
B. In addition, S is the pushforward to B of a sheaf S̃ of non-commutative algebras on
X . It is expected that the derived category of coherent S-modules (or S̃-modules) is a
crepant categorical resolution of X [40]. Moreover, we expect that the corresponding
torsion in a small analytic resolution is always

H2(̂X ,Z) = H2(X,Z)⊕ Z2 , (2.13)

and there exists a twisted derived equivalence

Db(̂X , α) � Db(Y ) , (2.14)

with some smooth Calabi–Yau 3-fold Y . In many cases the derived equivalence is known
to be an example of homological projective duality [38]. Physically, the large volume
limits associated to (̂X , α) can be realized as infrared fixed points of hybrid gauged
linear sigma models, where a Z2 orbifold of a Landau–Ginzburg model with quadratic
superpotential is fibered over a non-linear sigma model on B [32].

Examples

• Our main example is a singular octic double solid X , i.e. a degenerate double cover
of P

3 [92], and the Clifford nc-resolution was constructed in [39]. This will be studied
in detail in Sects. 4 and 5. The GLSM realization has been constructed in [32] and
the derived equivalence (2.14), where Y is a complete intersection of four quadrics
in P

7, was proven in [30].
• An nc-resolution of a singular double cover of P

1 ×P
2 was constructed in [93]. As

we discuss in Sect. 6, this can also be interpreted as a singular genus one fibration
with a 2-section and an analogous example, where the base is a P

1 fibration over P
2,

has already been studied in detail in [6]. In each case the dual Y is a smooth genus
one fibration over P

2 that is not elliptic but exhibits a 4-section. Another example of
this type corresponds to the nc-resolution of a singular double cover of P

1 ×P
1 ×P

1

and arose in [24] from a deformation of a T 6/Z2 ×Z2 orbifold with discrete torsion.
This example has also been studied using a large resolution in [27] and using the
GLSM realization in [32].

• All of the previous examples are instances of Clifford double mirrors [94]. This is a
combinatorial construction of Clifford nc-resolutions with duals Y that are complete
intersections in toric ambient spaces and provides a rich class of examples.
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• We also consider four hybrid GLSMs with non-Abelian gauge group constructed in
[42]. These are expected to realize nc-resolutions of singular double covers where the
dual Y is not a complete intersection in a toric ambient space, but a Pfaffian Calabi–
Yau 3-fold in a (weighted) projective space. They will be discussed in “Appendix C”.

General type (GT) non-commutative resolutions.
Most of the singular torus fibered examples studied in [6] can not be described as
degenerate double covers over some base. In particular, an explicit non-commutative
resolution is not yet known and can not take the form of a sheaf of Clifford algebras on
some base. Nevertheless, in many cases the existence of a twisted derived equivalence

Db(̂X , α) � Db(Y ) , (2.15)

where the dual Y is a smooth genus one fibered Calabi–Yau 3-fold, has been proven in
[29]. A common example arises when Y does not have a section but only an n-section
and the Jacobian fibration X = J (Y ) has terminal nodal singularities that are resolved
by n-torsion curves in a small non-Kähler resolution ̂X . More generally, the singular
Calabi–Yau X can be a torus fibration that shares the same Jacobian fibration as Y .
The large volume limits associated to (̂X , α) and Y exist in the same stringy Kähler
moduli space. However, from a GLSM perspective the limit associated to (̂X , α) lies on
a singular phase boundary. Nevertheless, topological strings on (̂X , α) can be studied,
for example, using modularity, mirror symmetry and analytic continuation. Examples
with

H2(̂X ,Z) = H2(X,Z)⊕ ZN , (2.16)

for N = 2, . . . , 5 have been studied in [6].

3. Topological Strings on Non-commutative Resolutions

We now turn to the study of general properties of the topological string A-model on non-
commutative resolutions of Kähler Calabi–Yau threefolds with terminal nodal singular-
ities. More precisely, we focus on resolutions that can be obtained, roughly speaking,
by turning on a fractional B-field along torsional curves in a small analytic resolution.

3.1. Discrete symmetries in M-theory on nodal Calabi–Yau threefolds. Let us first spec-
ify our geometric setup. We consider a Kähler Calabi–Yau threefold X with terminal
nodal singularities and denote the number of nodes by ms . Here terminal means that the
singularities do not admit a Kähler resolution that preserves the Calabi–Yau property.
Note that given any nodal Kähler Calabi–Yau threefold we can perform partial small
Kähler resolutions such that the remaining nodes, if they exist, are terminal [95]. Then it
has been shown that X always admits a smooth deformation that we will denote by Xdef.
[96]. Some of the properties of terminal singularities and the related physical aspects
have for example also been discussed in the context of F-theory in [97,98].

Using an analytic change of coordinates, each nodal singularity can be locally identi-
fied with the conifold (2.3). In particular, one can perform analytic blow-ups and resolve
each of the singularities with an exceptional P

1 which, taking into account the local
flops, leads to 2ms different small analytic resolutions. We choose any one of those and
denote it by ̂X . Although ̂X has a vanishing first Chern class it can not, by assumption,
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be Kähler. It can be easily shown using the analysis of Clemens [92] or Werner [99],
that each exceptional curve in ̂X is either trivial or torsion,6

H2(̂X ,Z) = H2(X,Z)⊕ ZN1 ⊕ . . .⊕ ZNl , ZN = Z/NZ , (3.1)

with the torsion subgroup being generated by the exceptional curves. We will focus on
the case

H2(X,Z) = Z
b2(X) , H2(̂X ,Z) = Z

b2(X) ⊕ ZN , (3.2)

but the generalization to multiple discrete subgroups is straightforward. The claim about
the exceptional curves will be explained in an example in Sect. 4.2. The same analysis
can immediately be adapted for the general case.

A typical example where this can arise is the Jacobian fibration X = J (Y ) of a
smooth genus one fibered Calabi–Yau threefold Y that does not admit a section but
only an N -section that intersects the generic fiber N times [29,100]. Based on physical
arguments from F-theory it is then expected that M-theory on X develops a

G5d � U (1)b2(X) × ZN , (3.3)

gauge symmetry, see e.g. [101]. Moreover, this is conjecturally related to the presence of
ZN torsion curves in the small analytic resolution ̂X [102] and motivated the definition
of torsion refined Gopakumar–Vafa invariants in [6]. This is consistent with the math-
ematical results on the Brauer group of ̂X from [29,100]. We will review the physical
definition in Sect. 3.4 and present a proposal for a geometric definition of the torsion
refined invariants in Sect. 3.5.

As we discuss in Sect. 4, another source of examples are Calabi–Yau threefolds that
are double covers of a Fano base B with a ramification locus that itself develops iso-
lated nodal singularities. In the cases that we study in this paper, the homology of the
singular double cover X and the small analytic resolution ̂X are expected to take the
form (3.2) with b2(X) = b2(B) and N = 2. We prove this for our main example, the
determinantal octic double solid. Assuming that the gauge group of the corresponding
M-theory compactification on X is (3.3), we can again physically define torsion refined
Gopakumar–Vafa invariants.

Our successful calculation of the torsion refined invariants in all of these examples
can be seen as a highly non-trivial check of our physical interpretation and leads us to
the following claim:

Claim 1. The gauge group of M-Theory on a nodal Kähler Calabi–Yau threefold X at
a generic point of the Kähler cone is equal to

G5d = Hom
(

H2(̂X ,Z),U (1)
)

, (3.4)

for any small analytic resolution ̂X. Moreover, the electric charge lattice is populated
by M2-branes wrapping curves in H2(̂X ,Z) with either of the two possible orientations,
leading to pairs of states with opposite charges. In particular, given X such that (3.2)
holds the gauge symmetry will be (3.3).

6 (3.1) does not hold as written in complete generality, as H2(X,Z) itself can have torsion, in which case
H2(X,Z) need not be a summand. However, in all of our examples, H2(X,Z) is torsion free and (3.1) is
correct.
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Note that when X is smooth, and therefore X = ̂X , this reduces to the expected
behaviour of M-theory on Calabi–Yau threefolds, see e.g. [103]. On the other hand,
when the exceptional curves are torsion, the fact that M2-branes can wrap curves with
both orientations, leading to charge conjugate pairs, will have the important consequence
that the invariants effectively count curves in all small resolutions simultaneously. This
will be further discussed in Sect. 3.5 and will play an important role in the geometric
verification of the invariants in Sect. 7.

Let us stress that Claim 1 is not only a statement about physics but also suggests
new techniques to calculate Brauer groups of nodal threefolds by using the dictionary
between Higgs transitions in physics and extremal transitions in geometry.

Assuming for simplicity again that the torsion in H2(̂X ,Z) is ZN , note that choosing
a basis of the gauge group (3.4)

G5d � U (1)b2(X) × ZN , (3.5)

induces a corresponding basis of the charge lattice H2(̂X ,Z) � Z
b2(X) × ZN . Taking

into account the orientation, this assigns a pair of ZN charges [±	] for 	 = 0, . . . , �N/2�
to each of the ms exceptional curves on ̂X and we denote the multiplicity of exceptional
curves with charge [±	] by m(±	). In the following we will often implicitly assume that
such a basis has been chosen.

3.2. B-fields in the presence of torsion. The non-canonical choice of basis for the 5-
dimensional gauge group (3.5) is closely related to a similar choice that is necessary to
define the Wilson lines associated to a flat B-field for Type II strings in the presence of
torsion curves.

Let us first consider flat B-fields on an arbitrary manifold X .7 As was pointed out
in [27], and is from a more modern perspective formalized in the language of differen-
tial cohomology [104], flat B-fields correspond to elements of H2(X,U (1)). From the
exponential short exact sequence

0 → Z → R → U (1)→ 0, (3.6)

we get the exact sequence

H2(X,Z)→ H2(X,R)→ H2(X,U (1))
c→ H3(X,Z)→ H3(X,R), (3.7)

so that the image of H2(X,U (1)) in H3(X,Z) is precisely the torsion subgroup H3

(X,Z)tors. Thus H2(X,U (1)) decomposes into cosets of its subgroup H2(X,R)/H2

(X,Z), and these cosets are indexed by H3(X,Z)tors. The trivial coset H2(X,R)/H2

(X,Z) is identified with the space of topologically trivial B-fields, but there are additional
cosets in the presence of torsion. Let us point out here that for simply connected spaces
the universal coefficient theorem implies that

H2(X,Z)tors � H3(X,Z)tors . (3.8)

7 In this subsection only, X will denote a general manifold rather than a nodal Calabi–Yau threefold as
defined in Sect. 3.1.
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Now suppose that X is Calabi–Yau. For each ρ ∈ H3(X,Z)tors we get a distinct large
radius limit as follows. First, we recall the description of the ordinary large radius limit.
The set

K =
{

B + i J | B ∈ H2(X,R)/H2(X,Z), J >> 0
}

, (3.9)

is topologically a punctured polydisc (�∗)r , where r = b2(X). The large radius limit is
the origin of �r .

The situation is almost the same for any ρ ∈ H3(X,Z)tors. The set

Kρ =
{

B + i J | B ∈ H2(X,U (1)), c(B) = ρ, J >> 0
}

, (3.10)

is a principal homogeneous space for K with its natural group structure, so it is iso-
morphic to K. For ρ �= 0, the isomorphism cannot be canonical, simply because if
c(B) = ρ, then B cannot be zero and there is no natural origin. However, Kγ is still
topologically a punctured polydisc (�∗)r , and therefore the corresponding large radius
limit is unambiguously identified with the origin of �r .

To construct an isomorphism between K and Kρ we proceed as follows. For simplic-
ity, we assume that H3(X,Z)tors = ZN and pick any B-field with c(B) = ρ0 of order
N such that ρ = k · ρ0 for some k = 0, . . . , N − 1. Since c(N · B) = 0, the B-field
N · B is a topologically trivial B-field N · B ∈ H2(X,R)/H2(X,Z) � U (1)r . Since
U (1)r is divisible, we can choose B ′ ∈ H2(X,R)/H2(X,Z) with N · B ′ = N · B, and
there are Nr possible choices for such a B ′. Then B0 := B − B ′ satisifies N · B0 = 0
as well as c(B0) = ρ0 and one obtains an isomorphism

K → Kρ = Kk·ρ0 , B + i J �→ k · B0 + B + i J . (3.11)

We will often implicitly assume that a choice of B0 has been fixed and denote the
topological class of a B-field background by a coset [k] ∈ ZN .

The choice of reference B-field B0 is actually equivalent to a splitting of the M-theory
charge lattice H2(X,Z) and correspondingly to a choice of isomorphism (3.5) for the
gauge symmetry. We have the natural cap product pairing

H2(X,U (1))× H2(X,Z)→ U (1) , (3.12)

which computes the holonomy of a B-field around a 2-cycle. We will write this pairing
as 〈B, β〉. Since N · B0 = 0 we have for any curve class β ∈ H2(X,Z) that

〈B0, β〉N = 1 , (3.13)

which implies that 〈B0, β〉 is a kth root of unity. If we have

〈B0, β〉 = e2π i	/N , (3.14)

we say that β lies in ZN -charge sector 	. This induces an isomorphism of the charge
lattice

H2(X,Z) = Z
r ⊕ ZN . (3.15)

In the following we will always assume that a consistent choice has been made and allows
us to freely talk about the charges associated to given curves as well as their Wilson lines
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in a flat B-field background. Note that the above discussion and (3.8) nicely ties together
the roles of torsion in H3(X,Z) and H2(X,Z).

We caution the reader that 〈B, β〉 is usually written in the physics literature as
exp(2π i

∫

β
B). Consistent with this notation, we will refer to B0 as a fractional B-

field, as
∫

β
B0 is fractional for all β, well-defined up to integral shifts. We trust that no

confusion will arise.
The cup product (3.12) leads to a natural generalization of the usual instanton action

that serves as an expansion variable for the A-model topological string free energies
which are generating functions of Gromov–Witten invariants. Given a choice of Kähler
class J ∈ H1,1(X,C) this takes the form

qβ = exp

(

2π i
∫

β

B + i J

)

, β ∈ H2(X,Z) , (3.16)

Thus on any Kρ we have instrinsic expansion variables

qβρ = 〈B, β〉exp

(

−2π
∫

β

J

)

. (3.17)

If we can make sense of Gromov–Witten invariants Nβg for β ∈ H2(X,Z), then it is
natural to define the partition function

Fρ =
∑

Nβg qβρ λ
2g−2 , (3.18)

on Kρ . Using B0 with ρ = k · B0 to identify Kρ and K via (3.11) leads to the expansion

Fρ =
∑

Nβg λ
2g−2〈B0, β〉kqβ . (3.19)

This is essentially the proposal in [27]. Our improvement is that Fρ has been intrinsically
defined in (3.18) as an expansion on Kρ ; (3.19) simply expresses this in a choice of
coordinates.

An important point is that the charge assignments depend on the choice of B0. For
example, suppose that r = 1 and k = 2, so that H2(X,Z) = Z ⊕ Z2 and there are two
possible B0 with c(B0) = 1 and 2B0 = 0. For one choice, (a, b) ∈ Z⊕Z2 has Z2-charge
b. For the other choice, the Z2-charge is a + b mod 2. Neither choice is canonical.

3.3. Fractional B-fields on non-Kähler Calabi–Yau and nc-resolutions. Let us now
come back to a Calabi–Yau threefold X with terminal nodal singularities as considered
in Sect. 3.1. The discussion of the B-field on manifolds with torsion from the previous
section applies with a simple modification also to non-Kähler small resolutions ̂X of X .
Terminality implies that the pullback map H2(X,C)→ H2(̂X ,C) is an isomorphism.
In (3.10) we then simply replace the condition that J is a sufficiently large Kähler class
on ̂X with the condition that J is the pullback of a sufficiently large Kähler class on X .

It was suggested that the small analytic resolution ̂X equipped with a B-field B ∈
H2(̂X ,R)/H2(̂X ,Z) with non-trivial fractional part c(B) ∈ H3(̂X ,Z)tors should be
interpreted as a non-commutative crepant resolution of X [6,27,29,32]. We will now
argue that this can be understood by interpreting the non-commutative conifold discussed
in Sect. 2.1 as a local model.
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Recall that the conifold describes the local geometry around each of the nodal singu-
larities in a compact Calabi–Yau threefold. If such a node can be resolved by performing
a small projective resolution of the entire Calabi–Yau, this opens up a conifold transi-
tion [105,106]. The complexified Kähler parameter of the local conifold then lifts to a
corresponding Kähler parameter

t = b + iv ∈ C/(t ∼ t + 1) , (3.20)

of the resolved Calabi–Yau, where v is the volume of the exceptional curve β and b
measures the Wilson line 〈B, β〉 = e2π ib of the B-field along it.

However, such a projective resolution does not exist for X and, as discussed in
Sect. 3.1, the exceptional curve classes in a small analytic resolution ̂X will be either
homologically trivial or N -torsion for some N > 1. Let us assume again for simplicity
that H2(̂X ,Z)tors � ZN . The choice of a fractional B-field corresponds to an element
[k] ∈ ZN , and according to (3.11) the holonomy of an exceptional curve β is given by

〈k B0, β〉 = e2π ik	/N , (3.21)

where we have chosen a generator B0 such that 〈B0, β〉 = e2π i	/N . Recall that the holon-
omy being restricted to an N -th root of unity is a direct consequence of the curve being
N -torsion. One can in this way say that the complexified “Kähler parameters” (3.20) of
the corresponding local conifolds are not absent but just restricted to take values

t
!= k/N , k ∈ {0, . . . , N − 1} . (3.22)

In particular, they lie on the non-commutative equator of the moduli space (3.20) of
the local conifold. This picture was indeed verified in [6] at the level of the topological
string partition function by studying extremal transitions between torus fibered Calabi–
Yau threefold.

On the other hand, a given non-commutative crepant resolution Xn.c. of X locally in-
duces an nc-resolution of each of the conifold singularities and therefore a corresponding
value (3.22) of the Kähler parameter. This suggests a general correspondence between
non-commutative crepant resolutions of X and flat B-fields on ̂X .

We will provide further evidence for this idea in the derivation of the constant map
contributions to the topological string partition function in Sect. 3.6 and in the examples
studied in later sections.

3.4. Torsion refined Gopakumar–Vafa invariants. In this section we develop the general
physical notion of torsion refined Gopakumar–Vafa invariants associated to a Kähler
Calabi–Yau threefold X with terminal nodal singularities that has first been introduced
in [6]. To streamline the exposition we will again focus on the case (3.2), such that
H2(X,Z) = Z

r and a given small analytic resolution ̂X has

H2(̂X ,Z) = Z
r ⊕ ZN , (3.23)

for some N ∈ N with N ≥ 2. Assuming Claim 1, the M-theory gauge group then takes
the form

G5d = U (1)r × ZN . (3.24)
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As pointed out in [6], the presence of the discrete gauge symmetry does not affect the
usual construction of Gopakumar–Vafa invariants [48,49]. The five-dimensional massive
little group decomposes as

SO(4) = SU (2)L × SU (2)R , (3.25)

and we can denote the multiplicity of BPS particles in the representation
[(

1

2
, 0

)

⊕ 2(0, 0)

]

⊗ ( jL , jR) , (3.26)

that carry a charge β ∈ H2(̂X ,Z) by NβjL , jR
. The torsion refined Gopakumar–Vafa

invariants nβg are then obtained by tracing over the right spins, as usual. More precisely,
using Ig = ([ 1

2 ] + 2[0])g , they are defined by the relation

∞
∑

g=0

nβg Ig =
∑

jL , jR

(−1)2 jR (2 jR + 1)NβjL , jR
· [ jL ] . (3.27)

Using the splitting of the charge lattice (3.23), we also write nβ,lg = n(β
′,l)

g where
β ∈ H2(X,Z) is the image of (β ′, l) under the projection ̂X → X . As will be expanded
upon in Sect. 4.2, the invariants satisfy the reflection identity

nβ,lg = nβ,−l
g . (3.28)

As discussed in the previous sections, Tors H3(̂X ,Z) = ZN and therefore the topo-
logical type of a flat B-field background on the small analytic resolution corresponds to a
choice [k] ∈ ZN with k = 0, . . . N −1. We denote the corresponding string background
by Xn.c.k , referring to the interpretation in terms of a non-commutative resolution, and
the topological string A-model partition function by Z top.,k . Following [6], the torsion
refined GV-invariants are encoded in

log
[

Z top.,k (t, λ)
]

=
∞
∑

g=0

∑

β∈H2(X)

N−1
∑

l=0

∞
∑

m=1

nβ,lg · 1

m

(

2 sin
mλ

2

)2g−2

e2π imlk/N qmβ .
(3.29)

The relation (3.28) implies that Z top.,k = Z top.,N−k . To extract the invariants, one there-
fore needs to know the partition functions Z top.,k for k = 0, . . . , �N/2�.

Given a choice of B-field [k] ∈ ZN , there will in general be exceptional curves
on ̂X that are k′-torsion with k′ | k. The Wilson line along those curves is trivial and
the local conifold picture suggests that Xn.c.k only provides a partial resolution. In other
words, the B-field only stabilizes a subset of the nodes. However, since the corresponding
exceptional curves are trivial or torsion, the results from [107] imply that one can perform
a complex structure deformation Xn.c.k of Xn.c.k that removes all of the “unstable” nodes.
The deformed geometry Xn.c.k is then either smooth—if k = 0—or, more generally,
“fully non-commutatively resolved.”

Since the topological string A-model is not sensitive to complex structure defor-
mations, we use the topological string partition function on Xn.c.k to define Z top.,k . In
particular, we use the smooth deformation Xdef. of X to define Z top.,N = Z top.,0. A less
trivial example of this behaviour can be found in the context of genus one fibrations with
4-sections discussed in [6], see also Sect. 6. We always assume that such a deformation
exists.
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3.5. Gopakumar–Vafa invariants from non-Kähler small resolutions. We now propose
a mathematical definition of the torsion refined Gopakumar–Vafa invariants. Let X be a
Calabi–Yau threefold with only terminal conifold singularities and therefore no Kähler
small resolution. Let S be the set of all small resolutions ̂X of X . Then Br(̂X) is indepen-
dent of ̂X ∈ S (a stronger statement is proven in the projective case in [108, Corollary
5.2.6]). We assume that Br(̂X) � H3(̂X)tors, which is part of Conjecture 1 below. Let
α ∈ Br(̂X), and let Kα be the corresponding component of the Kähler moduli space.

Fixing X̂ ∈ S, we let Coh≤1(̂X) ⊂ Coh(̂X) denote the subcategory of coherent
sheaves on ̂X supported in dimension at most 1. We also fix an α-twisted vector bundle
E on X̂ , leading to an embedding

Db(̂X) ⊂ Db(̂X , α), F• �→ F• ⊗ E . (3.30)

By restriction, we get an embedding of Coh≤1(̂X) in Db(̂X , α).
If ̂X ′ ∈ S, we let � = ̂X ×X ×̂X ′ ⊂ ̂X × ̂X ′ be the closure of the graph of the

natural birational isomorphism between them, giving rise to a derived equivalence ψ :
Db(̂X)→ Db(̂X ′) defined by the Fourier-Mukai transform with kernel O� . Using these
derived equivalences, all of the categories Coh≤1(̂X ′) are identified with subcategories
of the fixed category Db(̂X , α). Thus the union ∪

̂X ′∈SCoh≤1(̂X ′) is a well-defined
subcategory of Db(̂X , α). We emphasize that Db(̂X , α) is independent of ̂X ∈ S up to
equivalence, and so the category ∪

̂X ′∈SCoh≤1(̂X ′) is well-defined up to equivalence.

Conjecture 1. 1. The natural inclusion Br(̂X) ↪→ H3(̂X)tors is an isomorphism.
2. Db(̂X , α) supports Bridgeland stability conditions that are parametrized by Kα .
3. Among these Bridgeland stability conditions are some whose hearts contain

⋃

̂X ′∈S
Coh≤1(̂X

′).

4. On each Coh≤1(̂X), the Bridgeland stability condition coincides with Gieseker sta-
bility.

Fixing any ̂X ∈ S, we have a support map
⋃

̂X ′∈S
Coh≤1(̂X

′)→ H2(̂X ,Z). (3.31)

Let� be the image of this map, consisting of the union of all effective curve classes of all
small resolutions.8 For β ∈ �, we want to define the Gopakumar–Vafa invariants nβg (X).
Before defining these invariants, we recall some of the ingredients of the mathematical
definition of the Gopakumar–Vafa invariants in the smooth projective case, following
[53].

Note that here we associated the torsion refined Gopakumar–Vafa invariants directly
to the singular Calabi–Yau X . This is natural from a physical perspective, since, as we
discussed above, M-theory on X itself is expected to develop a discrete gauge symmetry
and in particular doesn’t see the non-commutative resolutions that are related to the pres-
ence of a B-field in Type IIA string theory. However, the reader who is more comfortable
with defining the invariants on a smooth space can equivalently replace X with the set of

8 The definition of � is independent of the choice of ̂X ∈ S up to isomorphism.
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all its small analytic resolutions ̂X or even with a non-commutative resolution (̂X , α),
in which case the invariants will not depend on the choice of α.

For any smooth projective Calabi–Yau threefold Y , we let β ∈ H2(Y,Z) and let
Mβ(Y ) be the moduli space of stable sheaves F on Y of dimension 1 with support class
β and χ(F) = 1. We let Chow(β) be the Chow variety of 1-dimensional cycles (formal
Z-linear combinations of irreducible curves) on Y . There is a natural support map

πβ : Mβ(Y )→ Chow(β). (3.32)

In [49], Mβ(Y ) is the space of D2-D0 branes and Chow(β) is the space of curves.
The little group SU (2)L × SU (2)R of M-theory compactified on Y is identified with
the Lefschetz SU (2)L action on the cohomology of the fibers of πβ and the Lefschetz
SU (2)R-action on the cohomology of Chow(β). While it may be tempting to package
both SU (2) actions in terms of the sheaf R(πβ)∗C on Chow(β), whose generic stalks
are the cohomologies of the fibers, this approach does not work. Instead, we have to
use perverse sheaves and perverse cohomology. See [53] for the mathematical details,
or [109] for a summary exposition written for physicists.

For this reason, we rewrite the GV invariant of Y as

nβg (Y ) = ng(Mβ(Y )), (3.33)

in recognition of the central role of Mβ(Y ) in the definition of nβg . It should be noted that
two important ingredients are suppressed from the notation: the Chow variety Chow(β),
and a certain perverse sheaf of vanishing cycles on Mβ(Y ). Modulo important technical

details and caveats associated with the map πβ and the Chow variety, we think of nβg
being an invariant of Mβ(Y ).

We can now define

nβg (X) = ng

⎛

⎝

⋃

̂X ′∈S
(Mβ(̂X

′)

⎞

⎠ , (3.34)

In other words, we replace Mβ(Y ) in (3.33) with the union
⋃

̂X ′∈S(Mβ(̂X ′)) of the
moduli spaces of sheaves on small resolutions ̂X . Via the canonical derived equivalences
between each of the small resolutions, we can view the union as a moduli space of objects
in the derived category of any one small resolution. The meaning of the right-hand side
of (3.34) is the application of the method of [53] to the morphism from this union to a
corresponding union of Chow varieties.

A definition of the form (3.34) does not make sense when X has a projective (Kähler)
small resolution, because in that situation the D2-brane charge of an exceptional curve
changes sign under a flop and so we can’t have a single Bridgeland stability condition
containing the structure sheaf of a curve and its flop. However, from results [110, cor.
B.1] for the behavior of Gopakumar–Vafa invariants under conifold transitions, if we
add all the Gopakumar–Vafa invariants in each of the charge sectors, one recovers the
Gopakumar–Vafa invariants of the generic smoothing Xdef..

In the case of a torsion exceptional curve of charge k the flopped curve has charge
−k. While there is still a sign change, a torsion class cannot affect the central charge
and there is no contradiction.

In our examples, for̂X , ̂X ′ ∈ S, the corresponding moduli spaces Mβ(̂X) and Mβ(̂X ′)
are either identified by the derived equivalence or are disjoint. It follows that nβg (X) can
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be computed as a sum of nβg (̂X) for a set of representative small resolutions ̂X . We will
see many example calculations in Sect. 7, where we will find perfect match with the
B-model.

Returning for simplicity to the situation where H2(̂X ,Z) � Z
r ⊕ZN and expressing

classes in H2(̂X ,Z) as a pair (β, 	) ∈ Z
r ⊕ZN , the GV invariants nβ,	g defined as above

simultaneously generate the N partition functions Z top.,k(t, λ) as expressed in (3.29).
We anticipate that there is an analogue of Donaldson–Thomas invariants of ideal

sheaves in this context. The natural definition would involve D6-D2-D0-branes on nc-
resolutions with 1 unit of D6-brane charge. Then for each Xn.c.,k, we would expect an
MNOP-type relationship between these DT invariants and the GV invariants. However,
given an analytic subspace Z ⊂ ̂X of dimension at most one, the ideal sheaf IZ ,̂X is not
an α-twisted sheaf, so it is not clear at present how to describe these DT invariants in
terms of the Db(̂X , α). This complication is the reason why we focus on GV invariants
in this paper, since the Brauer class does not complicate matters for sheaves of dimension
at most 1.

3.6. Constant map contributions on nc-resolutions. We will now discuss the contribu-
tion of constant maps to the free energies of the topological A-model on Xn.c.k . On a
smooth Calabi–Yau threefold Y , these are the contributions to the free energies that arise
from maps of the worldsheet to a generic point. In the context of the non-commutative
resolutions that we consider, the contribution from maps to the singularities of X will
be modified.

Following our discussion in Sect. 3.3, we expect that the effect can be understood
by replacing the nodal singularities with non-commutative conifolds. At the level of
Gopakumar–Vafa/Donaldson–Thomas invariants we therefore propose that the shift
from each such replacement is captured by Szendröi’s partition function (2.8) [31],
evaluated at rational values of the complexified Kähler parameter. This leads to closed
expressions for the constant map contributions that we verify later in concrete examples.

Let us start by considering the genus zero free energy on a smooth Calabi–Yau
threefold Y with complex Kähler parameters t i . As will be further discussed in Sect. 5,
special geometry applies by mirror symmetry and the prepotential or genus zero free
energy is

F0 = −κi jk

6
t i t j t k − σi j

2
t i t j + γ j t

j

+
ζ(3)

(2π i)3
χ

2
− 1

(2π i)3
∑

β∈H2(Y )

n0
βLi3

(

qβ
)

.
(3.35)

Here κi jk = Di · D j · Dk is the triple intersection on Y , γ j = c2(T Y ) · D j/24 and
up to an integral symplectic transformation one can chose σi j/2 = κi i j mod 2. Since
ζ(3) = Li3(1), one can interpret the constant part in (3.35) as the contribution from
constant maps of the worldsheet into the Calabi–Yau [61]. In general, the Gopakumar–
Vafa invariant nC

g associated to an irreducible rational curve C is given by

nC
g = (−1)dχ(M) , (3.36)

where M is the moduli space of C and d = dim(M) [52]. The moduli space of such
maps is the Calabi–Yau Y itself and therefore the Euler characteristic of the moduli
space is χ = χ(Y ).
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However, this raises the question why the contribution to (3.35) isχ/2 and not−χ . To
avoid this subletly, one can instead consider the Donaldson–Thomas partition function
[111]. Up to a change of variables, this only differs from the topological string partition
function in that the constant map contributions are weighted with −χ instead of χ/2.

The constant term in the higher genus free energies takes the form

Fconst.
(g≥2) = (−1)g−1 B2g B2g−2

2g(2g − 2) [(2g − 2)!]
χ

2
. (3.37)

The coefficient of −χ/2 can be interpreted as the limit q → 1 of

∞
∑

m=1

1

m

qm

(

2 sin
(mλ

2

))2

= λ−2 · Li3(q) +
∞
∑

g=1

λ2g−2 (−1)g−1 B2g

2g [(2g − 2)!]Li3−2g(q) ,

(3.38)

by performing ζ -function regularization using Lis(1) = ζ(s), valid only for Re(s) > 1,
and analytically continuing to

ζ(3 − 2g) = − B2g−2

2g − 2
, g ≥ 2 . (3.39)

Again we see that formally identifying the genus 0 degree 0 Gopakumar–Vafa invariant
with −χ/2 reproduces the correct result (3.37).

How does this change in the presence of the singularities that are non-commutatively
resolved? The correction to the constant map contributions on X comes from the excep-
tional curves on ̂X . As discussed in Sect. 3.3, Xn.c.k corresponds to a choice of B-field
on ̂X such that the action of a worldsheet instanton wrapped on an exceptional curve β
with charge 	 is given by (3.14)

〈k · B0, β〉 = e2π ik	/N . (3.40)

We denote the number of exceptional curve with ZN charge 	 again by m(±	). Keeping
in mind the factor 1/2 between the constant map contributions to Ztop. and ZDT, we
expect that

log(Z top.,k)
∣

∣

const. = log(Z top.,0)
∣

∣

const. −
1

2

�N/2�
∑

l=1

m(±	) log
[

ZDT,A(k	/N , λ)
]

,

where Z top.,0 is the topological string partition function associated to the smooth defor-
mation Xdef. of X and ZDT,A(t, λ) is the Donaldson–Thomas partition function (2.8) of
the non-commutative conifold.

Let us simplify this expression for the case N = 2 that is the main interest in this
paper. Smoothness of Xn.c.,1 requires that m(0) = 0, i.e. there are no exceptional curves
on ̂X that are homologically trivial. Then all exceptional curves are 2-torsion and the
total number of nodes is ms = m(±1). One can rewrite the Donaldson–Thomas partition
function (2.8) of the non-commutative conifold as

log
[

ZDT,A(b, λ)
] =

∞
∑

m=1

1

m

e2π imb − 2 + e−2π imb

(

2 sin
(mλ

2

))2 . (3.41)
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Together with (3.38) and the relations

Li3(−1) = −3

4
ζ(3) , Li3−2g(−1) = 1 − 22g−2

2g − 2
B2g−2 , (3.42)

as well as χ(̂X) = χ(Xdef.) + 2ms , one obtains the expressions

Fconst.
(g) (Xn.c.,1)

=
⎧

⎨

⎩

ζ(3)
(2π i)3

(

χ(̂X)
2 + 3

4 ms

)

for g = 0 ,

(−1)g−1 B2g B2g−2
2g(2g−2)[(2g−2)!]

(

χ(̂X)
2 + (1 − 22g−2)ms

)

for g ≥ 2 .

(3.43)

Note that the identities (3.42) hold without any regularization. As will be discussed in
Sect. 5, we obtain the free energies for the nc-resolution of the singular octic double
cover by integrating the holomorphic anomaly equations up to genus g = 32 and verify
that (3.43) indeed holds.

4. The Octic Double Solid

Double covers of P
3 branched over degree 8 hypersurfaces were studied in [92], where

they were called octic double solids. In this section, we apply the ideas discussed earlier
in the paper to a particular octic double solid X with terminal conifold singularities.

In Sect. 4.1 we discuss the geometry of the singular Calabi–Yau X , which has no
Kähler small resolutions. In Sect. 4.2 we discuss non-Kähler small resolutions of X ,
which we denote by ̂X . In Sects. 4.3 and 4.4 we give some background on spinor sheaves
and on the Brauer group. Both of which will be used in Sect. 4.5 where we review the
derived equivalence between Db(̂X , α) and Db(Y ), where α ∈ Br(̂X) and the smooth
dual Calabi–Yau threefold Y is a complete intersection of four quadrics in P

7. In Sect. 4.6
we describe an nc resolution of X , denoted Xn.c., and its physical realization via a GLSM.
The GLSM implicitly provides a derived equivalence between Db(Xn.c.) and Db(Y ) and
suggests the relation of Xn.c. and (̂X , α) under renormalization group flow. Later in the
paper we will discuss curve-counting in this model, first using mirror symmetry in Sect. 5,
and then, in Sect. 7, we verify some of our results directly in the A-model geometry.

4.1. The singular double cover X of P
3. A generic degree eight hypersurface in the

weighted projective space P11114 is a smooth Calabi–Yau threefold Xdef.. Denoting the
homogeneous coordinates by [x1 : x2 : x3 : x4 : w], the defining equation can always
be brought into the form

w2 = p8(x1, x2, x3, x4) , (4.1)

where p8(x1, . . . , x4) is a homogeneous polynomial of degree eight. This makes it
obvious that Xdef. is a double cover of P

3, which is ramified over the degree eight
hypersurface

Sram. = {p8(x1, . . . , x4) = 0} ⊂ P
3 . (4.2)

For general p8, Xdef. is a smooth octic double solid.
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All deformations of Xdef. arise as deformations of the weight 8 hypersurface [112],
so we can complete the square to put the equation in the form (4.1) and count parameters.
Substracting the 16 parameters of a general linear transformation on the homogeneous
coordinates on P

3 from the 165 monomials of degree eight in four variables leaves
h2,1 = 149 independent complex structure deformations. The only divisor on Xdef. is
induced from the ambient space such that h1,1 = 1 and therefore χ = −296.

We are interested in the sublocus of the complex structure moduli space where

p8(x1, . . . , x4) = det A8×8(x1, . . . , x4) , (4.3)

and A8×8 is a symmetric 8×8 matrix with entries linear in x1, . . . , x4. The ramification
locus then has ordinary double points (ODPs), that is nodal singularities, where the
corank of the matrix is greater than one. We denote the corresponding singular Calabi–
Yau by X .

In local analytic coordinates (x, y, z) on P
3 near one of the A1 singularities, we can

write p8 as x2 + y2 + z2, so (4.1) takes the form

w2 = x2 + y2 + z2 , (4.4)

and we see that X has conifold points over the A1 singularities and is smooth elsewhere.
Since X is obtained from Xdef. up to homotopy by contracting S3’s to the conifolds, we
have [92]

H2(X,Z) = H2(Xdef.,Z) = Z . (4.5)

In general, if A is a symmetric n × n matrix with entries that are sections of a line
bundle L on some compact oriented manifold, the class of the locus where the corank
is at least r is given by [113]

[det A] =
(

r−1
∏

k=0

(

n + k
r − k

)

/

(

2k + 1
k

)

)

c1(L)

(

r + 1
2

)

. (4.6)

Applied to A8×8, this implies the ramification locus has ns = 84 nodes. It is also easy to
determine the number of complex structure deformations that preserve the singularities.
To this end one notes that one can use a generic matrix S ∈ SL(8,C) and transform

A8×8 → Sᵀ A8×8S , (4.7)

without affecting p8(x1, . . . , x4). Taking into account the toric automorphisms, this
leaves

ncplx. = 144 − 63 − 16 = 65 , (4.8)

deformations in the subspace of the complex structure moduli space where the ramifi-
cation locus is of the form (4.3).

We digress for a moment to consider generalities. Let M be any moduli space of hy-
persurfaces of any dimension, and letMn ⊂ M be the closure of the set of hypersurfaces
with n nodes and no other singularities. Then the codimension of Mn in M is at most
n, as the condition on the coefficients for the hypersurface to have a node is given by the
vanishing of a single resultant. Returning to our example, since h2,1(Xdef.) = 149 while
the singular X has 65 complex moduli, we see that the 84 nodes collectively impose the
maximum number 84 of independent conditions.
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4.2. Small analytic resolutions. A bit more generally, let X be any octic double solid
with a set S of conifold points and otherwise smooth. Let Z

S be the free abelian group
generated by S. Let ̂X be an analytic small resolution of X , with the exceptional curve
C p � P

1 ⊂ ̂X corresponding to the conifold point p. Such resolutions always exist
[92], and have trivial K

̂X .
Since X can be obtained from ̂X up to homotopy by gluing the boundary of a 3-disk

to C p, we have an exact sequence [92]

0 → H3(̂X ,Z)→ H3(X,Z)
k→ Z

S α→ H2(̂X ,Z)→ H2(X,Z)→ 0, (4.9)

where α(p) = [C p]. We also have the isomorphism

H4(̂X ,Z) � H4(X,Z), (4.10)

or equivalently by, Poincaré duality,

H2(̂X ,Z) � H2(X,Z). (4.11)

Since H2(X,Z) is known to be generated by the pullback of the hyperplane class of P
3,

it follows that H2(̂X ,Z) is generated by the pullback of the hyperplane class of P
3 as

well.
Let n = |S| be the number of conifold points and let δ = n − rank(k) be the corank

of k (called the defect in [92]). We have the relation between the homology of ̂X and
Xdef. (see also [99]):

b3(̂X) = b3(Xdef.)− 2n + 2δ. (4.12)

Stated differently, the exceptional curves in ̂X that resolve the n nodes are bounding
n − δ independent 3-chains. After shrinking the curves, the 3-chains become 3-cycles
that contribute n− δ complex structure deformations to h2,1(Xdef.). Taking into account
also the complex conjugate classes - and therefore the orientation reversed cycles - one
obtains (4.12). This is the well-known conifold transition described e.g. in [105,114,115]

In our situation of the determinantal octic, it was computed that δ = 0 [116]. Therefore
Z

S/Im(k) is a finite abelian group and we have a short exact sequence

0 → Z
S/Im(k)→ H2(̂X ,Z)→ H2(X,Z) = Z → 0. (4.13)

This sequence identifies Z
S/Im(k) with the torsion subgroup of H2(̂X ,Z). Since each

[C p] is in this subgroup, it is a torsion class (possibly trivial a priori). In particular ̂X
is not Kähler, since

∫

C p
ω would be strictly positive for a Kähler form ω, but vanishes

since [C p] is torsion.
We also have Z

S/Im(k) � Z2, as will be shown in “Appendix A”, using an argument
outlined for us by N. Addington. Thus

H2(̂X ,Z) � Z ⊕ Z2 . (4.14)

It will be important to note that while the Z2 torsion subgroup of H2(̂X ,Z) is canonical,
the splitting in (4.14) is not canonical.

We now claim that each exceptional curve C p represents the nontrivial torsion class.
Since the {[C p]} generate the Z2 torsion subgroup, at least one of the [C p] is the nontrivial
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class. We then see that all [C p] are nontrivial by a monodromy argument. We consider
the space of pairs

I = {(p, A) | rank(A(p)) = 6} , (4.15)

where A is an 8 × 8 symmetric matrix of linear forms on P
3. Fixing A, if (p, A) ∈ I

then p can only be one of the 84 nodes, so I is an 84-sheeted cover of the space of
symmetric 8 × 8 matrices A. However, if we project I to P

3 by sending (p, A) to p,
then all fibers are isomorphic to the determinantal variety in the space of symmetric
8 × 8 matrices defined by the vanishing of the 7 × 7 minors. This space is well-known
to be irreducible (for example the proof in [117, Chapter II.2] is readily adapted from
the context of general matrices to symmetric matrices). It follows that I is irreducible.
Thus each of the 84 exceptional curves C p are related by monodromy, so none of the
[C p] can vanish.

We can now explain the reflection identity (3.28). We consider the moduli space M
of determinantal octic double solids and its 284-sheeted cover ˜M of small resolutions
̂X . In the absence of any obvious way to choose a distinguished proper subset of these
small resolutions over the entire moduli space M, we anticipate that M is connected.
As a consequence, any exceptional curve C p would be connected by monodromy to
its flopped exceptional curve C ′

p. Continuing to identify the cohomologies of the small
resolutions as we have been doing, we have [C ′

p] = −[C p], so its Z2 charge changes
sign. The degree β of a curve is independent of the choice of small resolution, so is
a monodromy invariant. The reflection identity (3.28) follows immediately from the
deformation invariance of GV invariants.

While this argument has been provided specifically for the determinantal octic double
solid, it readily adapts for all examples with terminal nodal singularities, by arguing that
any of these small resolutions are deformation equivalent to one of their flops.

4.3. Spinor sheaves. Our matrix A8×8(x1, x2, x3, x4) can be viewed as a family of sym-
metric 8 × 8 matrices (up to scalar multiplication) parametrized by (x1, . . . , x4) ∈ P

3.
Equivalently, this data can be interpreted as a linear system Q of quadric hypersurfaces in
P

7, or quadratic forms on C
8 (up to scalar multiplication), parametrized by P

3. The base
locus of this linear system is a complete intersection Y of four quadric hypersurfaces in
P

7, a familiar example of a Calabi–Yau threefold with h1,1 = 1. We also naturally get a
sheaf of Clifford algebras over P

3.
Fix p ∈ P

3 and let Q p ⊂ P
7 be the associated quadric hypersurface and Clp the as-

sociated Clifford algebra with 8 generators. Letw1, w2, w3, w4 be a basis for a subspace
W which is isotropic for the quadratic form, or, equivalently, P

3 � P(W ) ⊂ Q p ⊂ P
7.

Consider the left ideal in Clp,

I = Clp · w1w2w3w4 , (4.16)

which is seen to only depend on W = span(wi ) since W is isotropic. The Z2-grading
Clp = Cl0p ⊕ Cl1p determines a Z2 grading I = Ieven ⊕ Iodd. Both Ieven and Iodd are
Cl0p-modules.

Identifying P
7 with the Grassmannian G(1, 8), the bundle OP7(−1) is identified with

the universal subbundle of the trivial bundle P
7×C

8 on P
7. Therefore, left multiplication

by elements of C
8 acting on I can be interpreted as a mapping of vector bundles on P

7,

φ : OP7(−1)⊗ Iodd → OP7 ⊗ Ieven . (4.17)
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The spinor sheaf S associated to W is the cokernel of φ,

S = coker(φ) , (4.18)

and is supported on Q p.
If the quadratic form has rank 8, so that Q p is smooth, then there are two connected

families of P
3’s contained in Q p. The isomorphism class of the spinor sheaf associated

to the P
3 only depends on which of the two families the P

3 is contained in [30]. Thus
there are two spinor sheaves supported on Q p.

If the quadratic form has rank 7, then the family of P
3’s contained in Q p is connected,

and there is only one spinor sheaf supported on Q p [30].
The situation is more interesting if the quadratic form has rank 6, so that Sing(Q p) =

L � P
1. In this case, Q p can be described as the cone over a smooth Q′

p ⊂ P
5 with

vertex L .
Now pick a point p ∈ L and a P

2 � P ⊂ Q′
p. Then p and P span a 3-plane in Q p

and therefore determine a spinor sheaf. It is shown in [30] that these spinor sheaves only
depend on the point p and the family of P

2’s on Q′
p that P belongs to (there are two

such families) [30]. Thus the set of spinor sheaves supported on Q p is a disjoint union
of two P

1’s.
In summary, the set of spinor sheaves is set-theoretically the singular octic double

solid X , with each conifold replaced by two P
1’s.9

The spinor sheaves on the Q p can all be restricted to the base locus Y . If we make a
choice ̂X of small resolution (so we are choosing one of the two P

1s at each conifold),
then these spinor sheaves on Y fit into a reasonably nice family of sheaves parametrized
by ̂X . If there were a universal sheaf on ̂X × Y , it could be used to construct a Fourier-
Mukai transform from Db(X) to Db(Y ). While there is no universal sheaf, there is a
universal twisted sheaf E , with twisting determined by a Brauer class α ∈ Br(̂X).

The construction of the universal twisted sheaf in [30] relies on the construction
of families of 4-dimensional isotropic subspaces, locally defined over ̂X . The space of
such isotropic subspaces forms an OGr+(4, 8)-bundle over ̂X .10 The Brauer class α is
the obstruction to finding a rational section of this OGr+(4, 8)-bundle. The Brauer class
α is nontrivial, as the discussion in [30] makes it clear that there is no rational section.

We digress to quickly review Brauer groups and twisted sheaves before completing
the description of the derived equivalence of [30].

4.4. The Brauer group and twisted sheaves. The Brauer group Br(X) of a complex
manifold X is generated by projective bundles or Azumaya algebras. Here we outline
the description in terms of projective bundles. The description in terms of Azumaya
algebras is similar.

Let P → X be a P
r−1 bundle. We choose an open cover {Uα} over which P restricts

to a trivial bundle:

φα : P|Uα � Uα × P
r−1 . (4.19)

9 This set is not an algebraic variety. To obtain a good moduli space, we need a notion of stability. If we
choose Gieseker stability, it can be seen that the spinor sheaves corresponding to either P

1 are all S-equivalent
and therefore get blown back down to the conifold point. So the moduli space of Gieseker stable sheaves up
to S-equvalence is the singular octic double solid X , and the moduli space is not a resolution of singularities.

10 This is clear away from the exceptional curves. We will explore a finer analysis over the exceptional
curves in “Appendix A”, where we give an equivalent formulation of the Brauer class.
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Since Aut(Pr−1) � PGL(r), the automorphismφβ◦φ−1
α of (Uα∩Uβ)×P

r−1 determines
a map

ψαβ : Uα ∩ Uβ → PGL(r) . (4.20)

Since ψαγ = ψαβ ◦ψβγ , the ψαβ determine a cohomology class ψ ∈ H1(X,PGL(r)),
where with some abuse of notation PGL(r) denotes the sheaf of holomorphic PGL(r)-
valued functions.

Letting μr denote the sheaf of r th roots of unity, we infer from the exact sequence

0 → μr → GL(r)→ PGL(r)→ 0,

a coboundary map

H1(X,PGL(r))→ H2(X, μr ),

which can be followed by the map H2(X, μr )→ H2(X,O∗
X ) induced from the inclusion

μr ↪→ O∗
X to yield a map

H1(X,PGL(r))→ H2(X,O∗
X ) . (4.21)

Since the group H2(X, μr ) is r -torsion, the image of ψ under (4.21) is also r -torsion.
Grothendieck asked if every torsion class in H2(X,O∗

X ) is in the image of (4.21) for
some r . This is proven for algebraic varieties in [118], but we have to say a bit more
in our sitution since a small resolution ̂X of the determinantal octic double is not even
Kähler.

We return to the non-algebraic situation momentarily after providing some clarifica-
tion. We note that the group H2(X,O∗

X )tors is called the cohomological Brauer group,
which is clearly represented by projective bundles. We do not need the formal definition
of Br(X), but the result of [118] as stated there is that a natural map

Br(X)→ H2(X,O∗
X )tors , (4.22)

is an isomorphism. If an element of Br(X) is represented by a projective bundle, then
its image via (4.22) is identified with the image of the projective bundle via (4.21).

In the general context of complex manifolds X , the natural map (4.22) is at least an
inclusion [119]. From the exact sequence

0 → Z → OX → O∗
X → 0 , (4.23)

we get maps

H2(X,OX )→ H2(X,O∗
X )→ H3(X,Z)→ H3(X,OX ) . (4.24)

If H2(X,OX ) = 0, which holds for a Calabi–Yau threefold, we deduce that

H2(X,O∗
X )tors � H3(X,Z)tors . (4.25)

This isomorphism holds for a small resolution of the octic double solid as well by
[119, Proposition 1.1] since H2(̂X ,Z) � Pic(̂X), as H2(̂X ,Z) is generated by the
pullback of OP3(1). Continuing with a small resolution of the octic double solid, we
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show in “Appendix A” that Z2 ⊂ Br(̂X) and H3(̂X ,Z)tors � Z2. It follows that we also
have

Br(̂X) � H2(̂X ,O∗̂
X
)tors � H3(̂X ,Z)tors (4.26)

in this case.
We say a few words here about Azumaya algebras. Briefly, an Azumaya algebra is

a bundle of r × r matrix algebras Mr×r . Since Aut(Mr×r ) � PGL(r) by conjugation,
the subsequent analysis coincides with what was written above starting with projective
bundles. Said differently, there is a 1-1 correspondence between projective bundles and
Azumaya algebras up to isomorphism.

We now describe twisted sheaves, which are determined by a class c ∈ H2(X,O∗
X ).

Choose a Čech cocycle cηθι ∈ Z2({Uη},O∗
X ) representing c.

A c-twisted sheaf F is a collection of sheaves Fη on each Uη together with isomor-
phisms

φηθ : Fη|Uη∩Uθ � Fθ |Uη∩Uθ

such that the isomorphism φ−1
ηι ◦ φθι ◦ φηθ is multiplication by cηθι. The categories

of c-twisted sheaves determined by different representative cocycles cηθι and c′ηθι are
readily checked to be equivalent.

A twisted sheaf F is called a twisted bundle if each Fη is a vector bundle. It is
straightforward to check that nonzero c-twisted bundles exist only if c ∈ H2(X,O∗

X ) is
torsion. For this reason, we only consider twisted sheaves associated to Brauer classes
α ∈ Br(X), where the twisting class associated to α is determined by (4.22). In prac-
tice, c can arise physically from a flat topologically nontrivial B-field, as illustrated in
equation (3.7), and D-branes in such a background are well-known to be described by
sheaves of modules over Azumaya algebras, see e.g. [20].

Associated to the category of twisted sheaves we obtain the derived category of α-
twisted sheaves Db(̂X , α), which is the category of topological B-branes in the presence
of the B-field.

4.5. The derived equivalence. We can finally describe the derived equivalence Db(̂X , α) ∼=
Db(Y ) of [30]. Recall that ̂X parametrizes certain spinor sheaves on Y . It was shown in
[30] that ̂X can be covered by open subsets Uη with the property that the spinor sheaves
parametrized by Uη ⊂ ̂X have a universal sheaf Eη on Uη × Y . These locally defined
universal sheaves cannot be glued to a sheaf on ̂X × Y , but they can be glued to form an
α-twisted sheaf on ̂X × Y , with twisting associated to a Brauer class α ∈ Br(̂X).

Then it is shown that the Fourier-Mukai transform with kernel E is a derived equiv-
alence

Db(̂X , α) = Db(Y ) . (4.27)

Furthermore, it is shown in [39] that we have a derived equivalence

Db(P3,B) = Db(Y ), (4.28)

where B is a certain sheaf of non-commutative algebras on P
3. This is an example of

homological projective duality.
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Together, (4.27) and (4.28) imply that Db(̂X , α) = Db(P3,B). The derived category
Db(P3,B) of modules over B is expected to be an example of a categorical resolution
of X [40]. As we will discuss in the next section, both (P3,B) and (̂X , α) naturally
arise from the same hybrid phase in a gauged linear sigma model. This motivates our
interpretation of the pair (̂X , α) as a non-commutative resolution Xn.c. of X .

Before that, let us briefly turn to the torsion refined GV invariants of X , which we
understand geometrically as 1-dimensional sheaves ofB-modules on P

3, or equivalently,
as 1-dimensional sheaves of C-modules on X . The crucial point is that spinor sheaves
are described in terms of modules over the even parts of Clifford algebras, which is
precisely the same thing as a 0-dimensional B-module.

Roughly speaking,11 the analysis of Sect. 4.3 shows that 1-dimensional sheaves on
̂X correspond to 1-parameter families of spinor sheaves on Y . However, the discussion
in Sect. 4.3 also makes clear that, since our objective is to compute the torsion refined
GV invariants of X , we have to use all spinor sheaves, hence all small resolutions of
X . This discussion provides justification for the proposal of Sect. 3.5 in the case of the
singular octic double solid.

4.6. The nc-resolution and its physical realization. As mentioned above, a categorical
resolution of the singular octic double solid X was constructed by Kuznetsov in the
context of homological projective duality [7,39] and is given by a sheaf of Clifford
algebrasB on P

3. Away from the nodes, this is equivalent to a sheaf of Azumaya algebras
on the singular double cover itself [39]. Sheaves of Azumaya algebras on the other hand
exactly correspond to the non-commutative deformations of the structure sheaf in the
presence of a non-trivial flat B-field in string theory [23].

The nc resolution of the octic double solid also emerges as a phase of a gauged linear
sigma model, as discussed in [32,43,60], and which we review in this section.

Consider a GLSM describing the complete intersection Y . This GLSM has gauge
group G = U (1) and four chiral fields pi , i = 1, . . . , 4, of charge −2 as well as eight
chiral fields x j , j = 1, . . . , 8 of charge 1. The Fayet–Iliopoulos parameter r can be
combined with the theta angle θ into the complex parameter

t = θ

2π
+ ir . (4.29)

A generic superpotential takes the form

W = pi Qi (x1, . . . , x8) = 	x ᵀ A8×8(p)	x , (4.30)

where Qi, i=1,...,4 are sufficiently generic quadratic homogeneous polynomials in x j=1,...,8
and one can choose respective R-charges −2 and 0 for the fields pi and x j such that W
carries the required R-charge −2. The F-term equations then read

∂pi W = 0 , i = 1, . . . , 4 , ∂x j W = 0 , j = 1, . . . , 8 , (4.31)

while the D-term equation is given by

8
∑

j=1

|x j |2 − 2
4
∑

i=1

|pi |2 = r . (4.32)

11 After all, on an ordinary variety, a sheaf on a curve has more information than a 1-parameter family of
points. For instance, the sheaf could depend on a choice of line bundle supported on the curve.
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In the phase r  0, the D-term equation (4.32) requires that at least one of the x j
is non-vanishing. If the superpotential is sufficiently generic, the F-term equations can
only be solved if all p-fields vanish simultaneously. Identifying vacua that are related
by the U (1) gauge transformation, one finds that the theory flows to a non-linear sigma
model on the intersection of four quadrics

Y = {Q1 = · · · = Q4 = 0} ⊂ P
7 . (4.33)

On the other hand, solving the F- and D-term equations simultaneously in the phase
r � 0 forces us to set x j = 0, j = 1, . . . , 8 while the p-fields become homogeneous
coordinates on a P

3. The x j become sections of the fractional bundle OP3
(− 1

2

)

and the
GLSM flows to a Z2 quotient of a Landau–Ginzburg theory with quadratic superpotential
that is fibered over a P

3. Phases corresponding to fibrations of Landau–Ginzburg models
over some non-trivial base space are usually referred to as hybrid phases.

We can analyze this hybrid model locally over the space of 	p’s in a Born-Oppenheimer
approximation. At generic points, the superpotential (4.30) is determined by the a mass
matrix A8×8(p) for the fields 	x . At low energies, one then generically has a U (1) gauge
theory with only fields of charge −2, and so there is a trivially-acting Z2 subgroup
of the gauged U (1), meaning a global BZ2 one-form symmetry. This is the setup for
decomposition [91], hence such a theory is equivalent (locally in Born-Oppenheimer) to
a disjoint union of |Ẑ2| = 2 theories, each a copy of the space of 	p’s, which gives us a
double cover structure. Over the locus where the mass matrix develops a zero eigenvalue,
the one-form symmetry disappears, and the two sheets of the cover collide. Furthermore,
one can show [32, Sect. 2.3] that due to Berry phases, monodromies around the branch
loci result in interchanging the sheets.

The resulting structure is, for the most part, a branched double cover of P
3 (the space

of 	p’s), branched over the locus

{det A8×8(p) = 0} ⊂ P
3, (4.34)

where the mass matrix has zero eigenvalues. However, there is a slight complication in
this description. The branch locus consists generically of points describing quadrics in
P

7 (defined by the superpotential) with a corank 1 degeneration. Within the branch loci
are nongeneric points where the quadrics defined by the superpotential have a corank 2
degeneration. Geometrically, these points represent singularities of the branched double
cover.

Physically, however, the GLSM remains regular even at the points where the branched
double cover is singular. A physical GLSM singularity would manifest itself as an
unbounded direction in the solutions to the F-terms, which we can write as

∑

j

Ai j
8×8(p)x j = 0,

∑

i j

xi
∂Ai j

8×8

∂pk
x j = 0. (4.35)

Solving the first equation requires that 	x is a zero eigenvector of the mass matrix A,
consistent with the geometrical observation that singularities of the branched double
cover can only arise along the branch locus. However, the remaining equations then
only have the trivial solution 	x = 0, assuming that the quadrics are generic.

This mismatch between singularities in geometry and physics is interpreted in terms
of a non-commutative resolution. We can see that structure by examining the D-branes
in this theory. The GLSM is a hybrid model, fibered over P

3, in which the fibers are
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(orbifolds of) Landau–Ginzburg models with quadratic superpotentials. As explained in
[32, Sect. 2.6.2], see also [60], taking into account the orbifold, the topological B-branes
are elements of the derived category of modules over a sheaf B on P

3 of even parts of
Clifford algebras, defined by the quadratic form implicit in the superpotential.

Let us walk through this in more detail. Consider a hybrid Landau–Ginzburg model on
the total space of an even-rank12 vector bundle E → G, whereG is a Z2 gerbe over a space
B, and E is not a pullback from a bundle on B, and work locally in a Born-Oppenheimer
approximation. Suppose each fiber of the hybrid model is a Landau–Ginzburg model
on13 [V/Z2], where V = C

n and Z2 acts by sign flips, with superpotential

W =
∑

i j

Ai j (p)φiφ j , (4.36)

as in [60, Sect. 4.2.1], where the φi span C
n , and p is a local coordinate on the base

space B. In general, the B-branes are modules over the sheaf of automorphisms of 0-
branes. From [32–36], [37, chapter 14], as this is a quadratic superpotential over any
point on the base B, the sheaf of automorphisms B of 0-branes is expected to be a sheaf
of even parts of Clifford algebras, which we will identify with the sheaf defining the
categorical resolution. We can therefore obtain categorical resolutions from this class of
hybrid Landau–Ginzburg models.

The 0-branes themselves in these hybrid Landau–Ginzburg models are quasi-
isomorphism classes of ‘point-like’ matrix factorizations, as described in [60, Sect. 3.3].
Globally, from the structure of the superpotential (4.36), we can describe the 0-branes
by particularly degenerate matrix factorizations, namely skyscraper sheaves supported
at the origin, as observed in [60]. Let S denote the torsion sheaf ι∗OG , supported14 along
the zero section of the bundle E → G. The local15 automorphisms of S, whose graded
components are the sheaves Extk(S,S), have the form16 (see e.g. [120, Appendix A])

Extk(S,S) ∼= ∧k NG/E
∼= ∧k E |G, (4.37)

12 As noted in [32,78], one only gets a branched double cover in the case that the rank is even.
13 In [60], the convention is to work with Landau–Ginzburg models on [Cn+1/Z2], so n shifts by one.
14 In principle, one should specify a Z2-equivariant structure on the sheaf to uniquely identify it; however,

that structure will cancel out when we compute automorphisms momentarily.
15 We can understand the global structure as follows. Let V be our 8-dimensional vector space and Q ∈

H0(P3, S2(V )∗⊗O
P3 (1)) the family of quadrics on P

3. The claim is, that a sheaf of modules over Kuznetsov’s

sheaf of algebras is equivalent to ordinary sheaves S0 and S1 on P
3, together with maps of sheaves

V ⊗ S0 → S1, V ⊗ S1 → S0 ⊗O
P3 (1).

Interpreting these maps as operations v· from S0 to S1 and from S1 to S0 ⊗ O
P3 (1), these are required to

have the property that (v·)2 : Si → Si ⊗ O(1) is just multiplication by Q(v) for i = 0, 1 and any v ∈ V .
If the Si are skyscraper sheaves at a point p, then over the fiber, this is just the same as an ordinary matrix
factorization for Q(p). In this language, there is a natural auto-equivalence T : (S0, S1) �→ (S1, S0 ⊗O(1))
with a natural definition of v· on S1 and S0 ⊗ O(1) induced from the given actions on S0, S1. Then T 2 is
visibly just tensoring S0 and S1 with O(1).

16 The reader may find it helpful to compare the structure in a single fiber. There, the D0-brane is a skyscraper
sheaf at the origin of a vector space V = C

n , for which

Extk
(Op,Op

) ∼= ∧k V .
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and so we see that the sheaf of automorphisms of the sheafS of D0-branes has associated
graded algebra,17

⊕k Extk(S,S) ∼= ⊕k ∧k E |G . (4.38)

Only the even degree components are relevant, and they descend to a sheaf on B:∧2k E =
p∗ ∧2k Ẽ , for p : G → B the projection and Ẽ → B a vector bundle on B. This gives
the associated graded Bag of the sheaf B over B which is the analogue of the structure
sheaf for the categorical crepant resolution, explicitly

Bag = ⊕k ∧2k Ẽ, (4.39)

which we have now explicitly identified with the associated graded of the sheaf of
automorphisms of the sheaf of 0-branes (in passing, since the associated graded loses
information about the multiplication, we emphasize that (4.39) only determines B up to
an isomorphism of sheaves of OX -modules, not up to an isomorphism of OX -algebras).

Returning to the example of the GLSM for the octic double solid, the r � 0 limit
is a hybrid Landau–Ginzburg model, defined by a superpotential over the total space
of the vector bundle E = O(−1/2)⊕8 → P

3[2,2,2,2], where P
3[2,2,2,2] is a weighted

projective stack (weighted projective space with non-minimal weights). Here, ∧2k E =
p∗ ∧2k V ⊗ O(−k) for V = C

8, where p : P
3[2,2,2,2] → P

3 is the projection. Thus,
following the analysis above for this case, the sheaf of automorphisms of 0-branes is

B = ⊕k ∧2k V ⊗O(−k) −→ P
3, (4.40)

which has the same OP3 -module structure as the sheaf of Clifford algebras defining the
nc resolution, as given in [39].

This structure (P3,B) was used in [39] to define a non-commutative resolution of
the branched double cover, related to the complete intersection of four quadrics in P

7 by
homological projective duality [38], which in physics is now believed to relate phases
of gauged linear sigma models. It was also observed in [39] that the center of B is

Z(B) = O ⊕
(

∧8V ⊗O(−4)
)

� O ⊕O(−4), (4.41)

where the non-obvious multiplication O(−4)⊗O(−4)→ O is given as multiplication
by det(A). Since X = SpecP3(O ⊕ O(−4)), we see that we have an nc sheaf C on X
such that

B = π∗C, (4.42)

where π : X → P
3 is the double cover. The sheaf C is a sheaf of Azumaya algebras on

the complement of the conifolds in X . This is consistent in physics with the presence
of a flat topologically-nontrivial B field, corresponding to an element of the Brauer
group, as we discussed in Sect. 4.4. The reader should also note that the GLSM for the
nc resolution is in a different component of the moduli space than the GLSM for the
singular octic double solid, by virtue of nontriviality of the Brauer group.

From the GLSM perspective, the interpretation in terms of a fractional B-field on X
also arises explicitly after applying a Seiberg-like duality, as has been shown in [78].
The discussion is similar to the one that we reviewed in the context of the conifold in
Sect. 2.3 and we refer to [78] for details on the compact case.

17 From [121, prop. 1.2] the exterior algebra is an associated graded algebra of the Clifford algebra.
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5. The Predictions from the Topological B-model

In Sect. 3 we have discussed the torsion refined Gopakumar–Vafa invariants and general
properties of the topological string A-model on non-commutative resolutions of compact
Calabi–Yau threefolds. We will now use mirror symmetry and the holomorphic anomaly
equations to explicitly calculate the free energies for the non-commutative resolution
Xn.c. of the singular octic double solid X introduced in Sect. 4 and, combining this with
the information from the corresponding free energies of the generic smooth octic double
solid Xdef. = X (1,149)

8 (11114), extract the torsion refined Gopakumar–Vafa invariants.
We will see that, in addition to the constant map contributions derived in Sect. 3.6, the
torsion refined Gopakumar–Vafa invariants exhibit a Castelnuovo-like vanishing that
allows us to perform the direct integration of the holomorphic anomaly equations and
fix the holomorphic ambiguities for the free energies of Xn.c. and the dual Calabi–Yau
Y = X (1,65)

2222 (1
8) up to genus g = 32.

5.1. Mirror symmetry and special geometry. We first review the situation for a smooth
compact Calabi–Yau threefold Y with mirror Y̌ . The coefficients in the defining equations
of Y̌ give rise to h2,1(Y̌ ) algebraic coordinates z on the complex structure moduli space.
We can then calculate

Z(z, λ) = exp

⎛

⎝

∑

g=0

λ2g−2 Fg(z)

⎞

⎠ , (5.1)

perturbatively with B-model techniques, at least up to some maximal genus, and use
mirror symmetry to obtain the A-model free energies that, in the so-called holomorphic
limit, are generating functions of the enumerative invariants associated to Y .

Due to special geometry, the genus zero generating function F0(z) is expressible
in terms of the periods ��(z) = ∫

�
�(z) of the holomorphic (3, 0)-form � on Y̌

over an integral symplectic basis of three cycles {�} = {AI , BJ } ∈ H3(Y̌z,Z), with

I, J = 0, . . . , h2,1(Y̌z). The latter are covariantly constant with respect to the flat Gauss–
Manin connection, or, equivalently, in the kernel of the Picard–Fuchs differential ideal
{Dz} of the family in an integral monodromy basis (of course up to Sp(b3(Y̌z),Z)

transformations). The locus where the periods develop singularities is given by the
vanishing locus of the discriminant polynomial �(z).

The corresponding period vector takes the form

�(z)T = (FJ ,X
I ) =

(∫

BJ

�(z),
∫

AI
�(z)

)

, (5.2)

and by the local Torelli theorem the XI (z) can be used as homogeneous coordinates on
M(Y̌ ). The moduli space is Kähler and the Kähler potential can be expressed as

e−K = i
∫

Y̌z

� ∧ �̄ = �†�� = i(XI F̄I − X̄IFI ) , (5.3)

with the corresponding Weil-Petersson metric Gi j̄ = ∂i ∂̄j̄K (z).
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We define Ci =
∫

Y̌z
�∂i�, so that the 3-point functions are Ci jk(z) = �T�∂i∂ j∂k�,

where � is the symplectic intersection matrix and ∂i = ∂/∂zi with i = 1, . . . h2,1(Y̌ ).
The Ci jk(z) are rational functions in the algebraic coordinates z. On the other hand, Ci
and Ci j vanish due to Griffiths transversality, which together with the existence of the
unique (3, 0)-form is the origin of special geometry [122], and this implies that there is
a so-called prepotential

F0(z) = 1

2
(XIFI ), (5.4)

homogeneous of degree two in X, such that FI = ∂I F0 with ∂I = ∂/∂XI .
Note that the definition of K implies that � and therefore XI as well as FI are

sections of the Kähler line bundle L−1, while F0 is a section18 of L−2, and from
the definition of the 3-point functions it follows that they are holomorphic sections
of L−2 ⊗ Sym3(T ∗M(Y̌ )). Similarly Cik

j̄ ≡ e2K C̄ī k̄j̄Gı̄i Gk̄k are sections of L2 ⊗
Sym2(TM(Y̌ ))⊗ T ∗M(Y̌ )).

Let Vj j̄ be a section of T ∗M(Y̌ )⊗T ∗M(Y̌ )⊗Lm⊗L̄n . Then the covariant derivatives
with respect to the Christoffel connection�l

i j associated to the Weil-Petersson metric and

the connection ∂i K on the Kähler line bundle, are Di Vj j̄ = ∂i V j j̄ − �l
i j Vl j̄ − mKi Vj j̄

and Dı̄ Vj j̄ = ∂̄ı̄ V j j̄ − �l̄
ī j̄

V j l̄ − nKı̄ Vj j̄ with Kı̄ = ∂̄ı̄ K and Kı̄ = ∂̄ı̄ K . Griffiths

tranversality, the Tian-Todorov theorem and the definition of e−K imply that χi ≡
Di� span H2,1(Y̌ ). Hence V = (�, χi , χ̄ī , �̄) spans H3(Y̌ ), respecting its Hodge
decomposition⊕3

i=1 H3−i,i (Y̌ ). Then with the above and the definition of Ci jk it follows
that

Di

⎛

⎜

⎝

V0
Vj
Vj̄
V̄0

⎞

⎟

⎠ =

⎛

⎜

⎜

⎝

0 δik 0 0
0 0 −ieK Ci jk Gkk̄ 0
0 0 0 Gi j̄
0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎝

V0
Vk
Vk̄
V̄0

⎞

⎟

⎠ , (5.5)

and therefore

[Di , Dj̄ ] k
l = −R k

i j̄ l = ∂j̄�k
il = δk

l Gi j̄ + δk
i Gl j̄ − Ckm

j̄ Cilm . (5.6)

To make contact with the topological string A-model on Y , and extract the enu-
merative information from the Fg(z), we also need the inhomogenous coordinates
ta(z) = Xa/X0. Again by the local Torelli theorem, for a suitable choice of the symplec-
tic frame of A- and B-cycles, the map from the algebraic to the inhomogenous coordinates
is locally invertible, up to multi coverings choices, and referred to as the local mirror map.
By picking a Kähler gauge one introduces the Kähler weight zero generating function
F(t) = F0/(X

0)2[z(t)] in the inhomogeneous coordinates. One then calculates �T =
X0(2F−ta∂aF , ∂aF , 1, ta) and in this gauge Cabc = −∂a∂b∂cF . Knowing the solution
in this gauge, one can form the period vectorV = (2F−tc∂cF , ∂ j (2F−tc∂cF), t j , 1)T

18 One says a section of Lm has Kähler weight m.
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and with V j = Vb3(Y̌ )/2+ j , V0 = Vb3(Y̌ )
one concludes

∂i

⎛

⎜

⎜

⎝

V0
V j

V j

V0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 δik 0 0
0 0 Ci jk 0
0 0 0 δ

j
i

0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

V0
Vk

Vk

V0

⎞

⎟

⎟

⎠

. (5.7)

The discussion so far has been independent of the point that one considers in the moduli
space and we will sometimes use t p to denote the local flat coordinates around p.

5.2. Special geometry at higher genus. The genus one generating function F1(z), which
is manifestly of Kähler weight zero, obeys the holomorphic anomaly equation

∂i ∂̄j̄ F1(z) = 1

2
CiklC

kl
j̄ −

(

χ(Y̌ )

24
− 1

)

Gi j̄ , (5.8)

for the Ray Singer Torsion [123]. Using (5.6) and standard formulas for the Kähler
curvature this can be integrated to

F1 = −1

2
log det(Gi j̄ ) +

(

b3(Y̌ )

2
− χ(Y̌ )

24
+ 1

)

K + log ‖ f1(z)‖2, (5.9)

with a holomorphic ambiguity given by the holomorphic function f1(z).
The higher genus generating functions Fg>1(z), which are of Kähler weight 2g − 2,

are obtained recursively from the generating functions at genus g = 0, 1 by solving the
holomorphic anomaly equations [61]

∂̄ı̄ Fg(z) = 1

2
C jk

ı̄

⎛

⎝D j Dk Fg−1(z) +
g−1
∑

h=1

D j Fh(z)Dk Fg−h(z)

⎞

⎠ , (5.10)

using the direct integration method. This method uses a fact that also follows from
special geometry, namely that the Fg({G}, z) are weighted homogeneous polynomials
in a finite number of independent non-holomorphic modular generators {G} [124–126].
The non-holomorphic derivatives of the generators w.r.t z̄ı̄ are proportional to C jk

ı̄ and
they close under the derivatives19 Di in (5.10). Therefore the left hand side is converted
into derivatives of Fg({G}, z) w.r.t. the {G}, while the expression in the bracket on the

r.h.s. is converted into a polynomial in {G} and the C jk
ı̄ cancel. As a consequence, (5.10)

is solved by direct polynomial integration w.r.t. the {G}, up to holomorphic ambiguities
fg(z) that arise at each genus.

As described in the next section, the ambiguities are fixed at low genus by boundary
conditions on local expansions of the holomorphic limit F top.

g (t), that will be defined
below, at points with critical fibres in M(Y̌ ). One novel type of them that we consider
corresponds to non-commutative resolutions in the A-model and yields new boundary
conditions for the direct integration. As a consequence of the Z2 torsion group appears
an algebraic change in the Kähler gauge over M(Y̌ ) with a Z2 branching behaviour,
which has also not been encountered before. We relegate the description of the behaviour
of the generators and their ambiguities under this Kähler gauge choice and how it affects
the general procedure of the direct integration to “Appendix B”.

19 Covariant under the Weil-Petersson and the Kähler connection.
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5.3. Boundary conditions for the holomorphic ambiguity. Monodromy invariance re-
quires the fg>1(z) to be rational functions of the algebraic complex structure parameters
z. The fg(z) are restricted by the behaviour of the Fg around the position of the critical
fibres of Y̌z in M(Y̌ ). Ignoring eventually occurring apparent singularities, the critical

fibres arise over the vanishing loci of the discriminant � of {Dz} in M(Y̌ ). In a suit-

able model of M(Y̌ ) this is a union of normal crossing divisors. To fix the fg(z), the
behaviour of the Fg has to be analysed in terms of local flat inhomogeneous coordinates
t i∗ = Xi∗/X0∗ and in the weight zero Kähler gauge. In addition, one has to take the holo-
morphic limit t̄ i∗ → t i∗,0 which needs to be defined only for the generators {G} and20

log det(Gi j̄ ). We refer to the resulting quantities as the genus g topological string free
energies

F top.
g (t∗) = [X0∗(z(t∗))]2g−2 lim

t̄ i∗→t i∗,0
Fg(z(t∗)) . (5.11)

Note that F0(t) is already holomorphic and F top.
g (t) = F(t).

Important examples for boundary conditions are the conifold gap and the expansion at
points of maximal unipotent monodromy. The conifold fibre Y̌zc has a nodal singularity
with a shrunken 3-cycle ν with the topology of a S3. As a result, the period�ν vanishes
at z = zc and if one period ��0 with �0 ∩ ν = 0 stays constant it has been argued
in [47], based on the assumption of the contribution of single massless hypermultiplet
to the Schwinger Loop contributing to the R2

+(F+)
2g−2 amplitude, that in the local flat

inhomogeneous coordinates tc = �ν/��0 the local expansion of F top.
g has to have the

gap

F top.
g>1(tc) =

(−1)g−1 B2g

2g(2g − 2)(tc/n)2g−2 + O(t0
c ) , (5.12)

which gives 2g − 2 boundary conditions for the ambiguities. We call this boundary the
conifold gap condition. The leading coefficient has already been conjectured by [127].
On the other hand, at genus g = 1 a computation of the gravitational index gives the
leading behaviour [128]

F top.
1 (tc) = 1

12
log(tc) + O(t0

c ). (5.13)

The large volume limit of Y is dual to a singular boundary point of M(Y̌ ) around
which the periods experience maximally unipotent monodromy, a so-called MUM point.
The local flat coordinates are ratios t i = Xi/X0, where X0(z) is the unique homolo-
morphic period at the MUM point and Xi (z) = 1

2π i X0 log(zi ) + O(z) are h2,1 “single
logarithmic” ones. They are identified under mirror symmetry with the complexified
Kähler parameters in the A-model. This predicts the prepotential by mirror symmetry,
using the integral monodromy basis as given by (3.35) [44–46]. The leading terms are
also directly calculable using the �̂-class in the A-model, see [129] for a review. The
genus one boundary conditions at the MUM point were determined in [123] to be

F top.
1 (t) = −t i c2 · Di

24
+ O(q). (5.14)

20 Note that ∂i log det(Gi j̄ ) = Ci jk S jk can also be expressed in terms of the generators Si j chosen below.



   62 Page 40 of 87 S. Katz, A. Klemm, T. Schimannek, E. Schimannek

By combining (5.13) and (5.14) it is typically possible to fix the coefficients ei in the
ansatz f1 ∼∏

i �
ei
i , where the product runs over all components of the critical locus.

As discussed in Sect. 3.6, for g ≥ 2 the leading behaviour of F top.
g can be deduced

from the Gopakumar–Vafa expansion of the topological string partition function. For
smooth Calabi–Yau threefolds, the corresponding specialization of (3.29) with N =
1, k = 0 of (3.29) has been obtained by Gopakumar and Vafa [49] from a Schwinger
loop calculation for the R2

+(F+)
2g−2 terms in the effective action that, following [130],

encode all of Z top.(t, λ). The formula for the constant map contributions (3.37) follows
using the ζ -function regularisation and assuming ng(0) = χ/2. The latter fact can be
argued also from Gromov–Witten calculations for the map from the worldsheet �g to
Y̌ [131]. Like in the conifold case, the light states running in a loop determine the loop
integral. At the MUM-point, the light states are identified with bound states of a single
D6 brane with D2 branes in the class β ∈ H2(X,Z) as well as k ∈ N D0 branes.
Including them explicitly as 5d particles running in the Schwinger loop yields (3.29)
with N = 1 and k = 0 [49]. As explained already in (3.24) the comparison relates the
charge of the particle under the 5d gauge group to the curve class β ∈ H2(X,Z) and an
index in the spin representations to the genus (3.27).

The resulting index nβg of the physical states has been geometrically understood [49]
in terms of a Lefschetz decomposition in the cohomology of the moduli space of M2
branes wrapping a curve in the class β [49,52]. In particular if there is no curve of
genus g in the class β, which by the adjunction formula will be if β2 � √

g, then

nβg = 0, which gives ∼ √
g boundary conditions. Indeed the vanishing of the nd

g can
be analysed geometrically by the Castelnuovo criterium. Moreover the information of
nd

g = (−1)dim(χ(MC ))χ(MC ) for smooth genus curves C (for whichMC is also smooth
projective and easily calculable) [52] may also serve as a well established bound. We
refer to the combined boundary conditions including the constant map contributions at
points of maximal unipotent monodromy as the Castelnuovo bounds.

At regular points in M(Y̌ ) we expect the F top.
g (tr ) not to develop singularities. From

these considerations one can conclude in the one modulus case, assuming furthermore
that there is a single conifold point, that the holomorphic ambiguity is of the form
fg = p3 g−3(z)/�c(z)2 g−2, with 3 g − 2 unkowns in the coefficients of the polynomial
p3g−3. After incorporating the gap condition, one needs still to determine g variables.
The linear growth is eased in the presence of loci with finite branch coverings in the
canonical Batyrev variables z of M(Y̌ ) and therefore a finite monodromy, the orbifold
points, where the propagators can be singular and the regularity restriction is stronger.
We call this boundary condition orbifold regularity. In all cases there is a maximal genus
after which the boundary conditions are insufficient to fix the fg , see [47] and also [132]
for more details on the bounds in the case of hyper geometric one parameter families.

5.4. New boundary conditions from nc-resolutions. In the presence of other types of
degenerations of Y̌ , the situation with the boundary conditions changes. As in the ex-
amples above the properties of the massless spectrum will be determined by the local
degeneration of the mixed Hodge structure, which has been studied mathematically with
very strong results, see [133] for recent work. This analysis has been used to support
the so called landscape distance conjectures, claiming that if the distance to the sin-
gular locus is infinite in the Weil-Petersson metric an infinite tower of light particles
appears [134,135]. For one parameter Calabi–Yau families the types of degenerations
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have been classified [136] and come in three types: the MUM points, the conifold points
and the K-points. The type is determined by the four local exponents l associated to
the Picard–Fuchs operator, which are of the form l = (a, a, a, a), l = (a, b, b, c) and
l = (a, a, b, b) respectively, where a, b ∈ Q.

Let us recall that for the fourteen hypergeometric one parameter families the forth
order Picard–Fuchs operator is given by

D = θ4 − μ−1z
4
∏

k = 1

(θ + ak), (5.15)

with θ = z d
dz , where μ, ai ∈ Q and for the fourteen cases are summarized e.g. in Table

1 adapted from [137]. D generates the Picard–Fuchs ideal and has the Riemann symbol

P

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 μ∞
0 0 a1
0 1 a2
0 1 a3
0 2 a4

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (5.16)

The latter summarizes that (5.15) has three regular singular points at z ∈ {0, μ,∞}, so
that the parameter space of z is M(Y̌ ) = P

1\{0, μ,∞}, while the local exponents
lT appear as columns under the singular point. For z = 0 they are (0, 0, 0, 0) which
identifies this as a MUM-point. From this it follows that the so-called Frobenius basis of
solutions has one regular solution X0 ∼ 1 + O(z), in fact a Hypergeometric function of
type X0 =4 F3(a1, a2, a3, a4, 1, 1, 1, μz), and a logarithmic solution X1 ∼ X0 log(z)+
O(z), as well as a double logarithmic solution F1 ∼ X0 log2(z) + · · · and a triple
logarithmic solution F0 ∼ X0 log3(z) + · · · . This implies that the monodromy has one
maximal 4 × 4 Jordan block and is maximally unipotent. It then also follows that the
point z = 0 is at infinite distance with respect to the Weil–Petersson metric.

Similarly at z = μ, the conifold point, one has a constant holomorphic solution
X0

c ∼ 1 + O(δ3) a vanishing solution X1
c ∼ δ + O(δ2), a logarithmic solution X1

c ∼
X0

c log(δ) + O(z0) and a further power series solution. The irreducible Jordan block of
the monodromy is 2 × 2 and conifolds are at finite distance.

The bi-cubic in P
5 has at w = 1/z = 0 a K-point with l = ( 1

3 ,
1
3 ,

2
3 ,

2
3 ), hence we

have two fractional power series solution X1
k = w 1

3 +O(w 4
3 ), X2

k = w 2
3 +O(w 5

3 ) and the

two corresponding log solutions F1 = X1
k log(z)+O(w 1

3 ) and F2 = X2
k log(z)+O(w 1

3 ).
The monodromy at k-points has two irreducible 2 × 2 Jordan blocks and K-points are
at infinite distance. The 14 cases have seven orbifold points at 1/z = 0, three conifolds,
three K-points and one MUM-point, all with additional finite branch order on top of the
logarithmic structure.

For us the most interesting case is the one parameter mirror family to the complete
intersection of four quadrics in P

7. The complete intersection of these quadrics is abbre-
viated by X (1,65)

2222 (1
8), see Table 1. This family has a non-standard MUM-point atw = 0

with l = ( 1
2 ,

1
2 ,

1
2 ,

1
2 ) and μ = 2−8. The geometry of such MUM-points with a finite
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branch cover21 had not been understood before even though they are quite frequent in
the list of Calabi–Yau 3 fold one parameter operators described in [136].

As reviewed in Sect. 4.6, it is known that its mirror is identified with the non-
commutative resolution of the singular Calabi–Yau double cover of P

3, branched over
a singular determinantal octic, with 84 terminal nodal singularities. As explained in
Sect. 4.1, the latter enjoys a complex structure deformation to the generic octic
X (1,149)

8 (11114), whose mirror is another hypergeometric one parameter family. With
the conifold gap, the Castelnuovo bounds, as well as the orbifold regularity the latter
model can be solved to genus g = 60. However for the mirror of X (1,65)

2222 (1
8), without

understanding the information at the non-standard MUM point at 1/z = 0, the constant
map contributions and the Castelnuovo vanishing from the MUM-point at z = 0 together
with the conifold gap only allow to solve the model to genus g = 17.

Our new insight is to provide an enumerative interpretation for the corresponding
topological string free energies in terms of the torsion refined Gopakumar–Vafa invari-
ants, using the proposal first made in [6]. The correct interpretation of the expansion at
the non-standard MUM-point as non-commutative resolution, allows to use new Castel-
nuovo bounds at 1/z = 0 for the torsion refined BPS invariants, the traditional Castel-
nuovo bounds z = 0 and the conifold gap to fix the holomorphic ambiguity to solve
the topological string for this mirror pair to genus 32. Let us stress that to split the
two torsion sectors and extract the integer Z2-refined Gopakumar–Vafa invariants, and
therefore to use the corresponding Castelnuovo vanishing, we also need the information
of the Gopakumar–Vafa invariants of X (1,149)

8 (11114).
Let us end this discussion with a few summarizing remarks: We learn that we need to

distinguish two types of MUM-points in mirror symmetry: commutative MUM points
and non-commutative MUM-points, depending on whether the mirror has a geometrical
interpretation in terms of a commutative or a non-commutative Calabi–Yau category. To
extract all local information in a complex structure moduli space M(X̂) that contains
both types of MUM points, i.e. by a local expansion at the commutative MUM-points
in inhomogeneous variables tcM as well as at the non-commutative MUM-points in
variables tncM , one has to consider in general, on top of the Kähler weight 0 gauge
choice, different algebraic Kähler gauge choices at these points. Changing the latter acts
in a nontrivial way in particular on the fg(z), the propagators and their ambiguities as
explained in “Appendix B”. One needs to understand this gauge change to reconstruct
from the local expansion the global ambiguities fg(z) in M(X̂).

If one encounters a non-commutative MUM-point in the complex structure moduli
space of a B-model description, its first hallmark is that in the local BPS expansion
no naive integrality of the BPS indices exists.22 In fact there are examples in [6] of
non-commutative MUM-points, where the local expansion is defined over an algebraic
extension of the type Q[√5]. Only if the local expansions, in these cases at two inequiva-
lent non-commutative MUM-points, are combined with the expansion at a commutative
MUM-point in a deformed geometry Xdef., which exists in the moduli space of a different
mirror manifold, can one absorb these roots precisely in fifth roots of unity associated
with the expansion 3.29 of Z5-torsion refined integer BPS indices nβ,lg ∈ Z. These invari-

21 In [135] it has been noticed that the model has a symmetry by which one can associate to both MUM
points the same BPS numbers, yielding the infinite states for the distance conjecture. While the conclusion
regarding the infinite states in accordance with the distance conjecture is correct, it misses decisively the subtle
geometrical interpretation for the second MUM point.

22 Although the naive genus 0 GV-invariants at such a point can be integral [43], this breaks down at genera
g ≥ 1.
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Table 1. Data of the three relevant MUM-points in two hypergeometric one-parameter Calabi–Yau families

a1, a2, a3, a4 1/μ MUM mirror at z κ c2 · D χ(M)
1
2 ,

1
2 ,

1
2 ,

1
2 28 Y = X (1,65)

2,2,2,2(1
8) 0 16 64 −128

1
2 ,

1
2 ,

1
2 ,

1
2 28 nc-res. Xn.c. of X ∞ 2 44 −128

1
8 ,

3
8 ,

5
8 ,

7
8 216 Xdef. = X (1,149)

8 (1441) 0 2 44 −296

ants then allow the natural interpretation in terms of degeneracies of five-dimensional
BPS invariants with U (1)r ×Z5 gauge symmetry. This implies that non-integer BPS ex-
pansions at MUM-points are great indicators of a subtle but important gobal arithmetic
symmetry structure with direct physical implications in the effective theory.

5.5. Brane charges and monodromies. As a consequence of the derived equivalence
of the non-commutative resolution Xn.c. of the singular octic double solid X and the
complete intersection Y = X (1,65)

2222 (1
8) of four quadrics in P

7, both share the same
mirror Y̌ . Before proceeding with the direct integration for Xn.c., it is necessary to spend
some time studying the periods and the complex structure moduli space of Y̌ . We will first
discuss the integral basis of periods and the choice of prepotential around both MUM-
points. Using analytic continuation, this will allow us to fix the Kähler transformation
that connects the gauge choices at both point.

Although not necessary for the direct integration, we will also use the opportunity
to discuss the central charges of an integral basis of topological B-branes on Xn.c.,
their monodromies and their transformation under homological projective duality. For a
review on topological branes we refer to [138] and a brief introduction can be found in
[139]. The topological invariants, as well as the indicials at infinity, for Y , Xn.c. and the
smooth deformation Xdef. of X are listed in Table 1.

To find an integral basis of periods around the MUM-point associated to Xn.c., we first
consider the homologically projective dual Y and then use analytic continuation. The
fundamental period of the mirror of the complete intersection of four generic quadrics
in P

7 takes the form

 0 =
∞
∑

k=0

(2k!)4
(k!)8 zk = 4 F3

(

1

2
,

1

2
,

1

2
,

1

2
; 1, 1, 1; 28z

)

, (5.17)

and is annihilated by the Picard–Fuchs operator

D1 = θ4 − 24z(2θ + 1)4 . (5.18)

The moduli space contains one conifold point at z = 2−8 and the discriminant takes the
form

� = 1 − 28z . (5.19)

Note that  0 is the Hadamard product of the corresponding period 2 F1
( 1

2 ,
1
2 ; 1; 24z

)

for the degree 4 normal curve X2,2(14) with itself. The relevant topological invariants
are

χY = −128 , κY =
∫

Y
J · J · J = 16 , bY =

∫

Y
c2(Y ) · J = 64 , (5.20)
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where J is the generator of the Kähler cone and the Yuakawa coupling is

Czzz = 16

z3�
. (5.21)

To obtain an integral basis of periods around the MUM-point associated to Y , we
first choose a basis of topological B-branes in the derived category Db(Y ), that generate
the charge lattice on Y , as follows. As a 6-brane we choose the structure sheaf E6 = OY
while the 0-brane corresponds to the skyscraper sheaf E0 = Opt.. The 4-brane E4 = OJ
is homotopy equivalent to the complex

0 → OY (−J )→ OY → 0 , (5.22)

while the 2-brane E2 = ι!OC (K
1/2
C ) is given by a certain K-theoretic push-forward of

the structure sheaf on C = J 2, twisted by a spin-structure as in [140]. Using the formula
for the asymptotic central charge [141,142]

Zasy.(E) =
∫

Y
eω�C(Y )ch(E)∨ , (5.23)

in terms of the Gamma-class that for a Calabi–Yau 3-fold takes the form

�C = 1 +
1

24
c2(Y ) +

ζ(3)

(2π i)3
c3(Y ) , (5.24)

and with •∨ acting on elements γ ∈ Hi,i by multiplication with (−1)i , we find the
leading terms �(i)1 = Zasy.(Ei ) of the central charges

�
(6)
1 =1

6
κY t3 +

bY

24
t +

1

(2π i)3
ζ(3)χY ,

�
(4)
1 =− 1

2
κY t2 − 1

2
κY t − 1

24
(bY + 4κY ) ,

�
(2)
1 =t , �

(0)
1 = −1 .

(5.25)

The open string index can be calculated using

χ(E,F) =
∫

Y
Td(Y )ch(E)∨ch(F) , (5.26)

and with respect to our basis (E6, E4, E2, E0) we find the matrix

�2 =
⎛

⎜

⎝

0 8 0 1
−8 0 −1 0
0 1 0 0
−1 0 0 0

⎞

⎟

⎠ . (5.27)

Mirror symmetry relates the central charges to periods of the holomorphic (3, 0)-form
� on the mirror Ỹ of Y over a basis of integral 3-cycles. The monodromies around the
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large volume limit z = 0, the conifold point z = 2−8 and the hybrid point at infinity act
on the period vector respectively as 	�1 → M• · 	�1, with

MLV =
⎛

⎜

⎝

1 −1 0 0
0 1 −16 16
0 0 1 −1
0 0 0 1

⎞

⎟

⎠ , MC =
⎛

⎜

⎝

1 0 0 0
8 1 0 0
0 0 1 0
1 0 0 1

⎞

⎟

⎠ ,

MH =
⎛

⎜

⎝

−7 1 16 0
−8 1 16 0
−1 0 1 1
−1 0 0 1

⎞

⎟

⎠
,

(5.28)

such that MH · MC · MLV = 1.
To obtain the central charges of an integral basis of branes on the non-commutative

resolution Xn.c. of the singular octic double solid, we change coordinates as

z = 1

216v2 , (5.29)

such that v = 0 corresponds to the hybrid point associated to Xn.c.. The importance of
using v instead of v2 ∝ 1/z as a local coordinate was pointed out in [6] and is necessary
to extract the Z2-refined GV-invariants. As a result, this leads to the fundamental period

 0 =
∞
∑

k=0

(2k!)4
(k!)8 v

2k = 4 F3

(

1

2
,

1

2
,

1

2
,

1

2
; 1, 1, 1; 28v2

)

. (5.30)

This is annihilated by the Picard–Fuchs operator

D2 = θ4 − 28v2(θ + 1)4 , (5.31)

with discriminant � = �1 ·�2, where

�1 = 1 − 24v , �2 = 1 + 24v . (5.32)

Following [6], we expect that the triple intersection number on Xn.c. as well as the
intersection with the second Chern class should be unaffected by the nodes, and equal to
those of the generic degree 8 hypersurface Xdef. = X (1,149)

8 (11114) in P
4(1, 1, 1, 1, 4),

such that

κn.c. =
∫

X8

J · J · J = 2 , bn.c. =
∫

X8

c2(X8) · J = 44 . (5.33)

The stringy Euler characteristic on the other hand is a global property and sensitive to the
fractional B-field that prevent the deformation of the nodes. Due to the derived equiva-
lence with Y it should be equal to χn.c. = χY = −128 . Using (3.35) and accounting for
the constant map contribution (3.43), with the number of nodes ms = 84, we can then
fix the prepotential

F0 = −1

6
κn.c.t

3 +
bn.c.

24
t +

ζ(3)

(2π i)3

(

χn.c.

2
+

3

4
ms

)

+ O(e2π i t )

= −1

3
t3 − 11

6
t − iζ(3)

8π3 + O(e2π i t ) ,

(5.34)
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such that a symplectic basis of periods is given by

�sp = (1, t, ∂t F0, 2F0 − t∂t F0) . (5.35)

The prepotential (5.34) is the correct choice to, combining it with the corresponding
prepotential for Xdef., extract the Z2-refined Gopakumar–Vafa invariants at genus 0.
However, it turns out that (5.35) does not correspond to an integral basis of brane charges.

The fractional B-field implies that the 0-brane charge on Xn.c. is not primitive any-
more, but can decompose into that of two 2-branes wrapping 2-torsion curves, each
having a central charge − 1

2 . Charge quantization then suggests that the correct genera-
tor with 6-brane charge has a central charge that is twice as large as one would expect
from the leading behaviour of the central charge associated to the structure sheaf of
Xdef.. Indeed we find that the basis

�
(6)
2 = 2

3
t3 − 1

12
t − 4

1

(2π i)3
ζ(3) ,

�
(4)
2 = −t2 − 1

2
t − 1

24
,

�
(2)
2 = t , �

(0)
2 = −1

2
,

(5.36)

for the asymptotic central charges of a basis of topological B-branes on Xn.c. leads to an
integral transfer matrix

�2 = 1

128v
T ·�1 , T =

⎛

⎜

⎝

0 0 −1 0
1 0 −2 −1
−1 0 4 0
2 −1 −8 4

⎞

⎟

⎠ , (5.37)

where the overall factor of 1/(128v) corresponds to a Kähler transformation

e−K → f (v)e−K , f (v) = 1

27v
. (5.38)

This determines also the Yukawa coupling

Cvvv = 2

v3�1�2
= f (v)2

(

∂z

∂v

)3

Czzz . (5.39)

The determinant of the transfer matrix is det T = 1, which confirms that 	�2 corresponds
to an integral basis of branes. It would be very interesting to try to better understand this
basis of branes and the corresponding central charges, for examples using the techniques
from [143].

Note that the analogous transfer matrix between the large volume limit associated to
a smooth genus one fibration with a 2-section and a non-commutative resolution of the
corresponding Jacobian fibration was calculated in [6, equ’n (6.49)] and is also rendered
integral by changing the normalization of the elementary “0-brane” charge to 1/2 while
multiplying the naive 6-brane charge by 2.

Let us denote the monodromy around v = 0 acting on �2 by WLV and define

WH = T · MH · T−1 =
⎛

⎜

⎝

−1 1 0 0
0 −1 1 −1
0 0 −1 1
0 0 0 −1

⎞

⎟

⎠ . (5.40)
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which acts as t → t − 1
2 and satisfies W 2

H = WLV. Up to a homological shift, this
corresponds to the action of the Z2 quantum symmetry of the hybrid model. Note that
t is the central charge of a degree one curve that has four tangencies with the degree 8
ramification locus of the double cover of P

3 and is supported on one of the two sheets.
On the other hand, as discussed above, the 1

2 should be interpreted as the central charge
of a 2-brane that wraps a 2-torsion curve. It was argued in [78] that the Z2 quantum
symmetry of the Landau–Ginzburg fiber acts by exchanging the two sheets of the cover.
This suggests, that the difference between a degree one curve and its image under the
involution of the cover is a 2-torsion curve.

We can also see the monodromy WH directly in the A-model as an autoequivalence
of Db(P3,B) following [39], where our sheaf B is denoted as B0. It is shown that there
is a graded sheaf (denoted by B [39]) whose category of graded modules has a quotient
category which is equivalent to the category ofB0-modules. LetT be the autoequivalence
of the quotient category of graded B-modules which shifts degrees by 1. Then in our
situation, [39, Proposition 3.17] says that T 2 is equal to tensoring with OP3(1). Since
tensoring withOP3(1) is the A-model version of WLV, we conclude that T is the A-model
version of WH. We have previously given a different description of T in Sect. 4.6.

5.6. Direct integration for Xn.c.. We can now carry out the direct integration of the holo-
morphic anomaly equations to obtain the higher genus topological string free energies for
Xn.c.. The Z2-refined Gopakumar–Vafa invariants associated to the singular octic dou-
ble solid X can then be extracted using (3.29), by combining the information in the free
energies on the non-commutative resolution Xn.c. and those on the smooth deformation
Xdef. of X . The general method for the direct integration method for smooth Calabi–Yau
threefolds in terms of a set of propagators S̃zz, S̃z, S̃ is reviewed in “Appendix B” and
here we focus on the differences that arise for the non-commutative resolution Xn.c..

The direct integration for Xdef. and Y has been carried out for low genera in [47].
We can use the transformation of the propagator ambiguities that are discussed in “Ap-
pendix B” under the Kähler transformation (5.38) and the change of coordinate (5.29)
to obtain the corresponding propagators around the MUM-point of Xn.c.. This allows
us to transform the entire free energies of Y to the corresponding free energies of Xn.c..
Alternatively, we can also carry out the direct integration directly at the MUM-point as-
sociated to Xn.c. and, taking into account the modified constant map contributions (3.43)
as well as the correct values of the topological invariants and the corresponding normal-
ization of the prepotential discussed above, the procedure is the same as for an ordinary
smooth Calabi–Yau threefold.

To start the direct integration, we first need the free energies at genus g = 1. Using
the Ansatz (5.9), together with the boundary conditions (5.13), (5.14) and the topological
invariants that are listed in Table 1, we find that the genus one free energies for Y and
Xn.c. are respectively given by

FY
1 (z) =

22

3
K − 1

2
log det(Gzz̄)− 1

12
log(�)− 19

6
log(z) ,

F Xn.c.
1 (v) = 22

3
K − 1

2
log det(Gvv̄)− 1

12
log(�1�2)− 7

3
log(v) ,

(5.41)

where the discriminants are respectively given in (5.19) and (5.32). The holomorphic
limit of the Kähler potential is given by K ∼ − log( 0) in terms of the respective
fundamental periods (5.17) and (5.30).
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A suitable choice for the propagator ambiguities, that are discussed in “Appendix B”,
around the MUM-point z = 0 associated to Y is given by

sz
zz = −1

z
, hzz

z = − z

25
, hz

z = 0 , hz = −2 +
1

29z
, hzz = 1

4z2 , (5.42)

while the corresponding transformed ambiguities for Xn.c. take the form

svvv = −3

v
, hvvv = 28v3 , hvv = −28v2 , hv = 1

v
+ 26v , hvv = 2

v2 . (5.43)

The direct integration for Y and Xdef. has been carried out in [47]. As discussed
above, the constant map contributions at the respective MUM-points, the Castelnuovo
vanishing of the Gopakumar–Vafa invariants—together with the explicit value of the
invariants that saturate the bound—the gap condition at the conifold and the branching
at infinity are sufficient to, at least in principle, fix the holomorphic ambiguities f (g)

that appear in the direct integration for Y and Xdef. respectively up to genus 17 and 60.
Using the Kähler transformation and considering now the free energies for Xn.c.,

which from the perspective of Y lies at the MUM-point at infinity, we get new boundary
conditions from the modified constant map contributions (3.43) but it also turns out
that the Z2-refined GV-invariants exhibit a Castelnuovo-like vanishing. Including these
additional conditions, this allows us to fix the holomorphic ambiguities for Xn.c. and Y up
to genus 32. The resulting invariants are listed in Tables 2 and 3. In Sect. 7 we explicitly
derive some of those numbers from the mathematical definition proposed in Sect. 3.5.
In all of those cases we find agreement with the predictions from mirror symmetry and
the corresponding invariants are highlighted in the tables.

To illustrate the general structure and to make it easier for the reader to reproduce
our calculation, we give the result for the genus 2 free energy on Y

FY
2 (z) =

−11 + 11000z − 3472320z2 + 352763904z3

45�2 +
128(1 − 264z)

9z�
S̃z

+
2
(

19 − 10080z + 1348608z2
)

9z2�2 S̃zz +
304

9
S̃ − 128

3z3�
S̃zz S̃z

− 64(1 − 288z)

3z4�2 S̃zz S̃zz +
160

3z6�2 S̃zz S̃zz S̃zz ,

(5.44)

as well as the corresponding result on Xn.c., that is obtained after the Kähler and coor-
dinate transformation,

F Xn.c.
2 (v) = −21531 − 13889280v2 + 2883584000v4 − 188978561024v6

720�2

+

(

421 − 202752v2 + 25165824v4
)

72v2�2 S̃vv +
8
(

5 − 1536v2
)

9v�
S̃v

+
5

6v6�2 S̃vv S̃vv S̃vv +
2

3v4�2 S̃vv S̃vv − 16

3v3�
S̃vv S̃v +

304

9
S̃ .

(5.45)

Let us stress again, that the refined invariants are only obtained after combining the
information from the free energies associated to Xn.c. and Xdef.. The “naive” unrefined
GV-invariants that one could extract from the free energies of Xn.c. do not exhibit a
Castelnuovo-like vanishing. We therefore observe a highly non-trivial interplay between
the topological string partition functions at three different MUM-points that lie in the
complex structure moduli spaces of two different mirror manifolds.
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Table 2. Torsion refined Gopakumar–Vafa invariants for Z2-charge q = 0 the degenerate double cover of P
3,

ramified over a determinantal octic

nβ,0g β = 1 2 3 4 5
g = 0 14752 64415616 711860273440 11596528004344320 233938237312624658400
1 0 20160 10732175296 902646044328864 50712027457008177856
2 0 504 −8275872 6249833130944 2700746768622436448
3 0 0 −88512 −87429839184 10292236849965248
4 0 0 0 198065872 −337281112359424
5 0 0 0 157306 6031964134528
6 0 0 0 1632 −43153905216
7 0 0 0 24 18764544
8 0 0 0 0 177024
9 0 0 0 0 0

nβ,0g β = 6 7 8
g = 11 238896 1365366811756288 −4736147442532505835596
12 4536 −17274516630240 241184169662887498000
13 0 97442213760 −9638193260013962094
14 0 −33988608 289481324332786944
15 0 −324544 −6124171374649000
16 0 0 81787112365664
17 0 0 −550148288563
18 0 0 845297088
19 0 0 441736
20 0 0 3200
21 0 0 64
22 0 0 0

nβ,0g β = 9 10 11
g = 23 48799616 −31102670029152533520 2292168771748652654604291968
24 531072 773847175064950328 −158373976042091789355897472
25 0 −13810315238046256 9491926931091427533124736
26 0 158750107627640 −486491652797947678259968
27 0 −942809065216 20941105449951277658112
28 0 1362250176 −739377404194595085312
29 0 259056 20736415070762709120
30 0 11592 −441204207287440640
31 0 0 6632918677947904
32 0 0 −62184411813632
See Table 3 for charge q = 1. The highlighted numbers will be confirmed by a direct enumerative computation
in Sect. 7.1

6. Torus Fibered Examples

In this section we discuss the relative situation that arises when a complete intersection
of two quadrics in P

3 is fibered over a Fano surface such that the total space is a Calabi–
Yau threefold. Note that this has already been studied at length in [6]. Our goal here is
therefore only to highlight the connection to non-commutative resolutions in terms of
sheaves of Clifford algebras as well as to the construction of Clifford double mirrors
by Borisov and Li [41] and an example of a twisted derived equivalence by Calabrese,
Thomas [93].

6.1. Family of GLSMs and their analysis. Let us first consider a smooth Calabi–Yau
threefold Y that is genus one fibered over P

2 with a 4-section and h1,1(X) = 2. Each
fiber can be realized as the intersection of two quadrics in P

3 and for simplicity we
assume that the corresponding P

3 bundle over P
2 is toric.
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Table 3. Torsion refined Gopakumar–Vafa invariants for Z2-charge q = 1 the degenerate double cover of P
3,

ramified over a determinantal octic

nβ,1g β = 1 2 3 4 5
g = 0 14752 64419296 711860273440 11596528020448992 233938237312624658400
1 0 21152 10732175296 902646048376992 50712027457008177856
2 0 360 −8275872 6249834146800 2700746768622436448
3 0 6 −88512 −87429664640 10292236849965248
4 0 0 0 198149928 −337281112359424
5 0 0 0 144144 6031964134528
6 0 0 0 2520 −43153905216
7 0 0 0 0 18764544
8 0 0 0 0 177024
9 0 0 0 0 0

nβ,1g β = 6 7 8
g = 11 284538 1365366811756288 −4736147442578975095808
12 2496 −17274516630240 241184169689646798464
13 40 97442213760 −9638193272233061776
14 0 −33988608 289481328620120504
15 0 −324544 −6124172499145888
16 0 0 81787327067664
17 0 0 −550176980192
18 0 0 847830320
19 0 0 305424
20 0 0 7560
21 0 0 0
22 0 0 0

nβ,1g β = 9 10 11
g = 23 48799616 −31102669207528659588 2292168771748652654604291968
24 531072 773847033066507008 −158373976042091789355897472
25 0 −13810295800263040 9491926931091427533124736
26 0 158748050119808 −486491652797947678259968
27 0 −942646032272 20941105449951277658112
28 0 1352987680 −739377404194595085312
29 0 615592 20736415070762709120
30 0 3072 −441204207287440640
31 0 96 6632918677947904
32 0 0 −62184411813632
See Table 2 for charge q = 0. The highlighted numbers will be confirmed directly by a direct enumerative
computation in Sect. 7.1

Table 4. The field content of a GLSM that is associated to a generic Calabi–Yau threefold which is genus one
fibered over P

2 and exhibits a 4-section

p1 p2 x1 x2 x3 x4 yi=1,2,3
U (1)F −2 −2 1 1 1 1 0
U (1)B q1 q2 q3 q4 q5 0 1

We can then construct a gauged linear sigma model with gauge group G = U (1)F ×
U (1)B and chiral fields p1, p2, xi=1,...,4, yi=1,...,3 that carry the charges given in Table 4,
where the Calabi–Yau condition amounts to the requirement that 3 +

∑

i qi = 0.
The generic superpotential takes the form

WY = p1 Q1(	x, 	y) + p2 Q2(	x, 	y) , (6.1)

where Qi (	x, 	y) are polynomials that are quadratic in x1, . . . , x4 while the coefficient of
each monomial xa xb is homogeneous of degree −qi − q2+a − q2+b in y1, y2, y3, taking
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q6 = 0. We denote the FI-theta parameters associated to U (1)F/B respectively by tF
and tB .

For tF , tB  0 the GLSM flows to a non-linear sigma model on

Y = { Q1(	x, 	y) = Q2(	x, 	y) = 0 } ⊂ P

(

OP2 ⊕
5
⊕

i=3

OP2(qi )

)

, (6.2)

where [x1 : . . . : x4] and [y1 : y2 : y3] respectively become homogeneous coordinates
on the fiber and base of the ambient projective bundle. Projection onto the base P

2

induces the desired genus one fibration structure on Y and the fibers can be seen to be
complete intersections of two quadrics in P

3.
On the other hand, following the arguments from [32], choosing tF � 0 while

maintaining tB  0 produces a non-commutative resolution of a certain singular double
cover X of a P

1 fibration over P
2. From a more mathematical perspective, the limits

are related by a fiberwise application of homological projective duality [38]. Here the
duality can easily be verified to be an instance of the Clifford double mirror construction
that has subsequently been developed in [41].23

To construct the singular double cover X , we first rewrite (6.1) as

WY = 	x ᵀ
[

p1 A1(	y) + p2 A2(	y)
]

	x , (6.3)

where Ai are 4 × 4 matrices with entries that are homogeneous polynomials of degrees
given by

degy Ai = −qi −
⎛

⎜

⎝

2q3 q3 + q4 q3 + q5 q3
q3 + q4 2q4 q4 + q5 q4
q3 + q5 q4 + q5 2q5 q5

q3 q4 q5 0

⎞

⎟

⎠
, (6.4)

while the degrees of the determinant polynomials are

q̃i = deg det Ai = −4qi − 2q̂ , i = 1, 2 , (6.5)

where we have introduced q̂ = q3 +q4 +q5. One can now consider [p1 : p2 : y1 : y2 : y3]
as homogeneous coordinates on a projective bundle

B = P (O(q1)⊕O(q2))→ P
2 , (6.6)

and construct the double cover X over B with ramification locus

det
(

p1 A1 + p2 A2
)

= 0 . (6.7)

The smooth deformation Xdef. can again be realized by a GLSM, now with chiral
fields P, z, p1, p2, yi=1,...,3 of U (1)F × U (1)B charges given in Table 5.

The generic superpotential takes the form

WXdef. = P ·
[

z2 +
4
∑

k=0

p4−k
1 pk

2
˜Q(4−k)q1+kq2+2q̂(y)

]

, (6.8)

23 To this end one just notes that the relevant decompositions of the degree element of the Gorenstein cone
on page 45 of [41] are available for all GLSMs of the form given in Table 4.



   62 Page 52 of 87 S. Katz, A. Klemm, T. Schimannek, E. Schimannek

Table 5. The field content of a GLSM that is associated to a Calabi–Yau double cover of the projective bundle
B from (6.6)

P z p1 p2 yi=1,...,3
U (1)F −4 2 1 1 0
U (1)B 2q̂ −q̂ q1 q2 1
Here we use again q̂ = q3 + q4 + q4

where ˜Q−d(y) are homogeneous polynomials of degree d in yi=1,...,3. In the geometric
phase tF , tB  0, one can interpret p1, p2, z and y1, y2, y3 as homogeneous coordinates
on a P112 bundle over P

2 and Xdef. is a fibration of degree 4 hypersurfaces. The resulting
torus fibration of Xdef. over P

2 is not elliptic but has a two-section corresponding e.g. to
p1 = 0.

As was argued in [6], when we degenerate Xdef. to X an M-theory compactification
will develop an additional Z2 gauge symmetry. In particular, due to the absence of a
corresponding continuous Coulomb branch, we expect the singularities to be terminal
and an analytic small resolution ̂X of X to exhibit

H3(̂X ,Z) � Z
2 ⊕ Z2 , (6.9)

such that the discussion from Sect. 3 applies. The A-model topological string partition
function on the non-commutative resolution Db(̂X , α) together with the partition func-
tion Xdef. can be used to extract the corresponding Gopakumar–Vafa invariants.

The example with charge vector

	q = (−2, 0,−1, 0, 0) , (6.10)

including the calculation of the Z2-refined GV-invariants via mirror symmetry and using
a modular bootstrap approach, has been discussed in detail in [6]. For those invariants for
which we can evaluate our proposed mathematical definition from Sect. 3.5 explicitly,
the results are in perfect agreement.

6.2. The Calabrese–Thomas example. Another example of this form turns out to corre-
spond to a non-commutative resolution and twisted derived equivalence that was already
studied by Calabrese–Thomas in [93]. The corresponding charge vector is

	q = (−1,−1,−1, 0, 0) , (6.11)

and from the GLSM (Table 5) one can see that we obtain a Calabi–Yau threefold X
that is a singular double cover of P

1 × P
2, ramified over a degree (6, 4) determinantal

surface. Any small resolution ̂X of X is necessarily non-Kähler [93, lemma 3.12], just
as in the octic double solid example, and a resolution in terms of a sheaf of Clifford
algebras on P

1 × P
2 has also been discussed in [93,94].

Moreover, it was shown in [93] that there is an order two element α ∈ H3(̂X ,Z)tors.,
and a twisted derived equivalence

Db(̂X , α) � Db(Y ) . (6.12)

where the dual Y is a smooth Calabi–Yau threefold. Of course Y is nothing but the genus
one fibration over P

2 with a 4-section that we realized in the tF , tB  0 phase of the
GLSM (4). For physical reasons, discussed in [6], we expect that H3(̂X ,Z) � Z

2 ⊕Z2
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and that M-theory on X develops a Z2 gauge symmetry. The calculation of the Z2-refined
GV-invariants associated to X is analogous to the discussion in [6] and we list some of
the invariants in “Appendix D”.

Let us briefly match the realization of Y as a complete intersection of two quadrics
in P

3 that is fibered over P
2 with the construction from [93]. In their notation, we

denote the vector spaces spanned by the vacuum expectation values of the scalar fields
x2,...,4, y1,...,3 in the tF , tB  0 phase of GLSM (4) respectively by V and W . The toric
ambient space Z that is spanned by the gauge inequivalent vacuum configurations of
x1,...,4, y1,...,3 is a blowup of P

5 along P
2,

Z = BlPV

(

P(V ⊕ W ) = P
5
)

, (6.13)

and the Calabi–Yau Y itself can be seen as a blowup of a degree (3, 3) hypersurface in
P

5.

6.3. Relation to discrete torsion. The previous discussion can easily be generalized to
genus one fibered Calabi–Yau threefolds with 4-sections over other bases than P

2. If we
choose the base of the double cover to be P

1 × P
1 × P

1, we obtain an example that has
also been studied in [24,27] in the context of discrete torsion.

The starting point of the construction is an orbifold X ′ = (E1×E2×E3)/(Z2×Z2),
where Ei = C/〈τi , 1〉 for some τi ∈ H and the action on the corresponding coordinates
(z1, z2, z3) is generated by multiplications with (−1, 1,−1) and (1,−1,−1). The orb-
ifold admits discrete torsion

H2(Z2 × Z2,U (1)) � Z2 . (6.14)

A generic smoothing of X ′ takes the form of a Calabi–Yau double cover Xdef. over
P

1 × P
1 × P

1 with h2,1 = 115 complex structure deformations. However, turning on
non-trivial discrete torsion obstructs 64 of the corresponding moduli and the generic
deformation is a singular Calabi–Yau X with 64 conifold singularities.

Again the nc-resolution of X falls under the Clifford double-mirror construction from
[41]. In particular, there is a twisted derived equivalence

Db(̂X , α) � Db(Y ) , (6.15)

where ̂X is a small analytic resolution and Y is a smooth genus one fibration over
P

1 × P
1 with a 4-section. Following [6], we expect that M-theory on X develops a Z2

gauge symmetry and therefore that ̂X exhibits

H3(̂X ,Z) � Z
3 ⊕ Z2 . (6.16)

The fractional B-field on X also stabilizes the 64 nodes and reduces the number of
complex structure deformations to h2,1(Y ) = 115 − 64 = 51. We therefore expect that
(̂X , α) is a complex structure deformation of X ′ with discrete torsion. In this example
we thus find a concrete realization of the idea that the fractional B-field can be seen as
a generalization of discrete torsion.
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7. Geometric Verifications

In this section, we check the proposal of Sect. 3.5 for the description of the torsion refined
Gopakumar–Vafa invariants of Calabi–Yau threefolds with terminal nodal singularities
in terms of non-Kähler small resolutions, using the B-model results of Sect. 5 to infer
the correct torsion charges of certain curve classes. These deduced torsion charges can
also be determined geometrically [144].

7.1. The octic double solid. We will make frequent use of the conifold transition from ̂X
to Xdef.. The induced map H2(̂X ,Z)→ H2(Xdef.,Z) has kernel Z2. So the Gopakumar–
Vafa invariants of Xdef. are obtained from the invariants of ̂X by summing over two Z2
sectors. In other words, we can view the Z2 as a discrete Kähler class and this result
follows from [110, Cor. B.1].

We use the methods of [52] to compute the Gopakumar–Vafa invariants. These in-
variants can be defined mathematically with certain hypotheses using perverse sheaves
[53]. The methods of [52] can be derived from the definitions in [53] in many situations
using the Decomposition Theorem [54].

We start by analyzing curves C ⊂ Xdef. of degree β = 1. Letting π : Xdef. → P
3

be the double cover and noting that H2(Xde f.,Z) is generated by the pullback of the
hyperplane class of P

3, we see that π(C) also has degree 1, hence is a line L . Since
C ⊂ π−1(L) and π−1(L) has degree 2, we see that π−1(L) must be a union of two
components, C and another curve C ′ of degree 1. However, π−1(L) is reducible if and
only if L is tangent to B at each of 4 points qi , accounting for all of the 8 intersection
points of L with B including multiplicity.

By classical enumerative geometry, for a generic degree 8 hypersurface B ⊂ P
3

there are exactly 14752 lines L which are tangent to B at each of 4 points qi [145]. It
is convenient to change notation and write π−1(L) = L1 ∪ L2, with L1 and L2 curves
of degree 1. Counting both L1 and L2 for each of the 14752 lines L to get the count of
degree 1 curves in Xdef., we obtain n1

0 = 2 · 14752 = 29504.
We now return to ̂X . In Sect. 3.2, we explained how a topologically nontrivial but flat

B-field defines a projection map

H2(̂X ,Z)→ Z2. (7.1)

This projection will be used to divide curve classes [C] ∈ H2(̂X ,Z) into two sectors.
In M-theory, the sectors are distinguished by the Z2 charge of M2-branes wrapping C .
The only thing we need to observe now is that the nontrivial torsion class in H2(̂X ,Z)
maps to 1.

The total count of curves does not change, but we have to take the Z2 into consid-
eration. From Tables 2 and 3, we see that L1 and L2 are in different charge sectors
and so must differ by a torsion class. So we learn that for each line L , the difference
[L1] − [L2] ∈ H2(̂X ,Z) is the nontrivial torsion class. It would be of interest to verify
this directly by geometry.

It follows that [L1]− [L2] = [L2]− [L1], so the roles of L1 and L2 are interchange-
able.

The β = 1 columns of Tables 2 and 3 are verified immediately: for each of the 14752
4-tangent lines, exactly one of L1, L2 has charge 0 and exactly one has charge 1.

This precisely matches the indeterminacy in labeling the charge sectors which was
noted in Sect. 3.2. We have H2(̂X ,Z) � Z ⊕ Z2, with H2(̂X ,Z)tors identified with the
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Z2 summand. The degree 1 curve classes [L1] and [L2] are identified with (1, 0) and
(1, 1) in some order. Since we have two direct sum decompositions

H2(̂X ,Z) � Z · [L1] ⊕ Z2 � Z · [L2] ⊕ Z2, (7.2)

neither curve L1 or L2 is distinguished. For one choice of reference B-field B̃, the charge
assignments of L1 and L2 are 0 and 1 respectively, while for the other choice of B̃, the
charge assignments are respectively 1 and 0.

We can now verify many other Gopakumar–Vafa invariants geometrically.
For a curve C of degree β = 2, we have thatπ(C) has degree 2 including multiplicity.

So either C is a 2-1 cover of a line L via π , or C maps isomorphically to a degree 2
curve, in which case C has genus 0. Now note that a general line L ⊂ P

3 meets B in
8 distinct points, so pulls back to a double cover of L branched at 8 points, which has
genus 3. Thus for degree β = 2, the maximum genus is gmax = 3, which we refer to as
the Castelnuovo bound. Thus, the moduli space M of β = 2 curves which contribute to
n2

3 is just the Grassmannian G(2, 4) of lines in P
3. By [49], we have for any Calabi–Yau

threefold and any smooth moduli space M of curves class β and genus gmax

nβgmax
= (−1)dim(M) e (M) . (7.3)

Applying this to Xdef., we get n2
3 = 6.

Turning to ̂X , it remains to indentify how the GV invariant distributes into the charge
sectors as 6 = n2

3 = n2,0
3 + n2,1

3 .
Since the Grassmannian parametrizes a connected family of lines L , all of the curve

classesπ−1(L) are homologous, so we only have to identify the charge ofπ−1(L) for any
L . A convenient choice is one of the four-tangent lines. In this case π−1(L) = L1 ∪ L2.
Since one of the two curves Li has charge 1 and the other has charge 0, we conclude
that L1 ∪ L2 has charge 1, and the entire GV invariant is concentrated in the charge 1
sector. This checks against the numbers n2,0

3 = 0 in Table 2 and n2,1
3 = 6 in Table 3.

The above method generalizes to compute ngmax
2d for any even degree. In terms of

P11114, the double cover of a line is a complete intersection of two weighted hypersurfaces
of degree 1. A similar argument to the above shows that the Castelnuovo bound is
realized by complete intersections of weighted hypersurfaces of degrees 1 and d. By the
adjunction formula, these curves C have canonical bundle KC = OC (d + 1). Since the
degree of this bundle is 2d(d + 1), the genus of our curves satisfy 2g − 2 = 2d(d + 1),
so

g = gmax = d2 + d + 1. (7.4)

The moduli space of these Castelnuovo curves is fibered over the P
3 of hyperplanes in

P
3. The fiber can be identified with the space of weighted hypersurfaces of degree d in

P1114, up to the ambiguity of adding a multiple of the octic defining the Calabi–Yau.
The generating function of the dimensions of these vector spaces is then

(1 − t8)

(1 − t)3(1 − t4)
= (1 + t4)

(1 − t)3
=
∑

d

(d2 − d + 4)td , (7.5)

and so the moduli space is a P
d2−d+3-bundle over P

3, which is always even-dimensional.
So we get for Xdef.

n2d
gmax

= 4
(

d2 − d + 4
)

, d ≥ 2. (7.6)
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For ̂X we have to identify the charge sector. Again, these curves form a continuous
family, so have the same homology classes, and we only have to find the charge sector
for one curve, which we can choose to be the double cover of a union of d lines, or
equivalently, the union of d double covers of lines. Since the double covers of lines have
charge 1, we conclude that the curves under consideration have charge d mod 2. So (7.6)
gets refined to

n2d,d
gmax

= 4
(

d2 − d + 4
)

, n2d,d+1
gmax

= 0, (7.7)

where the d in the second part of the superscript in n2d,d
gmax is understood as d mod 2, and

similarly for the d + 1 in n2d,d+1
gmax .

Putting d = 2, 3, 4, 5 in (7.7), we verify the numbers n4,0
7 = 24, n6,0

13 = 0, n8,0
21 =

64, n10,0
31 = 0 in Table 2 and n4,1

7 = 0, n6,1
13 = 40, n8,1

21 = 0, n10,1
31 = 96 in Table 3.

We next turn to ngmax−1
2d , as usual starting with Xdef. before turning our attention to

̂X and identifying the charge sectors. We use the method of [52], which can be made
rigorous using Donaldson–Thomas-type invariants [53,54] (see also [146]). We recall
the general formula from [52]. Denote by C → M the universal curve of our family M
of curves of genus g = gmax. Then we have

nβg−1 = (−1)dimM+1 (e(C) + (2g − 2) e(M)) . (7.8)

There are correction terms to (7.8) when the family of curves contains sufficiently many
reducible curves. We simplify the discussion by simply asserting that these correction
terms do not occur in the present case, and refer the reader to (7.8) for more details, or
to [54] for a mathematical proof of the validity of the correction terms.

We start with d = 1. To apply (7.8), we only have to identify C. A point of C consists
of the data of a curve C = π−1(L) and a point p ∈ C . We define a mapping C → Xdef.
by sending the data p ∈ π−1(L) to p, i.e. forgetting L . The fiber of C → Xdef. is the set
of all L such that p ∈ π−1(L), or equivalently, the set of all L containing π(p). This
set is isomorphic to P

2, so we have e(C) = e(P2)e(Xdef.) = −888. Applying (7.8) we
get n2

2 = 864.

Turning to ̂X , we claim that 864 divides into the two charge sectors as n2,0
2 = 504

and n2,1
2 = 360 in agreement with Tables 2 and 3. The calculation of n2,1

2 requires no
new ideas, recalling that we have already shown that the curves π−1(	) are all in charge
sector 1. We simply recompute e(C) for ̂X as e(C) = e(P2)e(̂X) = −384, and then (7.8)
gives n2,1

2 = 360.

For n2,0
2 , the lines L containing a conifold point p play a special role. To see why,

note that for π : ̂X → P
3, the curves π−1(L) are reducible as they contain L p, so that

π−1(L) = C ∪ L p for some curve C . Since π−1(L) has degree 2 and charge 1 while L p
has degree 0 and charge 1, we conclude that C has degree 2 and charge 0. Furthermore,
C has genus 2, since it is a double cover of L branched at the 6 points where L meets
B outside of p. Thus C contributes to n2,0

2 , and it is straightforward to check that all
curves C of genus 2, degree 2, and charge 0 are of this type.

The moduli spaceMof lines containing p is isomorphic to P
2, so each line contributes

3. However, in keeping with our proposal, we have to consider the flop of C p as well. In
general, when a curve is flopped, the homology class of the curve changes sign. However,
since the class of each exceptional curve C p is 2-torsion, we have −[C p] = [C p]
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and flopped curves have the same homology class as the original curve. So we get a
second contribution of 3 by repeating this analysis on a flop, for a total contribution
of 6. Considering the contribution of 6 for each of the 84 conifolds, we finally get
n2,0

2 = 6 · 84 = 504.

The same method works for n2d,0
gmax−1 and n2d,1

gmax−1 for any d > 1. A point of the

universal curve C corresponds to a complete intersection curve C ⊂ ̂X of degrees 1, d
and a point p ∈ C . Forgetting C , we get a map C → ̂X whose fiber over p is the
space of complete intersection curves containing p. This space in turn fibers over the P

2

of hyperplanes in P
3 containing π(p). The fiber is the codimension 1 subspace of the

P
d2−d+3 of those degree d hypersurfaces in P1114 which contain p, a P

d2−d+2-bundle.
This gives e(C) = 3e(̂X)(d2 −d + 3) = −384(d2 −d + 3). Then (7.8) gives, using (7.7)
and (7.4)

n2d,d
gmax−1 = −8d4 + 360d2 − 416d + 1152, (7.9)

agreeing with Table 2 for d = 2, 4 and Table 3 for d = 3, 5.
In passing, we can do the same calculation on Xdef., simply replacing e(̂X)by e(Xdef.).

The result is

n2d
gmax−1 = n2d,d

gmax−1 + n2d,d+1
gmax−1 = −8(d4 − 108d2 + 115d − 333), (7.10)

agreeing with the sum of the relevant invariants from Tables 2 and 3.
For the other charge sector, repeating the above argument, we have to identify the

space of (1, d) complete intersection curves containing one of the 84 singular points. As
just seen above, this space is a P

d2−d+2-bundle over the P
2 of 2-planes containing π(p),

so has Euler characteristic 3(d2 − d + 3). Taking into account the factor of 2 explained
above, we get

n2d,d+1
gmax−1 = 504(d2 − d + 3), (7.11)

agreeing with Table 3 for d = 2, 4 and Table 2 for d = 3, 5.
We next turn to curves of odd degree β = 2d + 1 with d ≥ 1, starting with d = 1,

so β = 3. It is straightforward to see that curves saturating the Castelnuovo bound arise
from gluing a β = 1 curve to a β = 2 curve of maximal genus 3 at a point, arriving at a
β = 3 curve of genus 3. Since the β = 2 curves of maximal genus have charge 1, then
if we use one of the 14752 β = 1 curves of charge 0, we get a β = 3 curve of charge 1.
Similarly, if we use one of the 14752 β = 1 curves of charge 1, we get a β = 3 curve
of charge 0, and in particular n3,0

3 = n3,1
3 .

To compute either of these numbers, we fix a β = 1 curve C , which is isomorphic
to P

1 and projects to a line 	 ⊂ P
3. We can attach a β = 2 curve π−1(L) whenever the

line L intersects 	. The set of all such L is the Schubert cycle σ1(	) ⊂ G(2, 4), which
is therefore the component of the moduli space of β = 3 curves under consideration
which contain the fixed β = 1 curve. It is well-known that σ1(	) is a threefold with a
conifold singularity at the point L = 	 and is otherwise smooth. Since σ1(	) is singular,
we cannot simply take its signed Euler characteristic to obtained its contribution to the
GV invariant. However, the mathematical definition of the GV invariant in [53] reduces
in this case to taking the signed Euler characteristic of the intersection cohomology
IH∗(σ1(	)). It is also well-known that the intersection cohomology of a threefold with
conifolds is isomorphic the ordinary cohomology of any small resolution. Finally, it is
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also well-known that the set of pairs {(p, L)|p ∈ L ∩ 	} is a small resolution σ̃1(	) of
σ1(	).

It only remains to compute the Euler characteristic of σ̃1(	). There is a natural pro-
jection σ̃1(	)→ C taking (p, L) to p, with fiber the set of all L which contain p. Such
L are parametrized by P

2. The moduli space is therefore a 3-dimensional space of Euler
characteristic 6, giving a contribution of −6 to n3

3, for each of the 14752 curves. We
conclude that

n3,0
3 = n3,1

3 = −88512, (7.12)

in agreement with Tables 2 and 3.
Turning to ngmax

2d+1 for d > 1, the Castelnuovo bound is again saturated by gluing a
β = 1 curve lying over a line L to a β = 2d curve π−1(C), where C is a plane curve
of degree d. It is possible for these two curves to intersect in as many as d points, lying
above the d points L ∩C . The maximum genus is realized by curves with the maximum
number d of intersection points, which increases the maximum genus (7.6) of β = 2d
curves by d − 1. This gives

gmax = d2 + 2d. (7.13)

Since we have an equal number ofβ = 1 curves of each charge, we get n2d+1,0
d2+2d

= n2d+1,1
d2+2d

.
In order to construct the moduli space, note that we can equally consider Castelnuovo

curves of degree 2d + 2 and genus gmax.(2d + 2) = d2 + 3d + 3 that contain L and then
remove the line. As discussed below (7.4), the Castelnuovo curves can be realized as
the preimages of complete intersections of hyperplanes and degree d + 1 hypersurfaces
in P

3 and the moduli space is a P
d2+d+3 bundle over Gr(3, 4) � P

3. Requiring that the
hyperplane contains a given line L restricts the base to a P

1 ⊂ P
3. Similarly, requiring

that the degree d + 1 hypersurface also contains L imposes d + 2 linear constraints on
the fiber, leading to a moduli space that is a P

d2+1 bundle over P
1. Removing L then

leads to a curve of degree 2d + 1 and genus gmax.(2d + 1) = d2 + 2d. Including this
contribution for each of the 14752 β = 1 curves in either charge sector, we get

n2d+1,0
d2+2d

= n2d+1,1
d2+2d

= (−1)d 14752
(

2d2 + 4
)

. (7.14)

In particular, for d = 2 we get n5,0
8 = n5,1

8 = 177024, in agreement with Tables 2 and 3.
For completeness, we point out that in the cases where we did not consider a separate

contribution from flops, this can be rigorously justified since the relevant sheaves on
̂X and its flops can be checked to correspond under the standard derived equivalence
ψ : Db(̂X) → Db(̂X ′) described at the end of Sect. 4.5. We content ourselves with
working out two illustrative examples.

The first example is the 4-tangent lines, n1,0
0 = n1,1

0 = 14752. Recall that ̂X and ̂X ′ are
canonically identified after removing the exceptional curves, and the derived equivalence
ψ leaves sheaves whose support is disjoint from the exceptional curves unchanged with
this identification. In particular, ψ takes the structure sheaf of a 4-tangent line in ̂X to
the structure sheaf of a 4-tangent line in ̂X ′. So for the degree 1 curve classes, it suffices
to compute in ̂X as we have done above. More generally, families of curves which do not
intersection any of the exceptional curves can be analyzed on one ̂X without considering
any flops.
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A more interesting example is degree n2,1
3 , which we have seen corresponds to the

inverse image of a line. We set up some notation, considering the diagram

̂X × ̂X ′ π2→ ̂X ′
↓ π1 ↓ σ2

̂X
σ1→ P

3
, (7.15)

where ̂X ′ is obtained from ̂X by flopping any set of exceptional curves C p. Let � =
̂X ×X ̂X ′ ⊂ ̂X × ̂X ′. Then ψ : Db(̂X) → Db(̂X ′) is given by the Fourier-Mukai
transform

ψ(F•) = Rπ2∗
(

Lπ∗
1 F• L⊗ O� .

)

(7.16)

Now consider O
σ−1

1
(	), the inverse image of a line 	 ⊂ P

3. As 	 is the complete

intersection of two hyperplanes, we can resolve O	 by a Koszul complex

0 → OP3(−2)→ OP3(−1)2 → OP3 → O	 → 0 , (7.17)

which allows us to represent its derived pullback Lσ ∗1 O	 by the complex

0 → σ ∗1 OP3(−2)→ σ ∗1 OP3(−1)2 → σ ∗1 OP3 → 0 . (7.18)

However, σ−1
1 (	) is the complete intersection of the pullback of the two hyperplanes

to ̂X , and we recognize (7.18) as the corresponding Koszul resolution of O
σ−1

1
(	). It

follows that

Lσ ∗1 O	 = O
σ−1

1
(	) . (7.19)

We can then compute the Fourier-Mukai transform as

ψ(O
σ−1

1 (	)
) = Rπ2∗

(

Lπ∗
1 Lσ ∗1 O	

L⊗ O�
)

, (7.20)

which we have to show coincides with O
σ−1

2 (	)
= Lσ ∗2 O	.

Pulling back (7.18) by π1 and restricting to �, we can represent Lπ∗
1 Lσ ∗1 O	

L⊗ O�
by the complex

0 → O�(−2)→ O�(−1)2 → O� → 0 , (7.21)

where O(−1) and O(−2) are understood as having been pulled back from P
3 to �.

Note that � = ̂X ×X ̂X ′ is just the “large resolution,” the blowup of the conifolds
with exceptional divisors P

1 ×P
1, and the projections ̂X ×X ̂X → ̂X , ̂X ′ are the partial

blowdowns to the respective small resolutions. The fibers of π2 are P
1s over points of

the exceptional curves of ̂X ′, and are points elsewhere. Furthermore, O�(k) restricts to
OP1 on each of the 1-dimensional fibers, for k = 0,−1,−2, and therefore has no higher
cohomology. It follows that

Rπ2∗O�(k) � π2∗O�(k) � O
̂X ′(k) . (7.22)
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It then follows without difficulty that Rπ2∗
(

Lπ∗
1 Lσ ∗1 O	

L⊗ O�
)

can be represented

by the complex

0 → O
̂X ′(−2)→ O

̂X ′(−1)2 → O
̂X ′ → 0 , (7.23)

which represents L∗
σ2
O	 = O

σ−1
2 (	)

by the same reasoning that led to (7.18). It follows
that

ψ(O
σ−1

1 (	)
) = O

σ−1
2 (	)

, (7.24)

and the two families O
σ−1

i (	)
for i = 1, 2 are identified under Fourier-Mukai transform

as claimed. We conclude that we only need to study one small resolution X̂ for the β = 1
GV invariants, independent of whether or not 	 contains a conifold point.

Our final geometric check is an explanation of the identity

nβ,lg = nβ,β+l
g . (7.25)

which is apparent from the tables.
We let σ : X → X be the involution of the double cover π and let ρ : ̂X → X be a

small resolution. We form the fiber product

̂X ′ σ ′→ ̂X
ρ′ ↓ ↓ ρ

X
σ→ X

(7.26)

We claim that σ ◦ ρ′ : ̂X ′ → X is the small resolution of X obtained by flopping all of
the exceptional curves of ρ. We only need to check this locally near any conifold.

Writing the local equation of the octic surface near a node as x2 − wz, then the
equation of X near the corresponding conifold is y2 = x2 − wz. Rewriting this as

wz = (x + y)(x − y), (7.27)

we see that one small resolution ̂X is obtained by introducing a P
1 with affine coordinate

t = (x + y)/w and the flopped small resolution ̂X ′ is obtained by introducing a P
1 with

affine coordinate t ′ = (x − y)/w.
The involution σ takes (w, x, y, z) to (w, x,−y, z), and therefore takes t to t ′. This

proves the claim.
We conclude that the distinct small resolutions ̂X ′ and ̂X are isomorphic via σ ′.

Considering all small resolutions simultaneously, the maps σ ′ induce an involution of
the disjoint union

σ :
⊔

̂X∈S
̂X →

⊔

̂X∈S
̂X , (7.28)

hence we get a corresponding involution identity of GV invariants, as our nc GV in-
variants utilize all small resolutions. To check that the identity takes the form (7.25),
we only have to check on generators, which we can take to be a β = 1 curve and an
exceptional curve C p. When we apply σ to a β = 1 curve, we have seen that we get a
β = 1 curve of the opposite Z2 charge. Applying σ to an exceptional curve C p, we get
a flopped curve C ′

p. Both C p and C ′
p have β = 0 and charge 1. It follows immediately

that the involution induces the claimed identity (7.25).
This argument shows more generally that we have similar identities between the

torsion refined GV invariants of any double cover with terminal nodal singularities.
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7.2. An example by Calabrese–Thomas. We next turn to the Calabrese–Thomas example
discussed in Sect. 6.2. Following [6], the GV-invariants have been computed using mirror
symmetry and the modular bootstrap and are displayed in Tables 6, 7, 8, 9, 10 and 11. In
this section, we verify some of these numbers directly from the geometry of non-Kähler
small resolutions.

Recall that this example is elliptically fibered over P
2, with 144 I2 fibers. The singular

Calabi–Yau has 66 conifolds [93]. We focus on multiples of the fiber class. Since the
fiber projects to a point in P

2, we have d2 = 0. Because of the double cover, the fiber
class has d1 = 2, so each component of an I2 fiber has d1 = 1.

Let’s look at the GV invariants n(d1,d2)
g of Xdef. first. Later, we will refine these

invariants as

n(d1,d2)
g = n(d1,d2),0

g + n(d1,d2),1
g . (7.29)

From the 144 I2 fibers, we get n(1,0)0 = 288. Fromχ(Xdef.) = −252, we get n(2,0)0 = 252.
Since adding any multiple of the fiber class does not change the GV invariants, we get
n(2d−1,0)

0 = 288 and n(2d,0)
0 = 252 for any d ≥ 1.

Since the base of the elliptic fibration is P
2, which has Euler characteristic 3, we get

n(2d−1,0)
1 = 0 and n(2d,0)

1 = 3 for any d ≥ 1.
From Tables 6 and 7, we infer that the two components of each I2 fiber have opposite

Z2 charges. We accept this and verify the other d2 = 0 invariants without any additional
assumptions.

Since the fiber class can be represented by the sum of the two curves classes of an
I2 fiber, we see that the fiber class is given by ((d1, d2), j) = ((1, 0), 0) + ((1, 0), 1) =
((2, 0), 1). This tells us n(2,0)1 = 3 refines to n(2,0),01 = 0 and n(2,0),11 = 3. Adding on

multiples of the fiber class, we get n(2d,0),d
1 = 3 for any d ≥ 1, and n(d1,0), j = 0 unless

d1 = 2d is even and j ≡ d (mod 2).
From (4.12), we easily get χ(̂X) = χ(Xdef.)+2·66+0 = −120. Thus n(2,0),10 = 120.

From (7.29) we then get n(2,0),00 = 132. The remaining genus 0, d2 = 0 GV invariants
arise from the above by adding multiples of the fiber class.

7.3. A Z5 example. We next turn to the example of an elliptically fibered Calabi–Yau
over P

2. It is the Jacobian fibration of either of two genus 1 fibrations with a 5-section but
no section, both of which have been constructed in [147], and so has discrete gauge group
Z5. In this case, the singular geometry is not a double cover and the non-commutative
resolutions are not of Clifford type but fall under what we refer to as the General type
nc-resolutions.

The refined invariants were computed in [6], where the singular Jacobian fibration
was denoted by X (5)0 while the genus 1 fibrations were denoted by X (5)1 and X (5)2 . The
invariants are listed in [6, Tables 34–38]. We proceed to check some of the invariants
against our proposal.

We first collect some facts about the geometry of the X (5)i from the above references.

For ease of notation, we simply denote X (5)0 by X in this section. The Euler characteristics

of X (5)1 and X (5)2 are both equal to −90.
There are 225 conifold singularities of X . Each conifold is situated on the fiber

corresponding to I2 fibers of the original genus one fibered Calabi–Yau manifolds. The
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I2 fibers are partitioned into two classes of cardinalities n±1 = 100 and n±2 = 125. For
present purposes, we translate the distinction between the geometry of the two different
types of I2 fibers into the geometry of the exceptional curves in small and non-Kähler
resolutions ̂X .

Each exceptional curve is torsion, and we have H2(̂X ,Z)tors = Z5. If an exceptional
curve Ci has homology class [Ci ] = j ∈ Z5, then the flopped curve has homology class
− j ∈ Z5. In the previous cases with Z2-torsion, we had j = − j ∈ Z2 for any torsion
class j , but for Z5, j and − j are distinct for nontrivial j . Since we are interested in the
torsion refined invariants, we consider both small resolutions for each conifold. Among
the 225 conifolds, n±1 = 100 of them have exceptional curves with torsion class ±1
and n±2 = 125 of them have exceptional curves with torsion class ±2.24

We have H2(̂X ,Z) � Z
2 ⊕ Z5 and we identify curve class with labels ((d1, d2), j)

with j ∈ Z5. Here d1 is the base degree and d2 is the fiber degree.
We begin with the fiber classes, which have (d1, d2) = (1, 0) and j = 0 ∈ Z5. Since

̂X has Euler characteristic −90, we conclude that n(1,0),00 = 90,25 in agreement with

[6, Table 34]. It follows that n(d1,0),0
0 = 90 for all d1 > 0, also in agreement with [6,

Table 34].
Since we will need to adapt the usual argument presently, we review it briefly. Given

a point p in a fiber f , we have the line bundle O f (p) on f , which may be viewed as a
1-dimensional sheaf on ̂X of Euler characteristic 1.26 It readily follows that the moduli
space of these sheaves is isomorphic to ̂X , and the genus 0 Gopakumar–Vafa invariant
is the Donaldson–Thomas invariant of this moduli space, which is the negative of the
Euler characteric of ̂X . For general d1, it is shown inductively following a construction
of of Atiyah that all of the moduli spaces are isomorphic to ̂X , hence have the same
genus 0 GV invariant. Letting p ∈ ̂X , we let f p be the fiber containing p and we can
define the rank 2 bundle27 E2(p) by the extension

0 → O f p → E2(p)→ O f p (p)→ 0. (7.30)

Again, the moduli space of sheaves with fiber degree 2 and Euler characteristic 1
is isomorphic to ̂X , with p ∈ ̂X parametrizing the sheaf E2(p). So we again get
−χtop(̂X) = 90 for the GV invariant n(2,0),00 .

Inductively, we can define Ed1+1(p) as an extension of Ed1(p) by O f p just as was
done in 7.30 for E1(p) = O f p (p), and the moduli space is again ̂X .

We now compute the GV invariants n(0,0), j0 for j �= 0. Consider an exceptional
curve Ci with class [Ci ] = j ∈ Z5 corresponding to one of our 100 + 125 conifolds
pi .28 The original singular containing pi becomes an I2 fiber after performing the small
resolution, equal to the union of Ci with another curve Di , the proper transform of the
original singular fiber. Since all fibers have class ((1, 0), 0), the curve Di must have
class ((1, 0),− j).

To compute our GV invariants, we have to consider flops. If we flop Ci , the new
exceptional curve C ′

i has class ((0, 0),− j), hence the new curve D′
i has class ((1, 0), j).

24 A convenient choice of generator of Z5 has been made here.
25 In [6], the GV invariants were written as n0

(d1,d2), j
.

26 The construction is readily adapted if p is a singular point of a singular fiber.
27 For p a singular point of a singular fiber we get a rank 2 sheaf rather than a vector bundle.
28 In our description, we do not associate a GV invariant to Ci itself but view it as a contribution to what

we have called the constant map contribution in Sect. 3.6.
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Thus each conifold of this type contributes 1 to each of n(1,0),± j
0 . We conclude that

n(1,0),±1
0 = n±1 = 100 and n(1,0),±2

0 = n±2 = 125, in agreement with [6, Tables 35–
36].

We adapt the construction (7.30) to the curves Di . Letting fi = Ci ∪ Di be the I2
fiber containing Ci , we look for extensions29

0 → O fi → E2 → ODi → 0. (7.31)

These are parametrized by Ext1(ODi (p),O fi ), where the ext group is computed on
fi , and this group is dual to Hom(O fi ,ODi ), which is one dimensional. Thus there
is a unique nontrivial extension (7.31) up to isomorphism, and this process of taking
extensions by O fi can be iterated. We conclude that n(d1,0),±1

0 = 100 and n(d1,0),±2
0 =

125 for all d1 > 0, in agreement with [6, Tables 35–36].
If we have a class β = ((0, d2), j), then P

2 · C = −3d2 < 0. It follows readily
that C ⊂ P

2. The numbers n(0,d2),0
0 = 3,−6, 27, . . . are well-known to have been

verified geometrically from the geometry of local P
2, agreeing with [6, Table 34]. Since

these plane curves represent all of the curves independent of torsion, it follows that
n(0,d2), j

0 = 0 for j �= 0, agreeing with [6, Tables 35–36].
We next enumerate curves with d1 = 1. For j = 0, these curves are plane curves C

of degree d2 glued to a fiber. For d2 = 1, 2, the moduli space of stable sheaves of Euler
characteristic 1 consists of sheavesO f (p) glued toOC at a point. To describe the moduli
space, we first choice p (parametrized by ̂X ) and then we choose a curve C containing
the point q where the fiber meets P

2. Lines through a point are parametrized by P
1 and

degree 2 curves through a point are parametrized by P
4. So we get a P

1-bundle over X for
d2 = 1 and a P

4-bundle over X for d2 = 2. So we multiply−χtop(X) = 90 by the signed
Euler characteristic−2 (resp. 5) to get the GV invariants −180 and 450 respectively. It is
obvious that the factors of −2 and 5 are universal, depending only on the base P

2 but not
on the nature of the elliptic fibration. It is also clear that the factors for any d2 are similarly
universal. The factors −2, 5,−32, 286 . . . for d2 = 1, 2, 3, 4, . . . have appeared in the
literature before, for instance for the generic elliptic fibration over P

2, so we do not repeat
the verification. The resulting GV invariants n(1,d2),0

0 = −180, 450,−2880, 25740 for
1 ≤ d2 ≤ 4 agree with [6, Table 34].

Instead of gluing a fiber to a plane curve, we can glue the curves Di of class
((1, 0),− j) (and their counterparts on a flop of class ((1, 0), j)). Since Di � P

1,
ODi already has Euler characteristic 1, so we don’t need to choose a point p. Instead
of a factor of 90, we get one contribution for each curve Di , so either n±1 = 100 or
n±2 = 125 counting all curves for each discrete charge ± j . Multiplying the sequence
−2, 5,−32, 286 by 100, we reproduce the d1 = 1 row of [6, Table 35], while multiplying
by 125 instead reproduces the d1 = 1 row of [6, Table 36].

Next, we enumerate the unions of a line in P
2 with g fibers. These curves have

class ((g, 1), 0) and arithmetic genus 0 + g · 1 = g. So n(g,1),0g is just the signed Euler
characteristic of the moduli space of these curves. The moduli space has a natural fiber
structure. The base of the fibration is the dual projective plane parametrizing lines in
P

2. The fiber is the g-fold symmetric product of the line, isomorphic to P
g . We get

n(g,1),0g = (−1)g3(g + 1), agreeing with [6, Table 37].

29 Note that ODi already has Euler characteristic 1 as Di � P
1, so we don’t need a point p as in situation

of (7.30).
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A simple variant of the above construction comes from gluing g fibers as well as a
curve Di (or its counterpart on a flop) to a line in P

2. Now the line is constrained to
contain the point q where Di meets P

2. So the base of the fibration is now P
1 rather

than P
2. The arithmetic genus is still g. For each Di , the fiber of the moduli space is

still P
g . Multiplying as well by the appropriate factor n± j which counts the Di , we get

n(g+1,1),± j
g = (−1)g+12n± j (g + 1), which agrees with [6, Table 38] for j = 1 and with

[6, Table 39] for j = 2.

7.4. A weighted complete intersection. Our final example will be a weighted complete
intersection X of hypersurfaces of degrees 2 and 6 in P111113 with 70 nodes, which is
labeled as AESZ 211 in “Appendix C”. The GV invariants which we verify geometrically
below have been put in boldface type in the corresponding table.

The degree 2 hypersurface necessarily only involves the first 5 variables so can be
identified with a quadric hypersurface Q ⊂ P

4. Changing coordinates if necessary, the
degree 6 hypersurface Y can be put into the form

x2
6 = f6(x1, . . . , x5), (7.32)

where f6 is a degree 6 polynomial in x1, . . . , x5. Thus X is a double cover π : X → Q
branched over a (2, 6) complete intersection in P

4.
As in the case of the octic double solid, a degree 1 curve can only be one of the Li

which project isomorphically onto a line L ⊂ Q with the property thatπ−1(L) = L1∪L2
is a union of two curves. The reducibility of π−1(L) can only happen when L intersects
Y in three points of tangency. A straightfoward dimension count shows that this is
expected to happen for only finitely many L . By standard techniques of classical algebraic
geometry, the number of such L is 2496. Examining the GV invariants of X we see that
for each such L , one of the curves L1, L2 has charge 0 and the other has charge 1.

The analysis of the degree 2 GV invariants is entirely analogous to the case of the
octic double solid, supplemented with information about the variety of lines on Q. The
curves π−1(L) have degree 2. Since π−1(L) = L1 ∪ L2 has charge 1 for these special
L , it follows that π−1(L) has charge 1 for any line L ⊂ Q. In general, L intersects Y in
6 point, so π−1(L) is a double cover of L branched over 6 points and so has genus 2 by
Riemann-Hurwitz. So n2,1

2 is determined by the space of lines L ⊂ Q. It is known that

this space is parametrized by P
3 (see e.g. [148]). It follows that n2,1

2 = −4 and n2,0
2 = 0.

Similarly, the methods used for the octic double solid can be applied to compute
n2,0

1 = −280. Whenever L contains one of the 70 conifolds p, then π−1(L) = C ∪ L p

for L p the exceptional P
1 of the small resolution ̂X and the curve C having class (2, 0).

Any such line L is necessarily contained in the tangent hyperplane Hp to Q at p, which
intersects Q in a singular quadric surface, generically a quadric cone, p being identified
with the vertex of the cone and the base of the cone being a plane conic curve. The set of
lines in this cone is clearly parametrized by the conic curve, which is isomorphic to P

1,
giving a contribution of −2 for each of the 70 conifolds. Our now familiar argument tells
us that we have to consider both small resolutions, giving n2,0

1 = 2(−2)(70) = −280.
Note that the fact that p is a conifold does not affect the description of the lines in Q
containing p.

For n2,1
2 , we again use (7.8). The universal curve C fibers over ̂X with fiber equal to

the set of lines through a fixed point p ∈ Q, which we have just seen is a P
1. We have
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e(Xdef.) = −256, so that e(̂X) = 256 + 2 · 70 = −116 because there are 70 conifolds.
We conclude from (7.8) that n2,1

2 = −224.
In degree 4, the Castelnuovo bound is achieved by double covers of degree 2 plane

curves D. Since D meets Y in 12 points, the branched double cover π−1(D) has genus
5. The curves D which are contained in Q are all complete intersections of Q with a
2-plane P ⊂ P

4. These P are parametrized by G(3, 5), which has euler characteristic
10. Thus n4,0

5 = 10.

We can then compute n4,0
4 by (7.8). The universal curve C fibers over ̂X with fiber

equal to the set of plane conics through a fixed point p ∈ Q. It remains to describe
the 2-planes P which contain π(p). By projection from p to a P

3, this moduli space is
identified with the moduli space G(2, 4) of lines in P

3. So C is a G(2, 4)-bundle over
̂X , which has Euler characteristic 6(−116) = −696. Then (7.8) gives n4,0

4 = 616.

For n4,1
4 , we look for plane conics D containing a conifold p, sinceπ−1(D) = C∪L p

for a curve C of class (4, 1). As we have just seen, the 2-planes P containing π(p) are
parametrized by G(2, 4), so we associate to ̂X the GV invariant 6 ·70 = 420 by applying
this construction to each of the 70 conifolds. To get the GV invariants of X , we have to
consider both small resolutions, so we count 420 twice to obtain n4,1

4 = 840.
Just as in the case of the octic double solid, the Castelnuovo bound for odd degrees

is obtained by gluing a degree 1 curve to Castelnuovo curves of even degree. In degree
5, we glue a degree 1 curve (L1 or L2) to any curve π−1(D) as above which intersects
it. We describe the moduli space of these curves π−1(D)∪ Li beginning with the point
p = Li ∩ π−1(D), which is parametrized by Li � P

1. Using the above description of
the moduli space of 2-planes containing a fixed point, we see that the moduli space of 2-
planes which meet Li is a G(2, 4)-bundle over P

1, which has signed Euler characteristic
−12 owing to its odd dimension. We have such a moduli space for each degree 1 curve,
and so we get n2,0

3 = n2,1
3 = −12(2496) = −29952.

In degree 3, we glue a degree 1 curve (L1 or L2) to any curve π−1(L) with L a
line which intersects Li . The moduli space is the set of lines L ⊂ Q which meet the
chosen Li . The moduli space is a subset of the P

3 of all lines in Q, and it follows
readily from the discussion in [148] that the moduli space is P

2. We conclude that
n2,0

2 = n2,1
2 = (2496) = 7488.

8. Outlook

In this paper we have started to investigate the general properties of the topological
string A-model on non-commutative resolutions of compact Calabi–Yau threefolds with
terminal nodal singularities, building on earlier GLSM constructions in [32] and torus
fibered examples studied in [6]. There are many possible future directions that remain
to be addressed. We list a few possibilities below:

• Strings on non-Kähler Calabi–Yau manifolds: From the physical perspective,
we have proposed that a discrete gauge symmetry arises in M-theory on Calabi–Yau
threefolds X with terminal nodal singularities, corresponding to the torsion of the
exceptional curves in a small non-Kähler resolution ̂X . This generalizes earlier obser-
vations in the context of F-theory on certain singular torus fibrations, see e.g. [101].
On the other hand, in the Type IIA compactification we propose that a fractional
B-field that stabilizes the singularities can also be interpreted in terms of a corre-
sponding B-field associated to a non-trivial class α ∈ Br(̂X). Because the volume of
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the exceptional curves decouples in the topological A-model, it is not entirely clear
whether the sigma model on (̂X , α) should be interpreted as a UV theory that flows
in the IR to a sigma model on (X, α) or whether the B-field turns the non-Kähler
space ̂X itself into an admissible string background, analogous to e.g. [149–152]. It
would be very interesting to understand the effect of the renormalization group flow.

• Bridgeland stability and PT/DT: We have proposed a definition of the torsion-
refined Gopakumar–Vafa invariants associated to a Calabi–Yau threefold with termi-
nal nodal singularities in terms of a derived category of a small non-Kähler resolution
̂X . For each fractional B-field background α ∈ Br(̂X) we expect there to be an ana-
logue of the MNOP relation [153], using some suitably modified definition of the
corresponding Pandharipande or Donaldson–Thomas invariants. The latter should be
defined in terms of a Bridgeland stability condition on the twisted derived category
Db(̂X , α) and should be seen as a generalization to compact Calabi–Yau manifolds
of Szendröi’s non-commutative DT-invariants of the conifold [31]. However, it is
unclear how to incorporate the twisting in the usual definition of these invariants in
terms of stable pairs or D6-D2-D0 bound states. We leave further investigation of
this problem for future work.

• Cliffordnc-resolutionsandFJRWtheory: In case of the Clifford type nc-resolutions,
there often (conjecturally, always) exists a construction of the corresponding closed
string worldsheet theories in terms of fixed points of hybrid gauged linear sigma
models [32]. The corresponding A-model topological string amplitudes can then be
interpreted in terms of FJRW theory [154–158], which generalizes the usual Gromov–
Witten invariants. The expansion of the topological string partition function in terms
of torsion-refined Gopakumar–Vafa invariants, that has been proposed in [6] and
that we further corroborate, therefore provides a GV-FJRW correspondence that gen-
eralizes the well-known GV-GW correspondence. This opens up many interesting
questions, for example about the relation between the charge under the discrete sym-
metry on the GV side and the Hilbert space of states that is given in terms of the
Chen-Ruan cohomology of an inertia stack on the FJRW side.

• GLSMs for general type nc-resolutions: For the general type nc-resolutions that
appear in the context of torus fibrations, the corresponding large volume limits do not
seem to correspond to phases in the GLSM associated to the smooth dual Y but are
instead located at phase boundaries where the GLSM description becomes singular
[6]. Nevertheless, there could be a dual description in which the corresponding closed
string worldsheet theories can again be obtained as fixed points of some other GLSM.
Perhaps recent ideas from [159] about the GLSM realization of discrete torsion can
help to address this problem.

• Fractional B-fields and categorical resolutions:The mathematical notions of non-
commutative crepant resolutions [11] and crepant categorical resolutions [40] are very
general. However, determining whether a given sheaf of algebras falls under either
of the two definitions is quite non-trivial in practice. In the context of Calabi–Yau
manifolds X with terminal nodal singularities, our analysis leads to small analytic
resolutions ̂X that are equipped with a fractional B-field α ∈ Br(̂X), giving rise to a
sheaf of non-commutative algebras on̂X . We have proposed that the pair (̂X , α) can be
thought of as representing a non-commutative resolution of X itself, as also suggested
in [29]. Locally, via the results from [31] and also [78], this naturally reduces to
the non-commutative conifold around the nodes of X . It would be interesting to
understand whether the associated twisted derived category Db(̂X , α) satisfies the
conditions on a strongly crepant categorical resolution as defined e.g. in [40]. We
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further speculate that it may be possible to use a pair (̂X , α) to construct a sheaf of non-
commutative algebras on X and therefore an actual non-commutative resolution of X
itself. Locally near each conifold this sheaf of nc algebras is expected to be Morita-
equivalent to the NCCR resolution of the conifold. We leave these considerations to
future work.

• General classification: In this paper we have mostly focused on Clifford type
nc-resolutions associated to singular double covers, for which GLSMs had been con-
structed in [32], while topological strings on general type nc-resolutions that arise
in the context of torus fibered Calabi–Yau manifolds were investigated in [6]. It
would be very interesting to find other types of general type nc-resolutions and even-
tually to arrive at a general classification. Already in the context of Clifford type
nc-resolutions, additional GLSM examples have been suggested in e.g. [79,89,90]
and would also be interesting to investigate. Let us finally remark that the number
of non commutative MUM points in the list [160] described in [136] is consider-
able, three of them are discussed in detail in “Appendix C”. Moreover, MUM-points
with algebraic BPS expansions, so called irrational MUMs, can be systematically
constructed.30 These could potentially be associated to one parameter slices that in-
tersect non-commutative MUM-points in higher-dimensional moduli spaces of torus
fibered Calabi–Yau manifolds, with Zn-torsion for n ≥ 5. While it is not yet clear
to us how ubiquitous the phenomenon is, we take these as indications that a string
Landscape without the inclusion of non-commutative Calabi–Yau categories might
be seriously incomplete.
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A. The Brauer Group of the Singular Octic Double Solid

In this appendix, we follow a suggestion of N. Addington and show that for any small
resolution ̂X of the determinantal octic double solid we have

Br(̂X) = H2(̂X ,Z)tors = H3(̂X ,Z)tors = Z2 . (A.1)

We first construct a nontrivial Brauer class α. Recall the complete intersection of
quadrics Y ⊂ P

7 associated to X discussed in Sect. 4.3. It is well-known (from mirror
symmetry, or directly from enumerative geometry, see e.g. [161]) that Y contains 512

30 D. van Straten and J. Walcher in private communication.

http://creativecommons.org/licenses/by/4.0/
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lines L . Pick any such L . We represent α by constructing a P
1-bundle on ̂X . Once we

construct this P
1 bundle, it will be clear that it is a reduction of the OGr+(4, 8)-bundle

described in Sect. 4.3, so the Brauer class α that we describe here coincides with the
Brauer class associated to the universal twisted spinor sheaf. Since α is represented by
a P

1-bundle, it is obviously 2-torsion, i.e. α2 = 0.
Let us first construct the P

1-bundle over the complement of the exceptional curves
C p. Such points of ̂X correspond to a point p ∈ P

3 and a family of P
3s contained in Q p

(recall that there are two such families if Q p is smooth and one family if Q p has corank
1).

Write L = P(V ), where V ⊂ C
8 is a two-dimensional subspace. We investigate

linear subspaces P � P
3 with L ⊂ P ⊂ Q p, or equivalently 4-dimensional isotropic

subspaces of C
8 which contain V . Let V⊥

p be the six-dimensional subspace orthogonal
to V with respect to the quadratic form associated to p. We have V ⊂ V⊥

p since V
is isotropic. We get an induced quadratic form on the four-dimensional vector space
V⊥

p /V . Then 4-dimensional isotropic subspaces of the original quadratic form which
contain V correspond to two-dimensional isotropic subspaces of V⊥

p /V .
It is easy to see that this quadratic form has maximal rank if Q p is smooth and has

corank 1 if Q p has corank 1. In the first case, there are two families of two-dimensional
isotropic subspaces of V⊥

p /V , each parametrized by P
1. In the second case, there is one

family of two-dimensional isotropic subspaces of V⊥
p /V , again parametrized by P

1.
There is a natural map from the union of all of these P

1s to ̂X , forming a P
1-bundle.

We next extend this P
1-bundle over the exceptional curves C p. Now Q p has corank 2.

Let q ∈ C p ⊂ ̂X . Recalling the identification of C p with the singular P
1 of Q p, we

write q = P(U ) with U ⊂ C
8 the appropriate 1-dimensional subspace. We project Q p

from q to a corank 1 quadric Q′
q ⊂ P(C8/U ) � P

6. Since Q p has corank 2, it follows
that Q′

q has corank 1. Under this projection, the line L projects to a line in L ′ ⊂ Q′
q . The

5-dimensional quadric Q′
q contains P

2s. Since Q′
q is a cone over a smooth 4-dimensional

quadric, there are two connected families of P
2s. However, one of them has already been

distinguished by the choice of small resolution ̂X .
The cone from q over any of these P

2s is a P
3 contained in Q′

p . So we have to construct
the family of distinguished P

2s in Qq containing L ′ and show that it is parametrized by
P

1 in order to complete the P
1-bundle over C p.

For this, we repeat an argument already given. Writing L ′ = P(V ′) with a 2-
dimensional V ′ ⊂ C

7, we get a corank 1 quadric in (V ′)⊥/V ′ � C
3. Projectivizing,

we get a corank 1 quadric in P
2, which is a union of two P

1s, one of which has been
distinguished by the choice of small resolution ̂X . If we pick a point of the distinguished
P

1, it together with L ′ span the required P
2 in Q′

q . So the familiy of such P
2s is indeed

parametrized by P
1 and we are done.

Since α is nontrivial and α2 = 0, Br(X) contains a Z2 subgroup.
We now show that Br(X) = Z2. It follows that H2(̂X ,Z)tors = H3(̂X ,Z)tors = Z2

as well. The calculation is similar to that in [162, Sect. 1], to which we refer the reader
for additional details and references.

The derived equivalence Db(̂X , α−1) = Db(Y ) can be shown to imply the identica-
tions of topological K-theory

K i (̂X , ᾱ−1) = K i (Y ) . (A.2)
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Here ᾱ ∈ H3(̂X ,Z)tors is the class associated to α, and K i (̂X , ᾱ−1) denotes twisted
K-theory. For ease of notation, we put T = H3(̂X ,Z)tors.

The idea is to use the Atiyah-Hirzebruch spectral sequence to show that

K 1(̂X , ᾱ−1)tors � T/〈ᾱ−1〉 , (A.3)

while K 1(Y ) is torsion-free. It follows that T = 〈ᾱ−1〉 � Z2.
The Atiyah-Hirzebruch spectral sequence for twisted K-theory has

E p,q
2 =

{

H p(̂X ,Z) q even
0 q odd

. (A.4)

The d2 differentials vanish, and d3 : E0,2p
3 → E3,2p−1

3 is identified with multiplication
by ᾱ−1 in

H0(̂X ,Z)→ H3(̂X ,Z) . (A.5)

Since the only odd cohomology of ̂X is in H3, we see that

K 1(̂X , ᾱ−1) � H3(̂X ,Z)/〈ᾱ−1〉 , (A.6)

and (A.3) follows immediately.
A similar but simpler calculation shows that K 1(Y ) � H3(Y,Z), which is torsion free

since Y is a complete intersection. We conclude that T = H3(̂X ,Z)tors � 〈ᾱ−1〉 � Z2,
as claimed.

The same argument shows more generally that if Db(̂X , α) � Db(Y ), where ̂X
is a simply connected smooth compact threefold and Y is a simply connected smooth
compact threefold without torsion in its cohomology, then α generates H3(̂X ,Z)tors.

B. Direct Integration and Algebraic Kähler Gauge Choices

The non-holomophic generators {G} can be derived from special geometry. Such gener-
ators were first found in [61] and subsequently different choices have been discussed in
[124,126,163], see also [125]. The most convenient choice for our purpose is a modifica-
tion of the propagators Si j , Si , S of [61] that has been found in [126]. These propagators
were introduced in [61] to obtain Z = exp(F(λ, z)) from an action principle. They are
defined by successive integration

∂j̄ Si j = Ci j
j̄ , ∂j̄ S j = Gi j̄ Si j ∂j̄ S = Gi j̄ Si , (B.1)

of Ci j
j̄ = e2K Cı̄k̄j̄Gı̄i Gk̄k . As such, they transform as sections of L2 ⊗ Sym•(TM(Y̌ ))

and are determined by genus zero data, up to a choice of holomorphic propagator ambi-
guities that will be further discussed below.

The integration follows from the special geometry relations. Firstly, since Ci jk is
holomorphic, Si j is determined from integrating (5.6) w.r.t. j̄ , giving

�l
i j = δl

i K j + δl
j Ki − Ci jk Skl + sl

i j , (B.2)

up to holomorphic ambiguities sl
i j . One solves for Skl by inverting C(i) jk . This matrix is

invertible at least for one index i due to the local Torelli theorem. Calculating ∂j̄Di Skl
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using (5.6) and (B.2) implies that Di Skl closes in Si j , Si up to a further holomorphic
ambiguity. The corresponding relation can be solved for Si and calculating ∂j̄Di S j

one sees that Di S j closes on Si j , Si , S, K up to yet another holomorphic ambiguity.
Repeating this procedure for Di S and Di Ki , where Ki = ∂i K , one finally gets the
so-called BCOV ring

Di S jk = δ j
i Sk + δk

i S j − Cimn Smj Snk + h jk
i ,

Di S j = 2δ j
i S − Cimn Sm Snj + h jk

i Kk + h j
i ,

Di S = −1

2
Cimn Sm Sn +

1

2
hmn

i Km Kn + h j
i K j + hi ,

Di K j = −Ki K j − Ci jk Sk + Ci jk Skl Kl + hi j .

(B.3)

Since these equations are covariant, one can deduce from them the tensor transfor-
mation of the ambiguities h under coordinate and under Kähler transformations. The
latter take the form

XI → f (z)XI , e−K → f (z)e−K , Ki → Ki − ∂i log f (z) , (B.4)

for non-vanishing holomorphic functions f (z), and are important to combine global
information from different local expansions in the moduli space. Using (B.2) and (B.3),
we find that the propagator ambiguities change under Kähler transformations as

sl
i j →sl

i j +
(

δl
i∂ j + δl

j∂i

)

log f ,

h jk
i → f −2h jk

i ,

h j
i → f −2

(

h j
i + h jk

i ∂k log f
)

,

hi → f −2
(

hi +
1

2
hmn

i (∂m log f ) (∂n log f ) + h j
i ∂ j log f

)

,

hi j →hi j + sl
i j∂l log f .

(B.5)

On the other hand, the transformations of the holomorphic ambiguities of the free ener-
gies take the form

f1 → f1 +
(

1 − χ

24

)

log f , f(g≥2) → f 2−2g fg≥2 , (B.6)

and follow from (5.8) and the fact that the Kähler weight of Fg≥2 is 2g − 2.
Coming back to the direct integration step, it is convenient to introduce the shifted

propagators [126]

S̃i j = Si j , S̃i = Si − Sia Ka, S̃ = S − Sa Ka +
1

2
Sab Ka Kb. (B.7)

The S̃i j , S̃i , S̃ are not sections of L2, due to their explicit dependence on K , and they
transforms as

S̃i j → f (z)−2 S̃i j , S̃i → f (z)−2
(

S̃i − S̃i j∂ j log f (z)
)

,

S̃ → f (z)−2
(

S̃ − S̃i∂i log f (z) +
1

2
(∂i log f (z))(∂ j log f (z))S̃i j

)

.
(B.8)
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However, using the relations ∂̄ı̄ S̃i j = Ci j
ı̄ , ∂̄ı̄ S̃i = −Cia

ı̄ Ka , ∂̄ı̄ S̃ = 1
2 Cab

ı̄ Ka Kb, one can
show inductively that the non-holomorphic dependence of Fg≥2 is entirely absorbed in
their dependence on the shifted generators S̃i j , S̃ j , S̃. In particular, there is no explicit
dependence on K .

The ∂j̄ derivative in (5.10) becomes a derivative in the generators and the factor Ci j
ı̄

cancels. Assuming that the propagators and Ka are functionally independent, one gets
by comparing coefficients in Ka the form [164]

∂Fg

∂ S̃i j
= 1

2
∂i (∂

′
j Fg−1) +

1

2
(Ci jl S̃lk − sk

i j )∂
′
k F(g−1)

+
1

2
(Ci jk S̃k − hi j )cg−1 +

1

2

g−1
∑

h=1

∂ ′i Fh∂
′
j Fg−h ,

∂Fg

∂ S̃i
= (2g − 3)∂ ′i Fg−1 +

g−1
∑

h=1

ch∂
′
i Fg−h ,

∂Fg

∂ S̃
= (2g − 3)cg−1 +

g−1
∑

h=1

chcg−h ,

(B.9)

where the cg and the action of ∂ ′on the free energies are defined as

cg =
{

χ
24 − 1 g = 1

(2g − 2)Fg g > 1 , ∂ ′i Fg =
{

∂i Fg + ( χ24 − 1)Ki g = 1
∂i Fg g > 1 . (B.10)

Using (B.7) and (B.2), one can rewrite the BCOV ring (B.3) in terms of the shifted
propagators

∂i S̃ jk = Cimn S̃mj S̃nk + δ j
i S̃k + δk

i S̃ j − s j
im S̃mk − sk

im S̃mj + h jk
i ,

∂i S̃ j = Cimn S̃mj S̃n + 2δ j
i S̃ − s j

im S̃m − him S̃mj + h j
i ,

∂i S̃ = 1

2
Cimn S̃m S̃n − hi j S̃ j + hi ,

∂i K j = Ki K j − Ci jn S̃mn Km + sm
i j Km − Ci jk S̃k + hi j .

(B.11)

The last equation is not necessary for the direct integration but, together with the other
relations, can be used to construct a compatible choice for the propagator ambiguities
si

jk , hi j
k , h

j
i , hi j and hi , which turn out to be rational functions in z.

One can absorb their pole and zero structure in zi = 0 divisors by rescaling them as
si

jk = s̃i
jk

zi
z j zk

, hi j
k = h̃i j

k
zi z j
zk
, h j

i = h̃ j
i

z j
z j
, hi j = h̃i j

1
zi z j

and hi = h̃i
1
zi

. Note that here
repeated indices are not summed over. At least for the models discussed in this paper,
the s̃i

jk , h̃i j
k , h̃

j
i , h̃i j and h̃i can then be chosen to be polynomial in z.

C. Non-commutative Duals of Pfaffian Calabi–Yau Threefolds

Additional examples of Clifford type nc-resolutions appear in the context of Pfaffian
Calabi–Yau threefolds that are not complete intersections in toric ambient spaces. As
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a result, they do not fall under the toric double mirror construction from [41]. In this
appendix we briefly summarize the results that we obtain for three examples.

The Pfaffian Calabi–Yaus, each with h1,1 = 1, have been constructed in [165] and
corresponding non-Abelian gauged linear sigma models were studied in [42]. In three
cases the strongly coupled phase has been identified as a hybrid model that consists of
a Z2 Landau–Ginzburg orbifold fibered over a Fano threefold B. We interpret this as
corresponding to a non-commutative resolution of a singular double cover over the same
base.

In each of those three cases one therefore again obtains a triple of geometries, Y , Xn.c.
and Xdef., that are in turn associated to a singular double cover X of some Fano threefold
B. The Pfaffian Calabi–Yau threefold Y is smooth and twisted derived equivalent to
the nc-resolution Xn.c. of X that, for the purpose of the topological string A-model,
can in turn be replaced by a small analytic resolution ̂X of X with a fractional B-field
background α. In particular, we expect that H3(̂X ,Z) � Z ⊕ Z2 and that there is a
twisted derived equivalence Db(̂X , α) � Db(Y ). As usual we denote a generic smooth
deformation of X by Xdef..

Since the geometric analysis of the ramification loci of the singular double covers
from the non-Abelian GLSMs is quite non-trivial, we will in each case only deduce the
number of nodes from the obstructed complex structure deformations. A highly non-
trivial confirmation is then provided by the constant map contributions to the topological
string free energies.

It turns out that for one of the examples, X is again a singular double cover of P
3

but with a different ramification locus and ns = 88 nodes instead of 84. The geometric
calculations from Sect. 7 directly carry over and confirm many of the invariants. In the
second example, X is a singular double cover of a quadric in P

4 with ns = 70 nodes and
the smooth deformation Xdef. is a degree (2, 6) complete intersection X2,6 in P(111113),
which belongs to the 13 well-studied hypergeometric families. For the third example,
the base B = V5 is a degree 5 Fano threefold that can in turn be realized as a complete
intersection in the Grassmanian G(2, 5) and we predict that the singular double cover
X has 50 nodal singularities.

In the following we just summarize basic data for each of the relevant large volume
limits and list some of the associated Gopakumar–Vafa invariants up to genus 10. If
available, we also provide the corresponding identifier of the Picard–Fuchs operator
in the table of Calabi–Yau operators from [160]. For more information on the Pfaffian
Calabi–Yaus we refer to [165] and for the associated gauged linear sigma models to
[42].
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AESZ 99 - Pfaffian in P
6 (A2

(−2)7,3,14 , r � 0 in [42]) [165,166]

D =169!4 − 13z
(

260 + 2158! + 6679!2 + 9042!3 + 4569!4
)

+ 16z2
(

−2119 − 11596!− 17898!2 − 1774!3 + 6386!4
)

+ 256z3
(

26 + 312! + 1091!2 + 1248!3 + 67!4
)

− 4096z4(1 + 2!)4

� =1 − 349z − 256z2

χ = −120 , h1,1 = 1 , h2,1 = 61 , J 3 = 13 , c2 · J = 58

sz
zz = −30

17

1

z
, hzz

z = z(31 + 328z)

1445
, hzz = 13

85

1

z2 ,

hz
z = 0 , hz = 13 − 361z

14450z

nβg β = 1 2 3 4 5 6
g = 0 647 16166 942613 80218296 8418215008 1010635571652

1 0 0 176 164696 78309518 26889884396
2 0 0 0 0 15399 65099510
3 0 0 0 0 0 432
4 0 0 0 0 0 −4
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0

nβg β = 7 8 9 10 11
4 1736 79462734 1255525330364 4040105994946376 6399989953841040582
5 −4 46197 73497804 8375280645340 55360448310349962
6 0 0 494088 −1044672290 78614584131689
7 0 0 0 2876415 −44378756124
8 0 0 0 1056 4158795
9 0 0 0 0 96996

10 0 0 0 0 0
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AESZ 207 - nc-res. of X8 w/ 88 nodes (A2
(−2)7,3,14 , r  0 in [42]) [165,166]

The nodal CY 3-fold X8 is a degree 8 hypersurface in P11114.

Hybrid phase of AESZ 99: v = i2−8z− 1
2 , f (v) = 2−7v−1

D =!4 − 256v2
(

145 + 988! + 2722!2 + 2228!3 − 67!4
)

+ 2097152v4
(

1397 + 7114! + 11316!2 − 14546!3 − 3193!4
)

− 55834574848v6
(

97 + 192!− 122!2 + 192!3 + 4569!4
)

− 47569271064100864v8(1 +!)4

� =1 − 89344v2 − 16777216v4

χ = −120 , h1,1 = 1 , h2,1 = 61 , J 3 = 2 , c2 · J = 44

svvv = −25

17

1

v
, hvvv = v

(

41 − 253952v2
)

1445
, hvv = 7

85

1

v2 ,

hvv =
−41 + 253952v2

1445
, hv = 49 − 3391488v2

28900v

nβ,0g β = 1 2 3 4 5

g = 0 14752 64424480 711860273440 11596528017757856 233938237312624658400
1 0 19712 10732175296 902646051735936 50712027457008177856
2 0 528 −8275872 6249830789008 2700746768622436448
3 0 0 -88512 −87428815312 10292236849965248
4 0 0 0 197980392 −337281112359424
5 0 0 0 161706 6031964134528
6 0 0 0 1512 −43153905216
7 0 0 0 24 18764544
8 0 0 0 0 177024
9 0 0 0 0 0

nβ,1g β = 1 2 3 4 5

g = 0 14752 64410432 711860273440 11596528007035456 233938237312624658400
1 0 21600 10732175296 902646040969920 50712027457008177856
2 0 336 −8275872 6249836488736 2700746768622436448
3 0 6 -88512 −87430688512 10292236849965248
4 0 0 0 198235408 −337281112359424
5 0 0 0 139744 6031964134528
6 0 0 0 2640 −43153905216
7 0 0 0 0 18764544
8 0 0 0 0 177024
9 0 0 0 0 0
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AESZ 210 - Pfaffian in P
6
1111112 (A2

(−1)6,(−2),14,0
, r � 0 in [42]), [165]

D =25!4 + 20z
(

35 + 305! + 981!2 + 1352!3 + 688!4
)

− 16z2
(

265 + 1260!− 96!2 − 7008!3 − 5856!4
)

+ 1024z3
(

5 + 30! + 69!2 + 120!3 + 176!4
)

+ 4096z4(1 + 2!)4

� =1 − 544z + 256z2

χ = −116 , h1,1 = 1 , h2,1 = 59 , J 3 = 10 , c2 · J = 52

sz
zz = −13

8

1

z
, hzz

z = 1

384
z(7 − 176z) , hzz = 5

48

1

z2 ,

hz
z = 0 , hz = 5 + 464z

9216z

n
β
g β = 1 2 3 4 5 6

g = 0 888 33084 3003816 399931068 65736977760 12365885835028
1 0 1 2496 2089393 1210006912 571433267123
2 0 0 0 140 1738912 4201109240
3 0 0 0 0 0 2103394
4 0 0 0 0 0 420
5 0 0 0 0 0 0

n
β
g β = 7 8 9 10 11
4 2980704 169405136180 1152960131742408 3316792484212678360 5990889032340795572144
5 7488 −18725646 2029562641360 30712200099903339 143418263870959095504
6 0 99528 −1351743312 36741280919032 1224321329388729640
7 0 6 231264 −75191142894 1121354031039824
8 0 0 5328 −743012 −4046013868992
9 0 0 0 20306 2016598080

10 0 0 0 860 −867792
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AESZ 211 - nc-res. of X26 in P
5
111113 w/ 70 nodes (A2

(−1)6,(−2),14,0
, r  0 in

[42]), [165]
The nodal CY 3-fold X26 is a degree (2, 6) complete intersection in P111113.

Hybrid phase of AESZ 210: v = 2−6z− 1
2 , f (v) = 2−5v−1

D =!4 − 256v2
(

145 + 988! + 2722!2 + 2228!3 − 67!4
)

+ 2097152v4
(

1397 + 7114! + 11316!2 − 14546!3 − 3193!4
)

− 55834574848v6
(

97 + 192!− 122!2 + 192!3 + 4569!4
)

− 47569271064100864v8(1 +!)4

� =(1 − 96v + 256v2)(1 + 96v + 256v2)

χ = −116 , h1,1 = 1 , h2,1 = 59 , J 3 = 4 , c2 · J = 52

svvv = − 7
4

1
v
, hvvv = 1

192v
(

11 − 1792v2
)

, hvv = 1
6

1
v2 ,

hvv = 1
192

(−11 + 1792v2
)

, hv = 1−1664v2

288v

nβ,0g β = 1 2 3 4 5

g = 0 2496 1194672 1366030016 2299808590320 4789856923533120
1 0 -280 614016 39637899984 316537005217920
2 0 0 7488 −6555216 1960917715008
3 0 0 0 44536 −2865875584
4 0 0 0 616 −3549312
5 0 0 0 10 -29952
6 0 0 0 0 0

nβ,1g β = 1 2 3 4 5

g = 0 2496 1194096 1366030016 2299807973904 4789856923533120
1 0 -224 614016 39637764816 316537005217920
2 0 -4 7488 −6543472 1960917715008
3 0 0 0 42840 −2865875584
4 0 0 0 840 −3549312
5 0 0 0 0 -29952
6 0 0 0 0 0
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AESZ 238 - Pfaffian in P
6
1111222 (A2

(−1)4,(−2)3,15 , r � 0 in [42]), [165]

D =!4 − 4z
(

19 + 189! + 677!2 + 976!3 + 500!4
)

− 16z2
(

177 + 1164! + 1336!2 − 3968!3 − 3968!4
)

− 1024z3
(

3 + 6!− 37!2 + 24!3 + 500!4
)

+ 4096z4(1 + 2!)4

� =1 − 1968z + 256z2

χ = −100 , h1,1 = 1 , h2,1 = 51 , J 3 = 5 , c2 · J = 38

sz
zz = −3

2

1

z
, hzz

z = 1

44
z(1 − 16z) , hzz = 3

44

1

z2 ,

hz
z = 0 , hz = 9 + 736z

19360z

n
β
g β = 1 2 3 4 5 6

g = 0 2220 285520 95254820 47164553340 28906372957040 20291945542090480
1 0 460 873240 1498922677 2306959237408 3311397402449740
2 0 0 460 7244660 44839436460 168980152301480
3 0 0 0 2020 146398880 2684226893050
4 0 0 0 0 −47520 5659459680
5 0 0 0 0 240 −14812160
6 0 0 0 0 6 −13020
7 0 0 0 0 0 0

n
β
g β = 7 8 9 10

6 −3483897700 145720463906800 25318518791299955638 696922725378245090263272
7 3565520 −666685721430 109075901600511700 15690823158071372378100
8 3680 5248416060 −94782885774180 122115907922680670540
9 0 −4739915 2656979965100 169414363367059780

10 0 −4600 −22060519240 1167202925388120
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nc-res. of sing. double cover of V5 w/ 50 nodes (A2
(−1)4,(−2)3,15 , r  0 in [42]),

[165]
The Fano 3-fold V5 is an intersection of three hyperplanes in G(2, 5) ⊂ P

6.

Hybrid phase of AESZ 238: v = −2−4z−
1
2 , f (v) = 2−3v−1

D =!4 − 256v2
(

145 + 988! + 2722!2 + 2228!3 − 67!4
)

+ 2097152v4
(

1397 + 7114! + 11316!2 − 14546!3 − 3193!4
)

− 55834574848v6
(

97 + 192!− 122!2 + 192!3 + 4569!4
)

− 47569271064100864v8(1 +!)4

� =
(

1 − 44v − 16v2
) (

1 + 44v − 16v2
)

χ = −100 , h1,1 = 1 , h2,1 = 51 , J 3 = 10 , c2 · J = 64

svvv = − 2
v , hvvv = 1

22 v(1 − 4v)(1 + 4v) , hvv = 3
11

1
v2 ,

hvv = 1
22 (−1 + 4v)(1 + 4v) , hv = (3−32v)(3+32v)

2420v

nβ,0g β = 1 2 3 4 5 6

g = 0 460 25480 2926980 499942620 105270795760 25363208008280
1 0 0 −920 170629 973633792 823834160680
2 0 0 0 280 −173420 529051120
3 0 0 0 5 −1840 515340
4 0 0 0 0 0 800

nβ,1g β = 1 2 3 4 5 6

g = 0 460 25040 2926980 499877500 105270795760 25363184926320
1 0 3 −920 169380 973633792 823834715633
2 0 0 0 300 −173420 529098160
3 0 0 0 0 −1840 519360
4 0 0 0 0 0 720

nβ,0g β = 7 8 9 10 11
5 −5520 16447785 −216664462920 9421399885445840 205509186464370358520
6 0 151680 −94370380 −19206528701880 250629169915167300
7 0 30 465520 −1424809220 −990189801672040
8 0 0 4600 −2125580 323552730460
9 0 0 0 71000 77098760

10 0 0 0 1500 −1529500

nβ,1g β = 7 8 9 10 11
5 −5520 16408620 −216664462920 9421399622679790 205509186464370358520
6 0 154680 −94370380 −19206500030352 250629169915167300
7 0 0 465520 −1424838360 −990189801672040
8 0 0 4600 −2137980 323552730460
9 0 0 0 73635 77098760

10 0 0 0 1080 −1529500
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AESZ 51 - Smooth double cover of V5

D =!4 − 4z(1 + 4!)(3 + 4!)
(

3 + 11! + 11!2
)

− 16z2(1 + 4!)(3 + 4!)(5 + 4!)(7 + 4!)

� =1 − 704z − 4096z2

χ = −200 , h1,1 = 1 , h2,1 = 101 , J 3 = 10 , c2 · J = 64

sz
zz = − 2

z , hzz
z = 1

16 z(1 − 96z) , hzz = 3
16

1
z2 , hz

z = 0 , hz = 9(1+320z)
5120z

nβg β = 1 2 3 4 5 6

g = 0 920 50520 5853960 999820120 210541591520 50726392934600
1 0 3 −1840 340009 1947267584 1647668876313
2 0 0 0 580 −346840 1058149280
3 0 0 0 5 −3680 1034700
4 0 0 0 0 0 1520
5 0 0 0 0 0 10
6 0 0 0 0 0 0

nβg β = 7 8 9 10 11

5 −11040 32856405 −433328925840 18842799508125630 411018372928740717040
6 0 306360 −188740760 −38413028732232 501258339830334600
7 0 30 931040 −2849647580 −1980379603344080
8 0 0 9200 −4263560 647105460920
9 0 0 0 144635 154197520

10 0 0 0 2580 −3059000

D. GV-Invariants for an Example by Calabrese–Thomas

See Tables 6, 7, 8, 9, 10 and 11.

Table 6. Genus 0 GV-invariants for singular double cover of P
1 × P

2 with Z2 charge 0

n(0)
(d1,d2),0

d2 = 0 1 2 3 4

d1 = 0 0 1248 112176 19318752 4550120880
1 144 108000 76015872 50010357888 31665114116352
2 132 3195648 9819373632 17416078783488 23521041703147584
3 144 52492416 590225421312 2481268636257888 6512923728628208640
4 120 604668672 21599507584896 200528969095590912 968692939329591904128
5 144 5458960704 553633466992128 10754603799591217920 92103549441254145750528
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Table 7. Genus 0 GV-invariants for singular double cover of P
1 × P

2 with Z2 charge 1

n(0)
(d1,d2),1

d2 = 0 1 2 3 4

d1 = 0 0 1248 111576 19318752 4550104104
1 144 108576 76015872 50010687360 31665114116352
2 120 3195648 9819273216 17416078783488 23521041440903040
3 144 52502400 590225421312 2481268714751904 6512923728628208640
4 132 604668672 21599502154176 200528969095590912 968692939259940720192
5 144 5459022528 553633466992128 10754603805582771456 92103549441254145750528

Table 8. Genus 1 GV-invariants for singular double cover of P
1 × P

2 with Z2 charge 0

n(1)
(d1,d2),0

d2 = 0 1 2 3 4

d1 = 0 0 0 −264 −732992 −521459592
1 0 0 34560 132625152 180488387520
2 0 −2496 52493136 628502038272 2145399128655120
3 0 −216000 5765767680 175671831427776 1143574332713684736
4 3 −6398784 291281518752 21326329807527168 253191167583151600992
5 0 −105636288 9098772169728 1531300785023621376 32102687260579360247424

Table 9. Genus 1 GV-invariants for singular double cover of P
1 × P

2 with Z2 charge 1

n(1)
(d1,d2),1

d2 = 0 1 2 3 4

d1 = 0 0 0 −228 −732992 −521483928
1 0 0 34560 132611328 180488387520
2 3 −2496 52489152 628502038272 2145399116501472
3 0 −217152 5765767680 175671825357120 1143574332713684736
4 0 −6398784 291281413488 21326329807527168 253191167570157714768
5 0 −105652800 9098772169728 1531300784441988864 32102687260579360247424

Table 10. Genus g GV-invariants at base degree 1 for singular double cover of P
1 × P

2 with Z2 charge 0

n(g)
(d1,1),0

g = 0 1 2 3 4

d1 = 0 1248 0 0 0 0
1 108576 0 0 0 0
2 3195648 −2496 0 0 0
3 52502400 −216000 0 0 0
4 604668672 −6398784 3744 0 0
5 5459022528 −105636288 325728 0 0
6 41139649536 −1228521216 9606912 −4992 0
7 269250770688 −11233799808 159235200 −432000 0
8 1571999613696 −85932893760 1865192544 −12820032 6240

Table 11. Genus g GV-invariants at base degree 1 for singular double cover of P
1 × P

2 with Z2 charge 1

n(g)
(d1,1),1

g = 0 1 2 3 4

d1 = 0 1248 0 0 0 0
1 108000 0 0 0 0
2 3195648 −2496 0 0 0
3 52492416 −217152 0 0 0
4 604668672 −6398784 3744 0 0
5 5458960704 −105652800 324000 0 0
6 41139649536 −1228521216 9606912 −4992 0
7 269250394368 −11233868160 159214464 −434304 0
8 1571999613696 −85932893760 1865192544 −12820032 6240
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