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Abstract
First-in-human	 dose	 predictions	 are	 primarily	 based	 on	 no-observed-adverse-		
effect	 levels	 in	 animal	 studies.	 Predictions	 from	 these	 animal	 models	 are	 only	
as	 effective	 as	 their	 ability	 to	 predict	 human	 results.	 To	 narrow	 the	 gap	 be-
tween	 human	 and	 animals,	 researchers	 have,	 among	 other	 things,	 focused	 on	
the	replacement	of	animal	cytochrome	P450	(CYP)	enzymes	with	their	human	
counterparts	 (called	 humanization),	 especially	 in	 mice.	 Whereas	 research	 in	
humanized	mice	is	extensive,	the	emphasis	has	been	particularly	on	qualitative	
rather	 than	 quantitative	 predictions.	 Because	 the	 CYP3A4	 enzyme	 is	 most	 in-
volved	in	the	metabolism	of	clinically	used	drugs,	most	benefit	was	expected	from	
CYP3A4	models.	There	are	several	applications	of	these	mouse	models	regarding	
in vivo	CYP3A4	functionality,	one	of	which	might	be	their	capacity	to	help	im-
prove	first-in-human	(FIH)	dose	predictions	for	CYP3A4-metabolized	drugs.	To	
evaluate	whether	human-CYP3A4-transgenic	mouse	models	are	better	predictors	
of	 human	 exposure	 compared	 to	 the	 wild-type	 mouse	 model,	 we	 performed	 a	
meta-analysis	comparing	both	mouse	models	 in	 their	ability	 to	accurately	pre-
dict	human	exposure	of	small-molecule	drugs	metabolized	by	CYP3A4.	Results	
showed	that,	in	general,	the	human-CYP3A4-transgenic	mouse	model	had	simi-
lar	 accuracy	 in	 the	 prediction	 of	 human	 exposure	 compared	 to	 the	 wild-type	
mouse	model,	suggesting	that	there	is	limited	added	value	in	humanization	of	the	
mouse	Cyp3a	enzymes	if	the	primary	aim	is	to	acquire	more	accurate	FIH	dose	
predictions.	Despite	the	results	of	this	meta-analysis,	corrections	for	interspecies	
differences	through	extension	of	human-CYP3A4-transgenic	mouse	models	with	
pharmacokinetic	modeling	approaches	seems	a	promising	contribution	to	more	
accurate	quantitative	predictions	of	human	pharmacokinetics.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Whereas	research	in	humanized	mice	is	extensive,	the	emphasis	has	been	par-
ticularly	on	qualitative	rather	than	quantitative	predictions.
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INTRODUCTION

To	ensure	the	safety	of	participants	of	first-in-human	(FIH)	
clinical	 trials	 of	 new	 molecular	 entities,	 regulatory	 guide-
lines	 by	 both	 the	 US	 Food	 and	 Drug	 Administration	 and	
European	Medicines	Agency	describe	how	to	derive	maxi-
mum	recommended	starting	doses.1-3	The	aim	is	to	predict	
a	starting	dose	close	to	the	therapeutic	range,	especially	for	
anticancer	drugs,	in	order	to	acquire	phase	I	objectives	(e.g.,	
assessment	of	the	pharmacodynamic	and	pharmacokinetic	
[PK]	profile	and	drug	tolerability)	within	a	reasonable	time,	
limiting	 the	 number	 of	 participants	 treated	 at	 subthera-
peutic	 doses	 while	 minimizing	 toxicity	 at	 the	 initial	 dose.	
Predictions	of	the	human	PKs	and	pharmacodynamics	of	a	
drug	are	made	based	on	in vitro	assays	and	in vivo	animal	
models	prior	to	exposing	humans.	The	recommended	pro-
cess	 involves	 determining	 the	 no-observed-adverse-effect	
levels	 (NOAELs)	 in	 different	 animal	 species	 and	 convert-
ing	the	NOAEL	of	the	most	sensitive	species	to	the	human	
equivalent	 dose	 using	 allometric	 scaling.1	 For	 anticancer	
drugs,	the	severely	toxic	dose	in	10%	of	animals	is	commonly	
used.4	Nevertheless,	to	predict	human	exposure	and	toxic-
ity,	animal	models	are	only	as	effective	as	their	ability	to	pre-
dict	human	results.	Hence,	the	World	Health	Organization	
recommends	a	factor	10	safety	margin	over	the	NOAELs	to	
allow	for	interspecies	differences.	This	factor	of	10	is	consti-
tuted	of	the	subfactors	2.5	and	4.0	for	toxicodynamics	and	
toxicokinetics,	respectively.5

In	the	late	1980s,	researchers	acquired	the	skills	to	ge-
netically	modify	animal	models	by	knocking	out	certain	
animal	genes	and	replacing	them	with	their	human	coun-
terparts	to	better	predict	the	human	PKs,	a	process	called	

humanization.	In	the	field	of	PKs,	the	often-observed	in-
consistency	of	metabolizing	enzymes	between	species	 is	
a	 common	 target	 for	 humanization,	 especially	 in	 mice.6	
One	main	purpose	for	these	models	was	to	recognize	risks	
and	opportunities	for	in vivo	human	drug–drug	and	drug-
food	interactions	in	in vivo	mouse	settings	in	a	qualitative	
way.	For	instance,	the	human	cytochrome	P450	(CYP)3A	
enzymes	deviate	 from	the	Cyp3as	of	mice.	Mice	express	
eight	full-length	mouse	Cyp3as	and	humans	four	CYP3As	
(CYP3A4,	 -5,	 -7,	 and	 -43).	 Despite	 differences,	 human	
CYP3A	and	mouse	Cyp3a	have	broadly	overlapping	sub-
strate	specificity	and	tissue	expression.	Therefore,	the	bio-
logical	function	of	all	wild-type	mouse	Cyp3as	combined	
likely	corresponds	to	the	combined	function	of	all	human	
CYP3As.7	However,	because	of	intrinsic	biological	differ-
ences	 between	 these	 species	 (e.g.,	 preferred	 diet),	 these	
functionalities	are	not	necessarily	identical.	Therefore,	the	
wild-type	model	may	not	be	the	most	appropriate	model	
to	 investigate	 the	 PKs	 of	 drugs	 for	 which	 clearance	 is	
highly	dependent	on	CYP3A4-mediated	metabolism.	For	
instance,	reliably	studying	drug–drug	interactions	would	
be	practically	impossible	because	compounds	responsible	
for	human	CYP3A4	inhibition	are	not	necessarily	inhibi-
tors	for	the	mouse	Cyp3as	(and	vice	versa).

Because	 CYP3A4	 is	 the	 enzyme	 most	 frequently	 in-
volved	 in	 metabolism	 of	 many	 clinically	 used	 drugs,	
and	 often	 affected	 by	 inter-	 and	 intra-individual	 dif-
ferences	 in	 expression	 and	 activity,8	 multiple	 research	
groups	 developed	 humanized	 CYP3A4	 mouse	 models	
to	 investigate	 the	 metabolism	 of	 CYP3A4.	 Although	
	human-CYP3A4-transgenic	mouse	models	have	mainly	
been	studied	for	the	qualitative	translational	assessment	

WHAT QUESTION DID THIS STUDY ADDRESS?
Are	human-CYP3A4-transgenic	mouse	models	better	predictors	of	human	expo-
sure	compared	to	the	wild-type	mouse	model	for	small-molecule	drugs	metabo-
lized	by	CYP3A4?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
In	 general,	 the	 human-CYP3A4-transgenic	 mouse	 model	 had	 similar	 accuracy	
in	the	prediction	of	human	exposure	compared	to	 the	wild-type	mouse	model,	
suggesting	that	there	is	limited	added	value	in	humanization	of	the	mouse	Cyp3a	
enzymes	if	the	primary	aim	is	to	acquire	more	accurate	first-in-human	(FIH)	dose	
predictions.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Humanization	of	CYP3A	enzymes	alone	 is	not	enough	to	account	 for	 the	mis-
specifications	 in	 prediction	 of	 human	 exposure	 in	 the	 context	 of	 FIH	 dosing.	
Interspecies	differences	consist	of	an	interplay	of	many	different	processes	that	
are	vastly	more	complex.	Modern	data	analysis	approaches	might	help	to	exploit	
benefits	of	human-CYP3A4-transgenic	mouse	models.
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of	effects	of	the	CYP3A4	enzyme	in	humans,	few	stud-
ies	 have	 focused	 on	 the	 quantitative	 predictability	 of	
the	 human-CYP3A4-transgenic	 mouse	 models	 over	
that	 of	 the	 wild-type	 mouse	 model.	 Better	 quantita-
tive	 predictions	 of	 human	 exposure	 could	 potentially	
help	 inform	 the	 FIH	 dose	 that	 still	 requires	 high	 mar-
gins	 of	 safety	 due	 to	 inaccuracy	 of	 animal	 models.5	
We	here	performed	a	meta-analysis	of	 the	 literature	 in	
which	 human-CYP3A4-transgenic	 mouse	 models	 were	
used	 to	 assess	 the	 PKs	 of	 small	 molecule	 drugs.	 Our	
aim	 with	 this	 meta-analysis	 is	 to	 evaluate	 whether	 the	
	human-CYP3A4-transgenic	 mouse	 models	 provide	 a	
better	prediction	of	human	exposure	than	the	wild-type	
mouse	models.

METHODS

A	literature	search	for	publications	presenting	quantitative	
PK	 information	 after	 administration	 of	 a	 small-molecule	
drug	 in	 a	 human-CYP3A4-transgenic	 animal	 model	 was	
last	performed	on	the	February	6,	2023,	using	PubMed.	The	
meta-analysis	 was	 performed	 according	 to	 the	 Preferred	
Reporting	 Items	 for	 Systematic	 Reviews	 and	 Meta-
Analyses	 guidelines,	 except	 that	 screening	 and	 reporting	
was	 performed	 by	 only	 one	 reviewer.9	 The	 full	 PubMed	

search	and	inclusion	and	exclusion	criteria	are	presented	
in	Figure 1.	PubMed	was	searched	using	the	search	term	
((cytochrome	 P450	 AND	 3a	 OR	 3a4)	 OR	 cyp3a4)	 AND	
(transgenic	OR	humanized)	AND	(pharmacokinetics	OR	
exposure	 OR	 AUC	 OR	 Cmax	 OR	 (peak	 concentration)).	
Exclusion	 criteria	 were	 the	 absence	 of	 useful	 plasma	 PK	
data,	CYP3A5/7,	chimeric	 liver	 transplant	mice,	 reviews,	
absence	of	human	PKs	for	drug,	last	measurable	concen-
tration	(Clast)	higher	than	1/10th	of	the	maximum	plasma	
concentration	(Cmax),	and	no	possibility	 for	extrapolation	
until	 infinity	 and	 no	 or	 unknown	 dose	 proportionality.	
Extraction	of	the	area	under	the	concentration-time	curve	
extrapolated	 to	 infinity	 (AUC0–inf)	 from	 the	 publication	
was	performed.	Either	the	Clast	was	at	 least	1/10th	of	the	
Cmax	or	at	least	two	observed	concentrations	after	the	Cmax	
were	 available	 to	 calculate	 the	 elimination	 constant	 (ke)	
and	 extrapolate	 the	 AUC0–inf	 by	 dividing	 the	 Clast	 by	 the	
ke	(with	the	assumption	that	the	studied	drug	had	a	single	
terminal	elimination	rate	constant).	Data	from	concentra-
tion-time	curves	were	extracted	by	means	of	PlotDigitizer10	
and	AUC0–inf	 calculated	using	 the	 linear	 trapezoidal	 rule	
with	extrapolation.	Subsequently,	the	dose	administered	in	
mice	was	allometrically	scaled	to	a	human	equivalent	dose:

(1)Dose scaling factor =
BWhuman

BWmouse

exponent

F I G U R E  1  Flow	diagram	of	literature	search	and	article	selection.	*For	20	of	the	53	AUC	values,	the	Clast	are	unknown	(all	AUC0–24h),	
however,	after	24	h,	most	drugs	in	mice	reach	a	concentration	smaller	than	1/10th	of	the	Cmax	and	therefore	the	study	was	assumed	to	fulfill	
the	criteria	and	the	AUC	values	were	not	excluded	(no	wild-type	mice	PK	was	evaluated	in	these	experiments).	AUC,	area	under	the	plasma	
concentration-time	curve;	Clast,	last	observed	concentrations;	Cmax,	peak	concentrations;	PK,	pharmacokinetic.
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Where	BWhuman	and	BWmouse	represent	the	bodyweight	of	
an	average	human	and	mouse,	which	were	assumed	to	be	70	
and	0.03	kg,	respectively.	The	exponent	represents	the	allo-
metric	scaling	exponent	of	either	0.67	or	0.75.	An	exponent	
of	0.67	yields	a	function	between	BW	and	clearance	that	is	
similar	to	a	linear	function	between	body	surface	area	and	
clearance.	The	exponent	of	0.75	is	used	to	describe	interspe-
cies	differences	in	basal	metabolic	rate.11,12	Because	they	are	
generally	both	used,	we	evaluated	both.	The	AUC0–inf	corre-
sponding	to	the	human	equivalent	dose	was	extracted	from	
literature.	If	no	data	regarding	the	AUC0–inf	were	available	for	
the	human	equivalent	dose,	the	closest	available	dose	with	
information	regarding	AUC0–inf	was	extracted	(the	fold	dif-
ference	between	the	scaled	and	closest	available	dose	ranged	
from	0.09	to	108;	Table S1).	The	extracted	AUC0–inf	and	dose	
in	 this	 case	 were	 linearly	 scaled	 to	 the	 human	 equivalent	
dose	under	the	assumption	that	the	PKs	of	the	drug	of	in-
terest	were	dose	proportional.	Last,	all	AUC0–inf	units	were	
converted	to	ng/mL	h	and	mouse	AUC0–inf	were	compared	
to	 human	 AUC0–inf	 for	 the	 accuracy	 in	 the	 prediction	 of	
human	exposure.	A	schematic	overview	of	the	methods	is	
presented	in	Figure 2.

Comparison	of	the	deviations	of	mouse	AUC0–inf	from	
human	AUC0–inf	 for	multiple	drugs	results	 in	higher	ab-
solute	errors	for	drugs	that	have	higher	AUC0–inf	despite	
a	 low	 relative	 error,	 which	 is	 more	 informative	 here.	To	
give	 equal	 weights	 to	 the	 predictability	 of	 the	 mouse	
model	 for	 the	 human	 exposure	 for	 each	 compound	 we	
calculated	the	fold	differences	from	the	human	AUC0–inf.	
In	order	to	calculate	mean	errors	of	the	fold	differences,	

normalization	 across	 fold	 differences	 smaller	 and	 larger	
than	one	are	required.	Fold	differences	were	normalized	
using	Equation 2:

Subsequently,	 normalized	 fold	 differences	 were	 used	
to	calculate	the	mean	absolute	error	(MAE)	and	the	root	
mean	squared	error	(RMSE).

Where	yi	represents	the	observation	and	ŷi	the	prediction.
The	mouse	model	resulting	in	lower	median	errors	and	

the	 least	dispersion	was	considered	a	better	predictor	of	
the	human	exposure.	Processing	of	the	data	and	graphical	
and	statistical	diagnostics	were	performed	with	R	(version	
4.2.1).

RESULTS

The	 literature	 search	 resulted	 in	 161	 publications.	 Of	
these,	28	met	our	inclusion	criteria	and	were	used	for	the	
analysis.	 A	 flow	 diagram	 of	 the	 inclusion	 and	 exclusion	

(2)Normalized fold difference = 10|log10fold difference|,

(3)MAE =

1

n

n∑

i=1

||yi − ŷi
||,

(4)RMSE =

√√√√
n∑

i=1

(
ŷi−yi

)2

n
,

F I G U R E  2  Schematic	presentation	of	the	methods.	AUC0–inf,	area	under	the	plasma	concentration-time	curve	until	infinity;	PK,	
pharmacokinetic;	WT,	wild-type.
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is	presented	in	Figure 1.	After	exclusion,	only	studies	 in	
mice	 were	 described	 in	 the	 remaining	 publications.	 We	
identified	 eight	 publications	 that	 described	 the	 develop-
ment	of	human-CYP3A4-transgenic	mouse	models	(origi-
nal	transgenic	mouse	models;	Table 1).	Two	publications	
(Abe	et al.	and	Cheung	et al.13,14)	were	not	used	to	evalu-
ate	 the	 PKs	 of	 any	 drug	 (also	 not	 in	 other	 publications)	
and	three	publications	(Hasegawa	et al.,	Kazuki	et al.	and	
Ma	 et  al.15-17)	 describing	 the	 original	 transgenic	 mouse	
models	 did	 not	 present	 drug	 PKs	 itself	 or	 did	 not	 meet	
the	inclusion	criteria	(other	publications	did	evaluate	the	
PKs	of	drugs	using	these	models).	Furthermore,	two	cross-
bred	 models	 have	 been	 developed	 by	 Uehara	 et  al.	 and	
Scheer	 et  al.	 by	 crossbreeding	 previously	 developed	 hu-
man-CYP3A4-transgenic	 mouse	 models.18,19	 Within	 the	
28	 included	publications,	 two	publications	 (Damoiseaux	
et al.	and	Zhang	et al.20,21)	used	modeling	approaches	to	
extrapolate	 human-CYP3A4-transgenic	 mouse	 model	
PKs	 to	 human	 PKs	 and	 were	 included	 for	 discussion.	
Fifty-three	AUC0–inf	were	derived	from	the	other	26	publi-
cations	(Tables 2	and	S1)	containing	26	unique	drugs	ad-
ministered	 in	human-CYP3A4-transgenic	mouse	models	
developed	by	eight	different	mouse	model	developers	(of	
which	two	crossbred).	From	17	of	the	26	publications,	also	
the	 AUC0–inf	 in	 wild-type	 mice	 could	 be	 derived	 (for	 19	
of	 the	 53	 AUC0–inf	 in	 human-CYP3A4-transgenic	 mice).	
Additionally,	 Table  3	 presents	 human	 drug	 exposures	
reported	in	the	literature	after	administration	of	a	single	
dose	of	 the	drugs	that	were	also	evaluated	 in	the	mouse	
models,	as	well	as	to	what	extent	they	are	metabolized	by	
CYP3A4.

Results	 of	 the	 analysis	 are	 presented	 in	 Figures  3–5	
and	Tables S1	and	S2.	Figure 3	presents	all	53	human-CY-
P3A4-transgenic	mouse	AUC0–inf	and	19	wild-type	mouse	
AUC0–inf	 in	relation	to	the	human	AUC0–inf	after	admin-
istration	 of	 an	 equivalent	 dose	 as	 absolute	 values	 and	
fold	 differences.	 Extrapolation	 with	 the	 exponent	 0.67	
resulted	 in	 a	 symmetric	 distribution	 of	 the	 fold	 differ-
ences	 in	AUC0–inf	between	human	and	both	human-CY-
P3A4-transgenic	 and	 wild-type	 mice	 around	 1.13	 and	
1.02-fold,	respectively	(where	1-fold	is	an	exact	prediction	
of	the	AUC0–inf;	Figure 4b).	Extrapolation	with	the	expo-
nent	 0.75	 resulted	 in	 a	 symmetric	 distribution	 around	 a	
median	 of	 0.61	 and	 0.55-fold	 for	 human-CYP3A4-trans-
genic	and	wild-type	mice,	respectively.	This	suggests	that	
using	the	allometric	scaling	exponent	0.67	results	in	more	
accurate	predictions	of	 the	human	equivalent	dose	 than	
the	exponent	0.75.

To	 perform	 a	 comparison	 between	 human-CY-
P3A4-transgenic	 and	 wild-type	 mice	 for	 the	 predictability	
of	the	human	equivalent	dose,	a	selection	was	made	of	pub-
lications,	 which	 presented	 AUC0–inf	 for	 both	 human-CY-
P3A4-transgenic	 and	 wild-type	 mice	 (19	 AUC0–inf	 each;	 T
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T A B L E  2 	 Summary	of	all	included	publications	presenting	quantitative	pharmacokinetic	information	after	administration	of	a		
small-molecule	drug	in	a	human-CYP3A4-transgenic	mouse	model.

References Categorya Evaluated drugs Mice model developer

Crossbred 
mice model 
developer

Wild-type 
mice PK 
available?

Administered Dose 
(mg/kg) (oral unless 
indicated otherwise)

Reported AUC for 
transgenic mice

Reported AUC for 
transgenic mice 
wild-type AUC time interval

Clast lower than 
1/10th of Cmax?

AUC0–inf for transgenic 
mice (ng/mL h)

AUC0–inf for 
wild-type mice 
(ng/mL h)

Choo,	E.	F.,	et al.33 Application Cobimetinib Hasegawa	et al.;
Van	Herwaarden	et al.	

2007

NA Yes 5 0.701	±	0.087	μM	h	(van	
Herwaarden);

3.95	±	0.58	μM	h	(Hasegawa)

1.38	±	0.25	μM	h 0–24	h Yes 372.4	(van	Herwaarden);	
2098.6	(Hasegawa)

733.2

Damoiseaux,	D.,	
et al.34

Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 7.8	±	1.3	μg/mL	h;
9.2	±	1.5	μg/mL	h

13.3	±	2.2	μg/mL	h;
17.2	±	3.0	μg/mL	h

0–8	h;
0–inf

Yes 9200.0 17200.0

Granvil,	C.	P.,	
et al.31

Original Midazolam Granvil	et al. NA Yes 2.5	(oral);
0.25	(i.v.)

8330	nmol/L	min	(oral);
8390	nmol/L	min	(i.v.)

13,800	nmol/L	min	(oral);
6530	nmol/L	min	(i.v.)

0–inf Yes 45.0	(oral)
45.3	(i.v.)

74.5	(oral)
35.3	(i.v.)

Hasegawa,	M.,	
et al.35

Application Triazolam Hasegawa	et al. NA No 5 1210	±	110	ng/mL	h NA 0–inf Yes 1210.0 NA

Henderson,	C.	J.,	
et al.36

Application Caffeine,	debrisoquine,	
midazolam,	
tolbutamide,	
dabrafenib,	
sulfaphenazole,	
S-Acenocoumarol,	
Hyperforin

Hasegawa	et al. Scheer	et al. No 10	dabrafenib;
3	midazolam;
25	osimertinib

21,925	±	1687	ng/mL	h	
dabrafenib;

462	±	70	ng/mL	h
midazolam;
3753	±	614	ng/mL	h	osimertinib
(no	PK	for	other	drugs)

NA 0–25	h	(dabrafenib);	
0–inf	
(midazolam);	
0–32	h	
(osimertinib)

Yes 21925.0	(dabrafenib)
462.0	(midazolam)
3753.0	(osimertinib)

NA

Kim,	S.,	et al.37 Application Triazolam Ma	et al. NA No 4 1583	nM	h NA 0–6	h No	(1/8th	Cmax) 569.7 NA

Kobayashi,	K.,	
et al.38

Application Triazolam Kazuki	et al. NA No 1 1050	±	242	nM	h;
448	±	157	nM	h

NA 0–inf Yes 153.7 NA

Li,	W.,	et al.39 Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 11,701	±	1274	ng/mL	h 7585	±	533	ng/mL	h 0–8	h No	(half	Cmax) 12557.3 10553.2

Li,	W.,	et al.40 Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 5792	±	871	ng/mL	h 10,542	±	1067	ng/mL	h 0–8	h No	(half	Cmax) 7972.0 16699.1

Li,	W.,	et al.41 Application Fisogatinib Van	Herwaarden	et al.	
2007

NA Yes 10 4284	±	600	ng/mL	h 5072	±	823	ng/mL	h 0–4	h No	(1/5th	Cmax) 5956.8 4753.4

Li,	W.,	et al.42 Application Galunisertib Van	Herwaarden	et al.	
2007

NA Yes 20 4095	±	1262	ng/mL	h 2706	±	640	ng/mL	h 0–1	h Yes 4095.0 2706.0

Ly,	J.	Q.,	et al.43 Application Alprazolam,	bosutinib,	
crizotinib,	dasatinib,	
gefitinib,	ibrutinib,	
regorafenib,	
sorafenib,	triazolam,	
vandetanib

Hasegawa	et al.;
Van	Herwaarden	et al.	

2007

NA No 5 8.07	±	3.47	Alprazolam,
0.41	±	0.21	bosutinib,
0.616	±	0.128	crizotinib,
0.105	±	0.035	dasatinib,
0.89	±	0.06	gefitinib,
0.174	±	0.058	ibrutinib,
4.9	±	1.53	regorafenib,
8.44	±	3.22	sorafenib,
0.22	±	0.046	triazolam,
10.2	±	1.92	vandetinib
(μM	h,	van	Herwaarden)
----------
3.1	±	0.23	Alprazolam,
1.84	±	0.35	bosutinib,
0.213	±	0.08	crizotinib,
0.119	±	0.08	dasatinib,
1.68	±	0.39	gefitinib,
0.567	±	0.105	ibrutinib,
2.67	±	0.4	regorafenib,
8.02	±	1.15	sorafenib,
1.15	±	0.21	triazolam,
6.88	±	1.55	vandetinib
(μM	h,	Hasegawa)

NA 0–24	h Unknown 2492.0	alprazolam,
217.5	bosutinib,
279.2	crizotinib,
53.7	dasatinib,
397.7	gefitinib,
74.9	ibrutinib,
2365.7	regorafenib,
3922.9	sorafenib,
75.5	triazolam,
4889.9	vandetinib
(van	Herwaarden)
----------
957.3	alprazolam,
975.9	bosutinib,
94.6	crizotinib,
58.6	dasatinib,
750.8	gefitinib,
251.1	ibrutinib,
1289.1	regorafenib,
3727.7	sorafenib,
394.7	triazolam,
3298.3	vandetinib
(Hasegawa)

NA
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T A B L E  2 	 Summary	of	all	included	publications	presenting	quantitative	pharmacokinetic	information	after	administration	of	a		
small-molecule	drug	in	a	human-CYP3A4-transgenic	mouse	model.

References Categorya Evaluated drugs Mice model developer

Crossbred 
mice model 
developer

Wild-type 
mice PK 
available?

Administered Dose 
(mg/kg) (oral unless 
indicated otherwise)

Reported AUC for 
transgenic mice

Reported AUC for 
transgenic mice 
wild-type AUC time interval

Clast lower than 
1/10th of Cmax?

AUC0–inf for transgenic 
mice (ng/mL h)

AUC0–inf for 
wild-type mice 
(ng/mL h)

Choo,	E.	F.,	et al.33 Application Cobimetinib Hasegawa	et al.;
Van	Herwaarden	et al.	

2007

NA Yes 5 0.701	±	0.087	μM	h	(van	
Herwaarden);

3.95	±	0.58	μM	h	(Hasegawa)

1.38	±	0.25	μM	h 0–24	h Yes 372.4	(van	Herwaarden);	
2098.6	(Hasegawa)

733.2

Damoiseaux,	D.,	
et al.34

Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 7.8	±	1.3	μg/mL	h;
9.2	±	1.5	μg/mL	h

13.3	±	2.2	μg/mL	h;
17.2	±	3.0	μg/mL	h

0–8	h;
0–inf

Yes 9200.0 17200.0

Granvil,	C.	P.,	
et al.31

Original Midazolam Granvil	et al. NA Yes 2.5	(oral);
0.25	(i.v.)

8330	nmol/L	min	(oral);
8390	nmol/L	min	(i.v.)

13,800	nmol/L	min	(oral);
6530	nmol/L	min	(i.v.)

0–inf Yes 45.0	(oral)
45.3	(i.v.)

74.5	(oral)
35.3	(i.v.)

Hasegawa,	M.,	
et al.35

Application Triazolam Hasegawa	et al. NA No 5 1210	±	110	ng/mL	h NA 0–inf Yes 1210.0 NA

Henderson,	C.	J.,	
et al.36

Application Caffeine,	debrisoquine,	
midazolam,	
tolbutamide,	
dabrafenib,	
sulfaphenazole,	
S-Acenocoumarol,	
Hyperforin

Hasegawa	et al. Scheer	et al. No 10	dabrafenib;
3	midazolam;
25	osimertinib

21,925	±	1687	ng/mL	h	
dabrafenib;

462	±	70	ng/mL	h
midazolam;
3753	±	614	ng/mL	h	osimertinib
(no	PK	for	other	drugs)

NA 0–25	h	(dabrafenib);	
0–inf	
(midazolam);	
0–32	h	
(osimertinib)

Yes 21925.0	(dabrafenib)
462.0	(midazolam)
3753.0	(osimertinib)

NA

Kim,	S.,	et al.37 Application Triazolam Ma	et al. NA No 4 1583	nM	h NA 0–6	h No	(1/8th	Cmax) 569.7 NA

Kobayashi,	K.,	
et al.38

Application Triazolam Kazuki	et al. NA No 1 1050	±	242	nM	h;
448	±	157	nM	h

NA 0–inf Yes 153.7 NA

Li,	W.,	et al.39 Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 11,701	±	1274	ng/mL	h 7585	±	533	ng/mL	h 0–8	h No	(half	Cmax) 12557.3 10553.2

Li,	W.,	et al.40 Application Lorlatinib Van	Herwaarden	et al.	
2007

NA Yes 10 5792	±	871	ng/mL	h 10,542	±	1067	ng/mL	h 0–8	h No	(half	Cmax) 7972.0 16699.1

Li,	W.,	et al.41 Application Fisogatinib Van	Herwaarden	et al.	
2007

NA Yes 10 4284	±	600	ng/mL	h 5072	±	823	ng/mL	h 0–4	h No	(1/5th	Cmax) 5956.8 4753.4

Li,	W.,	et al.42 Application Galunisertib Van	Herwaarden	et al.	
2007

NA Yes 20 4095	±	1262	ng/mL	h 2706	±	640	ng/mL	h 0–1	h Yes 4095.0 2706.0

Ly,	J.	Q.,	et al.43 Application Alprazolam,	bosutinib,	
crizotinib,	dasatinib,	
gefitinib,	ibrutinib,	
regorafenib,	
sorafenib,	triazolam,	
vandetanib

Hasegawa	et al.;
Van	Herwaarden	et al.	

2007

NA No 5 8.07	±	3.47	Alprazolam,
0.41	±	0.21	bosutinib,
0.616	±	0.128	crizotinib,
0.105	±	0.035	dasatinib,
0.89	±	0.06	gefitinib,
0.174	±	0.058	ibrutinib,
4.9	±	1.53	regorafenib,
8.44	±	3.22	sorafenib,
0.22	±	0.046	triazolam,
10.2	±	1.92	vandetinib
(μM	h,	van	Herwaarden)
----------
3.1	±	0.23	Alprazolam,
1.84	±	0.35	bosutinib,
0.213	±	0.08	crizotinib,
0.119	±	0.08	dasatinib,
1.68	±	0.39	gefitinib,
0.567	±	0.105	ibrutinib,
2.67	±	0.4	regorafenib,
8.02	±	1.15	sorafenib,
1.15	±	0.21	triazolam,
6.88	±	1.55	vandetinib
(μM	h,	Hasegawa)

NA 0–24	h Unknown 2492.0	alprazolam,
217.5	bosutinib,
279.2	crizotinib,
53.7	dasatinib,
397.7	gefitinib,
74.9	ibrutinib,
2365.7	regorafenib,
3922.9	sorafenib,
75.5	triazolam,
4889.9	vandetinib
(van	Herwaarden)
----------
957.3	alprazolam,
975.9	bosutinib,
94.6	crizotinib,
58.6	dasatinib,
750.8	gefitinib,
251.1	ibrutinib,
1289.1	regorafenib,
3727.7	sorafenib,
394.7	triazolam,
3298.3	vandetinib
(Hasegawa)

NA
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8 of 18 |   DAMOISEAUX et al.

Figure 4).	The	selection	resulted	in	a	narrower	interval	be-
tween	the	first	and	third	quartiles	in	the	AUC0–inf	distributions	
for	human-CYP3A4-transgenic	compared	to	wild-type	mice	
(Figure  4b),	 suggesting	 that	 human-CYP3A4-transgenic		
mice	are	more	accurate	predictors	of	the	human	exposure	
than	 wild-type	 mice	 for	 most	 drugs.	 However,	 allometric	
scaling	with	the	exponent	0.67	resulted	in	a	higher	RMSE	

for	 human-CYP3A4-transgenic	 than	 wild-type	 mice,	 6.82	
versus	 4.96-fold	 (normalized),	 respectively	 (Figure  5).	 For	
allometric	scaling	with	the	exponent	0.75,	the	RSME	were	
5.44	versus	5.10-fold	(normalized),	respectively.	The	MAE	
was	 slightly	 lower	 for	 the	 human-CYP3A4-transgenic	
compared	 to	 wild-type	 mice,	 3.05	 versus	 3.08-fold	 (nor-
malized)	 for	 the	 exponent	 0.67	 and	 3.06	 versus	 3.19-fold	

References Categorya Evaluated drugs Mice model developer

Crossbred 
mice model 
developer

Wild-type 
mice PK 
available?

Administered Dose 
(mg/kg) (oral unless 
indicated otherwise)

Reported AUC for 
transgenic mice

Reported AUC for 
transgenic mice 
wild-type AUC time interval

Clast lower than 
1/10th of Cmax?

AUC0–inf for transgenic 
mice (ng/mL h)

AUC0–inf for 
wild-type mice 
(ng/mL h)

MacLeod,	A.	K.,	
et al.44

Application Vemurafenib Hasegawa	et al. Scheer	et al. No 50	and	100 294	μg/mL	h	(50	mg/kg),	
huCYP3A4/3A7;

432	μg/mL	h	(50	mg/kg),
559	μg/mL	h	(100	mg/

kg),	huPXR/huCAR/
huCYP3A4/3A7

NA 0–inf Yes 294,000	(50	mg/kg)	
huCYP3A4/3A7;

432,000	(50	mg/kg),
559,000	(100	mg/kg),	

huPXR/huCAR/
huCYP3A4/3A7

NA

MacLeod,	A.	K.,	
et al.45

Application Osimertinib Hasegawa	et al. Scheer	et al. Yes 25 1144	±	363	ng/mL	h 998	±	419	ng/mL	h 0–24	h Yes 1144.0 998.0

Martínez-Chávez,	
A.,	et al.46

Application Ribociclib Van	Herwaarden	et al.	
2007

NA Yes 20 1834	±	490	ng/mL	h 5901	±	1760	ng/mL	h 0–8	h No	(1/3rd	Cmax) 2173.1 7443.9

Martínez-Chávez,	
A.,	et al.47

Application Abemaciclib Van	Herwaarden	et al.	
2007

NA Yes 10 3200	±	791	nM	h 7808	±	1837	nM	h 0–24	h Yes 1622.4 3958.7

Miura,	T.,	et al.48 Application S-warfarin,	Diclofenac Hasegawa	et al. NA No 0.5	warfarin;
10	diclofenac	(both	i.v.)

8.3	±	2.4	nmol/mL	h	
(S-warfarin);

41.1	±	7.5	nmol/mL	h	
(diclofenac)

NA 0–inf Yes 12165.6	(diclofenac)
(S-warfarin	excluded)

NA

ML,	F.	M.,	et al.49 Application Niraparib Van	Herwaarden	et al.	
2007

NA Yes 50 56,463	±	10,785	ng/mL	h 25,919	±	6309	ng/mL	h 0–24	h Yes 18068.2 8294.1

Scheer,	N.,	et al.19 Crossbred Midazolam Hasegawa	et al. Scheer	et al. No 5 125	μg/mL	min NA 0–24	h Yes 2083.3 NA

Uehara,	S.,	et al.18 Application caffeine,	warfarin,	
omeprazole,	
metoprolol,	
midazolam

Hasegawa	et al. Uehara	et al. No 10 13	±	3	caffeine;
58	±	11	warfarin;
0.022	±	0.010	omeprazole;
0.038	±	0.002	metoprolol;
0.098	±	0.017	midazolam	(μg/

mL	h)

NA 0–inf Yes 20.0	(omeprazole)
100.0	(midazolam)
(caffeine,	warfarin	and	

metoprolol	excluded)

NA

van	Herwaarden,	A.	
E.,	et al.32

Original Midazolam,	
Cyclosporin	A

Van	Herwaarden	et al.	
2005

NA Yes 30	midazolam;
20	cyclosporin	A
(both	i.v.)

5.45	μg/mL	h	(midazolam);
24.3	μg/mL	h	(cyclosporin	A)

11.7	μg/mL	h	
(midazolam);	35.8	μg/
mL	h	(cyclosporin	A)

0–3	h	(midazolam);
0–8	h	(cyclosporin	A)

Yes	(midazolam);	
No	1/7th	
Cmax	
(cyclosporin	
A)

5450.0	(midazolam)
31800.0	(cyclosporine	A)

11700.0	
(midazolam)

48020.0	
(cyclosporine	
A)

van	Herwaarden,	A.	
E.,	et al.7

Original Docetaxel Van	Herwaarden	et al.	
2007

NA Yes 10	(i.v.) 976.9	ng/mL	h 777	ng/mL	h 0–8	h Yes 976.9 777.0

van	Hoppe,	S.,	
et al.22

Application Ibrutinib Van	Herwaarden	et al.	
2007

NA Yes 10 832	±	521	ng/mL	h 431	±	96.6	ng/mL	h 0–8	h Yes 832.0 431.0

van	Waterschoot,	R.	
A.,	et al.50

Application Triazolam Van	Herwaarden	et al.	
2007

NA Yes 0.5 130	±	19	μg/L	h 194	±	23	μg/L	h 0–5.3	h No	(1/3rd	Cmax) 176.2 NA

Wang,	J.,	et al.51 Application Tivozanib Van	Herwaarden	et al.	
2007

NA Yes 1 6227	±	936	ng/mL	h 4557	±	683	ng/mL	h 0–24	h Yes 6227.0 4557.0

Yamazaki,	H.,	
et al.52

Application Midazolam Hasegawa	et al. NA Yes 10	(i.v.) 759	±	431	μM	min 536	±	46	μM	min 0–inf Yes 4121.1 2910.3

Abbreviations:	AUC0–inf,	from	zero	to	infinite	hour;	AUC,	area	under	the	plasma	concentration-time	curve;	Clast,	last	observed	concentrations;	Cmax,	peak		
concentrations;	NA,	not	applicable;	PK,	pharmacokinetics.
aThe	column	category	consists	of:	original	publications	that	describe	the	development	of	a	human-CYP3A4-transgenic	mouse	model;	crossbred,	publications		
that	describe	the	crossbreeding	of	a	human-CYP3A4-transgenic	mouse	model;	application,	publications	that	describe	pharmacokinetic	experiments	using	a		
human-CYP3A4-transgenic	mouse	model.

T A B L E  2 	 (Contiuned)
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(normalized)	 for	 the	exponent	0.75,	 respectively.	Removal	
of	the	extreme	outlier	ibrutinib	resulted	in	results	in	favor	
of	the	human-CYP3A4-transgenic	mice.	Allometric	scaling	
with	 the	exponent	0.67	resulted	 in	a	 lower	RMSE	for	hu-
man-CYP3A4-transgenic	 than	wild-type	mice,	2.88	versus	
3.96-fold	(normalized),	respectively	(Figure 5).	For	allome-
tric	 scaling	 with	 the	 exponent	 0.75,	 the	 RSME	 were	 4.49	

versus	4.98-fold	 (normalized),	 respectively.	The	MAE	was	
also	lower	for	the	human-CYP3A4-transgenic	compared	to	
wild-type	mice,	1.72	versus	2.50-fold	 (normalized)	 for	 the	
exponent	0.67	and	2.44	versus	2.99-fold	(normalized)	for	the	
exponent	0.75,	respectively.

Large	 variability	 was	 observed	 between	 experiments	
with	 the	 same	 compound	 (ibrutinib	 and	 triazolam)	 and	

References Categorya Evaluated drugs Mice model developer

Crossbred 
mice model 
developer

Wild-type 
mice PK 
available?

Administered Dose 
(mg/kg) (oral unless 
indicated otherwise)

Reported AUC for 
transgenic mice

Reported AUC for 
transgenic mice 
wild-type AUC time interval

Clast lower than 
1/10th of Cmax?

AUC0–inf for transgenic 
mice (ng/mL h)

AUC0–inf for 
wild-type mice 
(ng/mL h)

MacLeod,	A.	K.,	
et al.44

Application Vemurafenib Hasegawa	et al. Scheer	et al. No 50	and	100 294	μg/mL	h	(50	mg/kg),	
huCYP3A4/3A7;

432	μg/mL	h	(50	mg/kg),
559	μg/mL	h	(100	mg/

kg),	huPXR/huCAR/
huCYP3A4/3A7

NA 0–inf Yes 294,000	(50	mg/kg)	
huCYP3A4/3A7;

432,000	(50	mg/kg),
559,000	(100	mg/kg),	

huPXR/huCAR/
huCYP3A4/3A7

NA

MacLeod,	A.	K.,	
et al.45

Application Osimertinib Hasegawa	et al. Scheer	et al. Yes 25 1144	±	363	ng/mL	h 998	±	419	ng/mL	h 0–24	h Yes 1144.0 998.0

Martínez-Chávez,	
A.,	et al.46

Application Ribociclib Van	Herwaarden	et al.	
2007

NA Yes 20 1834	±	490	ng/mL	h 5901	±	1760	ng/mL	h 0–8	h No	(1/3rd	Cmax) 2173.1 7443.9

Martínez-Chávez,	
A.,	et al.47

Application Abemaciclib Van	Herwaarden	et al.	
2007

NA Yes 10 3200	±	791	nM	h 7808	±	1837	nM	h 0–24	h Yes 1622.4 3958.7

Miura,	T.,	et al.48 Application S-warfarin,	Diclofenac Hasegawa	et al. NA No 0.5	warfarin;
10	diclofenac	(both	i.v.)

8.3	±	2.4	nmol/mL	h	
(S-warfarin);

41.1	±	7.5	nmol/mL	h	
(diclofenac)

NA 0–inf Yes 12165.6	(diclofenac)
(S-warfarin	excluded)

NA

ML,	F.	M.,	et al.49 Application Niraparib Van	Herwaarden	et al.	
2007

NA Yes 50 56,463	±	10,785	ng/mL	h 25,919	±	6309	ng/mL	h 0–24	h Yes 18068.2 8294.1

Scheer,	N.,	et al.19 Crossbred Midazolam Hasegawa	et al. Scheer	et al. No 5 125	μg/mL	min NA 0–24	h Yes 2083.3 NA

Uehara,	S.,	et al.18 Application caffeine,	warfarin,	
omeprazole,	
metoprolol,	
midazolam

Hasegawa	et al. Uehara	et al. No 10 13	±	3	caffeine;
58	±	11	warfarin;
0.022	±	0.010	omeprazole;
0.038	±	0.002	metoprolol;
0.098	±	0.017	midazolam	(μg/

mL	h)

NA 0–inf Yes 20.0	(omeprazole)
100.0	(midazolam)
(caffeine,	warfarin	and	

metoprolol	excluded)

NA

van	Herwaarden,	A.	
E.,	et al.32

Original Midazolam,	
Cyclosporin	A

Van	Herwaarden	et al.	
2005

NA Yes 30	midazolam;
20	cyclosporin	A
(both	i.v.)

5.45	μg/mL	h	(midazolam);
24.3	μg/mL	h	(cyclosporin	A)

11.7	μg/mL	h	
(midazolam);	35.8	μg/
mL	h	(cyclosporin	A)

0–3	h	(midazolam);
0–8	h	(cyclosporin	A)

Yes	(midazolam);	
No	1/7th	
Cmax	
(cyclosporin	
A)

5450.0	(midazolam)
31800.0	(cyclosporine	A)

11700.0	
(midazolam)

48020.0	
(cyclosporine	
A)

van	Herwaarden,	A.	
E.,	et al.7

Original Docetaxel Van	Herwaarden	et al.	
2007

NA Yes 10	(i.v.) 976.9	ng/mL	h 777	ng/mL	h 0–8	h Yes 976.9 777.0

van	Hoppe,	S.,	
et al.22

Application Ibrutinib Van	Herwaarden	et al.	
2007

NA Yes 10 832	±	521	ng/mL	h 431	±	96.6	ng/mL	h 0–8	h Yes 832.0 431.0

van	Waterschoot,	R.	
A.,	et al.50

Application Triazolam Van	Herwaarden	et al.	
2007

NA Yes 0.5 130	±	19	μg/L	h 194	±	23	μg/L	h 0–5.3	h No	(1/3rd	Cmax) 176.2 NA

Wang,	J.,	et al.51 Application Tivozanib Van	Herwaarden	et al.	
2007

NA Yes 1 6227	±	936	ng/mL	h 4557	±	683	ng/mL	h 0–24	h Yes 6227.0 4557.0

Yamazaki,	H.,	
et al.52

Application Midazolam Hasegawa	et al. NA Yes 10	(i.v.) 759	±	431	μM	min 536	±	46	μM	min 0–inf Yes 4121.1 2910.3

Abbreviations:	AUC0–inf,	from	zero	to	infinite	hour;	AUC,	area	under	the	plasma	concentration-time	curve;	Clast,	last	observed	concentrations;	Cmax,	peak		
concentrations;	NA,	not	applicable;	PK,	pharmacokinetics.
aThe	column	category	consists	of:	original	publications	that	describe	the	development	of	a	human-CYP3A4-transgenic	mouse	model;	crossbred,	publications		
that	describe	the	crossbreeding	of	a	human-CYP3A4-transgenic	mouse	model;	application,	publications	that	describe	pharmacokinetic	experiments	using	a		
human-CYP3A4-transgenic	mouse	model.
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T A B L E  3 	 Reported	human	drug	exposure	after	administration	of	a	single	dose.

Drug (oral unless 
indicated otherwise)

CYP3A4 metabolized 
drug?

Degree of CYP3A4 mediated 
metabolism of drug Drug class Reference human PK data Reported AUC for human

AUC time 
interval

Clast lower than 
1/10th of Cmax?

Calculated 
AUC0–inf

Abemaciclib Yes Extensively L01EF03	(Antineoplastic	agents) Patnaik	A,	et al.	(2016)53 1270	ng/mL	h	(50	mg);
1880	ng/mL	h	(100	mg);
4010	ng/mL	h	(150	mg);
5220	ng/mL	h	(200	mg)

0–inf Yes NA

Alprazolam Yes Primarily N05BA12	(Psycholeptics) Friedman	H,	et al.	(1991)54 305	ng/mL	h	(1	mg) 0–50	h No,	1/9th	Cmax 316.6	ng/mL	h

Bosutinib Yes Primarily L01EA04	(Antineoplastic	agents) Abbas	R,	et al.	(2011)55 323	ng/mL	h	(100	mg) 0–inf Yes NA

Cobimetinib Yes Primarily L01EE02	(Antineoplastic	agents) Rosen	LS,	et al.	(2016)56 1556	ng/mL	h	(40	mg)a;
3112	ng/mL	h	(60	mg)a

0–24	ha Yes NA

Crizotinib Yes Primarily L01ED01	(Antineoplastic	agents) Xu	H,	et al.	(2015)57 1260	ng/mL	h	(150	mg);
2192	ng/mL	h	(250	mg)

0–inf Yes NA

Cyclosporin	A	(i.v.) Yes Extensively L04AD01	(Immunosuppressants) Gupta	SK,	et al.	(1990)58 8799	ng/mL	h	(4	mg/kg,	64	kg) 0–24	h Yes NA

Dabrafenib Yes Primarily L01EC02	(Antineoplastic	agents) Ouellet	D,	et al.	(2013)59 9858	ng/mL	h	(150	mg) 0–inf Yes NA

Dasatinib Yes Primarily L01EA02	(Antineoplastic	agents) Christopher	LJ,	et al.	(2008)60 1151	ng/mL	h	(180	mg) 0–24	h Yes NA

Diclofenac	(i.v.) No NA M01AB55	(Anti-inflammatory	and	
antirheumatic	products)

Leuratti	C,	et al.	(2019)61 5384	±	1020	ng/mL	h	(75	mg;	i.v.	bolus) 0–inf Yes NA

Docetaxel	(i.v.) Yes Primarily L01CD02	(Antineoplastic	agents) Baker	SD,	et al.	(2006)62 3.41	μg/mL	h	(75	mg/m2;	1	h	infusion) 0–inf Yes NA

Fisogatinib Yes Unknown Unknown Kim	RD,	et al.	(2019)63 24,420	ng/mL	h	(140	mg)a;
128,564	ng/mL	h	(600	mg)a

0–24	ha Yes NA

Galunisertib Unlikely Unknown Unknown Ding	X,	et al.	(2015)64 3670	μg/L	h	(150	mg,	solution) 0–inf Yes NA

Gefitinib Yes Partly L01XX31	(Antineoplastic	agents) Ranson	M,	et al.	(2002)65 1147	ng/mL	h	(50	mg) 0–140	h Yes NA

Ibrutinib Yes Primarily L01EL01	(Antineoplastic	agents) Tapaninen	T,	et al.	(2020)66 76.5	ng/mL	h	(140	mg) 0–inf Yes NA

Lorlatinib Yes Primarily L01ED05	(Antineoplastic	agents) Patel	M,	et al.	(2020)67 7338	ng/mL	h	(100	mg) 0–inf Yes NA

Midazolam Yes Extensively N05CD08	(Psycholeptics) Stroh	M,	et al.	(2010)68 102	ng/mL	h	(7.5	mg) 0–inf Yes NA

Midazolam	(i.v.) Yes Extensively N05CD08	(Psycholeptics) Pentikis	HS,	et al.	(2007)69 84.76	ng/mL	h	(2	mg;	i.v.	bolus) 0–inf Yes NA

Niraparib Yes Extensively L01XX54	(Antineoplastic	agents) Moore	K,	et al.	(2018)70 29016.1	ng/mL	h	(300	mg,	fasted) 0–inf Yes NA

Omeprazole Yes To	lesser	extent	(mainly	
CYP2C19)

A02BC01	(Acid	related	disorders) Ochoa	D,	et al.	(2020)71 2190.8	±	2011.5	ng/mL	h	(40	mg,	fasted) 0–inf Yes NA

Osimertinib Yes Primarily L01EB04	(Antineoplastic	agents) Planchard	D,	et al.	(2016)72 2658	nM	h	(40	mg,	0–72	h);
5102	nM	h	(80	mg,	0–72	h);
15,480	nM	h	(160	mg,	0–72	h);
24,610	nM	h	(160	mg,	0–inf)

0–72	h	or	0–inf Yes NA

Regorafenib Yes Primarily L01EX05	(Antineoplastic	agents) Zhang	Q,	et al.	(2021)73 11354.7	±	3323.9	ng/mL	h	(40	mg	
reference	drug)

0–inf Yes NA

Ribociclib Yes Primarily L01EF02	(Antineoplastic	agents) Ji	Y,	et al.	(2020)74 10,700	ng/mL	h	(600	mg) 0–inf Yes NA

Sorafenib Yes Primarily L01EX02	(Antineoplastic	agents) Lathia	C,	et al.	(2005)75 11.04	mg/L	h	(50	mg) 0–inf Yes NA

Tivozanib Yes Partly L01EK03	(Antineoplastic	agents) Cotreau	MM,	et al.	(2015)76 2223	ng/mL	h	(1.5	mg) 0–inf Yes NA

Triazolam Yes Primarily N05CD05	(Psycholeptics) Robin	DW,	et al.	(1993)77 15.57	±	1.54	ng/mL	h	(0.25	mg) 0–inf Yes NA

Vandetanib Yes Partly L01EX04	(Antineoplastic	agents) Martin	P,	et al.	(2012)78 22,030	ng/mL	h	(300	mg);
29,460	ng/mL	h	(400	mg);
61,140	ng/mL	h	(800	mg);
102,200	ng/mL	h	(1200	mg)

0–inf Yes NA

Vemurafenib Yes To	lesser	extend L01XE15	(Antineoplastic	agents) Ribas	A,	et al.	(2014)79 119.0	±	113.1	μg/mL	h	(960	mg,	fasted) 0–inf Yes NA

Abbreviations:	0–inf,	from	zero	to	infinite	hour;	AUC,	area	under	the	plasma	concentration–time	curve;	Clast,	last	observed	concentrations;	Cmax,	peak		
concentrations;	i.v.,	intravenous;	NA,	not	applicable;	PK,	pharmacokinetics.
aData	extracted	from	concentrations–time	curves	by	means	of	PlotDigitizer10	and	AUC0–inf	calculated	using	the	trapezoidal	rule.
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T A B L E  3 	 Reported	human	drug	exposure	after	administration	of	a	single	dose.

Drug (oral unless 
indicated otherwise)

CYP3A4 metabolized 
drug?

Degree of CYP3A4 mediated 
metabolism of drug Drug class Reference human PK data Reported AUC for human

AUC time 
interval

Clast lower than 
1/10th of Cmax?

Calculated 
AUC0–inf

Abemaciclib Yes Extensively L01EF03	(Antineoplastic	agents) Patnaik	A,	et al.	(2016)53 1270	ng/mL	h	(50	mg);
1880	ng/mL	h	(100	mg);
4010	ng/mL	h	(150	mg);
5220	ng/mL	h	(200	mg)

0–inf Yes NA

Alprazolam Yes Primarily N05BA12	(Psycholeptics) Friedman	H,	et al.	(1991)54 305	ng/mL	h	(1	mg) 0–50	h No,	1/9th	Cmax 316.6	ng/mL	h

Bosutinib Yes Primarily L01EA04	(Antineoplastic	agents) Abbas	R,	et al.	(2011)55 323	ng/mL	h	(100	mg) 0–inf Yes NA

Cobimetinib Yes Primarily L01EE02	(Antineoplastic	agents) Rosen	LS,	et al.	(2016)56 1556	ng/mL	h	(40	mg)a;
3112	ng/mL	h	(60	mg)a

0–24	ha Yes NA

Crizotinib Yes Primarily L01ED01	(Antineoplastic	agents) Xu	H,	et al.	(2015)57 1260	ng/mL	h	(150	mg);
2192	ng/mL	h	(250	mg)

0–inf Yes NA

Cyclosporin	A	(i.v.) Yes Extensively L04AD01	(Immunosuppressants) Gupta	SK,	et al.	(1990)58 8799	ng/mL	h	(4	mg/kg,	64	kg) 0–24	h Yes NA

Dabrafenib Yes Primarily L01EC02	(Antineoplastic	agents) Ouellet	D,	et al.	(2013)59 9858	ng/mL	h	(150	mg) 0–inf Yes NA

Dasatinib Yes Primarily L01EA02	(Antineoplastic	agents) Christopher	LJ,	et al.	(2008)60 1151	ng/mL	h	(180	mg) 0–24	h Yes NA

Diclofenac	(i.v.) No NA M01AB55	(Anti-inflammatory	and	
antirheumatic	products)

Leuratti	C,	et al.	(2019)61 5384	±	1020	ng/mL	h	(75	mg;	i.v.	bolus) 0–inf Yes NA

Docetaxel	(i.v.) Yes Primarily L01CD02	(Antineoplastic	agents) Baker	SD,	et al.	(2006)62 3.41	μg/mL	h	(75	mg/m2;	1	h	infusion) 0–inf Yes NA

Fisogatinib Yes Unknown Unknown Kim	RD,	et al.	(2019)63 24,420	ng/mL	h	(140	mg)a;
128,564	ng/mL	h	(600	mg)a

0–24	ha Yes NA

Galunisertib Unlikely Unknown Unknown Ding	X,	et al.	(2015)64 3670	μg/L	h	(150	mg,	solution) 0–inf Yes NA

Gefitinib Yes Partly L01XX31	(Antineoplastic	agents) Ranson	M,	et al.	(2002)65 1147	ng/mL	h	(50	mg) 0–140	h Yes NA

Ibrutinib Yes Primarily L01EL01	(Antineoplastic	agents) Tapaninen	T,	et al.	(2020)66 76.5	ng/mL	h	(140	mg) 0–inf Yes NA

Lorlatinib Yes Primarily L01ED05	(Antineoplastic	agents) Patel	M,	et al.	(2020)67 7338	ng/mL	h	(100	mg) 0–inf Yes NA

Midazolam Yes Extensively N05CD08	(Psycholeptics) Stroh	M,	et al.	(2010)68 102	ng/mL	h	(7.5	mg) 0–inf Yes NA

Midazolam	(i.v.) Yes Extensively N05CD08	(Psycholeptics) Pentikis	HS,	et al.	(2007)69 84.76	ng/mL	h	(2	mg;	i.v.	bolus) 0–inf Yes NA

Niraparib Yes Extensively L01XX54	(Antineoplastic	agents) Moore	K,	et al.	(2018)70 29016.1	ng/mL	h	(300	mg,	fasted) 0–inf Yes NA

Omeprazole Yes To	lesser	extent	(mainly	
CYP2C19)

A02BC01	(Acid	related	disorders) Ochoa	D,	et al.	(2020)71 2190.8	±	2011.5	ng/mL	h	(40	mg,	fasted) 0–inf Yes NA

Osimertinib Yes Primarily L01EB04	(Antineoplastic	agents) Planchard	D,	et al.	(2016)72 2658	nM	h	(40	mg,	0–72	h);
5102	nM	h	(80	mg,	0–72	h);
15,480	nM	h	(160	mg,	0–72	h);
24,610	nM	h	(160	mg,	0–inf)

0–72	h	or	0–inf Yes NA

Regorafenib Yes Primarily L01EX05	(Antineoplastic	agents) Zhang	Q,	et al.	(2021)73 11354.7	±	3323.9	ng/mL	h	(40	mg	
reference	drug)

0–inf Yes NA

Ribociclib Yes Primarily L01EF02	(Antineoplastic	agents) Ji	Y,	et al.	(2020)74 10,700	ng/mL	h	(600	mg) 0–inf Yes NA

Sorafenib Yes Primarily L01EX02	(Antineoplastic	agents) Lathia	C,	et al.	(2005)75 11.04	mg/L	h	(50	mg) 0–inf Yes NA

Tivozanib Yes Partly L01EK03	(Antineoplastic	agents) Cotreau	MM,	et al.	(2015)76 2223	ng/mL	h	(1.5	mg) 0–inf Yes NA

Triazolam Yes Primarily N05CD05	(Psycholeptics) Robin	DW,	et al.	(1993)77 15.57	±	1.54	ng/mL	h	(0.25	mg) 0–inf Yes NA

Vandetanib Yes Partly L01EX04	(Antineoplastic	agents) Martin	P,	et al.	(2012)78 22,030	ng/mL	h	(300	mg);
29,460	ng/mL	h	(400	mg);
61,140	ng/mL	h	(800	mg);
102,200	ng/mL	h	(1200	mg)

0–inf Yes NA

Vemurafenib Yes To	lesser	extend L01XE15	(Antineoplastic	agents) Ribas	A,	et al.	(2014)79 119.0	±	113.1	μg/mL	h	(960	mg,	fasted) 0–inf Yes NA

Abbreviations:	0–inf,	from	zero	to	infinite	hour;	AUC,	area	under	the	plasma	concentration–time	curve;	Clast,	last	observed	concentrations;	Cmax,	peak		
concentrations;	i.v.,	intravenous;	NA,	not	applicable;	PK,	pharmacokinetics.
aData	extracted	from	concentrations–time	curves	by	means	of	PlotDigitizer10	and	AUC0–inf	calculated	using	the	trapezoidal	rule.
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human-CYP3A4-transgenic	 mice	 (Table  S1).	 Finally,	 be-
tween	 57%	 and	 79%	 of	 the	 predictions	 of	 both	 human-		
CYP3A4-transgenic	and	wild-type	mice	fell	within	the	tox-
icokinetic	safety	margin	of	four-fold	recommended	by	the	
World	 Health	 Organization	 to	 allow	 for	 interspecies	 dif-
ferences	and	between	87%	and	95%	fell	within	the	safety	
margin	 of	 10-fold	 for	 toxicokinetics	 and	 toxicodynamics	
combined,	with	no	clear	advantage	for	either	mouse	model	
(Table S2).5

DISCUSSION

Human-CYP3A4-transgenic mouse for 
quantitative predictions in humans

Perhaps	 contrary	 to	 expectations,	 humanization	 of	 the	
mouse	 Cyp3a	 enzymes	 by	 means	 of	 knock-out	 and	 re-
placement	 with	 the	 human	 CYP3A4	 enzyme	 in	 gen-
eral	 does	 not	 improve	 the	 predictions	 of	 exposure	 for	

F I G U R E  3  (a)	The	AUC0–inf	of	human-CYP3A4-transgenic	and	wild-type	mice	plotted	against	the	human	AUC0–inf	after	a	human	
equivalent	dose,	(b)	the	distribution	of	the	fold	differences	in	AUC0–inf	between	human	and	mice,	and	(c)	the	fold	differences	in	AUC0–inf	
between	human	and	mice	for	each	drug.	Results	from	allometric	scaling	of	the	mice	to	human	dose	with	the	exponent	0.67	and	0.75	were	
both	presented	in	all	plots.	Dotted	lines	in	(a)	represent	the	deviation	from	the	line	of	unity	(an	ideal	prediction	of	the	human	AUC0–inf).	Red	
and	blue	line	represent	the	trend	lines	for	wild-type	and	human-CYP3A4-transgenic	mice,	respectively.	All	drugs	were	administered	orally	
unless	indicated	differently.	AUC0–inf,	area	under	the	plasma	concentration-time	curve	until	infinity.
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CYP3A4-metabolized	 drugs	 in	 humans.	 This	 result	 is	
mainly	 based	 on	 PK	 experiments	 in	 two	 mouse	 mod-
els	developed	by	Hasegawa	et al.	and	van	Herwaarden	
et  al.	 (Figure  S1).	 Based	 on	 the	 RMSE,	 the	 human-
CYP3A4-transgenic	mouse	model	performs	worse	than	
the	 wild-type	 mouse	 model.	 This	 is	 mainly	 caused	 by	
one	 extreme	 outlier,	 ibrutinib,	 in	 predictions	 of	 the	

human-CYP3A4-transgenic	mouse	model.	Nevertheless,	
there	 is	 no	 obvious	 reason	 for	 excluding	 this	 drug	 be-
cause	 it	 is	 mainly	 metabolized	 by	 CYP3A4.22	 On	 the	
other	 hand,	 the	 percentage	 of	 predictions	 within	 four-
fold	 and	 10-fold	 difference	 from	 the	 human	 exposure	
are	 slightly	 in	 favor	 of	 the	 human-CYP3A4-transgenic	
mouse	 model	 (Table  S2).	 Everything	 considered,	 the	

F I G U R E  4  A	selection	of	the	publications	which	presented	AUC0–inf	for	both	human-CYP3A4-transgenic	and	wild-type	mice	(19	
AUC0–inf	each):	(a)	the	AUC0–inf	of	human-CYP3A4-transgenic	and	wild-type	mice	plotted	against	the	human	AUC0–inf	after	a	human	
equivalent	dose,	(b)	the	distribution	of	the	fold	differences	in	AUC0–inf	between	human	and	mice,	and	(c)	the	fold	differences	in	AUC0–inf	
between	human	and	mice	for	each	drug.	Results	from	allometric	scaling	of	the	mice	to	human	dose	with	the	exponent	0.67	and	0.75	were	
both	presented	in	all	plots.	Dotted	lines	in	(a)	represent	the	deviation	from	the	line	of	unity	(an	ideal	prediction	of	the	human	AUC0–inf).	Red	
and	blue	line	represent	the	trend	lines	for	wild-type	and	human-CYP3A4-transgenic	mice,	respectively.	All	drugs	were	administered	orally	
unless	indicated	differently.	AUC0–inf,	area	under	the	plasma	concentration-time	curve	until	infinity.
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small	 differences	 in	 predictability	 of	 human	 exposure	
suggest	 that	 the	 human-CYP3A4-transgenic	 mouse	
model	 will	 not	 markedly	 contribute	 to	 more	 accurate	
predictions	of	exposure	following	FIH	doses	in	clinical	
trials	by	means	of	allometric	scaling.

Difficulties in interspecies extrapolation

The	CYP	enzymes	originate	from	a	gene	family	that	can	be	
found	in	a	wide	range	of	organisms	ranging	from	bacteria,	
plants,	animals	to	humans,	and	even	viruses.	Over	time,	
all	 species	 developed	 different	 variants	 of	 CYP	 enzymes	
with	 part	 having	 a	 common	 pivotal	 role,	 the	 detoxifica-
tion	of	xenobiotics.	It	has	been	75–125	million	years	ago	
that	mice	and	humans	had	a	common	ancestor.	The	over-
lap	in	absorption,	distribution,	metabolism,	and	excretion	
(ADME)	related	processes	probably	stems	from	exposure	
to	similar	xenobiotics	over	this	period,	which	resulted	in	
similar	 evolutionary	 properties.	 This	 might	 explain	 why	
the	wild-type	mice	themselves	already	perform	relatively	
well	 in	 the	prediction	of	human	exposure.	Nevertheless,	
species	have	since	then	adapted	to	the	exposure	to	partly	
different	xenobiotics,	resulting	in	deviation	in	detoxifying	
CYP	enzymes	to	a	greater	or	lesser	extent,	and	the	same	
applies	for	other	ADME-related	processes.	It	is	therefore	

important	 to	 elucidate	 what	 interspecies	 differences	 are	
responsible	 for	 these	 deviations	 in	 order	 to	 account	 for	
them	in	advance.	Our	hypothesis	was	that	humanization	
of	 mouse	 CYP3A	 enzymes	 could	 be	 an	 important	 con-
tributor	to	the	reduction	of	the	error	in	the	predictions	of	
human	exposure.	However,	as	it	turns	out,	humanization	
of	CYP3A	enzymes	alone	is	not	nearly	enough	to	account	
for	the	misspecifications	in	prediction	of	human	exposure	
in	the	context	of	FIH	dosing.	Distinguishing	two	species	
by	pinpointing	one	specific	process	(like	CYP3A-mediated	
metabolism)	proves	to	be	unrealistic.	 Interspecies	differ-
ences	consist	of	an	interplay	of	many	different	processes	
that	are	vastly	more	complex,	where	the	absence	of	a	cer-
tain	process	in	a	species	can	be	compensated	by	other	pro-
cesses.23	Here,	we	will	discuss	several	examples	of	other	
interspecies	differences	that	might	contribute	to	the	mis-
specifications	observed	in	mice	to	human	extrapolation.

First,	 the	 absorption	 of	 orally	 administered	 drugs	 is	
highly	 dependent	 on	 the	 biopharmaceutics	 classifica-
tion	system	(BCS)	class	of	a	drug.	The	permeability	and	
solubility	define	the	class	 to	which	a	drug	is	designated.	
However,	the	BCS	classification	in	humans	does	not	nec-
essarily	apply	to	mice.	Solubility	of	drugs	with	a	basic	pKa	
is	different	in	the	gastrointestinal	tract	of	mice	compared	
to	humans.	This	is	because	the	normal	murine	gastric	pH	
is	3–4	and	declines	to	an	intestinal	pH	~	5,24	whereas	the	

F I G U R E  5  Density	plots	of	the	fold	differences	in	AUC0–inf	between	mice	and	human	for	the	exponents	0.67	and	0.75	for	each	study.	To	
normalize	fold	differences	to	only	values	higher	than	one,	one	was	divided	by	all	the	fold	differences	smaller	than	one.	In	addition,	one	was	
subtracted	from	all	fold	differences	to	normalize	a	perfect	prediction	(of	1-fold)	to	zero.	AUC0–inf,	area	under	the	plasma	concentration-time	
curve	until	infinity;	MAE,	mean	absolute	error;	RMSE,	root	mean	squared	error.
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human	gastric	pH	is	1–2.5,	and	intestinal	pH	is	6.5–7.5.25	
As	a	result,	absorption	profiles	differ	because	a	drug	can	
be	 fully	 protonated	 and	 ionized	 in	 the	 human	 stomach,	
whereas	only	partially	in	the	mouse	stomach.	In	addition,	
drugs	are	often	administered	as	a	solution	by	gavage	into	
the	stomach	in	mice,	as	opposed	to	solid	dosing	forms	in	
humans.

Second,	variation	between	experiments	with	the	same	
drug	and	animal	species	is	a	topic	that	appears	underex-
posed	in	the	literature.	It	has	been	demonstrated	that	de-
spite	 strict	 standardization	 of	 experiments,	 animals	 can	
behave	 differently	 between	 different	 laboratories26	 and	
it	 is	 also	 been	 shown	 that	 mouse	 phenotypes	 can	 fluc-
tuate,	 resulting	 in	 different	 results	 between	 batches.27	
Consultation	 with	 preclinical	 scientists	 working	 with	
laboratory	 animals	 confirmed	 that	 deviations	 of	 about	
two-fold	in	absolute	drug	concentrations	between	PK	ex-
periments	of	the	same	drug	and	mouse	species	over	time	
(e.g.,	 6	months	 apart),	 even	 performed	 in	 one	 facility,	 is	
not	uncommon.	This	is	less	of	a	concern	if	groups	of	ani-
mal	strains	within	an	experiment	are	treated	equally	and	
within	 a	 limited	 period	 of	 time,	 and	 only	 directly	 com-
pared	with	each	other.	This	results	in	minimal	variability	
between	groups	apart	from	the	investigated	difference	be-
tween	the	strains.	In	that	context,	continuity	of	absolute	
values	 (drug	 concentrations)	 over	 multiple	 experiments	
over	 a	 prolonged	 period	 of	 time	 is	 of	 lesser	 concern	 for	
answering	certain	hypotheses.	However,	for	reliable	quan-
titative	predictions	of	the	FIH	dose,	consistency	over	ex-
periments	and	especially	over	time	is	warranted.

Third,	replacing	CYP3A	enzymes	in	mice	with	human	
CYP3A	enzymes	does	not	necessarily	imply	that	the	cor-
responding	overall	metabolism	will	be	similar.	Expression	
and	quantity	of	 the	 replaced	CYP3A	enzymes	can	differ	
from	that	 in	humans,	resulting	 in	higher	or	 lower	clear-
ance	of	the	drug	in	the	corresponding	organ.	For	instance,	
van	Herwaarden	et al.	suggests	that	CYP3A4	expression	in	
the	intestines	of	their	transgenic	strain	is	higher	in	mice	
compared	to	humans,	which	potentially	results	 in	 lower	
bioavailability	 in	 mice.7	 Probably,	 there	 are	 many	 more	
physiological	 differences	 between	 mice	 and	 human	 that	
can	influence	drug	PKs	that	still	have	to	be	elucidated.	An	
example	is	a	plasma	protein	expressed	by	mice,	carboxy-
lesterase	1c,	which	 is	absent	 in	human	plasma	resulting	
in	poor	translation	from	mice	to	humans	if	the	drug	PK	is	
influenced	by	carboxylesterase	1c	through	metabolism	or	
strong	binding.28	For	example,	cabazitaxel	and	everolimus	
are	known	to	have	high	binding	affinity	to	this	protein	re-
sulting	in	PK	differences	between	human	and	mouse.29,30	
In	 short,	 developing	 a	 mouse	 model	 that	 would	 suit	 all	
drugs	would	require	many	modifications	with	still	a	pos-
sibility	 of	 missing	 crucial	 ADME	 processes.	 More	 im-
portantly,	 the	 trade-off	must	be	made	as	 to	whether	 the	

investments	are	worth	 the	gains	considering	 the	already	
quite	good	performance	of	the	wild-type	mice	in	terms	of	
quantitative	 predictions	 (at	 least,	 for	 the	 panel	 of	 drugs	
considered	in	this	analysis).

Other applications for the 
human-CYP3A4-transgenic mouse model

Despite	the	results	of	this	meta-analysis,	the	benefits	of	
human-CYP3A4-transgenic	 mouse	 models	 for	 quanti-
tative	 predictions	 of	 the	 human	 PKs	 could	 potentially	
be	 further	 exploited	 using	 modern	 data	 analysis	 ap-
proaches.	More	in	depth	knowledge	of	PKs	in	genetically	
modified	 animals	 can	 be	 obtained	 using	 PK	 modeling.	
In	addition	to	finding	a	difference	in	exposure,	PK	mod-
eling	can	uncover	knowledge	on	the	underlying	PK	pro-
cesses	that	are	potentially	altered	by	drug	metabolizing	
enzymes.	The	human-CYP3A4-transgenic	mouse	model	
will	probably	be	more	representative	for	the	underlying	
PK	processes	for	human	CYP3A4.	The	human-CYP3A4-
transgenic	 mouse	 model	 is	 therefore	 likely	 to	 be	 more	
accurate	 in	 the	 prediction	 of	 drug–drug	 interactions	
(DDIs)	in	which	this	enzyme	plays	a	role.	It	allows	a	more	
evidence-based	approach	for	animal-to-human	extrapo-
lation.	 Two	 studies	 have	 applied	 population	 PKs	 and	
physiologically-based	 PK	 (PBPK)	 modeling	 approaches	
to	 analyze	 quantitative	 results	 generated	 in	 human-
CYP3A4-transgenic	 mouse	 models	 in	 order	 to	 predict	
human	exposure.20,21	We	described	the	extrapolation	of	
four	 compounds	 in	 human-CYP3A4-transgenic	 mouse	
models	to	humans	using	a	population	PK	approach.	The	
use	of	a	population	PK	approach	enabled	the	authors	to	
correct	 for	 species	 differences	 they	 assumed	 to	 be	 rel-
evant	 for	 the	compounds	concerned,	 resulting	 in	more	
accurate	 predictions	 of	 the	 human	 exposure	 with	 hu-
man-CYP3A4-transgenic	 compared	 to	 wild-type	 mouse	
models.	Zhang	et al.	used	a	PBPK	modeling	approach	in	
combination	with	a	boosting	effect	study	of	ritonavir	on	
NVS123	in	a	human-CYP3A4-transgenic	mouse	model.	
Hereby,	 not	 only	 the	 human	 exposure	 could	 be	 accu-
rately	 predicted,	 but	 a	 DDI	 involving	 CYP3A4	 was	 de-
scribed	as	well.	Choo	et al.	reported	that	under	specific	
conditions	the	transgenic	mouse	model	may	be	a	useful	
tool	to	predict	the	relative	contribution	of	hepatic	and	in-
testinal	metabolism.	They	anticipate	that	in	future	PBPK	
modeling	in	combination	with	in vitro	data	will	help	to	
clarify	the	utility	and	limitations	of	the	transgenic	mod-
els.	To	summarize,	PK	modeling	approaches	can	help	to	
correct	 for	 interspecies	differences	 that	are	expected	 to	
contribute	to	deviations	in	the	predictions.	Nevertheless,	
this	requires	prior	knowledge	of	interspecies	differences	
(e.g.,	 differences	 in	 gastrointestinal	 tract	 pH,	 enzyme	
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or	transporter	expression,	or	binding	partners	proteins)	
and	 therefore	 FIH	 dose	 predictions	 remain	 difficult.	
Human-CYP3A4-transgenic	 mouse	 models,	 extended	
with	 modeling	 approaches,	 are	 therefore	 probably	 best	
suited	to	more	accurately	predict	CYP3A4	inhibition	and	
induction	DDIs	in	a	quantitative	way,	for	compounds	for	
which	there	is	already	some	clinical	PK	data	is	available	
to	correct	the	human-CYP3A4-transgenic	mouse	models	
extrapolation	to	humans	and	validate	predictions.
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