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H I G H L I G H T S  

• Methodology for total cost of ownership and levelized cost of driving of battery electric trucks. 
• Different levels of battery and charging technology improvement. 
• Different operational trip profiles (urban, short-haul or regional, long-haul). 
• Designing optimum driving range or battery sizing and cost competitiveness of battery electric trucks. 
• Opportunity costs for charging activities and operational time calculations.  

A R T I C L E  I N F O   
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A B S T R A C T   

The total cost of ownership (TCO) of trucks is known as one of the main decision-making factors by logistics 
operators for adopting alternative powertrains such as battery electric trucks (BETs). In this study, we develop a 
very detailed levelized cost of driving (LCOD) model to analyse the TCO of BETs and conventional trucks (CTs) in 
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Levelized cost of driving (LCOD) 
Operational driving range 
Battery technology 
Charging technology 

medium and heavy-duty truck weight classes. The model has methodological advancements such as developing 
opportunity costs for charging activities, using a detailed operational time calculation, and analysing the opti-
mum driving ranges or battery sizing. By implementing an extensive sensitivity analysis of LCOD for CTs and 
BETs over 43 variables, it is revealed that the key parameters such as operational driving range, battery pack 
price, state of charge of battery, driver cost, “mid-shift” charging power, ambient temperature, opportunity 
charging, and driving speed have major impacts on the cost competitiveness of BETs vs. CTs. In addition, the 
impact of battery and charging technology improvements as well as designing optimum driving ranges are 
examined in three different operational trip profiles (urban, short-haul or regional, long-haul). The result shows 
that: 1) BETs in urban trip profiles with the current and/or short-term battery technology might be economically 
viable alternatives for CTs without the help of the policy measures, 2) BETs with below 40 t gross vehicle weight 
and the long-term improvements in battery technology in all the operational trip profiles might be economically 
viable alternatives for CTs without the help of the policy measures, and 3) the implementation of policy measures 
affecting the relative costs of CTs and BETs and development of fast-charging facilities would be needed to 
support the above 40 t BETs in short-haul and long-haul trips for the current and/or short-term as well as mid- 
term battery technologies.   

1. Introduction 

Governments, businesses, and other organizations have committed 
to working together to enable new zero-emission medium- and heavy- 
duty trucks [1]. Zero-emission trucks (ZETs) mainly refer to battery 
electric trucks (BETs) and fuel cell electric trucks (FCETs) to replace 
conventional trucks (CTs) which use diesel fuel in internal combustion 
engines. [2]. 

Truck manufacturing and road freight transport are very cost- 
sensitive industries. The total cost of ownership (TCO) of a truck is 
known to be a key decision-making factor by logistics operators [2–4]. 
Research suggests that ZETs may already have or will in the near-term 
have lower TCO than CTs [5–12], especially in the best use cases. 
Many studies have claimed that BETs are more economically viable than 
FCETs [2,13,14]. Under certain circumstances (e.g., different driving 
cycles, trip profiles, weight classes, and accessibility to clean electricity), 
BETs can be the best alternative for CTs in terms of lower carbon 
abatement cost and TCO [8,15]. However, a few studies concluded that 
FCETs might be a more competitive alternative than BETs for long-haul 
freight transport [12,16]. 

Three different approaches have been used for the TCO calculations 
of different powertrains and fuel alternatives: 1) TCO without the net 
present value (NPV) [5,17,18], 2) TCO based on NPV [6,7,11,19–21], 
and 3) TCO and levelized cost of driving (LCOD) based on NPV [10,16]. 
The last approach for TCO calculation a valid option for medium and 
heavy-duty trucks (MHDTs) to evaluate and present the levelized and 
discounted cost elements per kilometre (km) and tonne-kilometre (tkm) 
[10,16] and was also used in this work. 

Different charging facilities have been considered for BETs such as 
charging stations, battery swapping stations, and electric road systems. 
Among all the possible charging solutions to date, plug-in charging 
stations with a manual connector might be seen as the main option for 
BETs because of lower investment cost and flexibility in route planning. 
However, the cost of the time spent on charging stations might become 
economically and operationally unviable for some trip profiles with high 
daily mileages and large battery sizes. The current trend in charging 
technology development is towards elevated powers up to 1 MW and 
beyond to enable fast (20–45 min) charging and taking into account 
increased battery sizes of HD electric vehicles. A new standard for 
Megawatt Charging System is being developed to match the foreseen 
needs of BETs [22,23]. Moreover, optimum cost-efficient battery sizing 
should be considered to match the operational use case requirements, 
based on key parameters such as the different levels of battery tech-
nology and charger specifications for different weight classes of MHDTs 
in different trip profiles. 

Developing a parametrized model for TCO calculation of BETs that is 
more detailed than those used in previous studies might be beneficial in 
different ways: 1) It improves the results of decision choice models used 
in the strategic assessment models with techno-economic approaches 

[24–26], 2) It provides a clearer picture of the key cost elements of the 
BET fleets operation for the logistics operators, and 3) It helps the lo-
gistics professional and researchers to better understand the opportu-
nities and limitations in BETs in different categories (e.g., trip profiles, 
battery technologies). Such a detailed parametrized model should 
include parameters such as costs for charging activities, volume lost, 
energy efficiency, energy consumption, and battery size or driving 
range. In this study, we aim to develop a TCO model for BETs and CTs 
with an LCOD approach to cover all the key parameters. Therefore, we 
seek answers to the following research questions:  

1. What are the key parameters in levelized cost of driving calculations 
for battery electric trucks and conventional trucks? 

2. How do different battery and charger specifications affect cost effi-
cient or optimum driving ranges (ORs) of battery electric trucks in 
different trip profiles? 

In this study, we define the OR as the operational driving range 
(mostly linked with battery capacity) that results in the lowest LCOD for 
a BET for a given infrastructure implementation and charging strategy. 
The study focuses on medium-duty trucks and heavy-duty trucks refer-
ring to the weight classification of the gross vehicle weight (GVW) 
ranges within 4.5 t – 11.7 t and above 11.7 t, respectively. This study 
analyses the impact of potential techno-economic developments on the 
competitiveness of BETs at a global level. However, many different 
techno-economic parameters and assumptions are assumed based on the 
research studies conducted in Europe and United States. The study does 
not assess the impact of policy measures (e.g., road tolls, and carbon 
pricing) in detail because of the following reasons: First, the focus of this 
study is on the analysis of the TCO of BETs as it depends on battery and 
charging technology improvement. Second, the policy measures and 
implementations vary widely in different regions and countries [6,7]. 
Finally, strategic assessment [24,26–28] is a more appropriate tool to 
evaluate the policy measures from perspectives such as economic, 
environmental, and energy. 

2. Literature review 

There is a growing body of literature on BET application on road 
freight transport focusing on the technical aspect in previous years. Also, 
the TCO analysis of BETs has gained attention in recent years. Our focus 
is on the research published during the 2020s because of the rapid 
technological development of BETs. We identified 21 research studies 
including research papers and technical reports in the years 2020–2022. 
Around half of these research studies were published only in 2022. 
Table A1 in Appendix A presents a summary of the literature and 
highlights some important items of TCO for BETs, specifically: the op-
portunity cost of time spent on refuelling/recharging, battery technol-
ogy developments, driving cycles and operational trip profiles, driving 
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range or battery size optimization, and the models that include detailed 
delivery parameters based on origin-destination flow and travel routing. 
In the following paragraphs, first, we highlight the scope, methodology, 
and result of these studies, in the light of our research questions. Then, 
we identify and discuss the research gaps in the literature at the end of 
this section. 

2.1. Literature review for the first research question 

Searching for the responses to the first research question, we found 
the following recent studies discussing key parameters of LCOD. 
Different levels of detail in the calculation of LCOD and/or TCO in the 
research resulted in some similarities and differences in their method-
ologies, analyses, and conclusions. Papers we found classified different 
cost elements as capital and operating expenses [7,12,21,29], overhead 
cost [12], time-dependent cost [12], and distance-dependent cost 
[7,21]. 

A few papers [7,9,29,30] discussed the impact of different policy 
measures (e.g., different forms of taxation such as the tax on fuel or 
electricity, road tolls, and carbon pricing). Basma et al. [7] discussed the 
impact of different policy measures and financial incentives on the TCO 
of the tractor-trailer in 7 different European countries. They were 
optimistic that a combination of all policy measures including purchase 
incentives, emission trading system, and road tolls may lead to a lower 
TCO for a new BET compared to a CT. Noll et al. [29] also provided a 
more detailed analysis of the policy measures. They proposed that pol-
icymakers have to deal with operating cost parameters (e.g., tolls and 
fuel costs) before capital cost parameters (e.g., subsidies on BET pur-
chase) to improve the competitiveness of BETs. However, Hovi et al. [9] 
highlighted that the policy measure impact for TCO parity of BETs over 
CTs could be very low (around 14% of CT TCO) compared to the in-
vestment cost including BET and battery purchase price and charging 
infrastructure cost (around 48% of CT TCO). 

Multiple papers investigated the impact of more detailed TCO anal-
ysis regarding BET technology (e.g., energy efficiency, charging power, 
battery characteristics): 

Burke and Sinha [8] emphasized the role of initial purchase cost (i.e., 
battery cost) and operating cost (i.e., electricity cost) on the cost 
competitiveness of BET technologies and different weight classes based 
on a simplified TCO calculation. They concluded that BETs will be 
competitive if the battery cost is 70–100 $/kWh and the electricity price 
is 0.10 $/kWh. Ghandriz et al. [19] discussed cost reduction potential by 
using driving automation systems. They highlighted the role of driver 
cost, battery cost, and charging infrastructure costs as the most impor-
tant cost elements in the TCO analysis of heavy-duty BETs. 

Nykvist and Olsson [17] stated that even by using an ultra-fast 
charger (1 MW charger) the most significant cost parameters per km 
in BETs, especially in the current battery technology scenarios, are the 
battery cost and the insurance. They considered the impact of charging 
time on the insurance cost and labour cost as well as the opportunity cost 
of capital during charging for BETs. However, these extra costs were 
estimated to be very low because of the short charging time of using the 
1 MW charger. Burnham et al. [16] and Hunter et al. [10] highlighted 
the role of driver’s cost for charging BETs in different weight classes and 
trip profiles. They also considered the impacts of different working shifts 
(single and multi-shift) as well as weight and volume-limited scenarios 
on the TCO analysis. 

Phadke et al. [18] analysed different battery price specifications for 
regional-haul and long-haul road freight transport in the US. They 
showed that the largest cost parameters for BETs are battery and energy 
costs. Hao et al. [21] added intangible cost in their TCO analysis for 
different powertrain alternatives over a wide range of vehicle weight 
classes in China. The intangible cost in this research is a sum-up of the 
range anxiety cost, alternative vehicle cost (applicable when the BET 
cannot meet daily travel needs), and repower annoyance cost (e.g., 
including driver’s working time for waiting in a charger station and 

searching for a free charger station) components. 
ITF [11] published a report of TCO analysis for different powertrains 

(including BET and FCET) within 12 groups of trucks (classified based on 
combinations of trip profiles and weight classes) in Europe. This study 
concluded that purchase price reduction as well as further improve-
ments in energy efficiency and battery energy density may make BETs 
cost competitive with CTs. Gunawan and Monaghan [15] evaluated the 
total cost of carbon abatement (TCA) for different powertrains alterna-
tives (including BET and FCET) of a truck fleet with a 32 t GVW for 
mining application in a case study in Ireland. They concluded that the 
energy cost, vehicle, and charging infrastructure are the most significant 
cost parameters in the TCO analysis. Noll et al. [29] focused on 
improving charger infrastructure costs in the cost parity of BETs over 
CTs. They highlighted that energy cost and energy storage cost had the 
largest impacts on the cost competitiveness of BETs in different countries 
in Europe. However, the change in energy costs and financial incentives 
(tolls and subsidies) resulted in different levels of competitiveness for 
BETs in different European countries. 

Tol et al. [2] evaluated the techno-economic uptake potential of 
BETs and FCETs for different vehicle segments in the European Union 
and the United Kingdom. Battery cost and purchase cost (excluding 
battery) reduction in future are the main drivers of BET cost competi-
tiveness in this study. Zhang et al. [14] evaluated the emission and TCO 
of different powertrain alternatives including BET for a heavy-duty truck 
with 29.5 t GVW in China. They illustrated that fast charging takes a 
small proportion of the TCO; but in general, using fast chargers increases 
TCO because of lower battery lifetime, less charging cycles and/or 
higher electricity prices. 

Regarding the above paragraphs, the answers to the first research 
question vary widely in the existing literature. Such variations are 
because of different background assumptions and calculations methods 
in the existing literature: 1) the papers used various methodologies for 
TCO or LCOD calculation with different levels of detail, 2) the 
geographical scopes and fiscal policies vary in the papers, 3) the papers 
implemented various levels of techno-economic development (e.g., for 
battery specifications and charger power), and 4) the operational trip 
profile specifications vary in the papers. 

2.2. Literature review for the second research question 

Regarding the second research question, we found the following 
recent studies analysing the battery and charger specification impact on 
the optimum driving ranges (ORs) of BETs in different trip profiles. Only 
three research were found analysing and discussing ORs and battery 
sizing based on the battery and charger specifications as well as trip 
profiles: 

Baek et al. [31] evaluated the impact of optimum battery sizing on 
the profit changes by battery electric trucks in the urban area. They built 
their framework based on parameters such as vehicle powertrain effi-
ciency, battery efficiency and degradation, and delivery requests. 
Mauler et al. [12] analysed TCO for different powertrain alternatives 
(including BET and FCET) of a 40 t GVW truck for current and future 
scenarios of battery technology improvements in the United States. They 
concluded that the most important parameter in the analysis was energy 
price. They also recommended R&D topics to improve the cost 
competitiveness of BETs by focusing on the potential improvement of 
overall energy efficiency as well as capital cost reduction. 

Zhu et al. [32] evaluated the TCO of a 49 t BET for different charging 
powers (slow and fast) and battery-swapping solutions in China. They 
implemented sensitivity analysis of the OR based on different parame-
ters such as payload capacity utilization rate and average speed of trucks 
for different charging specifications. They presented the investment cost 
of “supercharging” (with a charging rate of 4C) would be around 60% 
higher than the fast charging (with a charging rate of 1C). However, they 
illustrated that the difference in levelized cost would take a very small 
proportion (less than 3%) of the TCO of a BET. 
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In addition to the above references, there are many papers 
[2,6,8,10,11,16,19,20,31] that did not analyse the ORs or optimum 
battery sizing but examined the TCO of different driving ranges over 
different battery specifications, charger specifications, and/or trip 
profiles. 

2.3. The identified research gaps in the literature 

The following research gaps are identified in the literature:  

• Although the opportunity cost for charging activities is calculated in 
a few recent studies [10,11,16,17,19,21], only one study [12] ana-
lysed the profit lost as the value of time spent on terminal and “mid- 
shift” fast charging [23] with different charging powers and battery 
specifications.  

• In a few studies [11,12], the mandatory break-time is one of the main 
assumptions to estimate driving range by a BET. These studies 
assumed that recharging activities happen during break-time, and 
either the driver would get paid [12] or would not get paid [11] for 
recharging activities. However, no study was found to analyse the 
impact of uncertainty in opportunity charging during loading/ 
unloading and rest time on TCO or LCOD of BETs.  

• Only one study [19] was found to analyse the sensitivity of TCO over 
detailed operational parameters (e.g., time spent on loading/ 
unloading, “mid-shift” charging time). However, no research was 
found to evaluate the TCO of BETs based on such detailed opera-
tional time calculation over different levels of battery and charger 
technology improvement.  

• Most studies consider a set of predefined BET’s driving ranges for 
different driving cycles, vehicle weight class, and operational trip 
profiles (e.g., urban vs. short haul and long haul) [5,7,16–18,20]. 
However, no research was found using a dynamic approach for 
analysing the ORs or optimum battery sizing over different driving 
cycles, GVWs, and operational trip profiles based on different battery 
and charger specifications. 

To fill the identified gaps in the literature and answer the research 
questions presented in Section 1, Section 3 presents the methodology 
and data analysis process. Section 4 presents the results and Section 5 
discusses the results. Finally, Section 6 presents the general conclusions 
of this study. 

3. Data and methods 

The TCO of a CT and BET include recurring cost elements and one- 
time cost elements. The LCOD of each powertrain technology might 
reflect a better picture of the TCO of different cost elements per km and 
tkm. The general parameters used in TCO and LCOD calculations are the 
time frame in year for the TCO (N), discount rate (d), payload capacity 
utilization ratio (UR), and gross vehicle weight. The cost unit in this 
study is the US dollar (USD) which can be converted to Euro by applying 
the average exchange rate in 2022 (1.054 USD) [33]. We developed 
programming codes in R to cover all the following calculation steps and 
the codes are available at GitHub [34]. 

In this study, we assumed that the same payload capacity in a CT 
would be delivered by a BET with a different curb weight and GVW 
(because of powertrain difference and battery weight). We calculate the 
impact of curb weight change of BETs vs. CTs on energy consumption of 
BETs. To simplify the visualizations in the analysis, we only represent 
GVW of CT in the results. 

The main equations for TCO and LCOD (Eq. (1–8)) are represented in 
Section 3.1 and Section 3.2. The cost equations for all the identified 
elements are represented by captions starting with “A1” in Section 2.1 in 
Appendix A. More detailed cost equations are represented by captions 
starting with “A2” in Section 2.2 in Appendix A. All the variables used in 
the equations are defined in Section 2.3 in Appendix A. We also provided 

a graphical representation of the model structure for BETs (see Fig. A1- 
A8 in Section 2.4 in Appendix A). The following sections summarize the 
methodology used in this study. 

3.1. LCOD for conventional trucks (CTs) 

The main equations for LCOD of a CT are represented by Eq. (1–4). 
The TCO, cash flow for different years, and LCOD (per km and tkm) are 
specified based on 8 different cost elements in the equations. The cost 
elements are the down payment (DP), loan principal repayment (LPR) 
and loan interest paid (LIP) for purchasing a CT, insurance cost (IC), 
energy (fuel) cost (EC), maintenance cost (MC), driver cost (DC) and the 
CT’s end of life residual value (RV). 

TCOCT(j) =
∑N

i=0

CCT(j,i)

(1 + d)i, (1)  

CCT(i) =

⎧
⎪⎪⎨

⎪⎪⎩

DPCT , i = 0
LPRCT(i) + LIPCT(i) + ICCT + ECCT + MCCT + DCCT , 1 ≤ i ≤ M
ICCT + FCCT + MCCT + DCCT ,M < i < N

− RVCT , i = N
(2)  

LCODCT km(j) =
∑

j

(

TCOCT(j)

/
∑N

i=1

VKMTi

(1 + d)i

)

(3)  

LCODCT tkm(j) =
∑

j

(

TCOCT(j)

/
∑N

i=1

VKMTi × lcCT × UR
(1 + d)i

)

(4) 

Where j index is the cost elements, list of individual cost elements of 
a CT are j(1:8) = {DP, LPR, LIP, IC, EC, MC, DC, RV}, i index is the year 
of operation, M index is the total number of years for loan payments, N is 
the time frame for TCO analysis, TCOCT(j) is the TCO of the cost element 
j, CCT(i) is the cash flow of the cost elements in year i, LCODCT_km(j) is the 
LCOD of the cost element j per kilometre, LCODCT_tkm(j) is the LCOD of 
the cost element j per tonne-kilometre, VKMTi is the vehicle kilometres 
travelled in year i, d is the discount rate, lcCT is the load capacity, UR is 
the payload capacity utilization ratio. Following sections provide more 
details of the cost elements including all the variables and equations for 
LCOD of a CT. 

3.1.1. Vehicle 
The cost related to buying a CT is formulated via the first three cost 

elements (DPCT, LPRCT, and LIPCT) by using an amortized loan Eq. [35]. 
DPCT is paid in advance in the year 0 and loan costs (LPRCT and LIPCT) 
are paid according to the loan repayment plan (see Eq. (A1.1c-A1.3c)). 
Variables in these cost elements are the vehicle purchase price (VPPCT), 
loan’s down payment ratio (DPr), annual interest rate for the loan (r), 
and total number of years for the loan payments (M). VPPCT is estimated 
for different GVWs regardless of the lorry type (e.g., rigid, tractor-trailer, 
etc.). The equation Eq. (A2.48) used for VPPCT is a regression model 
fitted by Nykvist and Olsson on available data for the vehicle price at a 
global level [17]. 

3.1.2. Insurance 
The insurance cost (ICCT) is a recurring cost and is paid annually for 

the life span of a truck. The equations relevant to ICCT are Eq. (A1.4c, 
A2.22). These equations are developed by referencing a 40 t GVW CT 
and calculating the other weight class based on relative purchase price 
assumptions from [36]. Variables in ICCT are VPPCT, CT purchase price 
with 40 t GVW (VPP40T CT) and base vehicle insurance cost with 40 t 
GVW (icbvkm). 

3.1.3. Fuel 
The energy cost (ECCT) is a recurring cost based on driving mileage. 

The equations for estimating ECCT are Eq. (A1.5c, A2.3, A2.18, A2.25, 
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A2.42-A2.44). The fuel consumption equations in this study are based on 
regression models from a real-world dataset for highway and urban 
freight transport by a wide range of GVWs and lorry types (e.g., rigid, 
tractor-trailer, etc.) [37,38]. Variables in ECCT are the price of fuel 
(diesel) (PD), GVW, free flow driving speed in highways (vFf), fraction of 
time driving with free flow speed (Ff), Euro standard emission ratio 
(Euroα), and UR. 

3.1.4. Maintenance 
The maintenance cost (MCCT) is a recurring cost based on driving 

mileage. The equations for estimating MCCT are Eq. (A1.6c, A2.29). The 
main variable in this cost parameter is the maintenance cost ratio 
(mcrkm) formulated based on a CT purchase price according to [39]. 

3.1.5. Driver 
The driver cost (DCCT) is a recurring cost based on the driver’s 

working hours. The driver’s working hours (tCT) include time spent on 
loading and unloading activities at each stop in origin(s) or destination 
(s) (tL&U) and time spent driving on routes (tCTd). Since the refuelling of a 
diesel tank for a long-haul CT may take up to a few minutes, we skip the 
unnecessary complex calculations for time spent on refuelling activities 
in a CT. The equations for estimating the DCCT are Eq. (A1.7c, A2.2, 
A2.34-A2.35, A2.38). The variables in DCCT are the driving cost per 
working hour (DCh), daily vehicle kilometres travelled (DVKMT), 
loading/unloading time (RL&U), loading and unloading activities 
(number of stops per daily trips) (L&UNkm), vFf, saturated driving speed 
in urban streets (vU), and Ff. 

3.1.6. End of life residual value of vehicle 
The residual value (RVCT) in year N is considered as an income 

(negative cost) in cash flow. The equations for estimating RVCT are Eq. 
(A1.8c, A2.48). Eq. (A1.8c) is developed by [16,40] based on the CT’s 
purchase price. Variables in RVCT are parameter value for the effect of 
age on RVCT (PA), parameter value for the effect of mileage on RVCT 
(PM), N, and lifetime vehicle kilometres travelled (VKMT). 

3.2. LCOD for battery electric trucks (BETs) 

The main equations for LCOD of a BET are represented in equations 
Eq. (5–8). The TCO, cash flow for different years, and LCOD (per km and 
tkm) are specified based on 11 different cost elements in the equations. 
The cost elements are the DP for purchasing, charger equipment cost 
(CEC), LPR and LIP for purchasing, IC, energy (electricity) cost (EC), MC, 
DC, battery replacement cost (BRC), RV, and profit lost during the 
charging time (PL). 

TCOBET(j) =
∑N

i=0

CBET(j,i)

(1 + d)i (5)     

LCODBETkm(j) =
∑

j

(

TCOBET(j)

/
∑N

i=1

VKMTi × (1 + Chd)
(1 + d)i

)

(7)  

LCODBETtkm(j) =
∑

j

(

TCOBET(j)

/
∑N

i=1

VKMTi × (1 + Chd) × lcCT × UR
(1 + d)i

)

(8) 

Where j index is the cost elements, list of individual cost elements of 
a BET are j(1:11) = {DP, CEC, LPR, LIP, IC, EC, MC, DC, BRC, RV, PL}, i 
index is the year of operation, M index is the total number of years for 
loan payments, N is the time frame for TCO analysis, TCOBET(j) is the 
TCO of the cost element j, CBET(i) is the cash flow of the cost elements in 
year i, LCODBET_km(j) is the LCOD of the cost element j per kilometre, 
LCODBET_tkm(j) is the LCOD of the cost element j per tonne-kilometre, 
VKMTi is the vehicle kilometres travelled in year i, d is the discount 
rate, lcCT is the load capacity for a CT, UR is the payload capacity uti-
lization ratio of a CT, BRN is times in time intervals of BRT in N years. 
BRN is the battery pack replacement numbers, and BRT is the battery 
pack replacement time intervals in year. Following sections provide 
more details of the cost elements including all the variables and equa-
tions for LCOD of a BET. 

3.2.1. Vehicle 
The cost related to buying a BET is formulated via the first three cost 

elements (DPBET, LPRBET, and LIPBET) by using an amortized loan 
equation [35]. DPBET is paid in advance in the year 0 and two other costs 
(LPRBET and LIPBET) are paid according to the loan repayment plan (see 
Eq. (A1.1b, A1.3b-A1.4b)). Variables in these cost elements are the VPP 
of a BET (VPPBET), DPr, r, and M. The estimation of VPPBET is associated 
with a high uncertainty level because of variations in the battery pack 
price (BPP) and battery specifications. Therefore, Eq. (A2.47) is devel-
oped to reflect different battery pack settings (see Eq. (A2.3-A2.4)) for 
different operational driving ranges. The extended equations also 
include the same equations used for vehicle price Eq. (A2.48), and tank- 
to-wheel (TTW) energy consumption per km (ETTW_BET_km) Eq. (A2.1- 
A2.3, A2.10-A2.16, A2.25, A2.42-A2.44, A2.49). 

Since the battery pack capacity is an unknown variable based on an 
operational driving range and involved with both BPP and energy con-
sumption equations, an iterative loop is specified in the programming 
codes [34] with a convergence satisfaction constraint (ΔBPC < 1kWh) to 
estimate the battery pack capacity required for the given operational 
driving range. The variables involved in the estimation of ETTW_BET_km 
are GVW of CT, operational driving range, relative powertrain energy 
consumption ratio of BET over CT (ECT/BET), usable state of charge (SOC) 
for the battery pack (BUSOC), adjustment factor for average battery ca-
pacity lost during the battery lifetime (ACL), electricity/energy con-
sumption ratio due to 1 ◦C change of ambient temperature (EATA(1d)), 
default ambient temperature (ATDef), annual average ambient temper-
ature in a region (ATReg), energy efficiency for the charging equipment 
(ηCh), density of mixed conventional diesel fuel (DDiesel), lower heating 
value of diesel fuel (LHV), gravimetric density or specific energy of 
battery pack (GDBP), vFf, vU, Ff, UR, and Euroα. In addition to the above 
variables involved in ETTW_BET_km, variables such as adjustment factor for 

the purchase price difference between a BET and a CT (battery pack 
excluded) (AFBET/CT) and battery pack purchase price per kWh (bpp) are 
needed to estimate the costs related to the purchase of a BET. 

CBET (i) =

⎧
⎪⎪⎨

⎪⎪⎩

DPBET + CEC, i = 0
LPRBET(i) + LIPBET(i) + ICBET + ECBET + MCBET + DCBET + PLBET , 1 ≤ i ≤ M
ICBET + FCBET + MCBET + DCBET + PLBET ,M < i < N

− RVBET + PLBET , i = N

,BRC will be added to the arguments BRN 

times in time intervals of BRT in N years (6)   
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3.2.2. Charger infrastructure 
The CEC is calculated based on the levelized cost of using a charger. 

Since the major part of the CEC is considered as an investment to buy 
and install the charger infrastructure by the fleet or truck owner 
[2,17,41], we assumed CEC as a one-time paid cost in year 0 by the fleet 
owner. This means that each BET is assumed to have a dedicated slow 
charger or charging point at the depot hub for “off-shift” charging ac-
tivities [23]. The main equation for estimating CEC, Eq. (A1.2b), is 
developed to consider one full charge by slow chargers during “off-shift” 
(e.g., for resting at night or at long stops) Eq. (A2.8) and the rest of the 
requirements for driving a BET by “mid-shift” fast charging activities 
[23] Eq. (A2.7, A2.36). In addition to the variables mentioned in the 
previous paragraph for estimating ETTW_BET_km, variables such as 
charging power for “mid-shift” fast charging activities (ChPF), charging 
power for “off-shift” slow charging activities (ChPS), charger cost per 
hour for fast/ultra-fast chargers (chcphF), and charger cost per hour for 
slow chargers (chcphS) are needed for estimating the CEC. 

3.2.3. Insurance 
The insurance cost (ICBET) is a recurring cost and is paid annually for 

the life span of a truck. The main equations relevant to ICBET are Eq. 
(A1.5b, A2.21) and the main variables are the VPP40T CT and icbvkm. 
Extended equations are also needed for estimating ICBET based on other 
cost elements such as the VPPBET, ETTW_BET_km, and tCT. Eq. (A2.33, 
A2.35, A2.37-A2.39) are needed to calculate the driver’s working hours 
(tBET) for estimating ICBET. The variables such as the deviation in driving 
distance to access an on-road charging station (RChd), opportunity 
charging potential during loading/unloading and rest time (OPC), on- 
road charging accessibility distance ratio based on the proportion of 
operational driving range (OChD), and ChPF are required for estimating 
tBET. 

3.2.4. Electricity 
The energy cost (ECBET) is a recurring cost based on driving mileage. 

The main equations for ECBET are Eq. (A1.6b, A2.17). The extended 
equations include all the equations for the ETTW_BET_km estimation based 
on the previous paragraphs. In addition to the variables used in the 
calculation of ETTW_BET_km, the main variable for ECBET is the price of 
electricity (PE). 

3.2.5. Maintenance 
The maintenance cost (MCBET) is a recurring cost based on driving 

mileage. The equations for estimating the MCBET are Eq. (A1.7b, A2.28- 
A2.29). The main variables in this cost parameter are the mcrkm and 
maintenance cost ratio of a BET over a CT (mcrBET/CT). 

3.2.6. Driver 
The driver cost (DCBET) is a recurring cost based on the driver’s 

working hours. The tBET includes tL&U, tCTd, time spent on deviation in 
the driving distance because of on-road charging (tChd), and time spent 
on “mid-shift” fast charging activities (tOCh). The main equation for the 
calculation of DCBET is Eq. (A1.8b) and the main cost parameter is DCh. 
As it is described in the previous paragraphs, in addition to the equations 
used for estimating the DCCT, the extended equations for estimating the 
tBET are Eq. (A2.33, A2.35, A2.37-A2.39). The relevant variables are the 
OPC, RChd, OChD, ChPF, DCh, DVKMT, RL&U, L&UNkm, vFf, vU, and Ff. 

3.2.7. Battery replacement 
Battery replacement cost is a recurring cost that might happen 

multiple times during N years. Variables such as battery pack replace-
ment numbers (BRN) and battery pack replacement time intervals (BRT) 
in N year time frame need to be calculated for the cash flow. The main 
equations for estimating the BRC are Eq. (A1.9b, A2.5-A2.6, A2.9, 
A2.23, A2.32, A2.45). In addition to these equations, extended equa-
tions such as Eq. (A2.3-A2.4) are required for estimating ETTW_BET_km and 
BPP. The given equations for the BRC also include the residual value 

income (negative cost) of reselling the old battery pack. In addition to 
the variables used in equations for estimating the ETTW_BET_km, other 
variables such as the refurbishment cost factor of the battery pack (Kr), 
used product discount factor for the battery pack (Ku), lifetime charging 
cycle of the battery pack (CC), ACL, bpp, BUSOC, RChd, and OChD are 
needed to estimate BRC. The cyclic lifetime assessment of the battery 
system used a simplified approach in this paper, assuming a cycle life as 
given in Appendix Table A6. 

The battery energy storage system and the cyclic lifetime assessment 
of the battery system used a simplified approach in this paper, very 
similar to the previous research [10,16,17]. The most important pa-
rameters in the approach are the usable state of charge (SOC) for the 
battery pack (BUSOC), the adjustment factor for average battery capacity 
lost during the battery lifetime (ACL), Lifetime charging cycles of the 
battery pack (CC). BUSOC and ACL aggregate the long-term and average 
impacts of depth of charge/discharge and state of charge in the battery 
system. However, the CC is specified based on strategic scenarios 
[17,42] in battery technology developments which do not consider the 
detailed stress factors like depth of charge/discharge and state of charge, 
chemistry, temperature/C-rate, or the amount of fast charging. 

3.2.8. End of life residual value of vehicle 
The residual value (RVBET) in year N is considered as an income 

(negative cost) in cash flow. The main equations for estimating the 
RVBET are Eq. (A1.10b, A2.5-A2.6, A2.9, A2.24, A2.30-A2.31, A2.45). In 
addition to the variables used for ETTW_BET_km and BPP, other variables 
such as PA, PM, N, operational driving range, Kr, Ku, CC, RChd, OChD, 
and VKMT are needed to estimate RVBET. 

3.2.9. Profit lost during the charging time (PL) 
The last cost parameter for a BET is the PL which is calculated as a 

recurring annual cost. The main equations for estimating PL are Eq. 
(A1.11b, A2.19-A2.20, A2.40). Extended equations from previous par-
agraphs are needed to calculate TCOCT, tBET, and tCT. In addition to the 
variables used in the calculation of TCOCT, tBET, and tCT, other variables 
such as the gross profit margin of a trucking company (GPM), annual 
working days (AWDs), N, and DVKMT are needed to calculate PL. 

3.3. Methodological advancements 

3.3.1. Opportunity costs for charging activities in BETs 
According to Mauler et al. [12], the opportunity cost in BET has two 

components: forgone lost capacity and lost profit for charging time. In 
this study, we assumed that the same payload transported by a CT can be 
delivered by a BET without any restriction for extra volume and weight. 
Lost payload capacity is a minor issue as most commodities are not 
weight restricted [37]. Also, according to EU directive 2015/719 
(2015), the extra weight because of alternative powertrains (including 
BET technology) should not be penalised [43]. Therefore, there is no 
need to calculate the profit lost for the freight capacity lost. However, 
different countries might have their own restriction for maximum 
authorized weights and dimensions of vehicles related to road safety and 
infrastructure characteristics. 

We assumed that the lost profit for charging time in BET has three 
components: 1) insurance cost for extended working hours for doing the 
recharging activities, 2) driver cost for extended working hours for 
doing recharging activities, and 3) PL or the value of time for the time 
spent on recharging activities. The first two items are hidden in ICBET 
and DCBET cost elements for BETs. The third item is explicitly calculated 
as PL during the charging time for BETs. We defined a variable (OPC) for 
analysing the impact of different levels of opportunity charging poten-
tial during loading/unloading and rest time on LCOD of BETs. We 
assumed no opportunity charging potentials during loading/unloading 
and rest time (OPC = 0%) as default, but also analysed the impact of full 
opportunity charging potential during loading/unloading and rest time 
(OPC = 100%). 
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3.3.2. Designed driving range vs. driver’s mandatory rest time 
A few studies [11,12] used mandatory break-time as the main cri-

terion to design the operational driving range in BET. The choice of 
driving range should not be limited based on the mandatory break-time. 
The mandatory rest stop, for example, a 45-min rest in a 4.5 driving hour 
based on the EU regulation (Amendment of Regulation (EC) No 561/ 
2006) [44] does not necessarily lead to an optimum driving range 
because there is a high level of uncertainty [45] to implement above 
schedule for different routes with different levels of charger in-
frastructures availability during loading/unloading and rest time. 

Regarding the identified problem in the previous paragraph, the OR 
should be designed based on a comprehensive BET LCOD to cover all the 
costs (e.g., opportunity costs). In this study, we analyse the impact of OR 
on the BET LCOD reduction based on identified key parameters and 
extensive sensitivity analysis. Section 3.4 and Section 3.5 provide 
detailed information and assumptions for battery and charger specifi-
cations, and operational trip profiles. 

3.3.3. Operational time calculations 
Two series of equations are provided to estimate the driver’s working 

time estimate per km for a BET (tBET_km) and CT (tCT_km). The first series 
of equations, represented by option 1 in Eq. (A2.9, A2.33-A2.39), pro-
vide an operational time calculation procedure based on aggregated or 
average values for some important parameters such as the deviation 
drive ratio for on-road charging activities (Chd), L&UNkm, RL&U, 
DVKMT, OPC, and average driving speed (ADS). The second series of 
equations, represented by option 2 in Eq. (A2.9, A2.33-A2.39), is sug-
gested as an operational time calculation procedure in a detailed model 
using disaggregated data based on the available road freight survey and 
a simulation approach for on-road charging activities in different routes. 
We only use the first option for the operational time calculation pro-
cedure in this study to facilitate the impact analysis of different battery 
and charger specifications on the TCO of BETs. By using aggregated 
values for Chd, L&UNkm, RL&U, DVKMT, and ADS, we can simply 
conduct a sensitivity analysis of these variables on LCOD and TCO in 
different classifications. Section 3.5 provides more details of default 
values, lower and upper ranges for these variables. 

3.3.4. Other assumptions 
To avoid the complexity in the calculation of the TCO and LCOD for 

different levels of battery and charger technology improvements, we did 
not consider the variation of annual VKMT and different cost variables 
(e.g., bpp, PE, PD) in different ages of a BET and CT because of the 
following reasons: 1) Their impact on the TCO are associated with more 
complex time-dependent uncertainties, and 2) Calculations for the OR in 

this study require the assumptions of equal DVKMT in all working days. 
Instead, we provided an extensive sensitivity analysis for evaluating the 
impact of uncertainties in all the variables (including VKMT and cost 
variables) on TCO. 

3.4. Battery and charger specifications and operational trip profiles 

Battery specifications in this study are customized for three different 
scenarios. Short-term battery specification scenario (ST-BSS) represents 
the technology constraints for the current and/or short-term horizon. 
Mid-term battery specification scenario (MT-BSS) represents the con-
straints for the mid-term horizon. Long-term battery specification sce-
nario (LT-BSS) represents the constraints for the long-term horizon. The 
battery characteristics for ST-BSS, MT-BSS, and LT-BSS scenarios are 
specified based on the following variables: bpp, BUSOC, CC, and GDBP 
(see Table 1 and also check the references in Table A6 in Section 3.1 
Appendix A). It should be mentioned that the future development of 
batteries will not necessarily combine the performance values given in 
MT-BSS and LT-BSS all at the same time. In this study, the assumptions 
for the battery specification scenarios (BSSs) are aligned with the Stra-
tegic Research Agenda targets for MHD-BETs in Europe [42]. 

Table 2 presents the characteristics of four different trip profiles. 
Variables such as the DVKMT, vFf, vU, Ff, L&UNkm, M, time frame for 
TCO analysis (N), and RL&U are specified for each operational trip 
profile. The aggregated trip profile aimed to provide a generic TCO / 
LCOD analysis and implementing sensitivity analysis over a wide range 
of variables in Section 4.1, Section 4.2, and Section 4.3. The next 
operational trip profiles (urban, short-haul or regional, and long-haul) 
aimed to narrow down the TCO / LCOD analysis in Section 4.4. 

In this study, addition to using the slow chargers for “off-shift” slow 
charging, three levels of ChPF specification (200 kW, 450 kW, 1 MW) are 
considered to be examined associated with the different BSSs (ST-BSS, 
MT-BSS, and LT-BSS). Fast and ultrafast charging powers up to 500 kW 
are commercially available currently [46]. The megawatt ultra-fast 
chargers might be commercially available very soon in 2024–2025 
[47,48]. Fig. 1 shows the timeline visualization and potential coverage 
of BSSs over the ChPF specifications and operational trip profiles. 

3.5. Default values and sensitivity analysis for an aggregated trip profile 

In addition to the specified values for battery and charger 

Table 1 
Battery specification scenarios (BSSs).  

Parameters Battery specification scenarios (BSSs) 

Short-term battery 
specification 
scenario (ST-BSS) 

Mid-term battery 
specification 
scenario (MT- 
BSS) 

Long-term battery 
specification 
scenario (LT-BSS) 

Battery pack 
purchase price 
(bpp) (USD/kWh) 

300 200 100 

Usable state of 
charge for the 
battery pack 
(BUSOC) (%) 

75 78 95 

Lifetime charging 
cycle of battery 
pack (CC)(cycles) 

3000 4500 6000 

Gravimetric density 
or specific energy 
of battery pack 
(GDBP)(Wh/kg) 

125 250 400  

Table 2 
Assumptions for the operational trip profiles.  

Parameters Operational trip profile classifications 

Aggregated 
1 

Urban 
2 

Short-haul or 
Regional 2 

Long- 
haul 2 

Daily vehicle kilometres 
travelled (DVKMT) (km) 

500 200 400 800 

Time frame for TCO analysis 
(N) (year) 

10 10 8 4 

Free flow driving speed in 
highways (vFf) (km/h) 

80 60 80 80 

Saturated driving speed in 
urban streets (vU) (km/h) 

20 20 20 20 

Fraction of time driving with 
free flow speed (Ff) 

0.75 0.5 0.8 0.95 

Loading and unloading 
activities per km 
(L&UNkm) (1/km) 

0.06 0.1 0.01 0.002 

Total number of years for 
loan payments (M) (year) 

5 5 5 4 

Loading/unloading time 
(RL&U) (min) 

30 10 30 30  

1 For more details on the variable assumptions, please check the references in 
Table A8 in Section 3.3 in Appendix A. 

2 For more details on the variable assumptions, please check the references in 
Table A7 in Section 3.2 in Appendix A. 
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characteristics and operational trip profiles in the previous section, we 
set default values for the other variables based on Table A8 in Section 
3.3 in Appendix A. Table A8 in Section 3.3 in Appendix A also provides 
43 important variables with detailed information of their uncertainty 
ranges. Then, we implemented a Monte Carlo method in the program-
ming codes [34] to reflect the impact of different variables’ uncertainty 
on the comparative cost analysis of CT and BET. Finally, a sensitivity 

analysis for all the 43 variables implements uncertainties based on the 
lower and upper ranges defined for them. 

4. Results 

The following sections present the results of data analysis in this 
study. Section 4.1 provides a comparative LCOD of BETs and CTs for the 
aggregated trip profile with different battery technology and charger 
specifications over different GVWs. Section 4.2 presents a comparative 
cost structure for the aggregated trip profile with different battery 
technology and charger specifications over different GVWs. Section 4.3 
presents sensitivity analysis and Monte Carlo simulation for a CT and 
BET. Finally, Section 4.4 presents the OR for the battery technology and 
charger specifications over different GVWs, operational trip profiles 
(urban, short-haul or regional, and long-haul), and other key parameters 
such as the average ambient temperature and opportunity charging 
potential. 

4.1. BET to CT LCOD differences of the aggregated trip profile for various 
battery technology and charger specifications 

Fig. 2 shows the BET to CT LCOD difference of the aggregated trip 
profile for three battery specification scenarios (ST-BSS, MT-BSS, and 
LT-BSS) and “mid-shift” fast charging (ChPF) specifications (200 kW, 
450 kW, and 1 MW) over different GVWs of CT. In Fig. 2, diagram A 
illustrates the BET to CT LCOD difference in USD per km and diagram B 
presents the BET to CT LCOD difference in USD per tkm. Fig. 2 illustrates 
that the following combinations of the battery specifications and fast- 
charging powers result in the lower LCOD for BETs in all GVWs: the 
mid-term horizon scenario (MT-BSS) for battery technology combined 
with 1 MW ChPF specification, the long-term scenario (LT-BSS) for 
battery technology characteristics combined with 450 kW and 1 MW 
ChPF specifications. 

Fig. 1. The operational trip profiles, battery specification scenarios (BSSs), and 
charging power specifications for “mid-shift” fast charging (ChPF). 

Fig. 2. BET to CT LCOD differences of the aggregated trip profile A) in USD per km and B) in USD per tkm for battery technology specification scenarios (ST-BSS, MT- 
BSS, and LT-BSS) and “mid-shift” fast charging (ChPF) specifications (200 kW, 450 kW, and 1 MW) over different GVWs. 
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Combinations of ST-BSS with 1 MW ChPF specification, MT-BSS with 
450 kW ChPF specification, and LT-BSS with 200 kW ChPF specification 
result in a lower LCOD in BETs with GVWs lower than 20 t. It can be seen 
that BETs in ST-BSS with 200 kW and 450 kW ChPF specifications are 
not a cost-competitive alternative for CTs for all the GVWs over 10 t. The 
variation of BET to CT LCOD difference per tkm for ST-BSS combined 
with 200 kW ChPF specification in GVW below 40 t can be explained by 
the variation of the ECT/BET for these weight classes. Regarding the 
discussion provided for default values for ECT/BET in Table A8 in Ap-
pendix A, the ECT/BET are assumed to decrease gradually from 3.5 in a 8 t 
BET to 2.5 in a 40 t BET. It is worth noticing that this is a simplified 
approach on ECT/BET as both the powertrain and vehicle configurations 
will change and there are multiple configuration options across the GVW 
scale. This is evident in the graph as inflection points are visible at 40 t 
GVW. 

4.2. Comparative cost structure analysis of BETs and CTs for the 
aggregated trip profile with different battery and charger specifications 

Fig. 3 shows the cost structure of CTs and BETs for the aggregated 
trip profile with different battery technology specification scenarios (ST- 
BSS, MT-BSS, and LT-BSS) and ChPF specifications (200 kW, 450 kW, 
and 1 MW) over different GVWs. At first glance, all cost elements seem to 
increase by GVW. From a closer look, it can be seen that the LCOD for the 
driver cost in CTs is the only constant value (1.25 USD per km) over 
different GVWs. The driver cost has the largest share in CTs and BETs. 
However, since the growth rates of other cost elements are higher, the 
share of driver cost in the cost structure is reduced by the increase of 
GVW (see Fig. A9 in Appendix A). The second most important cost 
element in CTs is fuel cost. 

The cost structure changes dramatically from CTs to BETs as the 
vehicle purchase cost increases and the energy cost decreases signifi-
cantly. Battery replacement cost also has a significant effect in ST-BSS, 
but not in MT-BSS and LT-BSS as the battery life cycle is longer. 
Charger equipment cost has only a minor significance in all BET 

Fig. 3. Cost structure (LCOD in USD per km) of CTs and BETs for the aggregated trip profile with different battery specification scenarios (ST-BSS, MT-BSS, and LT- 
BSS) and “mid-shift” fast charging (ChPF) specifications (200 kW, 450 kW, and 1 MW) over different GVWs. 
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scenarios, even with a megawatt “mid-shift” fast charging. This result is 
aligned with the previous research by Zhu et al. [32], who also illus-
trated that the utilization rates of charger stations (fast or ultra-fast 
chargers) have a larger impact on the LCOD of BET compared to the 
charging power. Hence, it seems highly profitable to invest in megawatt 
charging to reduce the opportunity costs. The PL for the time spent on 
charging activities is identified as the second major cost in all battery 
specification scenarios (ST-BSS, MT-BSS, and LT-BSS) combined with a 
200 kW ChPF specification. The differences in the PL for the time spent 
on charging activities can be explained by the delivery time difference of 
CTs and BETs for the aggregated trip profile in different battery and 
charger specifications (see Fig. A10 in Appendix A). 

In this study, similar to Zhu et al. [29], we assumed an equal elec-
tricity price (PE) for different levels of ChPF specification (200 kW, 450 
kW, and 1 MW). However, it is likely that the price is higher with higher 
charging power, but from hauliers’ perspective, it is likely acceptable to 
pay more for higher charging power. The “mid-shift” charging time also 
affects the insurance cost and driver cost, as explained in Section 3.3.1. 
The results are subject to different levels of uncertainty. The TCO and 
LCOD calculations in this study include large numbers of variables. The 
next section discusses the impact of uncertainty in different variables on 
a comparative LCOD over different GVWs. 

4.3. Sensitivity analysis of LCOD for CTs and BETs for the aggregated trip 
profile 

Fig. 4 presents the sensitivity analysis of BET to CT LCOD difference 
per tkm over 43 variables for the aggregated trip profile of a 40 t CT. The 
BET to CT LCOD difference per tkm is presented as the relative change to 
the default CT LCOD for the aggregated trip profile. The default values as 
well as the lower and upper ranges illustrated in Fig. 4 are based on 
Table A8 in Appendix A. The largest variation (from − 23% to +37% of 
CT LCOD per tkm) in the sensitivity analysis is due to the change of ECT/ 

BET, followed by the sensitivities due to variations in opportunity 
charging potential during loading/unloading during and rest time, 

driving speed, diesel consumption, and daily vehicle kilometres trav-
elled. All of these highlight the benefits of the energy efficiency of bat-
tery electric powertrains, particularly in conditions where the energy 
efficiency of diesel powertrains is poor. It also highlights the need for 
more real operational data and validated simulations on BET energy 
consumption across the GVW under various conditions, to improve the 
accuracy of the TCO estimates. 

The variables with BET to CT LCOD difference per tkm changes lower 
− 5% and above +5% of the default CT LCOD are the OPC, ATReg, 
operational driving range, BPP, DVKMT, DCh, vFf, diesel consumption 
volume per km (Vd_km), EATA(1d), ChPF, PD, GPM, BUSOC, and the ECT/BET. 
Many of these variables relate to the opportunity costs, highlighting the 
importance of high “mid-shift” fast charging powers. The Vd_km in Fig. 4 
presents almost the same changes as the vFf does. This justifies the de-
scriptions for the calculation of the Vd_km in Eq. (A2.42). 

Fig. A11 and Fig. A12 in Appendix A present Monte Carlo simulation 
results for the impact analysis of uncertainties in the variables on BET to 
CT difference per tkm and km for the GVWs of CT from 10 to 80 t with a 
5-t interval. The diagrams in Fig. A11 and Fig. A12 present Monte Carlo 
simulation results by randomly changing the variables to the lower and 
upper ranges based on Table A8 in Appendix A, which are also repre-
sented in Fig. 4. The box plots in Fig. A11 and Fig. A12 in Appendix A are 
generated based on 1000 iterations of Monte Carlo simulation and 
present the 25th, median and 75th percentiles. Regarding the results of 
Monte Carlo simulation, less than 25% of the 1000 iterations result in a 
lower LCOD for BETs compared to CTs in GVWs over 40 t. However, the 
relevant figure for GVWs lower than 40 t varies between 25% to 50%. A 
practical solution to dealing with high levels of uncertainty in LCOD can 
be to use the operational classifications and scenarios that reduce the 
uncertainty levels of the key variables (with lower − 5% and above +5% 
uncertainty impact) in the cost analysis. In the next section, we use more 
detailed classifications in the comparative cost analysis to cover more 
specific values for these variables. 

Fig. 4. Sensitivity analysis of BET to CT LCOD difference (per tkm) based on lower and upper range of 43 variables for the aggregated trip profile of a 40 t CT.  
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4.4. Optimum BET driving range (OR) for operational trip profiles 
(urban, short-haul or regional, and long-haul) with different battery 
technology and charger specifications 

As is concluded in the previous section, to reduce the uncertainty 
levels in the results we need to use more detailed operational classifi-
cations (e.g., operational trip profiles), validated models and scenarios 
to cover more specific values for the variables with high levels of un-
certainty impacts on the BET to CT LCOD. The majority of the high-
lighted variables with lower − 5% and above +5% uncertainty impact 
for the BET to CT LCOD difference in Fig. 4 would be covered in the 
battery specification scenarios (ST-BSS, MT-BSS, and LT-BSS) and ChPF 
specifications (200 kW, 450 kW, and 1 MW) (see Table 1 and Table A6 in 

Appendix A) combined with the operational trip profiles (urban, short- 
haul, and long-haul) (see Table 2 and Table A7 in Appendix A). These 
variables are DVKMT, the ECT/BET, vFf, ChPF, BPP, and BUSOC. We 
specify three other variables such as OPC, ATReg and operational driving 
range for the LCOD analysis in this section. In our model, we can identify 
an OR value with the lowest BET LCOD for the above-specified classi-
fication scenarios including battery technology and sizing, charger 
specifications, operational trip profiles, opportunity charging potential 
during loading/unloading and rest time, and the ambient temperatures 
over different GVWs. 

We decided to not evaluate the other highlighted variables, with the 
lower − 5% and above +5% uncertainty impact for the BET to CT LCOD 
difference in Fig. 4, for the following reasons: 1) The variable (e.g., EATA 

Fig. 5. The ORs and BET to CT LCOD differences per tkm in different battery specification scenarios (ST-BSS, MT-BSS, and LT-BSS) and “mid-shift” fast charging 
(ChPF) specifications (200 kW, 450 kW, and 1 MW) over different GVWs of CT, operational trip profiles (urban, short-haul, and long-haul) and average ambient 
temperatures (− 15, 0, and + 15 ◦C). The texts over the line graphs present ORs. 
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(1d)) cannot be specified further by using any classifications because the 
uncertainty root in the lack of knowledge in the literature review; and 2) 
The variable is a critical cost element that might need to be specified for 
a region based on a strategic or integrated assessment model [24–26,49] 
(e.g., DCh, PD, GPM of a trucking company for the profit lost for the time 
spent on charging activities). 

Fig. 5 shows the ORs and BET to CT LCOD differences per tkm in 
different battery specification scenarios (ST-BSS, MT-BSS, and LT-BSS) 
and ChPF specifications (200 kW, 450 kW, and 1 MW) over different 
GVWs, operational trip profiles (urban, short-haul, and long-haul) and 
average ambient temperatures (− 15, 0, and + 15 ◦C). The line graphs in 
Fig. 5 are generated based on the OR (represented by the labels above 
the line graphs with the same colour) for the BET to CT LCOD difference 

per tkm of GVWs from 10 to 80 t with a 5 t interval. In our analysis, the 
OR is selected as the most competitive BET vs. CT LCOD within the 
search ranges from 100 to 900 km by a 25 km interval, to cover and 
examine almost all the driving ranges mentioned in the literature. 

The graphs in Fig. 5 shows that even in the current and/or short-term 
battery technology scenario (ST-BSS) combined with the 200 kW ChPF, 
we can expect a lower or equal LCOD for BETs compared to CTs in urban 
trips with a positive ambient temperature in all GVWs. Moreover, the 
graph shows that even with the help of battery technology improvement 
(LT-BSS) and 1 MW ChPF, we cannot achieve a lower LCOD for BETs 
heavier than 30 t GVWs compared to CTs in long-haul trips with − 15 ◦C 
ambient temperature. We refer to graphs in Fig. A13-A15 in Appendix A 
for analysing more details of the ORs, battery pack capacities, and the 

Fig. 6. Optimum driving ranges (ORs) and BET to CT LCOD differences per tkm in different battery specification scenarios (ST-BSS, MT-BSS, and LT-BSS) and “mid- 
shift” fast charging (ChPF) specifications (200 kW, 450 kW, and 1 MW) over different GVWs, operational trip profiles (urban, short-haul, and long-haul), and op-
portunity charging potential scenarios during loading/unloading and rest time (OPC = 0% and 100%). The texts over the line graphs represent the ORs. 
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curb weight change of BETs in Fig. 5. 
The results of the ORs in Fig. 5 can be summarised in the following 

notes: 1) The ORs mainly vary between the graphs and not over GVWs; 
2) The ORs in urban trip profiles are not sensitive to the ChPF; 3) The 
ORs in the current and/or short-term battery specification scenario (ST- 
BSS) combined with 1 MW ChPF specification are the lowest compared 
to the relevant figures in other battery specification scenarios, ChPF 
specifications, and operational trip profiles scenario combinations; 4) In 
the long-term battery specification scenario (LT-BSS) combined with all 
ChPF specifications, the mid-term battery specification scenario (MT- 
BSS) combined with 200 kW and 450 kW ChPF specifications, and the 
current and/or short-term battery specification scenario (ST-BSS) com-
bined with 200 kW ChPF specification, the ORs are equal to the DVKMT 
specified for each trip profile (200 km for urban trip, 400 km for short- 
haul trip, and 800 km for long-haul trip); and 5) Even with the help of 
the OR design, the battery size and capacity would be a major challenge 
in the short- and mid-term battery specification scenarios (ST-BSS and 
MT-BSS) combined with lower ChPF specifications (200 kW and 450 
kW) especially for the long-haul operational trip profile. 

To understand the impact of the ORs on the BET LCOD changes 
represented in Fig. 5, Fig. A16 in Appendix A is provided with more 
details of the potential LCOD reduction in BETs based on the relative 
BET to CT LCOD per tkm change in percentage of CT LCOD (with a 
default 300 km operational driving range). Fig. A16 in Appendix A 
shows that the maximum reductions of BET LCOD with the OR specifi-
cations are estimated around 225%, 95%, and 35% of CT LCOD with a 
default 300 km range assumption, for long-term battery specification 
scenario (LT-BSS) combined with 200 kW, 450 kW, 1 MW ChPF speci-
fications, respectively. The major reduction potentials of BET LCOD due 
to the OR setting are expected to occur in the heaviest trucks and long- 
haul trips. As a trend, the short-haul and urban trip profiles follow the 
long-haul trips but with lower levels of LCOD reduction due to OR 
setting. 

To assess the impact of OPC variation on LCOD of BETs and ORs, 
Fig. 6 in Appendix A provides graphs to present ORs and BET to CT 
LCOD differences per tkm in different battery technology improvement 
scenarios (ST-BSS, MT-BSS, and LT-BSS) and ChPF specifications (200 
kW, 450 kW, and 1 MW) over different GVWs, operational trip profiles 
(urban, short-haul, and long-haul), and opportunity charging potential 
scenarios during loading/unloading and rest time. Graphs in Fig. 6 in 
Appendix A are specified for two extreme scenarios of opportunity 
charging potentials during loading/unloading and rest time (OPC = 0% 
and 100%) in a moderate temperature (+15 ◦C). 

Taking a close look at the graphs in Fig. 6 in Appendix A, the results 
are summarised in the following notes: 1) The opportunity charging has 
a very low impact on the LCOD reduction of BET in urban trip profiles; 2) 
The opportunity charging plays a major role in the cost competitiveness 
of BET vs. CTs in the current and/or short-term and mid-term battery 
specification scenarios (ST-BSS and MT-BSS) if the high ChPF specifi-
cations (450 kW and 1 MW) will be used for the short-haul and long-haul 
trip profiles; and 3) The opportunity charging might have the least 
impact on the LCOD reduction of BET in the long-term battery specifi-
cation scenario (LT-BSS) for all the trip profiles. 

In this study, the delivery time delay and curb weight change are 
calculated in the TCO and LCOD of BETs based on the ORs. However, the 
operational challenges might be associated with the implementation of 
BETs because of these two items. The operational driving range above 
the DVKMT does not cause any delivery time delay. Therefore, it might 
be interesting to analyse the variation of the above items based on the 
lower DVKMT than the operational driving range. 

Fig. A17 in Appendix A shows the delivery time differences for 
different battery specification scenarios (ST-BSS, MT-BSS, and LT-BSS) 
and ChPF specifications (200 kW, 450 kW, and 1 MW) over different 
GVWs, operational trip profiles (urban, short-haul, and long-haul) with 
25%, 50%, and 75% of the average daily mileage for the operational 
driving ranges by BETs. The graphs show that the main factor for the 

delivery time delay analysis in BETs is the ChPF and the battery tech-
nology improvements have very small impacts on it. Fig. A18 in Ap-
pendix A shows the curb weight change for different battery 
specification scenarios (ST-BSS, MT-BSS, and LT-BSS) and ChPF speci-
fications (200 kW, 450 kW, and 1 MW) over different GVWs of CT, and 
operational trip profiles (urban, short-haul, and long-haul) with 25%, 
50%, and 75% of the average daily mileage for the operational driving 
range by BETs. The graphs show how the improvement of the GDBP in 
the battery technology scenarios leads to a lower curb weight in BETs 
compared to the CTs. 

5. Discussion 

In this section, first, we highlight the key findings and contributions 
in the methodology for TCO and LCOD analysis in Section 5.1. Then we 
discuss the results in Section 5.2. 

5.1. Methodology 

We modelled LCOD per km and tkm for BETs and CTs with 10–80 t 
GVWs. The LCOD per km and tkm are formulated based on a detailed 
parametrized TCO analysis [34]. Some of the available models in the 
literature [5–7,10–12,16–21,32] included detailed parametrizations 
that can be comparable to our model. However, our model has some 
improvements compared to these models. 

Using the OR for the comparative analysis of BET to CT LCOD in our 
model presents a more realistic evaluation over different driving cycles 
and operational trip profiles, GVWs, battery, and charger specifications. 
Previous studies [5–7,10,11,16–21] assumed predefined driving ranges 
or battery sizes in their BET TCO analysis, except for two studies 
[12,32], which used ORs for BET TCO analysis of a specific size of the 
truck. 

Opportunity costs during the “mid-shift” fast charging activities in 
this study include the driver working time cost, insurance cost, and the 
truck company profit lost. Some previous studies partially cover the 
above cost items in their opportunity costs during the “mid-shift” fast 
charging activities based on the driver working cost [10–12,16,17,19], 
insurance cost [17], and the truck company profit lost [12]. No research 
was found in the literature that covers all the above items. 

Thanks to the comprehensive TCO and LOCD parametrization in this 
study, the sensitivity analysis could reveal key parameters with high 
levels of impact on BET and CT LCOD. We used the result of sensitivity 
analysis to justify the categorizations (e.g., operational trip profiles) 
required for further analysis in Section 4.3 and Section 4.4. Moreover, 
coupling the sensitivity analysis with a stochastic modelling approach 
(Monte Carlo simulation) provides a deeper understanding of the un-
certainty impacts of different parameters on LCOD by using box plots for 
different GVWs. A few studies [11,17,19,29] have used a stochastic 
approach to visualize the impact of uncertainties of identified key var-
iables on their TCO analysis. However, we believe that the sensitivity 
analysis in our model covers a larger number of variables (43 variables) 
compared to these studies. 

In this study, we used a detailed operational parametrization based 
on aggregated or average values which also can be applied for the 
detailed models using disaggregated data, based on the available road 
freight survey, and a simulation approach for on-road charging activities 
in different routes. However, in this study, we only used aggregated/ 
average values for the key parameters in the operational time calcula-
tion procedure to facilitate the impact analysis of different battery 
technology and charging specifications on LCOD. 

5.2. Results 

We highlight and discuss some key aspects and general trends in the 
results: 
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1) BETs in the urban trip profiles can be a cost-competitive alternative 
with the current and/or short-term battery technology even without 
the implementation of additional policy incentives;  

2) Even with an advanced battery technology improvement scenario 
(LT-BSS) combined with a megawatt ChPF specification, road freight 
transport electrification remains challenging in the long-haul trip 
profiles when combined with cold temperatures (around − 15 ◦C). 
This raises the need for further development on vehicular and 
powertrain technologies and analyses on alternative or com-
plementing system solutions such as battery swapping, electric road 
systems (ERS) and utilization of hydrogen;  

3) The mid-term scenario for the battery technology improvement (MT- 
BSS) might be supportive of the cost competitiveness of less than 40 t 
BETs and moderate temperature (15 ◦C) in short-haul and long-haul 
trip profiles. However, the implementation of the policy measures (e. 
g., fuel and electricity taxation, road tolls, and carbon pricing) is 
needed for heavier trucks in long-haul and short-haul trip profiles;  

4) The optimum driving ranges in urban trip profiles are not sensitive to 
the implementation of different levels of fast-charging powers 
mainly because the analysed daily vehicle kilometres travelled 
(DVKMT) in the urban trip profiles are low and therefore the BETs in 
the urban trip profiles are not dependent on the opportunity charging 
by fast/ultra-fast chargers. The majority of required electricity for 
the BETs in the urban trip profiles would be provided by “off-shift” 
slow charging (e.g., during the rest time at night or at long stops), 
which implies that subsidies for slow-charging may accelerate the 
uptake of urban delivery BETs better than subsidies for fast/ultra-fast 
chargers. However, if the vehicle utilization rate and DVKMT of 
urban missions increase, the need for “mid-shift” fast charging may 
emerge;  

5) The ORs in the current and/or short-term as well as mid-term battery 
technology scenarios (MT-BSS and ST-BSS) combined with very high 
ChPF specifications (1 MW) are lower than the ORs in the long-term 
future battery technology scenario (LT-BSS) combined with very 
high ChPF specifications (1 MW) in all GVWs. This is mainly because 
of battery price variations in different battery specification scenarios. 
Revealing that the full benefits of a megawatt “mid-shift” fast 
charging are associated with lower battery capacities in the current 
and/or short-term as well as mid-term battery technology scenarios;  

6) The ORs in the mid- and long-term developments for the battery 
specifications (MT-BSS and LT-SPP) combined with various charging 
powers are close to the DVKMT in each trip profile (200 km for urban 
trips, 400 km for short-haul trips, and 800 km for long-haul trips). 
This suggests that the DVKMT will be the main parameter for 
designing ORs and battery sizing in the mid- and long-term future; 
and. 

7) The opportunity charging associated with using high ChPF specifi-
cations (450 kW and 1 MW) might help to achieve cost competi-
tiveness of BETs vs. CTs in the short-haul and long-haul trip profiles 
for the current and/or short-term as well as mid-term battery tech-
nology scenarios (ST-BSS and MT-BSS). This reveals the essential 
need for planning and investments to improve the accessibility of 
public fast-chargers in the road networks and fast-charging facilities 
at the most demanding destination(s) for BETs. 

We also noticed that it is very hard to make a comparison between 
the results in this study and others based on the BET and CT LCOD per 
km or tkm because of the following reasons:  

1) Different studies use different specifications for the key parameters 
such as battery and charger characteristics, driving cycles, vehicle 
sizes, and operational trip profiles.  

2) Different methodologies were developed to calculate TCO analysis. 
Even with the same assumptions for battery and charger character-
istics, driving cycles, vehicle sizes, and operational trip profiles, the 

research results from the previous studies are hardly comparable to 
this study because of the following reasons:  
1. Some references [6, 7, 11, 17, 19–21] only calculate TCO based on 

the NPV without discussing the LCOD per tkm or km;  
2. Some references [5, 17, 18] provide very simplified calculations 

based on different cost elements for TCO without using the NPV 
approach; and 

3. Some references [6, 7, 10, 11, 16, 20] modelled the annual vari-
ation of key parameters such as annual VKMT and different costs 
(e.g., battery pack price per kWh, fuel and electricity costs) over 
the truck’s ages. 

6. Conclusions 

The key results of this study show: 

1. BETs in urban trip profiles with the current and/or short-term bat-
tery technology assumption can be economically viable alternatives 
for CTs without the help of policy measures.  

2. The cost competitiveness of BETs over CTs with below 40 t GVW and 
long-term improvements in battery technology are very promising in 
all “mid-shift” fast charging power. However, in long-haul trip pro-
files and harsh weather conditions with an ambient temperature 
around − 15 ◦C, the BETs application remains challenging and might 
be economically unfeasible even with the help of a megawatt “mid- 
shift” fast charging power, raising maybe the need for further ana-
lyses on policy measures and additional solutions such as opportu-
nity charging and electric road systems.  

3. The implementation of policy measures (i.e., taxation on diesel fuel, 
subsidies for the electricity price and battery price) as well as 
increasing the potential of opportunity charging during loading/ 
unloading and rest time (e.g., by investing in fast-charging facilities) 
would be needed to support the BETs in short-haul and long-haul trip 
profiles with above 40 t GVW for the current and/or short-term as 
well as projected mid-term scenarios of battery technology 
characteristics. 

In this study, we developed a total cost of ownership (TCO) and 
levelized cost of driving (LCOD) model for battery electric (BET) and 
conventional trucks (CT) to answer the research questions and fill the 
identified gaps in the literature. We provided a very detailed discussion 
based on the sensitivity analysis of the key parameters in LCOD in 
Section 4.3 to answer the first research question “What are the key pa-
rameters in levelized cost of driving calculations for battery electric 
trucks and conventional trucks?”. We found that the improvement of 
battery technology characteristics (e.g., usable state of charge and life-
time charging cycles), utilization of higher power chargers, and reduc-
tion in battery price, all reduce the TCO gaps between the BETs and CTs. 
We also highlighted the role of the ambient temperature, opportunity 
charging, and the optimum driving ranges. 

We discussed and provided detailed answers in Section 4.4 and 
Section 5.2 for the second research question “How do different battery 
and charger specifications affect cost-efficient or optimum driving 
ranges (ORs) of battery electric trucks in different trip profiles?”. The 
results show that, first, the ORs in urban trip profiles are not sensitive to 
the implementation of different levels of “mid-shift” fast charging 
power. Second, the ORs in the current and/or short-term battery tech-
nology characteristics would be lower than the mid- and long-term 
development characteristics mainly because of the high battery price. 
Third, the daily vehicle kilometres travelled will be the main parameter 
for designing ORs and battery sizing in the mid- and long-term future in 
all trip profiles. 

The TCO and LCOD models developed in this study aimed to improve 
the estimate of large-scale adoptions of BETs based on the different 
improvement levels of battery and charger characteristics in the future. 
The model might need improvements in the following aspects: 
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1. The energy/fuel consumption equations for both BET and CT can be 
improved and calibrated based on more details of the truck appli-
cations (e.g., refuse truck, trucks with a cooling system),  

2. The stochastic approach can be applied for estimating the OR based 
on the statistics data of key variables (e.g., daily mileage),  

3. If the TCO model is going to be used for specific regions, the policy 
measures should be considered in the TCO and LCOD model via the 
cashflow,  

4. Different electricity prices could be used for different levels of fast 
charging power based on a detailed charger infrastructure analysis, 
and 

5. Battery lifetime variations could be considered in scenario assump-
tion for battery design based on detailed stress factors and parame-
ters such as levels of fast charging powers, battery operative window 
and temperatures. 
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