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1 Introduction

The observation of a stochastic gravitational wave (GW) background from a primordial first-
order phase transition would unravel information about underlying particle physics beyond
that of the Standard Model (SM). A very interesting beyond-the Standard-Model (BSM)
scenario is the case of a supercooled first-order phase transition, which typically arises in
models with classical scale invariance (or nearly conformal dynamics) [1–5]. In such a case, the
phase transition completes at a temperature much below the critical temperature. As a result,
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the potential energy difference between the high-temperature and low-temperature phases
becomes very large, and the amount of energy released — relative to the radiation energy
density — is orders of magnitude larger than in scenarios without significant supercooling.
Large energy release results in a strong GW signal sourced by the sound waves in the plasma
or the collisions of the bubble walls [6–11]. Predictions of the GW spectrum for models
with classical scale invariance [4, 5, 11–23] indicate that the signal could be readily observed
by the Laser Interferometer Space Antenna (LISA) [24] and other next-generation GW
detectors [25–27]. This makes models with classical scale invariance and strong supercooling
an interesting theoretical playground, and accurate predictions of the GW spectrum in terms
of the free parameters of such models are essential to determine if a potentially observed
GW signal was caused by a phase transition in such a model.

Predicting the GW signal requires a determination of thermal parameters describing
the phase transition, such as the percolation temperature Tp, the strength α, the (inverse)
time or length scale of the transition, β or R∗ and the wall velocity vw. In many studies,
the phase transition parameters are obtained from the one-loop effective potential at finite
temperature, with so-called daisy resummation accounting for a resummation of a class of
diagrams enhanced in the infrared (IR) due to thermal screening. In recent years, it has
become clear in the context of Higgs portal models [28] and the Standard Model Effective
Field Theory [29] that this approach might not predict the thermal parameters with sufficient
precision, and the corresponding uncertainty of the GW signal can be several orders of
magnitude. In the work at hand, we apply similar higher-order thermal corrections to models
with classical scale invariance.

The reason for the poor convergence of the computation at finite temperature, is that
bosonic low-energy modes become highly occupied in a thermal plasma. This results in a
breakdown of the usual loop expansion [30–32]. Indeed, the standard one-loop procedure
suffers from an incomplete treatment of the perturbative expansion, which reveals itself as
an uncancelled dependence on the renormalisation scale [28, 32]. The escape out of this
distress is the use of a dimensionally reduced effective field theory (EFT) [33–36], that
is constructed to account for thermal scale hierarchies and consistently incorporates the
required thermal resummations, which significantly reduces the uncertainty of the GW signal
predictions [28, 29] (cf. also ref. [37]). This method allows one to construct an EFT for only
the degrees of freedom that are driving the phase transition at IR length scales. The heavy
ultraviolet (UV) modes are integrated out, and their effect is captured in the parameters of
the EFT via matching. Constructing the EFT can be a technically challenging endeavour
compared to the use of mere one-loop thermal functions with minimal daisy resummation
that encode the leading behaviour of the effective potential, but this obstacle has been largely
removed by DRalgo [38], which has automated the matching procedure and the computation
of the effective potential in the EFT for generic models. Furthermore, the formulation in
terms of an effective field theory combined with strict perturbative expansions has been
shown to provide a theoretically sound setup for computations, that is free of residual gauge
dependence, imaginary parts, spurious IR-divergences or double counting contributions [39–
45]. Indeed, in the terminology used in ref. [45] we implement the mixed method in the
computation of the bubble nucleation rate, which is based on the strict expansion for the
action around the leading order bounce solution.
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So far the dimensionally reduced EFT approach has not been applied to models with
classical scale invariance. At first glance, the approach might not even seem suitable for
the study of supercooled phase transitions, as the construction of the dimensionally reduced
EFT relies on scale hierarchies in a high-temperature (HT) expansion, assuming that the
field-dependent masses are small compared to the temperature. This assumption seems
not at all appropriate for a phase transition in a scale-invariant model: the position of the
minimum of the potential of the transitioning field exceeds the temperature by multiple orders
of magnitude. This suggests that applying the dimensionally reduced EFT to models with
classical scale invariance might do more harm than good: does the inclusion of higher-order
corrections in the effective potential come at the cost of applying the HT expansion in a
regime where it is not at all valid?

In this work, we will argue that the EFT relying on the HT expansion can be used
for parts of the computation. The crux is that the transitioning field does not transition
directly to the minimum of the potential, but remains in the regime of validity of the HT
approximation. Therefore, along the path formulated in refs. [39, 43–46], we compute the
thermal contributions coming from the so-called hard scale (cf. section 4) and construct an EFT
for the bubble nucleation at the soft scale. This EFT can be used for the determination of the
nucleation and percolation temperature, and the typical length scale of the transition. Other
parameters, such as the phase transition strength, do depend on the value of the potential
at its minimum. These quantities have to be determined without the high-temperature
expansion, but follow from the zero- or low-temperature potential (see e.g. ref. [11] for the
details on how to compute the reheating temperature, or the potential energy difference ∆V ).
For concreteness, we will demonstrate the approach explicitly in the SU(2)cSM model [4, 47],
a conformal extension of the SM.

We find that the next-to-leading (NLO) corrections included in the EFT modify the
predictions for the properties of the phase transition significantly, as compared to earlier
results based on daisy resummation [11]. For example, the percolation temperature can change
by 100%, whereas the changes in the length scale, given by the normalised bubble radius R∗H∗,
reach 50%. Since the signal is expected to be well visible with LISA, it would be possible to
reconstruct the values of R∗H∗ and the reheating temperature with good accuracy [48]. This
clearly shows the importance of providing the most precise theoretical predictions possible.

Interestingly, the modification of the potential at NLO accounts only for a part of the
large correction described above. A correction of the kinetic term in the action, only appearing
at NLO, is responsible for a significant shift in the results. This kind of correction is not
straightforward to include within the conventional daisy-resummed approach, which shows
the importance of using the EFT framework. On the other hand, this correction is also a
main source of uncertainty in our computation, and it could indicate the breakdown of the
mass hierarchies at the root of the applied EFT. These non-trivial issues in the construction
of the EFT for classically conformal theories set the stage for further studies.

This article is organised as follows. In section 2 we review the previous knowledge on
phase transitions in models with classical conformal symmetry and discuss the applicability
of high- and low-temperature approximations. In section 3 we introduce our concrete BSM
model, the SU(2)cSM, for which in section 4 we construct an effective description for bubble
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nucleation at high temperature, using an EFT at the soft scale. In section 5 we present
our numerical results and we summarise our findings in section 6. For the convenience of
the reader, we provide the expressions for the running couplings in appendix A and our
implementation of dimensional reduction using DRalgo in appendix B.

2 Supercooling at high temperature

The equilibrium properties of a high-temperature plasma can be described in Matsubara’s
imaginary time formalism [49]. In this formalism, fluctuations of several mass scales arise:
modes with non-zero Matsubara frequency have masses of the order πT or higher at temper-
ature T , while zero modes can have masses which are parametrically smaller m ∼ gT [50, 51].
Here, the dimensionless coupling g2

(4π)2 ≪ 1 parametrises the hierarchy. Such a hierarchy
allows for a HT expansion with respect to m

T ∼ g, and suggests an EFT picture, where an
EFT for long-distance IR physics for phase transitions is constructed, by integrating out
short-distance non-zero modes in the UV. These UV modes screen the modes in the IR
and generate thermal mass corrections [52]. Capturing such effects requires resummation of
perturbative expansions. The scalar field zero modes undergo the phase transition, and since
they are static and live in three spatial dimensions, this procedure is called high-temperature
dimensional reduction. We describe this in more detail in section 4.

In models with classical scale invariance, all fields are massless at classical level, and
massive modes are generated radiatively at loop level by quantum corrections. This is called
dimensional transmutation [53]. Physical masses depend on the vacuum expectation value of
the scalar field which is typically much larger than the nucleation temperature, thus m

T ≫ π,
seemingly invalidating the use of HT expansion.

Hence, at first sight, supercooling seems incompatible with the formalism of dimensional
reduction as the latter relies on the HT expansion. In this section, we delve into this seeming
contradiction to formulate a consistent prescription for treating supercooled phase transitions
with due accuracy. For the current purpose, we will phrase our discussion in terms of the one-
loop effective potential with Arnold-Espinosa — or daisy — resummation [32]: a framework
which is familiar to most readers and corresponds exactly to dimensional reduction at leading
order (see section 4.2), where thermal corrections to the masses are computed at one-loop,
and resummed to all orders. We start with a brief review of the temperature-dependent
effective potential and the parameters characterising phase transitions.

2.1 Perturbative description of a phase transition

In perturbation theory, the effective potential is the central object for computing the properties
of the phase transition. It is given by a loop expansion as

V = V (0) + V (1) + VT , (2.1)

where V (0) corresponds to the tree-level potential, V (1) is the one-loop Coleman-Weinberg
correction, including counterterms to remove divergences, and VT contains thermal corrections,
at one loop. Herein, two-loop corrections are not considered. In this work, we will use Landau
gauge and the MS renormalisation scheme.
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The one-loop zero-temperature correction is given by the well-known formula [53] being
a sum of contributions from different fields

V (1)(φ) = 1
64π2

∑
a

naM4
a (φ)

(
log M2

a (φ)
µ2 − Ca

)
, (2.2)

with na counting the number of degrees of freedom as

na = (−1)2saQaNa(2sa + 1), (2.3)

where sa denotes the spin of a given particle, Qa = 1(2) for neutral (charged) particles,
and Na = 1(3) for uncoloured (coloured) particles. Ca = 3/2 for scalars and fermions, and
Cs = 5/6 for vector bosons. Here, for simplicity, we assume the effective potential to be
a function of a single field but it can be straightforwardly generalised to the multi-field case.

The one-loop thermal correction is given by

VT (φ, T ) = T 4

2π2

∑
a

naJT,b/f

(
Ma(φ)

T

)
, (2.4)

where the thermal function is defined as

JT,b/f (y) =
∫ ∞

0
dx x2 log

(
1± e−

√
x2+y2

)
, (2.5)

with the “+” sign for fermions and “−” sign for bosons [51]. When the temperature is high
with respect to the mass scale, Ma/T ≪ 1, the thermal functions can be expanded as

Jy≪1
T,b (y) = − π4

45 + π2

12y2 − π

6 y3 − 1
32y4

(
log y2

16π2 − 3
2 + 2γE

)
+

+ π2y2
∞∑

i=2

(
− 1
4π2 y2

)i (2i − 3)!!ζ(2i − 1)
(2i)!!(i + 1) ,

Jy≪1
T,f (y) = 7π4

360 − π2

24y2 − 1
32y4 log

(
y2

π2 − 3
2 + 2γE

)
+

+ π2y2
∞∑

i=2

( −1
4π2 y2

)i (2i − 3)!!ζ(2i − 1)
(2i)!!(i + 1)

(
22i−1 − 1

)
, (2.6)

and in the opposite regime M/T ≫ 1, the expansion is

Jy≫1
T (y) =− e−y

(
π

2 y3
) 1

2
∞∑

i=0

1
2ii!

Γ(5
2 + i)

Γ(5
2 − i)

y−i, (2.7)

which is the same for bosons and fermions. Above, γE denotes the Euler-Mascheroni constant,
ζ is the Riemann zeta function and Γ the gamma function.

At high temperature, diagrams that involve IR-sensitive zero modes get enhanced due to
thermal screening, and these diagrams need to be resummed. For now, we will employ the
Arnold-Espinosa daisy resummation method [32], and further sections will be devoted to a
detailed discussion of applying the dimensional reduction scheme. The one-loop potential
with daisy resummation reads

V = V (0) + V (1) + VT + Vdaisy, (2.8)
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where
Vdaisy(φ, T ) = − T

12π

∑
i

ni

[
(M2

i,th(φ, T ))3/2 − (M2
i (φ))3/2

]
, (2.9)

and M2
i,th(φ, T ) denotes the thermally corrected mass squared, which is the sum of the squares

of the zero-temperature and the thermal mass. Diagrammatically, the first term here is a
sum of an infinite number of diagrams of a one-loop zero-mode diagram with non-zero-mode
one-loop diagrams attached around it ✿, hence the name daisy. The physics behind this
construction is clear: the non-zero UV modes screen the zero mode living at the IR scale,
and the first term in eq. (2.9) is nothing but a result of a one-loop diagram of the zero-mode,
with resummed mass. The second term merely removes the double counting, since the zero
mode contribution with unresummed mass is already included in the cubic term of eq. (2.6).
We emphasise that eq. (2.9) should only be added to the effective potential whenever the
HT expansion is valid, as it is an essential assumption in its derivation. Using the 3D EFT
approach, it is straightforward to derive eq. (2.9), and we compute it explicitly in section 4.

The temperature evolution of the effective potential determines the details of the phase
transition. A supercooled phase transition typically proceeds as follows. At high temperature,
the scalar field fluctuates around the symmetric minimum, and as the temperature decreases,
another minimum is formed. At the critical temperature Tc the two minima become degenerate
and at lower temperatures the symmetry-breaking minimum becomes energetically favourable.
It is characteristic of supercooling that the transition does not proceed right after it has
become energetically favourable. First, at temperature TV , the Universe enters a stage of
thermal inflation induced by the large amount of energy stored in the false vacuum. Then, at
some point, the field transitions to the true ground state, due to getting kicked by thermal
fluctuations (typically quantum tunnelling is much less probable [11, 16]). The nucleation
temperature, Tn, at which at least one bubble of the true vacuum is nucleated per Hubble
volume is considered as the onset of the transition. Later the bubbles percolate at the
percolation temperature, Tp. To consider the phase transition complete, not only the fraction
of the volume turned into the true vacuum has to be big enough, but also the volume of the
false vacuum should be shrinking at Tp [54], see also ref. [55]. This condition is not trivially
satisfied for transitions taking place during a phase of thermal inflation and thus it constrains
the available parameter space. The size of the bubbles at the moment of collision, R∗, can
be used to estimate the length scale of the transition. It can be used interchangeably with
the (inverse) time scale of the transition, β∗, given by the derivative of the decay rate of
the false vacuum. During the phase transition latent heat is released, which in the case of
supercooling is tightly related to the strength of the transition α given by

α ≃ ∆V

ρrad
, (2.10)

where ρrad is the energy density stored in radiation and ∆V is the potential energy difference
between the false and true minima. The released energy is partially converted to gravitational
waves. In the case of strong supercooling, two production mechanisms — via bubble collisions
and sound waves in the plasma — can be effective (see e.g. refs. [7, 11]). For the calculation
of the terminal Lorentz factor of the bubble wall one needs to consider the pressure difference
across the wall, and for the NLO pressure contribution we use γ-scaling [56–58] (for further
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details, see [11]). We will use the efficiency factor for production via sound waves, κsw to
determine the dominant source, as the efficiency for production via bubble collisions is given
by κcol = 1− κsw. However, most of the energy goes back to the plasma, reheating it back
to TV .1 The reheating temperature and the length/time scale of the transition (evaluated
at Tp) are the parameters most relevant for the determination of the resulting GW spectra.
Since the GW spectrum depends on α/(α + 1) and α ≫ 1 for strongly supercooled phase
transitions, the exact value of α becomes irrelevant. More detailed definitions of the relevant
parameters listed above can be found in ref. [11], the approach of which we follow here.

The decay of the false vacuum is controlled by the rate given by2

Γ(T ) ≈ Ae−S(T ), (2.11)

where A is T -dependent pre-factor. The three-dimensional Euclidean action is evaluated
at the so-called bounce configuration

S(T ) = 4π

T

∫ ∞

0
dr r2

[
1
2

(dφb

dr

)2
+ V (φb, T )

]
, (2.12)

which corresponds to the solution of the bounce equation

d2φb

dr2 + 2
r

dφb

dr
= dV (φb, T )

dφb
, (2.13)

with boundary conditions dφb
dr = 0 for r = 0 and φb → 0 for r → ∞.

2.2 High- and low-temperature regimes

The ratios of the field-dependent masses to the temperature determine whether the HT or
LT limit should be considered. Large field values correspond to large masses and thus LT,
while small field values correspond to the HT limit. In models with classical scale invariance,
which feature supercooled phase transitions, the scales associated with the global minimum
of the potential (the location of which determines the strength of the transition) and with the
location of the barrier (where the tunnelling takes place) are widely spread. Therefore, we
cannot use just one of the limits, either LT or HT, to have the full picture of the transition.

In classically scale-invariant models, the potential around the global minimum, for
temperatures below the critical temperature, is in the low-temperature regime. This means
that we can use the one-loop thermally corrected potential, without daisy resummation to
compute the temperature at which thermal inflation starts, TV , and to compute the vacuum
energy close to the nucleation temperature we can even neglect the thermal corrections.

In the presence of various energy scales, we should use the renormalisation group (RG)
improved effective potential to resum the field-dependent logarithmic terms and make the
potential perturbative over a wide range of field values. For theories in which the one-loop
corrections to the potential are dominated by a single mass scale M(φ) this is straightforward
to attain by the field-dependent choice of RG scale, µ = M(φ). Accordingly, all couplings are

1This happens unless the transitioning field is very weakly coupled to the SM plasma. In ref. [11] it was
shown that reheating is efficient in the whole allowed parameter space of the model considered in this work.

2In some parts of the literature, the action S(T ) appears as S3/T , such that S3 has dimension of T .
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run to this scale. However, going from the high-field regime to lower field values, which are
relevant for the tunnelling, at some point the ratio M(φ)/T becomes small, which signals
the onset of the high-temperature regime.

In the high-temperature regime we can use the expansion of eq. (2.6) in the potential
but also resummations of higher-order terms are obligatory. The one-loop potential in the
high-temperature limit reads (for simplicity we consider here models with bosons only)

V = V (0) + V (1) + VT + Vdaisy =

= V (0) + 1
64π2

∑
a

naM4
a (φ)

[
log

((4πeγE T )2

µ2

)
− Ca + 3

2

]

+ T 4

6π

∑
a

(
−π3

15 + π

4
M2

a

T 2 − 1
2

M3
a

T 3

)

− T

12π

∑
a

na

[
(M2

a,th(φ, T ))3/2 − (M2
a (φ))3/2

]
. (2.14)

Note that the dependence on the logarithm of the field-dependent mass cancelled out.3 Now
the only logarithm present is of the ratio of the temperature and the renormalisation scale. It
is thus clear, that in order to preserve perturbativity of the computations one should fix the
renormalisation scale to be proportional to the temperature, with some O(1) proportionality
factor. The most natural choice is µ = 4πe−γE T , which cancels the logarithmic term entirely.
Nonetheless, any choice of µ ∼ κT , where roughly κ ∈ (1, 2π) is acceptable.

This choice builds a bridge between the HT and LT regimes. In the HT regime we
have µ = κT , whereas in the LT µ = M(φ). In the intermediate regime, we thus have
µ ≈ κT ≈ M(φ): deep in the HT regime we should have M(φ)/T ≪ 1 and we expect that
the breakdown of the applicability of the HT approximation occurs for M(φ)/T ∼ O(1).
These observations teach us how to treat the RG-improved potential for the sake of phase
transition-related computations: at large field-values the scale should follow the field, whereas
at low field-values the scale should be set by the temperature as4

µ = max(M(φ), κT ). (2.15)

The thermal cutoff on the running of the couplings prevents them from reaching the Landau
poles of e.g. the top Yukawa coupling at small field values so it regulates the behaviour
of the potential around φ = 0.

One should note, however, that the HT effective potential of eq. (2.14) is not renormali-
sation-scale independent, in contrast to the zero-temperature effective potential [28, 32].
While the running of the parameters in V (0) cancels the explicit logarithms appearing in V (1),
there is still RG-scale dependence leftover. The implicit running of the term

T 4

6π

∑
a

(
π

4
M2

a

T 2

)
, (2.16)

3It is straightforward to see that a similar cancellation takes place for fermionic fields.
4A similar approach was used in ref. [11], however, there the thermal cutoff on the running was only

introduced in the thermal part of the potential.
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that corresponds to the thermal correction to the mass at one-loop, is of the same order as
the running of V (0), yet there are no T 2-dependent logarithms of the form of

T 2

(4π)2 log
(
(4πeγE T )2

µ2

)
, (2.17)

in the potential for compensation. Indeed, at HT such terms only appear at two-loop order,
due to the relatively slower convergence of perturbation theory, induced by enhancement due
to thermal screening. The running of the other thermal contributions, in particular from
the daisy resummation, is of higher order. In perturbation theory, renormalisation-scale
dependence can be used to estimate the size of the missing corrections,5 and omission of
such corrections is the source of one of the largest uncertainties in predictions of GW signals
originating from phase transitions [29]. Dimensional reduction will be the technique advocated
in this work to be used in the HT regime to include these missing large corrections. In
section 4 we discuss how these missing corrections are included and further resummations
are performed with care.

In summary, due to different properties of the theory in the UV (large field values, low
temperature) and in the IR (small field values, high temperature), the field space naturally
divides into two parts:

1. The low-temperature (LT) regime, where no resummations in the thermal part of the
potential are needed. The RG-improved potential with running couplings and fields
should be used and the renormalisation scale should follow the value of the field.

2. The high-temperature (HT) regime, where the scale at which computations are per-
formed is set by the temperature. This is the region where thermal resummations are
inevitable and the dimensionally reduced theory can be used to cancel renormalisation-
scale dependence and systematically include higher-order corrections.

In the case of scale-invariant potentials, which we treat as models for supercooled
transitions, there is also a natural division of parameters which need to be computed in
different field- or scale-regimes:

1. LT regime: the location of the symmetry-breaking minimum, the energy of the true
vacuum (needed to determine the phase transition strength α), the temperature at
which thermal inflation starts TV , the reheating temperature, Tr.

2. HT regime: the percolation and nucleation temperatures, the size of bubbles at col-
lision R∗H∗, the inverse time scale of the transition β/H∗ (normalised to the Hubble
length/time).

Therefore, one can compute the quantities in the first category using a finite-temperature
RG-improved potential without resummations, while for the quantities in the second category,
which are related to solving the bounce equation, the use of the dimensionally reduced theory

5Or, putting it differently, convergence of perturbation theory is demonstrated when higher orders indeed
have a reduced sensitivity to a variation of the renormalisation scale. This is particularly clearly illustrated in
figure 2 of ref. [59] that computes the Debye mass of hot Yang-Mills theory at three-loop order.
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is required. Below, when we consider a concrete model, we will demonstrate that indeed the
escape point for the bounce trajectory lies within the HT region. In the literature the HT
approximation has been used for computations related to the phase transition in supercooled
transitions, see e.g. refs. [60–62]. However, using dimensional reduction in the HT regime
and relating it to the low-temperature limit through the RG running and using both of them
is a novel approach which we present in this work.

We will demonstrate how this construction works by applying it to a model with classical
scale invariance and an extra SU(2)X gauge group in the proceeding sections.

3 Introducing the model

In this section, we will apply the discussion of the previous section to a concrete BSM
model, the so-called SU(2)cSM model [4, 47]. It is an extension of the conformal version
of the SM (without the explicit mass term for the Higgs field) with a new, “dark” SU(2)X

gauge group and a scalar that is a doublet under this new symmetry, while transforming
as a singlet under the SM gauge group. This model has been studied extensively in the
literature [4, 11, 16, 17, 47, 63–69], in particular in ref. [11] a thorough analysis of the
thermal history of the Universe within this model has been performed using RG improvement
and daisy resummations. In this work, our aim is to improve these results by including
higher-order thermal corrections obtained with the dimensionally reduced theory.

3.1 Model at zero temperature

The model contains two complex scalar doublet fields. We exploit the symmetries to rotate
the fields such that the vacuum expectation values are only non-zero in one direction of
the field space for each doublet. Then we can write the tree-level potential for the scalar
background fields as

V (0)(h, φ) = 1
4
(
λhh4 + λhφh2φ2 + λφφ4

)
. (3.1)

In principle, there are two independent field directions, however, as was discussed in the
literature [11, 16, 17], the tunnelling proceeds along the direction of the new scalar field
φ and subsequently the Higgs field h rolls to the true vacuum. Therefore, in our analysis
we will focus solely on the φ-direction.

In the one-loop correction to the effective potential, the dominant contribution comes
from the dark gauge bosons, Xµ. Therefore, the one-loop potential along the φ direction
at zero temperature reads

V (0)(φ) + V (1)(φ) = 1
4λφφ4 + 9M4

X(φ)
64π2

(
log M2

X(φ)
µ2 − 5

6

)
, (3.2)

with MX(φ) = 1
2gXφ. The scalar one-loop contributions can be neglected since they are

subdominant [11].
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3.2 Thermal effective potential at leading order

The thermal one-loop correction to the effective potential along the φ direction reads

VT (φ, T ) = T 4

2π2

∑
a

9JT,b

(
MX(φ)

T

)
, (3.3)

and the daisy correction in the Arnold-Espinosa scheme is given by [32]

Vdaisy(φ, T ) = − 3T

12π

(
M3

X,th(φ, T )− M3
X(φ)

)
, (3.4)

where [17]

M2
X,th(φ, T ) = M2

X(φ) + M2
D,X(T ) = M2

X(φ) + 5
6g2

XT 2. (3.5)

Since scalar loops are negligible, the only contribution affected by the daisy resummation
is that of the zero Matsubara mode of the dark gauge field temporal component, which
acquires a Debye mass. The full one-loop potential with daisy corrections is given by the
sum of the contributions listed above

V LO(φ, T ) = V (0)(φ) + V (1)(φ) + VT (φ, T ) + Vdaisy(φ, T ). (3.6)

The label “LO” stands for leading order, as we will see that this potential coincides with the
leading order effective potential obtained in section 4.1, as long as the matching is performed
at leading order only (see section 4.2).

As explained in the previous section (see also ref. [11]) in models with classical scale
invariance we should use the RG-improved effective potential, since vastly different scales
are present in the model. We improve the potential by replacing the field and couplings
with their running versions as φ →

√
Z(t)φ (see the discussion in section 3.3), λφ → λφ(t),

gX → gX(t), where t = log µ
µ0

and µ0 corresponds to the Z boson mass. The β functions
and the anomalous dimension for the φ field are listed in appendix A.

Next we choose the scale µ as stated in eq. (2.15), with no running included in the field
dependent mass and gX defined at the scale MX

µ = max
(1
2gXφ, κT

)
. (3.7)

This choice ensures that at large field values the field-dependent logarithmic term is (almost)
cancelled by the field-dependent renormalisation scale,6 while at lower field-values, for
φ < 2κT/gX , the field-dependent logarithms cancel between the zero-temperature and finite-
temperature contribution, and the scale is fixed to κT , cancelling a remaining T -dependent
logarithm.

6No running in the mass in eq. (3.7) means that we do not entirely eliminate the logarithm in the one-loop
Coleman-Weinberg correction, but the remnant is tiny.
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3.3 Tunnelling and normalisation of the field

When defining the potentials we start from setting the values of the mass of the X boson
and its coupling gX at µ = MX . Following the procedure described in ref. [11] we recover
the values of all the couplings at the electroweak scale set by MZ and we define the theory
at that scale. This is reflected in the choice of the reference scale µ0, see the discussion
above eq. (3.7). This means that the field φ is defined at µ = MZ , i.e. at this scale it is
canonically normalised (for a comprehensive discussion of the scale-dependence of scalar fields,
see ref. [70]). As we RG-improve the effective potential, we evolve the couplings and fields
along their RG flows. This means that at other scales the field is not canonically normalised
and the field is rescaled by the field renormalisation constant,

√
Z(t). In the HT regime the

running is frozen at µ = κT and the normalisation of the field is given by
√

Z(log κT
MZ

).
At the same time, the usual bounce equation is derived from an action containing a

canonically normalised scalar field, see eq. (2.13). This means that we cannot simply use the
bounce equation with the RG-improved potential evolved down to the thermal scale. We
could rederive the bounce equation in terms of the field defined at µ = MZ but we choose
to rather redefine the field for the purpose of solving the bounce equation and computing
the action — we introduce a new field that is defined at the scale µ = κT and is thus
canonically normalised. It is related to the old field via the rescaling φκT =

√
Z(log κT

MZ
)φMZ

.
Remembering about this subtlety, we will not introduce extra subscripts on the field symbol
φ for simplicity of notation.7

The factor of
√

Z may seem unimportant, as Z stays close to 1, as long as we are within
the perturbative regime of the theory, however, it turns out that it affects the results visibly
and we therefore take this Z into account in the LO computations of section 5. This issue
has not been appreciated in the literature, see for example ref. [11].

4 High-temperature effective theory

As mentioned in the introduction, thermal field theory suffers from poor convergence of
the perturbative expansion, which can hamper the precision with which the properties
of the phase transition are determined. Even though daisy resummation (see eq. (2.9))
resums a leading set of IR-sensitive diagrams, and is hence correct at O(g3

X), a problem
persists: parametrically large O(g4

X) contributions are still missing. In particular, there is
an uncancelled RG-scale dependence due to the omission of two-loop thermal masses, and
furthermore additional resummations are required at the same order.8 The root of both
problems lies in the Bose-enhancement of the low-energy modes, resulting in an enhancement
of the effective parameters of these modes.

7As we will explain in the following section, the 3D theory is directly constructed at the thermal scale
µ4D = κT (the values of the couplings at this scale are obtained by running from µ = MZ), thus the 3D field
naturally is defined at this scale and needs no rescaling.

8These additional resummations generate contributions to the couplings, as well as momentum-dependent
field normalisation contributions [35].
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Name Energy scale Scaling of expansion parameter
Hard πT g2

π2

Soft gT g
π

Table 1. Relevant energy scales for the SU(2)cSM model (see section 3) at finite temperature.
Conventionally, g denotes the largest relevant coupling in the theory, in our case gX .

4.1 Effective field theories

A systematic way to deal with the above-mentioned problems, is to construct a series of
effective field theories describing the thermodynamics at the different relevant energy scales.
See ref. [45] for a recent discussion of the possibly relevant scales. For our purposes, it suffices
to distinguish the following two energy scales (see table 1):

The hard scale. For the construction of the EFTs, we make use of the partition function
given by

Z =
∫

DΦ exp

− 1/T∫
0

dτ

∫
d3x LE

 . (4.1)

Here, τ is the imaginary time coordinate and its periodicity is set by the reciprocal of the
temperature. The functional integration

∫
DΦ is performed over all fields. LE denotes the

Euclidean space Lagrangian density. The fields can be written as a sum over momentum
modes, with momenta P = (ωn, p), with the Matsubara frequency ωn = 2πnT for bosons and
ωn = (2n+1)πT for fermions. The theory described by eq. (4.1) contains all momentum modes,
but modes with masses larger than πT get Boltzmann-suppressed, so we see that the largest
relevant energy scale in the HT regime9 in the problem is the so-called hard scale of O(πT ).

The soft scale. We can obtain the effective theory at the soft scale by formally integrating
out all n ̸= 0 momentum modes with ωn ⩾ πT . The resulting partition function for the
theory containing only the scalar fields and gauge bosons is given formally by

Zsoft
3 =

∫
DΦωn=0 exp

( ∫
d3x Lsoft

3 + f0
)
≡
∫

DΦωn=0 exp
(
Ssoft

3
)
. (4.2)

Here the path integral is over the zero modes only. The 1/T factor coming from the integral
over τ is absorbed by the fields in the 3D Lagrangian such that the exponent is dimensionless,
see the discussion below eq. (4.4) and e.g. ref. [51]. The fields in the effective Lagrangian Lsoft

3
are static and three-dimensional; they carry no momentum in the imaginary time direction.
f0 is the coefficient of the unit operator, related to the pressure in the symmetric phase [36].

As we will see explicitly below, the zero modes of the temporal components of the gauge
fields obtain a Debye mass from the screening by the hard modes. This mass is of the order
mD ∼ gT , with g the relevant gauge coupling. This mass scale defines the so-called soft scale,
which is the largest energy scale of the EFT constructed by integrating out the hard modes.

9As described in the previous sections, there are larger energy scales set by the large background field, but
these scales do not admit an HT expansion.

– 13 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
4

The spatial components of the gauge fields do not get screened, and are thus lighter than the
soft modes.10 The screening of the hard scale also generates a mass ∝ gT for the scalar field.

Let us now get more explicit. The action of the 3D EFT — the action obtained after
integrating out the hard modes — separates into Ssoft

3 = Ssoft, dark
3 + Ssoft, SM

3 + . . ., where the
ellipsis denotes the contribution from a portal that couples the two sectors together. From
now on, for simplicity, we focus solely on the dark sector part within the EFT as that is
what we need for the computation of the bubble nucleation rate. Yet, it is good to keep in
mind that we still capture the SM contributions coming from the hard scale in the matching
relations. For the dark SU(2) sector, the action reads

Ssoft, dark
3 =

∫
d3x

{1
4F a

ijF a
ij + (Diϕ)†(Diϕ) +

1
2(DiX

a
0 )2 + V3(ϕ, Xa

0 )
}
+ f0. (4.3)

ϕ now denotes the scalar field and F a
ij is the gauge field strength tensor of the spatial gauge

field Xa
i with spatial Lorentz indices i = 1, 2, 3 and SU(2) isospin index a = 1, 2, 3. The

gauge coupling of the EFT is denoted by gX,3. The temporal components of the gauge field,
Xa

0 , are Lorentz scalars in the EFT and transform in the adjoint representation of SU(2).
The covariant derivatives for scalar doublet and triplet are Diϕ = ∂iϕ − igX,3

τa

2 Xa
i ϕ and

DiX
a
0 = ∂iX

a
0 + gX,3ϵabcXb

i Xc
0, respectively. The scalar potential reads

V soft, tree
3 (ϕ, Xa

0 ) = m2
3ϕ†ϕ + λ3(ϕ†ϕ)2 +

∞∑
n=3

c2n(ϕ†ϕ)n

+ 1
2m2

D,XXa
0 Xa

0 + 1
4κ3(Xa

0 Xa
0 )2 + 1

2h3ϕ†ϕXa
0 Xa

0 . (4.4)

Note that within the EFT, fields have dimension T
1
2 , but we do not give them an explicit label

“3”, and the mass terms m3, mD,X and the couplings λ3, κ3, h3 have dimension T . We include
marginal operators for the doublet ϕ with coupling constants cn, which correspond to the terms
containing the ζ-terms in eq. (2.6). We use these marginal operators only as an indicator of a
breakdown of the HT expansion: when their effect becomes non-negligible at low temperature,
or more importantly, at large field values, the HT expansion starts to break down.

The parameters of the 3D theory are obtained by a matching procedure, as is common
in the construction of any EFT. We use DRalgo [38] for the determination of the param-
eters of the soft scale EFT, and list the result in appendix B.2. We highlight that the
momentum-dependent field normalisation contributions of the hard modes are absorbed
into the parameters of the EFT for all fields, rather than including Z-factors in the kinetic
terms of the soft scale EFT action [35]. For illustration of the matching procedure, see e.g.
refs. [35, 71], or appendix B.1 in ref. [29]. We emphasise that the construction of the 3D
EFT is performed in the symmetric phase, and relies on the high-temperature expansion
for the matching, which assumes that m/T ≪ 1 for all the fields. In conformal models all
fields are massless in the symmetric phase, yet deep in the broken phase the assumption
about the HT expansion is no longer valid, as discussed in section 2.2.

10Within the EFT, there is yet another scale deeper in the IR, often referred to as the ultrasoft scale O( g2

π2 T ).
At this scale, spatial gauge field modes obtain masses due to non-perturbative physics.

– 14 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
4

We now assign a background field to the scalar field

ϕ = 1√
2

(
0
v3

)
, (4.5)

resulting in masses for the spatial and temporal gauge bosons respectively

m2
X,3 = 1

4g2
X,3v2

3, m2
X0,3 = m2

D,X + 1
2h3v2

3. (4.6)

The tree-level potential for the field v3 at the soft scale is then given by

V soft, tree
3 (v3) =

1
2m2

3v2
3 + 1

4λ3v4
3 +

∞∑
n=3

1
2n

c2nv2n
3 . (4.7)

Note that as explained above, the marginal operators with coefficients c2n are suppressed in
the HT expansion and hence of higher order, and included only for inspecting departure from
the HT regime at large field values. As observed in e.g. ref. [11], the phase transition in the
model under consideration requires a cubic term, which is not present in eq. (4.7). In order
to obtain a cubic term, we have to integrate out the gauge field modes, resulting in a new
EFT expansion for the effective potential and the effective action. This is a generic feature
of models where the tree-level potential does not include a barrier required for first-order
phase transition [39, 43–45, 72]. Since all the masses in this theory are formally soft, it
is not immediately obvious that we can integrate out the gauge modes. We return to the
issue of mass hierarchies in section 4.6.

Integrating out the gauge field modes at one-loop order results, together with the tree-level
term of the soft scale EFT, in the leading order contribution of the final EFT expansion11

V EFT, LO
3 = 1

2m2
3v2

3 + 1
4λ3v4

3 +
∞∑

n=3

1
2n

c2nv2n
3

− 1
12π

(
6(m2

X,3)
3
2 + 3(m2

X0,3)
3
2
)
+ 1

12π

(
3(m2

D,X)
3
2
)
. (4.8)

Here the last, field-independent, term has been added to normalise the potential to zero for a
vanishing field. The validity of this EFT expansion will be further discussed in sections 4.5
and 4.6, and higher-order corrections are determined in section 4.3.

11Note that this potential should not be confused with the V LO potential of eq. (3.6), as V EFT, LO
3 uses the

full matching relations, whereas V LO does not (see section 4.2).
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4.2 Relation to one-loop thermal effective potential

One can confirm straightforwardly that eq. (3.6) in the HT expansion is reproduced exactly
by eq. (4.8) when the matching relations (cf. appendix B.2) are truncated as follows

λ3 = T

(
λφ + 1

(4π)2
3
8g4

X

(
1− 3

2Lb

))
, (4.9)

g2
X,3 = g2

XT, (4.10)

h3 = 1
2g2

XT, (4.11)

m2
D,X = 5

6g2
XT 2, (4.12)

m2
3 = 3

16g2
XT 2, (4.13)

and taking into account dimensional scalings v3 = φ/
√

T and V LO(φ, T ) = TV EFT, LO
3 . Note

that the Coleman-Weinberg term is captured by the Lb term in λ3, where Lb = 2γE −
2 log [4π] + log

[
µ2

4
T 2

]
(see eq. (B.10)). We note that while we simply took eq. (2.9) for leading

daisy resummation from the literature, in eq. (4.8) we actually derived it in the 3D EFT
approach and we can clearly see the physics behind it: this term originates from the fact that
hard modes screen the soft zero mode, and once this hard scale screening is accounted for
by the soft mode mass at one-loop order, the EFT automatically resums this contribution
to all orders. In the EFT, a one-loop computation with the resummed propagator is easy
and, furthermore, two-loop diagrams are also straightforward, and we exploit this fully in
the next section.

4.3 Higher-order corrections within the EFT

Now that we have illustrated what is behind the EFT approach, let us highlight what
happens when we do not truncate the matching relations: in this case, we account for thermal
corrections of the hard scale screening in not just the mass, but also in all couplings, at
one-loop order. This includes momentum-dependent contributions, i.e. we account for field
renormalisation factors, see ref. [35]. Even more importantly, we include two-loop corrections
in the thermal mass, and together with field renormalisation factors this guarantees that 3D
EFT parameters are renormalisation scale invariant to the order we compute.

The construction of the NLO contribution to the potential follows the prescription of
refs. [39, 41, 46]. We include two-loop contributions of the soft modes, which yield the NLO
correction to the effective potential [38, 45]

V EFT,NLO
3 = 1

(4π)2

{
3
64g2

X,3

(
56m2

X,3 (1− 3 ln(3)) + g2
X,3v2

3 (2− ln(256))

+ 2
(
80m2

X,3 − 3g2
X,3v2

3
)
ln
(

µ3

2mX,3

))}
+ 1

(4π)2

{
3
4g2

X,3(6m2
X0,3 + 4mX,3mX0,3 − m2

X,3) +
15
4 κ3m2

X0,3

− 3
8h2

3v2
3

(
1 + 2 ln

(
µ3

2mX0,3

))
− 3

2g2
X,3(m2

X,3 − 4m2
X0,3) ln

(
µ3

2mX0,3 + mX,3

)}
− 1

(4π)2

{
15
4 m2

D,Xκ3 +
3
2g2

X,3m2
D,X

(
3 + 4 ln

(
µ3

2mD,X

))}
. (4.14)
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The last line is independent of the field value, and ensures that the potential is zero at the
origin. We will denote the sum of the LO and NLO potential as

V EFT
3 (v3) = V EFT, LO

3 (v3) + V EFT, NLO
3 (v3). (4.15)

In addition to the corrections to the effective potential, integrating out the gauge modes
also results in a field normalisation term for the effective action (note that we normalise the
potential such that it is zero at the origin, which also implies discarding f0 in eq. (4.3))

SEFT
3 = 4π

∫
dr r2

(1
2Z3(v3)(∂iv3)2 + V EFT

3 (v3)
)

, (4.16)

with Z3(v3) given by (see also refs. [73–75])

Z3(v3) = 1 + ZNLO
3 (v3) = 1− 11gX,3

16πv3
+ h2

3v2
3

64πm3
X0,3

. (4.17)

Within the EFT, the term with the Z3-factor is an effective derivative operator generated
by the gauge modes. The role of this Z3-factor within the EFT is different from field
renormalisation in the parent theory, as it is not related to UV running.

Let us pay close attention to the soft 3D EFT RG-scale, µ3. We can split the action
into two parts SEFT

3 = SEFT,LO
3 + SEFT,NLO

3 , where

SEFT,LO
3 = 4π

∫
dr r2

(
(∂iv3)2

2 + V EFT,LO
3 (v3)

)
, (4.18)

SEFT,NLO
3 = 4π

∫
dr r2

(1
2ZNLO

3 (v3)(∂iv3)2 + V EFT,NLO
3 (v3)

)
, (4.19)

where NLO is suppressed compared to LO by the soft expansion parameter, formally O(gX
π ).

The LO action depends explicitly on the 3D EFT mass parameter, m3, which runs (see
eq. (B.6)).12 The NLO part of the action is independent of the scalar mass, yet contains
explicit logarithms of the RG-scale. In ref. [41] it has been shown that the action is RG
invariant at the order considered (O(g4

X)). For completeness, we reproduce this argument
here. We simply have

µ3
dSEFT

3
dµ3

= βm2
3

∂SEFT,LO
3
∂m2

3
+ µ3

∂SEFT,NLO
3
∂µ3

+O(g5
X) = O(g5

X), (4.20)

as the running of the scalar mass is governed by the beta function

βm2
3
≡ µ3

dm2
3

dµ3
= 1

(4π)2 (−39g4
X,3 − 96g2

X,3h3 + 24h2
3), (4.21)

which exactly cancels the µ3-dependent terms in V EFT,NLO
3 .

In our computation, we use the freedom to choose the RG scale and use µ3 = κRGmX,3,
where the coefficient κRG is of the order unity. Should one aim to optimise the choice of
RG-scale, one could follow e.g. refs. [59, 76].

12Note that other parameters of the EFT do not run with the soft 3D renormalisation scale.
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4.4 Thermal parameters at NLO

To compute the exponential part of the nucleation rate in the EFT, we follow refs. [39, 41].
We use a method based on the strict expansion of the action in order to obtain results
that are gauge invariant.

In the strict expansion, the critical bubble configuration v3,B is formally expanded as
v3,B = v3,b +O( g

π T
1
2 ) and the LO bounce v3,b is found only using the LO effective potential:

□v3,b(r) =
∂

∂v3
V EFT,LO

3 (v3,b), (4.22)

with boundary conditions ∂rv3,b(0) = 0 and v3,b(r → ∞) = 0.
The NLO action is then simply evaluated at the leading order bounce, and higher-order

corrections to the bounce result in contributions that are formally beyond our accuracy
goal [41, 74]. It has been shown in refs. [40, 41] that despite the singularity in the Z-factor
at zero field value, its contribution to the action is finite.

The bounce solution depends on the scalar mass and hence inherits RG-scale dependence
through it. Note, however, that the implicit running of the bounce does not contribute at the
order considered, because the LO action is extremised by the bounce, i.e. when applying the
chain rule in eq. (4.20), we see that the term µ3

∂
∂ϕb

SEFT,LO
3

dϕb
dµ3

vanishes.
For illustration, let us use a simplified expression for the nucleation condition, i.e. that

the nucleation rate equals the Hubble parameter, H

A(Tn)e−S(Tn)

H4 ≈ 1 → S(Tn) = 4 log
[

A(Tn)1/4

H(Tn)

]
. (4.23)

Here we will use

A(T ) = T 4, H(T )2 = 1
3M2

pl

(
T 4

ξ2
g

+∆V

)
, (4.24)

i.e. we estimate the prefactor simply using dimensional analysis since we do not compute
this contribution properly, but only assume it is suppressed compared to the exponential
part. Mpl is the reduced Planck mass, and ξg =

√
30/(g∗π2) with g∗ the number of degrees of

freedom in the plasma. For convenience, we define the shorthand notation S0 ≡ SEFT,LO
3 [v3,b]

and S2 ≡ SEFT,NLO
3 [v3,b]. We can determine the nucleation temperature by the mixed method13

(cf. ref. [45]) where we compute the action in the strict expansion, yet we directly solve for
the nucleation temperature from the condition

S0(Tn) + S2(Tn) = 2 log
[

3M2
plT

2
n

T 4
n/ξ2

g +∆V

]
. (4.25)

This method is not only gauge invariant, but also invariant with respect to the soft 3D
EFT renormalisation scale, since the sum S0 + S2 is invariant. In this sense, only using

13In our numerics, we do not encounter the problems reported in ref. [45]. There, the use of the mixed
method can lead to spurious IR divergences in the determination of the critical temperature, since the LO
minimum for the strict expansion of the effective potential does not necessarily exist for wider temperature
ranges around the leading order critical temperature. For the nucleation rate, we do not encounter this
problem, as the LO bounce exists over a wide temperature range.
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the sum S0 + S2 describes the full NLO soft scale corrections. In our numerical analysis
we apply this method to compute the nucleation and percolation temperatures, i.e. we
evaluate the NLO action at the LO bounce solution and use the resulting S0(T ) +S2(T ) with
the standard formulas for nucleation and percolation temperatures, following the approach
described in ref. [11].

In analogy to ref. [45], we could use the strict expansion for the nucleation temperature
as well, by formally expanding in δ (which is set to 1 at the end of the computation):
S = S0 + δ2S2 +O(δ3) and A = δ3A3 +O(δ4T 4) [39], and furthermore expand Tn = Tn,0 +
δTn,1 + δ2Tn,2 +O(δ3). Here δ denotes suppression with respect to S0. We can then expand
the simplified nucleation condition, and by equating the first two non-vanishing orders we
find that Tn,0 is given by

S0(Tn,0) = 2 log


√

A3(Tn,0)
H2(Tn,0)

 , (4.26)

and the first non-zero correction to it reads

Tn,2 = S2
A′

3
A3

− S′
0 − 4H′

H

= −
S2Tn,0(T 4

n,0/ξ2
g +∆V )

4(T 4
n,0/ξ2

g −∆V ) + Tn,0(T 4
n,0/ξ2

g +∆V )S′
0
, (4.27)

where all quantities are evaluated at Tn,0 and in the second expression we assumed again
A3 = T 4. However, we do not find this expansion useful as the sum Tn,0 + Tn,2 appears
not to be scale invariant, and neither are the individual terms and we therefore choose to
use the mixed method.14

4.5 Power counting and validity of the EFT

Now that we have given our expressions for the LO and NLO effective potential, as well as
the approach to determine the nucleation rate and temperature, let us understand better
in which sense eq. (4.8) describes the LO behaviour, and what kind of power counting this
implies for perturbation theory.

For starters, let us consider the scaling of different contributions to the potential in the
presence of a radiatively generated barrier. The existence of the barrier requires [32]

m2
3v2

3 ∼ λ3v4
3 ∼

g3
X,3v3

3
π

, (4.28)

i.e. all terms in the potential are of the same order. As discussed in detail in ref. [45], one
possible realisation of this occurs in the temperature regime where the scalar mass parameter
is parametrically lighter than soft, in particular m2

3 ∼
(

g
3
2√
π

T
)2

≪ (gT )2, which further implies

λ3 ∼ g3
X
π T and v3 ∼

√
T . In such case, the gauge field modes are soft mX,3, mX0,3 ∼ gT , and

eq. (4.8) is interpreted as the construction of the supersoft EFT below the soft scale. In
14We could choose the 3D scale so that NLO action at Tn,0 is negligible, and as explained in the main body,

this effectively resums the information of the NLO action to the LO action, and hence into Tn,0 itself. For
such construction, we find agreement with the mixed method. Yet, this strict expansion does not immediately
generalise in the case of the full nucleation condition or the determination of the percolation temperature.
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ref. [45] such effective description exists, since the mass parameter has the schematic form
m2

3 = m2
0+Cg2T 2, where C is a positive constant and m2

0 is a negative zero temperature mass
parameter. The partial cancellation of these two terms, which are individually of order (gT )2,
makes it possible that the effective scalar mass is parametrically lighter than soft in some
temperature range. The effective description for the phase transition is constructed in such a
temperature window, and furthermore the background field is assumed to scale as v3 ∼

√
T in

the broken phase, such that the gauge modes are soft. The potential itself follows the scaling

V EFT, LO
3 ∼ g3

π
T 3
(
1 + g3

π3 +O
(

g5

π5

))
, (4.29)

where corrections are due to marginal operators with c2n ∼ g2n

π2(n−1) [29]. At parametrically
smaller field values v3 ∼

√
gT the effective description is compromised. Indeed, in the

terminology used in ref. [39] gauge field modes are scale-shifters: at field values close to the
symmetric phase, in the bubble tail, the effective description based on a derivative expansion
of the effective action alone fails, yet can be used at the bulk of the bubble to compute the
nucleation rate [39, 41, 74, 77, 78]. We will return to this issue below.

In our case of a dimensionally transmutated theory, the previous discussion becomes
more subtle and needs to be modified, since the scalar mass parameter cannot be lighter
than soft m2

3 ∼ (gT )2, since there is no zero temperature mass m2
0. In this case, eq. (4.28)

implies λ3 ∼ g4
X

π2 T and v3 ∼ π
g

√
T .15 Such a huge value of the background field pushes the

gauge field modes formally to the hard scale mX,3, mX0,3 ∼ πT and furthermore signals a
possible breakdown of the HT expansion, as the scaling of the potential becomes

V EFT, LO
3 ∼ π2T 3, (4.30)

and marginal operators are no longer strongly suppressed, but could contribute at lead-
ing order.

Does this mean that the effective description based on the effective potential that we
derived cannot be used after all? We argue that this is not the case, for the following reasons:
even though the aforementioned formal power countings for masses and the background field
can bring clarity about how to organise the perturbative expansion, it is not clear how strictly
they should be followed. As scale-shifters, the gauge field modes vary over multiple mass
scales, from the hard to the soft to eventually the non-perturbative ultrasoft scale ( g2

π2 T ).
As the bounce solution interpolates between the two phases, the bubble nucleation rate
obtains contributions from different scales. Intuitively, the EFT description could capture
most of the effects reliably, provided that

1) Non-zero Matsubara modes are much heavier than zero modes.

2) Gauge field zero modes are much heavier than the nucleating scalar field zero mode.

In the following subsection we study the mass hierarchies in our model in more detail and
explain how we treat the scale-shifters.

15Formally, this scaling for the field was derived close to the root of the potential, behind the potential barrier.
We have also checked that this scaling holds approximately at the escape point of the bounce trajectory.
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Figure 1. Schematic mass hierarchies we encounter along the bounce solution as a function of the
radial coordinate.

4.6 Mass hierarchies and scale-shifters

Let us study the typical mass hierarchies of the problem, which we encounter when using the
potential of eq. (4.8) to find the bounce solution using the schematic figure 1. In this figure,
the masses of the gauge field modes mX,3, mX0,3 are given as a function of the critical bubble
radial coordinate r, together with soft mass parameters mD and m3.16 Indeed, both mD and
m3 are parametrically of the order gT , i.e. soft, yet note that due to group theory factors
in the LO dimensional reduction matching relations they differ approximately by a factor
2, cf. eqs. (4.12), (4.13). Close to the center of the bubble at small r, mX,3, mX0,3 indeed
become very large, yet they are still below the lightest bosonic non-zero Matsubara mode
with mass 2πT at the escape point. In this case, one needs to be very cautious with the HT
expansion. However, we demonstrate in section 5.1 that indeed up to the escape point, the
HT expansion converges well and as a consequence also marginal operators are suppressed,
providing support that the EFT picture is reliable in the small r regime.

On the other hand, we know that the EFT picture fails at the bubble tail r > rt, where rt

is defined at the radial distance where the spatial gauge mode mass becomes comparable with
the nucleating scalar mass, suggesting that it is not possible to integrate out the gauge modes.
Therefore, we can trust the EFT that we constructed for field values above v3 > v3,b(rt).

Finally, we emphasise the following: as long as points 1) and 2) stated at the end of
section 4.5 are valid, the higher-order corrections to eq. (4.8) given in eq. (4.14) are of the
same form regardless of the assumed formal power counting for the gauge field modes and
the background field. Indeed, the EFT expansion has the same functional form as long as
2πT ≫ mX,3, mX0,3 ≫ m3 ≫ g2

π2 T , yet we do not need to fix the formal power counting for
these in-between scales between the hard and ultrasoft scales, and indeed we cannot, since
the gauge field modes are scale-shifters [39].

16Note that while mD is a constant, the scalar mass parameter m3 has a mild dependence on the radial
coordinate: this dependence arises since the two-loop thermal mass is a function of the 3D scale µ3 that we fix
to mX,3 which varies along the bounce, cf. section 4.3. Note also that figure 1 is not invariant with respect to
µ3, as the bounce itself is not.
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In ref. [39] it is explained in detail how to treat the nucleation EFT construction with a
scale-shifter. In essence, the one-loop contribution from the gauge fields is still resummed
to the LO effective potential to provide a barrier, and this affects the LO bounce solution.
For the action however, their contribution is computed without derivative expansion, i.e.
they contribute in the prefactor in analogy to the soft scalar modes. Then, one needs
to subtract this gauge field contribution from the exponential part of the rate, to avoid
double counting. In our analysis, we do not compute the prefactor, and hence we stick to
the procedure described earlier in section 4.4. We check the accuracy of this approach by
estimating the contribution of the tail of the bounce, where the assumed mass hierarchies
are violated, for details see section 5.4.2.

5 Numerical results

In this section we present the results of a scan of the entire allowed parameter space using
the mixed method described in section 4.4 for computing the action with the NLO effective
potential of eq. (4.15) and the Z3 of eq. (4.17). We use this action to compute the nucleation
and percolation temperatures, as well as the normalised radius of bubbles at the moment
of collision (R∗H∗) and the efficiency factor for bubble collisions following the procedures
described in ref. [11]. We also evaluate the expected observability of the signals in terms
of the signal-to-noise (SNR) ratio, using the spectra for supercooled phase transitions from
ref. [10]. Moreover, we compare the NLO predictions to the LO ones, obtained from eq. (3.6),
updating them with respect to ref. [11] by including the thermal cutoff on the running also
in the zero-T part of the effective potential (see section 2.2 for details) and by redefining the
field to be canonically normalised at the thermal scale (see section 3.3).

5.1 Effective potential at LO and NLO

Let us start with comparing potentials computed with different approximations, all evaluated
at Tn computed from the NLO potential. In the left panel of figure 2 we focus on the low-field
value or high-temperature regime, the range for the plot is chosen such that the barrier is well
visible. The blue solid line represents the full one-loop potential of eq. (2.8) (see also eq. (3.6)),
with the daisy term included. It agrees very well with the high-temperature approximation
of eq. (2.14) (long-dashed light green). The NLO potential computed within the EFT of
eq. (4.15) (dotted red line) differs from the LO result mildly, while exclusion of the daisy term
(dashed green line) modifies the result significantly, which indicates that the daisy diagrams
are indeed very relevant for the shape of the potential.17 The right panel of figure 2 shows
the large-field or low-temperature behaviour of the effective potential. The full one-loop
LO potential of eq. (2.1) (solid blue line) is closely approximated by the low-temperature
approximation with only the first term in the sum in eq. (2.7) (long-dashed light green line).

From figure 2 we learn that the HT expansion works perfectly around the barrier but we
should ask whether it is valid all the way up to the escape point for the bounce trajectory

17Note that e.g. in refs. [61, 62] it was argued that for supercooled phase transitions the high-temperature
resummations are not relevant. The results presented here can be treated as an explicit check of this claim,
and we reach a different conclusion.
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Figure 2. Comparison of different approximations to the effective potential at low field values,
around the barrier (left) and at large field values, around the minimum (right) at Tn = 14.59GeV, for
gX = 0.8, MX = 10 TeV.
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Figure 3. Illustration of the validity of the high-temperature expansion at Tn = 14.59 GeV for
gX = 0.8, MX = 10 TeV, for field-values in the vicinity of the escape point (vertical grey line) and
beyond (left panel), and for larger field values (right panel).

and beyond. This is shown in figure 3. The left panel presents the potential evaluated
using different approximations around the escape point, which is marked by the vertical
grey line (obtained with the NLO action). The solid blue line shows the full one-loop LO
effective potential, while the dashed lines indicate the usage of HT expansion of the thermal
function, eq. (2.6) (see also eq. (4.8)): long-dashed, green is the first approximation without
the sum containing the ζ-terms in the second line, short-dashed light green includes the
first term in the sum, while the dotted red line includes the first three terms from the sum.
It is clear that all the approximations agree very well in the vicinity of the barrier and
beyond, only on the verge of the displayed region small differences between the curves can be
noticed, as the first approximation to the potential deviates slightly from the full solution.
For larger field values, shown in the right panel of figure 3, the HT expansion is quickly
invalidated which is clear from the fact that the approximations with more terms from the
HT expansion included behave worse than the ones with fewer terms. At the same time,
the LT approximation (dot-dased orange curve) works like a charm (it overlaps with the
solid blue line representing the full potential).

– 23 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
4

This is an explicit confirmation of our earlier claims that the high-temperature expansion
can be used for the field values relevant to the tunnelling, while the low- or zero-temperature
potential describes accurately physics associated with the minimum of the potential.

5.2 Phase transition and GW signal

For strongly supercooled phase transitions the only parameters that are relevant for the
determination of the gravitational wave spectrum are the length or time scale of the transition
evaluated at the percolation temperature and the reheating temperature.

The process of reheating is controlled by the decay rate of the scalar field, which measures
its ability to transfer the energy to the SM plasma. When it is larger than the Hubble
parameter, reheating can be considered instantaneous. Then the Universe reheats to the
temperature at which thermal inflation started, which is controlled by the potential in the low
temperature/large field regime. In ref. [11] it was shown that this is the case for most of the
parameter space of the SU(2)cSM model. Only for low gX and high MX , the decay rate of
the scalar field becomes smaller than the Hubble parameter. In this case the Universe cannot
reheat immediately after the phase transition. This results in a period of matter domination
when the scalar field oscillates around the minimum until the decay rate becomes large enough
to transfer the energy to the SM sector [7, 79, 80]. In this scenario of inefficient reheating,
the final temperature is lower and the GW spectrum is modified by the modified expansion
history. In ref. [11] the region of inefficient reheating was excluded by the percolation criterion.
As we will see, this region opens up by including the NLO effects, however, it is still very
small and we will not analyse it in detail since it is beyond the main focus of the present work.
Thus, we will assume that the reheating temperature is given by TV and will not be changed
compared to the analysis of ref. [11]. Therefore, we will not show the results for Tr here.

Below we present the results of the scan of the parameter space obtained using the theory
given by eqs. (4.8), (4.14), (4.17). In figure 4 (upper panel) we present the values of the
percolation temperature and the average radius of a bubble at the moment of collision (length
scale of the transition) obtained using the EFT NLO potential with µ4 = πT . We exploit the
invariance of the potential with respect to the 3D RG scale and choose a field-dependent value
for it as µ3 = m2

X,3(v3) (see eq. (4.6)). The excluded regions are marked in shades of grey.
The leftmost part, corresponding to small MX , does not reproduce the electroweak vacuum
correctly. The upper right part of the parameter space is excluded as there the gX coupling
becomes nonperturbative at some scale between MZ and the QCD scale µ ≈ 0.1 GeV. In the
lower part, the phase transition is triggered by the QCD condensate [7, 14, 16, 68, 81–84].
We assume this happens for Tp < 0.1 GeV and this region is beyond the scope of the present
work. Finally, in the light-grey triangle-shaped region we cannot assure the completion of the
phase transition as the percolation criterion is not fulfilled. It was shown that supercooled
phase transitions can produce primordial black holes (PBHs) [85, 86], and for sufficiently
slow transitions i.e. β/H∗ ≲ 6− 8 it would cause PBHs overabundance. We indeed find such
values, but only in the right corner of the non-percolation region, for large masses MX . The
former two constraints do not depend on the temperature, therefore they will be identical
in all the plots. On the other hand, the latter two (regions where QCD effects become
relevant and the percolation criterion is not satisfied) depend on our predictions for the phase
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Figure 4. Upper panel: percolation temperature (left) and the transition length scale (right) obtained
from the NLO potential with µ4 = πT and µ3 = m2

X,3(v3). Lower panel: percolation temperature
(left) and the transition length scale (right) obtained from the LO potential with κ in eq. (3.7) set to
κ = π to match the choice of µ4 for the NLO potential. The grey regions are excluded for reasons
explained in the main text.

transition and can change depending on the approach. In the lower panel of figure 4 the same
quantities computed from the LO potential of eq. (4.8) (with matching conditions truncated
as in eqs. (4.9)–(4.13) to match the usual daisy-resummed approach) potential are presented.

The values of the percolation temperature obtained at NLO are between 0.1 GeV and
about 380 GeV. As a general trend, it can be noticed that the percolation temperature goes
up, as compared to the LO prediction. This extends the available parameter space to lower
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Figure 5. Absolute value of the differences in the predictions for Tp (left) and R∗H∗ (right) between
the NLO and LO potentials, normalised by the NLO quantities. The excluded regions are the same as
in figure 4 (lower panel). The white dashed and dotted lines indicate the excluded regions obtained at
NLO (as presented in the upper panel of figure 4).

values of the gauge coupling gX . Moreover, the region of non-percolation is pushed to higher
values of the X mass. This opens up a small region of the parameter space where percolation
is possible, but reheating is inefficient. We do not study this effect in detail as it is beyond
the scope of the present paper.

To better evaluate the differences between the LO and NLO predictions we present the
relative differences between them (normalised to the NLO ones) in figure 5. We can see
that the change in the percolation temperature between the two approaches is significant,
ranging from O(50%) in the low-mass, large-coupling region, up to O(100%) in the small-
couplings, large-mass corner. This seems somewhat counter-intuitive, as one expects the
largest corrections between the two methods for large couplings, but note that this concerns
the coupling at the thermal scale. It should be stressed here that the coupling and mass
displayed in figure 5 are defined at the scale µ = MX . They need to be RG-evolved to the
thermal scale. In the large-mass corner, the coupling becomes significantly larger at the
thermal scale, which explains why the difference between the LO and NLO approaches is
largest in this part of parameter space. Let us point out again that the value of Tp does not
directly affect the GW spectrum, so the large corrections we find in the NLO description are
not reflected in a strong modification of the GW signal. However, it signals that the differences
between the descriptions at different orders in perturbation theory are non-negligible.

The right panel of figure 5 displays the difference in the typical length scale of the
transition, R∗H∗. Here we see that the differences are smaller than for Tp, but again the
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Figure 6. The efficiency factor for sound waves κsw computed from the LO potential. White
lines correspond to excluded regions of parameter space obtained in the NLO setup. The red lines
correspond to contours of κsw = 0.99 (upper) and κsw = 0.01 (lower), obtained with the NLO potential.

largest differences are observed in the large-mass corner, reaching O(55%). Even though the
relative difference between LO and NLO for R∗H∗ is smaller than for Tp, these differences do
modify the GW prediction. It can be seen in refs. [10, 11] that both the GW amplitude and
the peak frequency depend on R∗H∗ and we, therefore, expect the predicted spectra to be
shifted compared to the earlier results. Given the values of R∗H∗ we expect the GW signals
to still be well visible in LISA. This will be verified by computing the SNR.

One can also note the change in the overall allowed region indicated in figure 5 by the
white dashed and dotted lines. The region of non-percolation is significantly shifted and also
the region where the phase transition is expected to be sourced by QCD effects is pushed
to lower values of gX at NLO. Therefore, the predictions for the GW signal in this region
could be significantly altered by using the LO or NLO approach.

To formulate the predictions for the GW spectra, we should ask the question about the
source of the gravitational waves — for which region of the parameter space are they produced
via collisions of bubbles and where by sound waves?18 Our predictions for the efficiency factor
for producing GWs via sound waves, κsw based on the LO and NLO potential are shown in
figure 6. It is clear that, depending on the region of the parameter space, GWs can be sourced
by either of the mechanisms, and the difference in the predicted source between the two

18The recent ref. [10] pointed out, based on numerical simulations, that for strongly supercooled transitions
the spectra sourced by sound waves in the plasma look the same as the ones sourced by bubble collisions.
Taking this into account, in practice the source of GW does not matter for the signal. It is anyway interesting
to see, where in the parameter space supercooling is strong enough to allow for a runaway scenario.
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Figure 7. The values of SNR predicted at NLO (left panel), and at LO (right panel).

methods is limited to a rather narrow range of the parameter space. This is interesting, since
in ref. [11] for scans performed at a fixed renormalisation scale no region was found where
the dominant source would correspond to bubble collisions (as opposed to predictions based
on the RG-improved potential). In our current approach, the scale is fixed in the HT regime,
where the tunnelling takes place. However, it is fixed to κT so effectively it is different for
every point in the parameter space and is proportional to the percolation temperature. This
suggests, that allowing the scale to change is crucial for seeing bubble collisions.19

Having checked the predictions for the parameters of the transition, let us check what
are the implications for the signal-to-noise (SNR) ratio predicted for LISA. The results of the
LO and NLO approach are presented in figure 7. As expected, the values of SNR are very
high throughout the entire allowed parameter space, implying that a first-order PT in the
SU(2)cSM model should be well visible at LISA.20 At NLO we observe a slightly lower SNR,
around 10, at the edge of the parameter space corresponding to large MX . The reason is
that the peak frequency of the spectrum is higher for higher reheating temperatures. The
latter grows with MX so for the largest values of MX allowed at NLO (excluded at LO by
the percolation criterion), the signal moves out of the sensitivity range of LISA.

19Compare with the approach of ref. [61], where the scale was fixed and bubble collisions were assumed to
be the main source of GW.

20The values of the SNR were obtained using the approach described e.g. in [87]. This approach is based on
the assumption that the so-called “self-noise” of the GW signal is negligible. For the SU(2)cSM model, the
GW signal is generically strong, therefore the obtained SNR values may be overestimated. We thank Kai
Schmitz for pointing this out. Let us stress that the goal of this work is to emphasise the implications of
higher order thermal corrections and the detailed treatment of the SNR is beyond the scope of this work.
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The very high values of SNR imply that, if a signal from a phase transition in SU(2)cSM
is observed, we will be able to reconstruct the values of Tr and R∗H∗ with very good precision,
for very strong signals even better than 1% [48]. Because of this prospect, the differences
in predictions between the LO and NLO approaches, see figure 5, will be much greater
than the experimental uncertainties and this highlights the importance of efforts to include
higher-order thermal corrections.

5.3 Implications for dark matter abundance

The SU(2)X model contains DM candidates — the new gauge bosons are stable due to a
residual SO(3) symmetry and can in principle attain the correct relic density in different parts
of the parameter space via the freeze-out mechanism [11, 16, 23, 63–66, 68, 69] or the super-
cool DM mechanism [11, 16, 68, 69]. The DM phenomenology is not the focus of the present
paper but we will comment on how the NLO modifications of the allowed parameter space
affect the existing results. In the lower-mass regime, the DM relic abundance is produced via
the thermal freeze-out mechanism and a rather large gauge coupling is required. Reference [11]
showed that the correct relic abundance, in agreement with the current direct-detection
limits, can be attained for 1.2 TeV ≲ MX ≲ 1.8 TeV and 0.82 ≲ gX ≲ 0.96 (similar results
were found in ref. [23]). The NLO results extend the allowed parameter space, where a
first-order phase transition happens independently of QCD effects, to lower values of gX so we
do not expect additional constraints on the region with the correct thermal DM abundance
presented in refs. [11, 16, 23, 63–66, 68, 69].

On the other hand, the mechanism of super-cool DM requires inefficient reheating, such
that the temperature of the Universe after the phase transition is below the decoupling
temperature of the X particles. This is realised for larger MX , approximately above 3000
TeV, and lower gX around 0.7 (see e.g. figure 8 of ref. [11]). This region was excluded by the
LO analysis of ref. [11], however, the NLO results re-open a small part of this regime, as
discussed in the previous subsection. Therefore, a small region with the correct relic density
obtained via the super-cool DM mechanism (supplemented by a subthermal population
produced via scattering) may be possible. However, to give a definite answer requires a
dedicated computation of the reheating temperature and the resulting DM abundance.

5.4 Evaluation of the uncertainties

In section 4.5 and 4.6 we have discussed the challenge of constructing an accurate EFT in a
theory with scale-shifting fields, and the inaccuracy associated with the contribution from the
bubble tail. Moreover, there is an uncertainty associated with the omission of higher-order
corrections, which we can study by varying the RG scale. In this section, we quantify the
uncertainties associated with our computation of the thermal parameters.

5.4.1 Dependence on the renormalisation scale

As was explained earlier, the common approach of using the one-loop effective potential with
daisy resummation suffers from an uncalled RG-scale dependence that can be cured by the
inclusion of certain two-loop level diagrams. This is achieved in our NLO effective potential
(with the matching also performed at two-loop level). There, the RG-scale dependence cancels
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Figure 8. Left panel: absolute value of the differences in Tp obtained from the NLO action with
µ4 = πT and µ4 = 2πT , normalised by the result with µ4 = πT . Right panel: absolute value of the
differences in Tp obtained from the LO action with κ = π and κ = 2π, normalised by the result with
κ = π.

up to terms of order higher than the order to which we compute. Moreover, the potential
(and the full action) are independent of the 3D scale, up to higher-order corrections. As was
shown in the literature [28, 29], omission of significant perturbative corrections (revealed
by the scale dependence) is the main source of uncertainty in predicting the GW signals.
We are now in a position to check the RG-scale sensitivity of the NLO predictions and to
contrast it with the LO result. Note, that with the RG-improvement procedure implemented
in this work, when we say that we change the 4d scale, in fact we mean that we change the
thermal cutoff in the running in eq. (3.7). So changing the scale from πT to 2πT means
changing κ in eq. (3.7) from κ = π to κ = 2π.

Figure 8 (left panel) presents the relative difference in Tp obtained from the NLO action at
two different scales, µ4 = πT and µ4 = 2πT . We observe a mild dependence on the 4D scale,
the result for Tp changing, between the two RG-scales, by at most 10%. The changes in R∗H∗
are much smaller, and they never exceed 2%, therefore we do not show the plot illustrating
this difference. We have seen that the predicted SNR for LISA for this model is large, implying
that thermal parameters can be reconstructed with very good precision. It therefore needs to
be determined if the 2% uncertainty in R∗H∗ leads to an observable difference.

For comparison, figure 8 (right panel) presents the dependence on the scale of the LO
results. We can see that the change in results for Tp is much larger — the relative difference
is approximately between 15% and 30%. This confirms our earlier claims that the inclusion
of the NLO corrections cancels the residual scale dependence present at LO. The RG-scale
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Figure 9. Different contributions to the integrand of the NLO action S2 of eq. (4.19) for gX = 0.8,
MX = 10TeV, and Tn = 14.18GeV. The blue solid line represents the full NLO contribution, the red
dot-dashed line the contribution from the NLO contribution to the potential and the dashed green
line the contribution from the kinetic term with Z3.

dependence of the bubble radius is again milder and is of the order of 5% in the whole
parameter space, which is again larger than the uncertainty in the NLO result.

In both approaches, LO and NLO, the overall allowed region is only slightly modified by
changing the 4D scale as indicated in figure 8 by the white dashed and dotted lines.

5.4.2 Importance of the Z3-factor and the bubble tail

Looking at the rather good agreement between the different potentials in figure 2, the sizeable
differences in Tp and R∗H∗ observed in section 5.2 might come as a surprise. It turns out,
that the largest cause of the difference between the LO and NLO descriptions is the Z3-factor
multiplying the kinetic term. As observed from its explicit form in eq. (4.17), Z3 diverges as
v3 → 0. This corresponds to the regime where the derivative expansion of the action is no
longer valid, and which our description hence cannot capture, see ref. [77]. Since along the
bounce trajectory, as v3(r) → 0 also ∂iv3(r) → 0, and S2 thus remains finite. However, by
comparing different contributions to S2 shown in figure 9, we can see that the contribution
of Z3 is still dominant in S2.

To quantify the effect of Z3 we have computed the thermal parameters in the mixed
method with the NLO contribution to the potential, but without the Z3 for a representative
set of parameter choices. In all cases, we observe that the NLO approach gives a correction
to Tp only of the order of ∼ 25% compared to the LO result, which is much smaller than
the corrections observed in figure 5 and this confirms explicitly that the main correction
comes from Z3.

A related question, which was already discussed in section 4.1 and 4.4, is the fraction of
the action coming from the region with r > rt. A large contribution from this region signals
several problems. First, the solution gets a large contribution from the Z3-factor in a region
where its expression is not valid. Second, the EFT breaks down, due to the scale shifting
nature of the fields. Last, large contributions coming from the kinetic term suggest that the
derivative expansion, which allowed us to compute the bounce in a momentum-independent
potential background, breaks down. In section 4.4 an approach was suggested to estimate the
contribution from the region r > rt. For the 3D RG-scale given by µ3 = mX,3, we find for a
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representative set of benchmark points that the fraction of the action given by r > rt is of
the order 30− 40%. For the benchmark point considered in figure 9, rt = 0.29GeV−1 and the
tail’s contribution to the action is 31%. This is a significant fraction, and it should motivate
us to investigate the validity of our expansion further. However, this estimate should not
be taken too literally, as it depends on the choice of µ3. The fraction can be made smaller,
at the cost of increasing S2 with respect to S0.

The way forward is to include the contributions of the gauge and scalar modes in the
functional determinant of the nucleation rate, following the approach of refs. [77, 88]. This will
allow us to assess better the validity of the derivative expansion, and we leave it for future work.

6 Summary and outlook

This work is devoted to the accurate theoretical description of supercooled phase transitions,
with the SU(2)cSM model [4, 47] as a concrete example. The main motivation for this
study is the great prospect for observability of a GW signal from supercooled first-order
phase transitions [4, 5, 12–22], which would be so strong that spectral parameters could be
reconstructed with a very good accuracy [48]. This exciting possibility calls for an increased
accuracy in the theoretical description, which is not accessible with the popular machinery of
the daisy-resummed one-loop effective potential. A perfect tool for increasing the accuracy
of phase-transition-related predictions is dimensionally reduced effective field theory [33–36]
which allows us to perform resummations systematically. Therefore, we pursued the task
of reconciling DR, which is based on a high-temperature expansion, with the description
of supercooled phase transitions. This work resulted in several new findings which are
summarised below.

In section 2.2 we demonstrated that the relevant quantities, describing the phase transition
and setting the GW signal, can be divided into two groups: large-field-related (∆V , Tr)
and small-field-related (Tn, Tp, R∗H∗). The former ones correspond to the low-temperature
limit of the effective potential and no resummations are needed to compute them and we
can follow the approach described e.g. in ref. [11]. The latter ones are related to the high-
temperature regime. To compute them accurately we need a high-temperature effective
field theory which takes into account the hierarchies between different energy scales in the
presence of high temperatures.

As we studied the relation between the HT and LT regimes, we also elucidated certain
points in the computation of the thermal parameters of the phase transition in the 4D
approach. First, by studying the interplay of the RG-improvement of the potential, and
RG-scale cancellations between the HT limit of the thermal contribution to the effective
potential and the zero-temperature part, we came to the conclusion that there is a preferred
scale for the phase transition computations in the 4D theory which is the thermal scale,
µ ∼ T , see section 2.2. This may sound like a trivial observation, but it is not commonly
employed in the computations found in the literature. Moreover, we explained the role of the
normalisation of the field in the phase-transition-related computations in section 3.3.

Furthermore, we have checked that the bounce solution, corresponding to the tunnelling
trajectory of the field, is always within the HT regime. However, as we move along the
bounce, the considered masses change substantially, which causes difficulties in treating mass
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hierarchies. The constructed EFT is expected to break down in the tail region, which is
the region where the gauge field mass becomes smaller than the scalar field mass. In this
region, contributions of the gauge field modes to the action should be accounted for without
derivative expansion. These issues were discussed in sections 4.5, 4.6 and 5.4.2.

In sections 4.1 and 4.3 we have constructed an EFT in the HT regime, with matching
at two-loop level and going to the NLO level in the couplings. This is the first time that
these higher-order corrections are taken into account for a classically conformal model. It
should be emphasised that at NLO, besides new contributions to the effective potential, there
are also new effective operators that contribute to the kinetic part of the action, described
by Z3. This contribution can straightforwardly be included in the EFT framework, but
is absent in the typical daisy-resummed approach. This is a serious shortcoming of the
standard approach, as we find that the effect of Z3 is significant. The significance of the
Z3-factor modifying the kinetic term as well the presence of the scale-shifting [39] fields
suggests that the derivative expansion of the effective action might not be fully reliable. This
should be studied by computing the functional determinant in the action prefactor, using
the methodology developed in refs. [74, 77, 78, 88].

We formulated predictions based on the theory at NLO, by implementing a gauge-
invariant and 3D RG-scale-invariant approach in section 4.4, based on [39]. In such a setting,
we performed a scan of the full parameter space of a BSM model, which has not yet been
done in the context of GW production.21 We show in section 5.2 that the differences in the
percolation temperature Tp between the LO and NLO approach become as large as O(1), with
the largest corrections occurring in the large-mass, small-coupling corner. The differences in
the predicted length scale of the transition R∗H∗ are more moderate, but also more relevant
for the GW prediction, which depends strongly on R∗H∗.

We thoroughly study the scale dependence of the NLO predictions and compare them
to the LO results in section 5.4.1. We find that the dependence on the RG-scale of the
4D theory, which is a measure for inaccuracy associated to missing higher-order corrections
(see e.g. [28, 29]), becomes reduced in the NLO prediction compared to the LO prediction,
indicating that higher-order corrections indeed are required to reduce this source of uncertainty.

To sum up, we have demonstrated that higher-order corrections in the computation of
thermal parameters in theories with supercooling can and should be included. We have found
that the higher-order corrections have a significant effect on the GW signal, and that further
studies into the contribution of the scale-shifting nature of the gauge fields is required.
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A Running couplings and field

The β functions for the scalar couplings λφ, λhφ, λh and the new gauge coupling gX

read [4, 47, 63]

βλh
= 1

8π2

[
12λ2

h + λ2
hφ + λh

2
(
−9g2

2 − 3g2
1 + 12Y 2

t

)
+ 3g4

2
8 + 3(g2

2 + g2
1)2

16 − 3Y 4
t

]
,

βλhφ
= 1

8π2

[
6λhλhφ + 2λ2

hφ + 6λhφλφ + λhφ

4
(
−9g2

2 − 3g2
1 + 12Y 2

t − 9g2
X

)]
,

βλφ = 1
8π2

[
λ2

hφ + 12λ2
φ − 9

2λφg2
X + 9g4

X

16

]
,

βgX = 1
16π2

[
−43

6 g3
X − 1

(4π)2
259
6 g5

X

]
,

where g2 is the SU(2) gauge coupling, g1 the U(1) gauge coupling and Yt the top Yukawa
coupling. The 4D renormalisation factor for the scalar field φ is given by

Z(t) = exp
(
−1
2

∫ t

0
dx γφ(x)

)
,

where t = log µ
µ0

and

γφ(x) = −9g2
X(x)
32π2 .

These β functions are also obtained automatically when using DRalgo [38] for dimensional
reduction.

B Dimensional reduction

Customarily in the dimensional reduction literature, the scale of the phase transition is
referred to as the ultrasoft scale and the corresponding EFT is the one where the soft scale
temporal gauge field components are integrated out [35], along with other potential soft
fields [90]. As pointed out in ref. [45], only in the near vicinity of a second-order phase
transition, the scalar fields are expected to become ultrasoft. For first-order transitions, the
fields driving the transition are expected to live either at the supersoft or the soft scales. In
this article, we have indeed organised perturbation theory by treating the nucleating field as
soft and constructed the potential and nucleation EFT in the broken phase by integrating
out the gauge fields, both spatial and temporal components on equal footing. In section B.1
we demonstrate how to obtain the effective theory using DRalgo, and in section B.2 we list
the relevant matching relations.
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B.1 Using DRalgo

For completeness, we describe here our implementation in DRalgo. We refer to ref. [38] for
details of the program. Our results were obtained using version 1.01 beta (16-05-2022) of
DRalgo and version 1.1.2 (06-05-2020) of Groupmath [91].

We start from defining the model of section 3 as follows:

Group = {"SU3", "SU2", "SU2", "U1"};
RepAdjoint = {{1, 1}, {2}, {2}, 0}; (* gauge fields in adjoint representations *)
HiggsDoublet1 = {{{0, 0}, {1}, {0}, 1/2}, "C"}; (* Higgs doublet with hypercharge 1/2 *)
HiggsDoublet2 = {{{0, 0}, {0}, {1}, 0}, "C"}; (* dark sector doublet with zero hypercharge

*)
RepScalar = {HiggsDoublet1, HiggsDoublet2};
CouplingName = {g3, g2, gX, g1};

(* SM fermion content per generation: *)
Rep1 = {{{1, 0}, {1}, {0}, 1/6}, "L"}; (* L-handed quark doublet *)
Rep2 = {{{1, 0}, {0}, {0}, 2/3}, "R"}; (* R-handed up-type quark *)
Rep3 = {{{1, 0}, {0}, {0}, -1/3}, "R"}; (* R-handed down-type quark *)
Rep4 = {{{0, 0}, {1}, {0}, -1/2}, "L"}; (* L-handed lepton doublet *)
Rep5 = {{{0, 0}, {0}, {0}, -1}, "R"}; (* R-handed lepton *)
RepFermion1Gen = {Rep1, Rep2, Rep3, Rep4, Rep5};

(* 3 duplicate fermion generations: *)
RepFermion3Gen = {RepFermion1Gen, RepFermion1Gen, RepFermion1Gen} //

Flatten[#, 1] &;

(* allocate required tensors: *)
{gvvv, gvff, gvss, \[Lambda]1, \[Lambda]3, \[Lambda]4, \[Mu]ij, \[Mu]IJ, \[Mu]IJC, Ysff,

YsffC} = AllocateTensors[Group, RepAdjoint, CouplingName, RepFermion3Gen, RepScalar];

(* construct bilinear scalar invariants: *)
InputInv = {{1, 1}, {True, False}}; (*\[Phi]1\[Phi]1^+*)
MassTerm1 = CreateInvariant[Group, RepScalar, InputInv] // Simplify;
InputInv = {{2, 2}, {True, False}}; (*\[Phi]2\[Phi]2^+*)
MassTerm2 = CreateInvariant[Group, RepScalar, InputInv] // Simplify;

(* Here we implement auxilliary mass terms with squared masses m1sq and m2sq, that we set
to zero at the very end of computation *)

VMass = (m1sq*MassTerm1 + m2sq*MassTerm2);
\[Mu]ij = GradMass[VMass[[1]]] // Simplify // SparseArray;

(* construct quartic terms from the invariants: *)
QuarticTerm1 = MassTerm1[[1]]^2; (*[(\[Phi]1\[Phi]1^+)]^2*)
QuarticTerm2 = MassTerm2[[1]]^2; (*[(\[Phi]2\[Phi]2^+)]^2*)
QuarticTerm3 = MassTerm1[[1]]*MassTerm2[[1]]; (* (\[Phi]1\[Phi]1^+)(\[Phi]2\[Phi]2^+)^2*)

(* collect quartic terms: *)
VQuartic = (\[Lambda]h*QuarticTerm1 + \[Lambda]\[Psi]*QuarticTerm2 +

\[Lambda]h\[Psi]*QuarticTerm3);
\[Lambda]4 = GradQuartic[VQuartic];
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(* construct Yukawa interaction: *)
InputInv = {{1, 1, 2}, {False, False, True}};
YukawaDoublet1 =

CreateInvariantYukawa[Group, RepScalar, RepFermion3Gen, InputInv] // Simplify;

(* only top quark has non-zero Yukawa coupling: *)
Ysff = -yt*GradYukawa[YukawaDoublet1[[1]]];
YsffC = SparseArray[

Simplify[Conjugate[Ysff] // Normal, Assumptions -> {yt > 0}]];

(* create the model: *)
ImportModelDRalgo[Group, gvvv, gvff,
gvss, \[Lambda]1, \[Lambda]3, \[Lambda]4, \[Mu]ij, \[Mu]IJ, \
\[Mu]IJC, Ysff, YsffC, Verbose -> False];

Note that due to the design choice of DRalgo, we need to define the model with masses in
the 4D theory (m1sq and m2sq), and then set them to zero later.

We obtain the couplings and masses of the effective theory by running

PerformDRhard[]
PrintScalarMass["NLO"] (* prints out the result for 2-loop scalar thermal masses *)
PrintDebyeMass["NLO"] (* prints out the result for 2-loop Debye masses *)
PrintCouplings[] (* prints out the result for 1-loop thermal corrections of couplings *)
PrintTemporalScalarCouplings[] (* prints out the result for temporal gauge field couplings

*)

The obtained masses and couplings are listed in section B.2, up to two modifications:

• We obtain κ3 from ref. [35] rather than DRalgo. The reason is that the normalisation
convention of κ3 in DRalgo does not align with literature following ref. [35], e.g. refs. [92,
93] (see Q.10 of DRalgo’s Q&A).

• We remove the terms in m2
3 that multiply ln (µ3/µ4) which correspond to running due to

modes that we did not include in the NLO effective potential, which gets contributions
only from the soft modes.

At the moment this computation was performed, DRalgo did not allow the construction of our
NLO potential as the temporal gauge field is integrated out before higher-order corrections
to the effective potential can be computed.22 For the dark sector effective potential we
used a trick to account for the contributions of the temporal gauge field Xa

0 , by adding an
additional scalar triplet under the dark SU(2):

TemporalGaugeTriplet1 = {{{0, 0}, {0}, {2}, 0}, "R"}; (* a real dark triplet *)
RepScalar = {HiggsDoublet1, HiggsDoublet2, TemporalGaugeTriplet1};

22A recent update of DRalgo does allow the user to construct the NLO potential while treating the temporal
and spatial gauge modes in the same way.
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In order to keep this dark SU(2) triplet field within the EFT that DRalgo uses to compute
the effective potential, we introduced it in the parent theory. This is merely a hack: we do
not account for its contributions in the matching relations, as it is nothing but an auxiliary
field, that we use to circumvent the limitations of vanilla DRalgo. We define a mass term
and a coupling term for the auxiliary field via

MassTerm3 = CreateInvariant[Group, RepScalar, InputInv] // Simplify;
QuarticTerm4 = MassTerm3[[1]]^2;
QuarticTerm5 = MassTerm2[[1]]*MassTerm3[[1]];

and the corresponding tree-level potential becomes

VMass = (
+ m1sq*MassTerm1
+ m2sq*MassTerm2
+ 1/2 mx0sq*MassTerm3 (* triplet mass term *)
);

VQuartic = (
+\[Lambda]h*QuarticTerm1
+ \[Lambda]\[Psi]*QuarticTerm2
+ \[Lambda]h\[Psi]*QuarticTerm3

+ b4/4*QuarticTerm4 (* triplet self interaction *)
+ a2/2 QuarticTerm5 (* portal between triplet and dark doublet *)

);

Apart from these modifications, the model implementation is identical to the one described
above.

The computation of the effective potential now proceeds as follows. First, the EFT
at the soft scale is constructed via

PerformDRsoft[{}]

We then specify that only the φ-field obtains a vev and compute the effective potential

(* first 4 elements correspond to the SM doublet, next 4 dark doublet, and last 3
auxilliary triplet *)

\[CurlyPhi]vev = {0, 0, 0, 0, 0, 0, 0, w, 0, 0, 0} // SparseArray
DefineVEVS[\[CurlyPhi]vev]
CalculatePotentialUS[]

The tree-level effective potential at the soft scale (without the higher-dimensional corrections)
of eq. (4.7) is obtained by calling

PrintEffectivePotential["LO"] (* tree-level effective potential *)

We obtain the leading order effective potential of the final EFT, eq. (4.8), by adding the
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result of

PrintEffectivePotential["NLO"] (* 1-loop effective potential *)

where we set a2 → h3 and we set the scalar contributions to zero, as they originate from the
parameterically lighter modes. We also add a field-independent term by hand which ensures
that the potential is normalised to zero at the vanishing field value. Lastly, we obtain the
NLO contribution to the effective potential, eq. (4.14), from

PrintEffectivePotential["NNLO"] (* 2-loop effective potential *)

where we again remove the scalar field contributions by setting λh and λhφ to zero. The
parameter b4 should correspond to κ3, but since we used the normalisation of ref. [35], we
read off the pre-factor of this term from ref. [45], which uses the same convention.

B.2 Hard to soft scale matching relations

We perform next-to-leading (NLO) matching when integrating out the hard modes. This
corresponds to one-loop matching for the couplings and two-loop matching for the masses.
The scalar field couplings are given by

λ3 = T

(
λφ + 1

(4π)2

(3
8g4

X + Lb

(
− 9
16g4

X − 12λφ + 9
2g2

Xλφ − λ2
hφ

)))
, (B.1)

g2
X,3 = g2

XT

(
1 + 1

(4π)2 g2
X

(2
3 + 43

6 Lb

))
, (B.2)

h3 = 1
2g2

XT

(
1 + 1

(4π)2

(
g2

X

(17
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6 Lb

)
+ 12λφ

))
, (B.3)

κ3 = 1
(4π)2

17
3 g4

XT, (B.4)

and the masses by

m3
D,X = 5
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(
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)
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where

λhφ,3 = λhφT

(
1 + 1

(4π)2

(
−3y2

t Lf + Lb

(3
4g2

1 + 9
4g2

2 + 9
4g2

X − 2 (3λh + λhφ + 3λφ)
)))

,

(B.7)

g1,3 =

√
g2

1T − g4
1T (Lb + 40Lf )

96π2 , (B.8)

g2,3 =

√
g2

2T + g4
2T (4 + 43Lb − 24Lf )

96π2 . (B.9)

Lb and Lf are defined as

Lb = 2γE − 2 log [4π] + log
[

µ2
4

T 2

]
, Lf = Lb + 4 log [2], (B.10)

with γE the Euler-Mascheroni’s constant and A the Glaisher’s constant.
The effective masses depend on the effective couplings between the scalar and the several

temporal gauge modes, given by

λV L5 = g2
1Tλhφ

8π2 , (B.11)

λV L6 = g2
2Tλhφ

8π2 , (B.12)

λV L8 = g2
XT (g2

X(51 + 43Lb) + 96π2 + 72λφ)
1928π2 , (B.13)

where λV L5, λV L6 denote couplings between φ and the SM gauge fields, and λV L8 the
coupling between φ and the dark gauge field.
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