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Abbreviations

3R  Replacement, Reduction, Refinement

ADME  Absorption, distribution, metabolism and excretion 

AOP  Adverse outcome pathway

BMDL  Benchmark dose lower bound 

BMR  Benchmark response

BMDLU  Benchmark dose upper bound 

LOAEL  Low observed adverse effect level

EST  Embryonic stem cell test

mESTc  Murine/mouse cardiac embryonic stem cell test

mESTn  Murine/mouse neural embryonic stem cell test

NAMs  New Approach Methodologies

NOAEL  No observed adverse effect level

NGRA  Next generation risk assessment

PBK model Physiologically based kinetic model

PFASs  Per- and polyfluoroalkyl substances 

QIVIVE  Quantitative in vitro to in vivo extrapolations

QSAR  Quantitative Structure Activity  Relationship

WEC  Whole embryo culture

ZET  Zebrafish embryo test
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'If you want to end the war then instead of sending guns send books, 

instead of sending tanks send pens, 

instead of sending soldiers send teachers'

 

Malala Yousafzai





Chapter 1
General introduction
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The use of chemicals in the society and traditional toxicity testing

Once upon a time most human needs were met with the use of materials directly available 

in the wild nature. People depended mainly on natural resources from where they extracted 

and used primary materials, such as wood, stone,  metals etc. Nowadays, the scenery has 

changed completely, where nearly everything in developed human societies is in one way or 

another involving the use of manmade chemicals. As such, the local supermarket, garden and 

pharmacy store trade a vast array of products containing chemicals, like shampoos, vitamin 

supplements, detergents, pesticides, medicine and many more. In the 20th century with the 

birth of the ‘the Chemical Age’, the volume of chemicals that are commercially available on a 

global scale, and in particular after the 1970s, have increased dramatically. As such, it is a 

recognized fact that chemicals play an important role in our lives, but at the same time, they 

may pose risks for human health and the environment (Institute of Medicine’s Roundtable 

on Environmental Health Sciences 2014; van Leeuwen CJ 2007). 

The science of toxicology  has served society by protecting humans and ecosystems from 

potential dangers due to harmful effects of chemicals. The main methodological tool 

used by toxicologists for the control of chemicals and their potential risks is known as risk 

assessment (Henry 2003; National Research Council Committee on the Institutional Means 

for Assessment of Risks to Public 1983; WHO 1999). Risk assessment is in fact a conceptual 

framework with which  scientists are able to determine the adverse effects of a chemical, as 

well as dose -response and exposure relationships, thereby enabling the characterization 

of the potential risk (Institute of Medicine’s Roundtable on Environmental Health Sciences 

2014) (Figure 1). In other words, the primary goal of risk assessment is to define, with as 

low uncertainty possible, the risk related to exposure to hazardous chemicals and establish 

acceptable exposure limits for humans and the environment (WHO 1999). 

From a regulatory perspective, chemical risk assessment is regulated by various legislative 

frameworks within the European Union, which has started back in the 1960’s (Henry 

2003). Many different categories of chemicals can be identified for which a separate 

regulation has been developed (see examples in Table 1). Traditionally, toxicity testing is 

relying primarily on animal bioassays, which have been so far a cornerstone of chemical 

safety evaluation. In essence, adverse biological responses are monitored after dosing 

homogenous groups of animals with toxicants at high levels (Krewski et al. 2009). The main 

objective is to identify exposure levels to the chemicals below which no adverse effects shall 

be expected. For the derivation of safety limits for humans, a point of departure (PoD) is 

defined from the animal data, which may be a NOAEL (no observed adverse effect level) or 

a BMD (benchmark dose) (Judson et al. 2011; Sand et al. 2017). PoDs are thereafter, divided 

by assessment factors in order to account for any uncertainties pertaining to intra- and 

interspecies variability, or more susceptible human subpopulations (ECETOC 2003; Falk-

Filipsson et al. 2007; WHO 1999).



1

In
tro

du
ct

io
n

13

FIGURE 1 An overview of the current Chemical Risk Assessment process, as based on animal data for most of the EU regulatory 

frameworks. Risk is a function of hazard and exposure. The main elements of the process are the: hazard identification, hazard 

characterization, exposure assessment and risk characterization. NOAEL: no observed adverse effect level, BMDL: benchmark dose 

lower bound; both determined based on the animal toxicity data in most of the cases (Created with Biorender.com). 

TABLE 1 Examples of EU Regulations for chemical substances.

Chemical Categories Regulation

Pesticides, plant protection products Regulation (EC) No 1107/2009

Biocides BPR Regulation (EU) No 528/2012

Industrial Chemicals REACH Regulation (EU) No 1907/2006

Food additives Regulation (EC) No 1333/200

Feed additives Regulation (EC) No 1831/2003

Veterinary Medicinal Products Regulation (EU) 2019/6

This approach is based on the notion that fundamental biological processes are similar 

across species to a satisfying extent, thereby allowing for such extrapolations (Varga et 

al. 2010). The inference that observations in animal experiments are relevant for human 

health has been so far fundamental not only to toxicology, but also to experimental 

biology and medicine (National Research Council Committee on the Institutional Means 

for Assessment of Risks to Public 1983). However, although hitherto animal studies 

have undoubtedly facilitated the understanding of such sciences and the toxic potential 

of chemicals, their relevance for human health risk assessment has been questioned 

(Krewski et al. 2010; Van Norman 2019a). On one hand, the animal-based observations 

are extrapolated to expected human responses at considerably lower exposure levels, 

let alone the very heterogenous genetically diverse human population compared to the 

inbred strains commonly used in these studies. Additionally, these standard toxicity tests 
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used widely within regulatory contexts provide only limited information on the mechanism 

of action, which is important for clarifying interspecies differences (NRC 2007). Despite 

this deeply rooted belief that animal models are the golden standard for predicting human 

toxicity (Ferreira et al. 2019; Gad ; Huff et al. 2008), several data illustrate otherwise (Bailey 

et al. 2014; 2015; Hackam and Redelmeier 2006; Olson et al. 2000; van Meer et al. 2012; Wang 

and Gray 2015) and hence, resulted in increasing scientific criticism within the community. 

A clear example comes from the pharmaceutical sphere, where ~45% of new drugs fail in 

human clinical trials, because of unexpected human toxicity (Van Norman 2019b). 

Next to the above, animal studies are extremely expensive and time-consuming, whereas 

the continued use of large numbers of animals for toxicity testing also raises serious ethical 

considerations. For example, only for the REACH Regulation on industrial chemicals, the 

initial estimate on required test animals was 3.9 million, if alternative methods would 

not have been accepted (Katinka van der Jagt 2004). In line, with the 3Rs principles on 

Replacement, Reduction and Refinement of animal use as defined by Russel and Burch in 

1959 (Tannenbaum and Bennett 2015), and considering the overall limitations of animal 

models as mentioned above, there is a clear requirement for implementing New Approach 

Methodologies (NAMs) in chemical safety evaluations.

The Next Generation Risk Assessment (NGRA)

An alternative paradigm for the chemical safety assessment was first presented in 2007 

by the U.S. National Research Council (NRC) with its ground-breaking report ‘Toxicity 

Testing in the 21st Century: A Vision and a Strategy’ (Krewski et al. 2010). According to 

NRC, modern toxicology should be based on well-designed in vitro assays that unravel 

perturbation of cellular responses and move away from using black box animal models. 

Many initiatives thereon, embraced this vision and joined forces in transforming toxicity 

testing: from apical endpoints at an organism level in animal assays to mechanistic 

endpoints, via understanding the underlying toxicity pathways in human cells and 

cell lines, or tissue surrogates (Basketter et al. 2012; Rovida et al. 2015). Eventually, the 

goal would be to maintain the exposure levels to toxic agents below the levels at which 

the cellular pathways could be substantially disturbed (Krewski et al. 2009).  This use of 

mechanistically based and high-throughput tests performed in such systems can cover a 

wide range of toxicity pathways and modes of action, and large concentration regimens 

can be applied. As such, they may provide adequate sensitivity for the detection of effects 

at human-relevant exposure levels, which cannot be obtained with the high-dose animal 

toxicity studies (Bhattacharya et al. 2011; Krewski et al. 2009). 

The complexity of the in vitro cell-based models can vary significantly. For example, within 

ToxCast and Tox21, US EPA focuses on toxicity predictions based on high-throughput 

screening with bioactivity profiling, aiming at identifying cellular pathways of toxicity and 

underlying mechanisms (Judson et al. 2011; Wambaugh et al. 2013). On the other hand, the 

more sophisticated models are the three dimensional cell cultures with more than one cell 
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line and the organ-on-a-chip technology, mimicking the in vivo microenvironment (Rim 

2019). In general, in vitro studies are not capable of detecting an adverse effect but rather 

biomarkers of effects, that will be indicators of pathology. 

As part of facilitating the move towards mechanistic toxicology the concept of Adverse 

Outcome Pathways (AOPs) emerged (OECD 2012). An AOP is conceptually a series of 

biological key events occurring sequentially: starting from a molecular initiating event, 

and resulting in an adverse outcome at higher levels of biological organization, such as a 

whole organism or even a population (Ankley et al. 2010; Bal-Price and Meek 2017; Vinken 

2013). In this sense, the AOP broadens the idea of ‘mode of action’ since it starts with a 

molecular event at a cellular level and can go up to the population level (Vinken 2013). 

During the last decades, scientists have made a noteworthy progress in developing 

alternative tests  for the realization of this vision and towards the elimination of animal 

testing (Carmichael et al. 2022a; Knudsen et al. 2015). Next to this, advances in in silico 

toxicology lead to the creation of a wide variety of computational tools that can complement 

in vitro toxicity assays. Important examples are techniques and models like read-across, 

structural alerts, QSARs (Quantitative Structure Activity Relationships) and machine 

learning. The main underlying assumption of such approaches is the relationship between 

a compound’s structure and its biological activity. As such, in silico predictions may relate 

to chemical toxicity, mechanisms or exposure (Myatt et al. 2018; Pawar et al. 2019; Raies 

and Bajic 2016). Other computation tools are toxicokinetic models that are used for the 

quantitative extrapolations of the in vitro data to the human situation (Basketter et al. 2012; 

Krewski et al. 2009). 

As a result of this concentrated effort to change chemical toxicity testing, the terms New 

Approach Methodologies (NAMs) and Next Generation Risk Assessment (NGRA) have 

emerged (ECHA 2017). On one hand NAMs represent the in vitro, in silico, and overall 

computational tools, which can be used in combination for the prediction of chemical 

hazard and risk assessment, whereas the term NGRA encompasses the overall vision of 

integrating this new type of information into chemical safety decision-making towards 

a human-focused testing paradigm (Ball et al. 2022; Carmichael et al. 2022a; Dent et al. 

2018; Dent et al. 2021a). 

Quantitative In vitro to In vivo extrapolation: QIVIVE 

The concept of QIVIVE with PB(P)K modelling

An essential component of NAMs is quantitative in vitro to in vivo extrapolation, a process 

known as QIVIVE (Adler et al. 2011; Bell et al. 2018; Chang et al. 2022; Henneberger et al. 2021; 

Yoon et al. 2012). With QIVIVE the in vitro concentration-effect relationships are linked to in 

vivo organ exposure, and thereafter, to equivalent human exposure, a process determined 

by the chemical’s toxicokinetic characteristics (Adler et al. 2011; Kramer et al. 2015; Punt 
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et al. 2011). Given that in vitro and in vivo exposure situations differ fundamentally, such 

extrapolations are complex and require the integration of toxicokinetics. For example, 

in the in vitro assays, the compound of interest is directly added to the assay medium, 

thereby allowing an apparently simpler exposure situation when compared to the in vivo 

situation. On the other hand, in a complete living organism the absorption, distribution, 

metabolism and excretion (ADME, or else toxicokinetics) processes determine the route 

from external exposure to the target organ (Jones and Rowland-Yeo 2013), whereas they 

are absent (or different) in an in vitro cell culture (Groothuis et al. 2015). As such, integration 

of toxicokinetics is a necessary element to complement the in vitro toxicity approaches, 

allowing for linking the concentrations tested to respectful doses, in a reverse dosimetry 

approach (Hartung 2018; Louisse et al. 2017; Punt et al. 2021a).

For the incorporation of toxicokinetics, the most advanced approach dictates the 

application of Physiologically Based (Pharmaco)Kinetic (PB(P)K) models (Figure 2). PBK 

models are sophisticated dosimetry models, simulating the ADME processes in the human 

body (or other organisms) (Jones and Rowland-Yeo 2013). Thus, they can be used to predict 

the systemic effective doses of substances at a specific target site, but also vice versa, with 

reverse dosimetry, for the prediction of external dose-responses in vivo starting from the in 

vitro concentration-response curves. In such models the body is described by compartments 

each of which represents a specific organ or tissue (e.g. liver, heart, kidney, muscle, spleen 

etc.), while blood flow governs the mass transfer across the body (Bois et al. 2010; Clewell 

and Clewell 2008; Kuepfer et al. 2016). They are constructed on the basis of four types of 

parameters: (a) physiological (e.g. cardiac output, blood perfusion rates, respiratory rate),  

(b) anatomical (e.g. body size, organ weights) parameters, which are species’ specific; (c) 

biochemical (metabolic rates), and (d) substance-specific physicochemical parameters 

(e.g. Kow, vapour pressure, molecular weight). The mathematical description is comprised 

of a set of differential equations, which can be numerically integrated by different software 

packages1 (Jongeneelen and Berge 2011). 

PBK models are mostly designed for a single (or a small group of) compound(s), and are 

tailored for the kinetics of these chemicals per se  (OECD 2021a; WHO 2010). They are 

commonly considered quite demanding with respect to experimental data needed for 

their parameterization, accurate calibration and verification  (Jamei 2016b; Lu et al. 2016a; 

Yang 2011). Such comprehensive data are often not available for non-drug (environmental 

and in commerce) chemicals (Breen et al. 2021), hampering as such the PBK application to 

data-poor substances. In addition, due to their complexity they often require mathematical 

and programming expertise (Bessems et al. 2014) and hence, their broader application 

and use from non-modelers is cumbersome. For instance, PBK modelling, is not applied 

for risk assessment purposes during the regulatory dossier evaluation of several chemical 

families (e.g. pesticides, biocides etc.) (Punt et al. 2017). 

1  Commonly used computer languages (differential equation solving): Berkeley Madonna, R, MATLAB, acsIX 
Paini, 2017 #127
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Alternatively, a more generic approach with the use of, user-friendly, ready-to-use PBK 

models (or platforms), which can be applied for many compounds, would facilitate to 

overcome these barriers. A generic PBK model shall be designed in such a way so as to be 

intuitive to the user, and able to predict toxicokinetics with a minimum parameterization 

(Basketter et al. 2012; Leist et al. 2014). Generic PBK models contain a pre-defined 

compartmental structure incorporating species-specific physiological parametrization, 

whereas chemical-specific parameters may be derived from animal/human-based in 

vitro biokinetic assays combined with in silico models (e.g. QSARs2) (Louisse et al. 2020a; 

Paini et al. 2019; Punt et al. 2021b). Enclosed QSARs predict model parameters based on 

the molecular structure and physicochemical properties of the compounds (Peyret et al. 

2010; Rodgers and Rowland 2007), overcoming the issue of in vivo kinetic data paucity for 

parameterization. 
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FIGURE 2 Schematic representation and example simulation of a PBK model (Created with Biorender.com).

A series of commercially available software packages or platforms, with at least some of 

these generic characteristics, are already developed and are widely used especially in the 

pharmaceutical field during the process of drug development. Typical examples are the 

commercial PBK platforms SimCyp, as well as GastroPlus, able to predict in vivo kinetics with 

in vitro and in silico (QSARs) information. The QSARs are used for the prediction of processes 

such as metabolism, blood protein binding and lipophilicity (Creton et al. 2009). These 

software packages are applied in the regulatory processes for the prediction of drug kinetics 

in populations (Punt et al. 2018). However, these models are rather complex and the model 

structure and use are not always directly accessible to the user (Bessems et al. 2014). Other 

examples of generalized PBK models for pharmaceutical agents are Poulin and Theil (2002), 

focused on drug discovery prior to in vivo studies and PKSim by Willmann et al. (2005).

2  QSAR: Quantitative Structure Activity  Relationship
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Initiatives to develop generic models for non-pharmaceutical, and data-poor compounds 

in terms of toxicokinetic data availability, have also been taken. Important examples of 

generic models/platforms are CEFIC LRI IndusChemFate3, MegGen and US-EPA High-

Throughput Toxicokinetics (httk)-R package4, PLETHEM5, the web-based toolbox from 

Wageningen University, The Netherlands6 (Punt et al. 2021b) and the MCRA 9 (implemented 

in the EuroMix toolbox) (Tebby et al. 2020).

IndusChemFate is a generic, freely available PBK model, written in Visual basic and 

distributed as an MS Excel spreadsheet-file. It incorporates QSARs, developed to predict 

partitioning model parameters of a substance solely from physicochemical characteristics 

(Jongeneelen and Berge 2011), overcoming in this way the problem pertaining to availability 

of such parameters.  IndusChemFate was developed for screening purposes of new data-poor 

industrial chemicals (volatile & semi-volatile organic substances) following three potential 

exposure routes: inhalation, oral and dermal. The implementation of the model in Excel 

makes it relatively easy and intuitive to users. MEGen is a web application for the rapid 

construction and documentation of custom-built deterministic PBK model code. MEGen 

comprises a parameter database and a model code generator that produces code for use in 

several commercial software packages and one that is freely available (Bessems et al. 2014). 

Httk is in practice an R- package for PBK modelling developed by the US EPA, which may be 

used to calculate steady-state blood levels of substances (Pearce et al. 2017). The package 

contains a one-compartment and a 4-compartment model. PLETHEM stands for Population 

Lifecourse Exposure-To-Health-Effects Model Suite. This computational platform is 

currently being developed by ScitoVation scientists in collaboration with US EPA. PLETHEM 

will provide a freely available, open-source, user-friendly platform for rapid modelling 

across the source-to-outcome continuum using only in silico and in vitro data.

Nevertheless, many of these modelling strategies have not been evaluated on their aspect 

of simulating chemical kinetics over a wide span of chemical physicochemical properties, a 

fundamental pre-condition for the employment of generic PBK models in hazard identification 

(OECD, 2021).  

QIVIVE examples with PBK model-based reverse dosimetry

Several examples of QIVIVE with PBK model-based reverse dosimetry have been so far 

published for different toxicity endpoints and various compounds, like for example: 

neurotoxicity (Forsby and Blaauboer, 2007 (Kasteel et al. 2021; Noorlander et al. 2022; 

Zhao et al. 2019), cardiotoxicity (Li et al. 2021), nephrotoxicity (Abdullah et al., 2016), 

hepatotoxicity (Chen et al. 2018b; Yu et al. 2020) Klein et al., 2016), and developmental 

toxicity (Li et al. 2017a; Louisse et al. 2015; Louisse et al. 2010; Scholze et al. 2020; Strikwold 

et al. 2017; Strikwold et al. 2013). These studies aimed at deriving a predicted human toxicity 

3  http://cefic-lri.org/toolbox/induschemfate/
4  https://cran.r-project.org/web/packages/httk/index.html
5  http://www.scitovation.com/plethem.html
6  https://www.qivivetools.wur.nl/

http://cefic-lri.org/toolbox/induschemfate/
https://cran.r-project.org/web/packages/httk/index.html
http://www.scitovation.com/plethem.html
https://www.qivivetools.wur.nl/
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dose-response curve and/or a PoD to be used for risk assessment and illustrated the potential 

of combining in vitro results and PBK modelling in deriving human toxicity standards. 

Reverse-dosimetry PBK modelling has been also applied on high-throughput toxicity 

screening of chemicals in the chemical prioritization program of US EPA ToxCast, on the 

basis of in vitro assays on metabolism and protein binding and QSAR physical-chemical 

properties (Rotroff et al. 2010; Wambaugh et al. 2018; Wambaugh et al. 2015; Wetmore et 

al. 2013; Wetmore et al. 2012). The tool specifically used and developed for the prediction 

of kinetics was the httk model (see above for more information). 

Problem Definition

Notwithstanding the major efforts to eliminate, or at least reduce, animal experiments for 

toxicity testing, most of the regulatory frameworks within the EU still require a considerable 

amount of animal data for chemical safety assessment (Fentem et al. 2021). Exception is 

the Cosmetics Regulation where since 2013, testing cosmetic products or their ingredients 

on animals is banned. On the contrary, for industrial chemicals, the European competent 

authority ECHA (European Chemicals Agency), following for example compliance checks 

of chemical registration dossiers, is requesting companies to perform additional animal 

studies, even if initially it has been considered scientifically acceptable to apply NAMs. 

Before regulatory authorities accept NAMs, they have to be convinced that they can 

provide equivalent or maybe improved protection of human health than the animal tests 

replaced. As such, it is essential to gain confidence with experience and consequently, 

more published examples on how NAMs may be used in risk assessment would facilitate 

their acceptance (Knight et al. 2021). Accordingly, gaining more experience on QIVIVE 

with PBK modelling, as an essential component of NAMs, with the creation of case studies 

and proof-of-principle approaches is pivotal for moving towards the Next Generation Risk 

Assessment.

Outline of the thesis

The overall purpose of this thesis was to explore the application of PBK models for QIVIVE 

purposes. The first goal, described in Section I, was to evaluate the performance of generic 

PBK models with incorporated QSAR model parameterization, in terms of their capacity to 

predict toxicokinetics of a wide span of chemicals, regarding certain physicochemical and 

biological properties (Chapter 2). This Chapter compares the capacity of two generic PBK 

models, a simpler versus a more complex model, to predict the toxicokinetics of chemicals 

with a wide span of chemical and biological properties.

The goal of Section II was to investigate QIVIVE for the endpoint of developmental toxicity 

with the use of data from alternative embryotoxicity assays. This requires the scaling of in 

vitro observed dose-response characteristics to in vivo fetal exposure. In Chapter 3, three 

different classes of developmentally toxic chemicals were chosen as model compounds. 
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QIVIVE was performed with the use of a generic PBK model (IndusChemFate), whereas 

chemical maternal blood concentrations were used as a proxy for fetal exposure. In 

Chapter 4, the approach was extended with the incorporation of physiological alterations 

occurring in the maternal body during gestation, placental transfer, and fetal growth. 

Placental transfer was studied in vitro with the BeWo assay. The application of the new PBK 

model for predicting in vivo effective dose levels from in vitro studies was illustrated with in 

vitro-based PBK modelling reverse dosimetry.

In Section III, a NAMs case study is presented for the ‘forever chemicals’, per- and 

polyfluoroalkyl substances (PFASs). Chapter 5 introduces the reader to the ‘PFASs problem’ 

and reviews the main issues related to modulation of lipid homeostasis by the two most 

common congeners PFOA and PFOS. The number of existing PFASs is estimated to be 

around a few thousands, and for many of these in vivo toxicity data are lacking. For this 

reason, application of NAMs can be useful for the screening of PFASs and the identification 

of compounds to be prioritized for a more comprehensive hazard characterization. This is 

explored in Chapter 6, where the effects of 18 PFASs on triglyceride levels and expression 

of selected genes was studies in human HepaRG cells. Based on these in vitro readouts, used 

as biomarkers for liver toxicity and lipid perturbations, Relative Potency Factors (RPFs) 

are derived. As a next step in Chapter 7, the feasibility of predicting PFAS-induced lipid 

disturbances and hepatotoxicity, by a combined in vitro-in silico approach, is assessed. In 

this QIVIVE case study, in vitro concentration-response data obtained in HepaRG cells are 

converted into dose-response curves, with physiologically based kinetic (PBK) model-

facilitated reverse dosimetry.

Chapter 8 summarizes the results of the previous chapters of the thesis and provides a 

discussion on its contribution to QIVIVE, NAMs and NGRA. In addition, future perspectives 

on how to take the field forward are provided.
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SECTION I

Abstract

Toxicology is moving away from animal testing towards in vitro tools to assess chemical 

safety. This new testing framework requires a quantitative method, i.e. kinetic modelling, 

which  extrapolates effective concentrations in vitro to a bioequivalent human dose 

in vivo and which can be applied on “high throughput screening” of a wide variety of 

chemicals. Generic physiologically based kinetic (PBK) models help account for the role 

of toxicokinetics in setting human toxic exposure levels. Furthermore these models may 

be parameterized based only on in silico QSARs and in vitro metabolism assays, thereby 

circumventing the use of in vivo toxicokinetics for this purpose. Though several such 

models exist their applicability domains have yet to be comprehensively assessed. This 

study extends previous evaluations of the PBK model IndusChemFate and compares it 

with its more complex biological complement (“TNO Model”). Both models were evaluated 

with a broad span of chemicals, varying regarding physicochemical properties. The results 

reveal that the “simpler” performed best, illustrating that IndusChemFate can be a useful 

first-tier for simulating toxicokinetics based on QSARs and in vitro parameters. Finally, 

proper quantitative in vitro to in vivo extrapolation conditions were illustrated starting with 

acetaminophen induced in vitro cytotoxicity in human HepaRG cells.
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Generic PBK models

Introduction

Chemical toxicity testing for the prediction of human safety is currently going through 

an important transformation. The testing system, which is traditionally based on high-

dose animal experiments, is shifting towards a system using primarily in vitro cell-based 

assays combined with computational methods (Carmichael et al. 2022a; Dent et al. 2018; 

Dent et al. 2021a; Fentem et al. 2021). In practice, applying in vitro assays in chemical 

safety assessment pre-supposes their quantitative in vitro to in vivo extrapolation (QIVIVE), 

in order to allow for the derivation of a ‘point of departure’ (Adler et al. 2011; Blaauboer 

2008; Yoon et al. 2012). Inevitably this requires linking of in vitro observed concentration-

effect levels to in vivo organ exposure, determined by the chemical’s physicochemical and 

toxicokinetic characteristics (Adler et al. 2011; Kramer et al. 2015; Punt et al. 2011). 

The integration of toxicokinetics in QIVIVE can be facilitated by the use of physiologically 

based (pharmaco-)kinetic (PBK or PBPK) models (Adler et al. 2011; Bessems et al. 2014; 

Bouvier d’Yvoire et al. 2007; Hartung et al. 2011; Louisse et al. 2017; Punt et al. 2021b; Punt 

et al. 2011). PBK models provide biologically realistic organ dosimetry models, simulating 

ADME7 processes within the physiological concept of a whole organism, i.e. the blood flow, 

organ specific metabolism, growth, etc., and therefore predict a chemical’s internal dose at 

target organs. Such models require two types of parameters: species-specific physiological 

(e.g. cardiac output, blood perfusion rates organ weights) and substance-specific (e.g. 

uptake and metabolic rates, distribution partition coefficients) (Bois et al. 2010; OECD 

2021b; Paini et al. 2021b; Peyret and Krishnan 2011; WHO 2010) .

Usually specific PBK models are fine-tuned to the kinetics of individual compounds. 

Developing such models requires sufficient kinetic data enabling detailed parameterization 

and accurate calibration and verification (Jongeneelen and Berge 2011; Lu et al. 2016a; 

Yang 2011). Commonly, such data  are not available for most non-drug chemicals, 

thereby hampering PBK application to data-poor chemicals. Alternatively, a generic 

PBK approach may be applied instead. Generic PBK models have a pre-defined generic 

compartmental structure incorporating species-specific physiological parametrization, 

whereas chemical-specific parameters may be derived from animal/human-based in vitro 

biokinetic metabolism assays combined with in silico models (QSARs8) (Paini et al. 2019; 

Punt et al. 2021a; Punt et al. 2021b). Here the enclosed QSARs predict partitioning model 

parameters based on the molecular structure and physicochemical properties of the 

compounds (Peyret et al. 2010; Rodgers and Rowland 2007), overcoming the issue of in vivo 

kinetic deposition data paucity for parameterization. 

Previously, we explored the capacity of the generic PBK model IndusChemFate 

(Jongeneelen and Berge 2011), to simulate the toxicokinetics of developmental toxicants 

and their metabolites for QIVIVE with promising results (Fragki et al. 2022; Fragki et al. 

2017). IndusChemFate was selected as being a simple-to-parameterize model, i.e. only 

7  ADME: Absorption, Distribution, Metabolism and Excretion
8  QSAR: Quantitative Structure Activity  Relationship
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needing chemical specific physicochemical properties (QSAR-predicted) in combination 

with in vitro metabolism parameters, to describe chemical toxicokinetics. IndusChemFate’s 

kinetic model structure and parameterisation was taken as the starting point for the 

Population Life-course Exposure To Health Effects Model (PLETHEM, Pendse et al. 2020) 

and MCRA-9 (Tebby et al. 2020; van der Voet et al. 2020) PBK models. Additionally, during 

an evaluation of various generic modelling approaches (Pletz et al. 2020), IndusChemFate 

was classified, next to US EPA’s Httk (Pearce et al. 2017) to comply to WHO (2010) and OECD 

(2021b) criteria for Good Modelling PBK Practice for regulatory purposes. Nevertheless, 

IndusChemFate  has not yet been evaluated on its aspect of simulating chemical kinetics 

over a wide span of chemical physicochemical properties, a fundamental pre-condition for the 

employment of generic PBK models in hazard identification (OECD 2021b).  

In this work the performance evaluation of  IndusChemFate was extended with a wider 

span of chemicals regarding certain physicochemical properties, and a QIVIVE case-study 

based on hepatotoxicity is presented. In parallel, it was studied whether IndusChemFate’s 

model concept needs further refinement by comparing its performance with a more 

complex, generic PBK model (TNO Model, developed by the TNO9 authors). The TNO 

model was chosen because of its similar multi-compartment (perfusion limited) PBK 

structure and complementation to  IndusChemFate’s alleged physiological-kinetic 

limitations, with regards to 1.absorption kinetics (IndusChemFate: empirical one-

compartmental absorption kinetics vs. TNO model: experimental stomach → colon 

transport with concomitant absorption from the gastrointestinal lumen into the small 

and large intestines), 2. organ:blood distribution (IndusChemFate: bound to lipid/water 

partitioning vs TNO model: more complex lipid/water/protein organ:blood partitioning on 

the basis of a chemical’s unbound blood concentration) and 3. intra-hepatic distribution 

(IndusChemFate: well-stirred perfusion limitation vs TNO model: more refined  dispersion 

modelling). Both models were run in parallel for single per os gavage exposure to substances. 

In order to allow for a meaningful comparison, selected chemicals differed over a wide 

range of  physicochemical properties, i.e. lipophilicity (being the main determinant for the 

kinetics of lipophilic compounds), ionization at blood pH (as determinant of organ:blood 

partitioning) and plasma protein binding (as determinant for renal clearance). Their 

predictive capability was evaluated by a comparison with existing in vivo experimental 

data, as it is traditionally done for PBK models (OECD 2021b; Paini et al. 2019). Finally, to 

illustrate the application of both models to calculate a human equivalent dose, a proof-of-

principle hepatotoxicity QIVIVE was applied for one of the chemicals with data from the 

human hepatoma cell line, HepaRG. To this end, both generic models were run in order to 

translate the in vitro concentration-response curves and corresponding thresholds for liver 

toxicity into in vivo dose-response curves and BDM(L)s for hepatotoxicity. The respective 

thresholds were compared with existing information on liver toxicity. In the end, the 

surplus value of generic PBK models for data-poor chemicals is discussed. 

9  TNO: Netherlands Organization for Applied Scientific Research
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Methodology

IndusChemFate basic concepts

IndusChemFate is a freely available multi-route PBK model developed under the CEFIC 

LRI umbrella, specifically for data poor volatile and semi-volatile industrial chemicals. 

It is written in Visual basic and it is distributed as an MS Excel spreadsheet-file. The 

model details have been specifically described earlier and hence, for detailed information 

the reader is referred to the original user manual of the model (http://cefic-lri.org/wp-

content/uploads/2014/03/User-manual-IndusChemFate-version-2.00-final21-11-2011.

pdf), (Jongeneelen and Berge 2011) and to Fragki et al. (2017). 

In short, regarding the absorption of a gavage bolus IndusChemFate contains as empirical 

defaults 100% absorption (fraction absorbed: 1) and an absorption rate constant of 3 hr-1. 

Organ:blood partitioning is perfusion based with with organ:blood partition coefficient 

being QSAR calculated based on water/lipid content. As a default IndusChemFate only takes 

hepatic metabolism into account, with biotransformation being described by Michaelis-

Menten saturable metabolism according to Ramsey and Andersen (1984), close to the well-

stirred model for hepatic elimination (Rowland et al. 1973), with a substance exhibiting a 

flow-limited distribution and the liver being effectively a homogenous compartment (Pang 

et al. 2019). Chemical metabolism to specific metabolites is implemented in a sequential way: 

the parent compound is metabolized into a primary metabolite, followed by metabolism 

of the primary metabolite into a secondary metabolite, up to four subsequent metabolites. 

For each of the formed metabolites IndusChemFate contains a PBK sub-model. Default 

renal excretion depends on Glomerular Filtration Rate (GFR), water solubility and user 

defined re-absorption. Enterohepatic circulation is adopted by means of a bypass from the 

liver to the intestines by biliary excretion followed by re-absorption at a user defined rate. 

IndusChemFate does not take  plasma protein binding specifically into account, but it is 

considered included to some extent in the QSAR algorithms for blood:air and blood:tissue 

partitioning, given that these are derived from experimental observations.

TNO model basic concepts

The TNO model consists of 15 tissue compartments: adipose, blood, bone, brain, colon, 

kidney, liver, muscle, pancreas, skin, small intestine, spleen, stomach and “remaining” 

organs. It was developed by TNO using R software to allow prediction of blood, (target) 

organ, urine and exhaled air concentrations of a range of chemicals and their primary 

metabolites on the basis of physicochemical properties and in vitro data. The TNO Model 

is an interactive R shiny application that is available upon request. This interactive tool 

allows simulating single or multiple exposure routes, short or long duration, single or daily 

exposure. The underlying PBK model structure (Figure 1) includes children and adults of 

all ages (Edginton et al. 2006; Haddad et al. 2001; ICRP 2002; Levitt et al. 2007).Though, as 

IndusChemFate, the TNO model allows for dermal and inhalatory absorption,  only its oral 

route of exposure of is of relevance here.
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FIGURE 1 Schematic representation of the PBK model that 

is used in the TNO Model.

In the TNO model the oral absorption is based on a per os bolus administered in the stomach 

followed by transport further down the gastrointestinal (GI) tract from the stomach into 

the lumen of the duodenum, jejunum, ileum and colon as modelled by Thelen et al. (2011); 

(2012), using physiological parameters as presented by Wilson (1967), Jönsson et al. (2002) 

and Willmann et al. (2004). Throughout this transport, absorption from the lumen into the 

GI tract tissues takes place with the specific rate constant being determined by the lumen 

surface and a substance-specific, experimentally determined, permeability transport 

(Papp) coefficient. 

In the TNO Model intrahepatic distribution is represented by means of a the more complex 

hepatic dispersion model, as previously described by Roberts and Rowland (1986), which 

is considered to more adequately reflect physiologic reality of the organ (Sodhi et al. 

2020). Renal clearance is determined by the GFR (Schwartz et al. 1987) and the unbound 

concentration in blood. Enterohepatic circulation is not considered in the TNO Model. 

The TNO model is limited to the simulation of the parent compound only, i.e. it does not 

incorporate metabolite PBK sub-models.  

The distribution into different tissues is predicted based on the calculations as presented 

by Peyret et al. (2010), with organ:blood partition coefficients being QSAR calculated based 

on water/neutal lipid/phospholipid/protein binding content. 

In the TNO Model protein binding is considered for the calculation of the tissue:blood 

partition coefficient, hepatic and renal clearance. Corresponding model equations are 

provided in the Supplementary Material SM1. Table 1 illustrates the main differences and 

commonalities of IndusChemFate and the TNO model. 
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TABLE 1 Comparison of the two PBK models.

IndusChemFate TNO Model

Format & 

model language

Visual Basic, application in MS EXCEL interactive R shiny application

Exposure routes oral (bolus), inhalation, dermal oral (bolus), intravenous (IV) inhalation, dermal

Species human, rat, mouse human, rat, mouse, guinea pig

Compartments 12:Blood,  Lung, Heart, Brain, Skin, Adipose, 

Muscles, Bone, Bone marrow, Stomach & 

Intestines (lumped), Liver and Kidney

15: Blood, Lung, Heart, Brain, Skin, Adipose, 

Muscles, Bone, Bone marrow, Stomach, Intestines, 

Liver, Kidney, Spleen and Pancreas

Oral absorption Default: 100% (option: user defined 

chemical specific value) 

In vitro measure permeability coefficient (Papp, 

chemical specific) 

Absorption rate 

constant

Default: 3 hr-1 (option: user defined 

chemical specific value) 

Default: Generic transport of food bolus throughout 

the GI tract lumen compartments (stomach  

duodenum ileum  colon, according to transport rates 

(Thelen et al. 2011; Thelen et al. 2012)(all chemicals, in 

combination with chemical specific uptake from the 

lumen into the GI tract compartments as determined 

by a permeability coefficient, see above)     

Organ:blood 

distribution

QSAR (DeJongh et al. 1997); based on 

water & lipid content in tissues & the 

logKow (chemical specific)

QSAR (Peyret et al. 2010); each matrix: cell tissue, 

interstitial fluid, plasma, erythrocytes, consists of 

water, neutral lipids, phospholipids (neutral and 

charged) and proteins (chemical specific).

Metabolism Sequential, saturable Michaelis-Menten 

metabolism, according to Ramsey and 

Andersen (1984), based on the well-

stirred model (Rowland et al. 1973); 

hepatic, but possible for various organs 

(chemical specific)

Sequential & serial, saturable Michaelis-Menten 

metabolism, according to dispersion model of 

Roberts and Rowland (1986), hepatic (chemical 

specific)

Renal 

excretion

QSAR (Jongeneelen and Berge 2011)  

based GFR, depending on logKow (pH 

7.4) water solubility resp. tubular re-

absorption (chemical specific).(option: 

user defined  value for the fraction 

tubular reabsorption)

Based on GFR, depending on the plasma fraction 

unbound (Fup)(chemical specific)

Enterohepatic 

circulation 

Optional: Excretion from the liver to the 

intestines via biliary excretion, followed 

by reabsorption 

Not considered

Plasma 

protein binding

Not specifically considered. Considered for the calculation of the tissue:blood 

partition coefficients, hepatic and renal clearance 

(chemical specific) 

PBK model input parameters

Given the generic structure of the models the set of parameters required for their 

application are only chemical-specific and pertain to their physico-chemical 

characteristics and metabolism. Physicochemical parameters (octanol-water partition 

coefficients, vapor pressure, water solubility etc.) were obtained from QSARs or open 

databases (Supplementary Material SM2). If an experimental value was available this was 
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preferred over the estimated value. In both models, physicochemical properties are used 

for the calculation of organ:blood partition coefficients, as well as the renal clearance. 

Required biochemical parameters (V
max 

and K
M

), were obtained in most of the cases 

from the open literature or  derived from in vitro measured clearance (ratio V
max

/K
M

) 

(Supplementary Material SM2). The values selected from in vitro biokinetic assays were 

scaled to the relevant in vivo units for both models in accordance to Barter et al. (2007). 

In the absence of in vitro measured hepatic clearance of the parent compound, respective 

parameter estimation was performed by fitting the hepatic ratio V
max

 /K
M 

as a first order 

metabolic rate constant to in vivo kinetic data, separately for each PBK model.  

PBK model simulations and substance selection

For the purpose of this research, 12 substances were selected (see Results) belonging to 

different chemical groups (e.g. medicine, cosmetics, pesticides etc.). Given the differences 

of the two models, compounds with a range in lipophilicity (corrected for ionization, i.e. 

logD -2 to 6.53), ionization at blood pH (0 to 1), and plasma protein binding (0 to 1) were 

employed, in order to allow for a meaningful comparison. These three physicochemical 

characteristics are expected to have a significant influence on the kinetic properties of 

most chemicals. It should be noted here that all the elements considered for the substance 

selection are referring only to the parent compounds and not to their metabolites (with the 

exception of parabens). 

Both PBK models were used to simulate the time-course toxicokinetics of the selected 

chemicals. The models were applied for oral single exposures, primarily for humans, 

with the exception of the parabens were no oral toxicokinetic data were available; thus, 

information from rat toxicokinetic studies were used. Model performance was evaluated 

based on the model’s capability to predict the following toxicokinetic parameters in 

the blood after a single exposure: maximum concentration (Cmax), time needed for 

reaching the Cmax, i.e. Tmax, and the area under the concentration time curve (AUC), 

after comparison with experimentally derived data. Experimental data from two different 

studies per chemical were used, when available. The simulations were performed 

here only for the parent substance, with the exception of parabens, where the primary 

metabolite was taken into consideration. Predicted chemical specific tissue:blood partition 

coefficients (PCs) were compared to experimentally derived PCs from rat studies, given 

the lack of data from humans.

Local sensitivity analysis

A local sensitivity analysis was performed to assess the influence of the model parameter 

variation on the model output (Cmax blood, AUC blood, Cmax liver, AUC liver). The 

parameters selected were these expected to markedly affect the outcome of the predicted 

toxicokinetics and they were chemical-specific. Each parameter was step-wise decreased 

by 5% to the original parameter value (Li et al. 2017b). The corresponding chemical 

concentrations were simulated over a single oral dose. The sensitivity analysis was 
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performed by calculating the sensitivity coefficients according to Evans and Andersen 

(2000), using the following equation:

  m pSC
p m

 ∆
= × ∆ 

where SC is the sensitivity coefficient, m is the model output (e.g., AUC), Δm is the change 

of the model output (chosen here a 5% decrease), p is the value of the parameter of interest 

(e.g., logP), and Δp is the change of the parameter value of interest. Each sensitivity 

coefficient was categorized according to the relative influence of each parameter and 

subdivided in three impact levels according to Yoon et al. (2009): low: |SC| < 0.2; moderate: 

0.2 ≤ |SC| < 0.5; high: 0.5 ≤ |SC|. 

PBK model-based reverse dosimetry for liver toxicity

In vitro hepatotoxicity of one of the selected compounds (acetaminophen: APAP) on human 

HepaRG (mainly hepatocyte like) cells (Pery et al. 2013) was used as a starting point for 

the QIVIVE illustrative example. Both IndusChemFate and the TNO Model were applied 

in a reverse-dosimetry approach so as to convert the in vitro hepatotoxicity concentration-

response curve of acetaminophen to an equivalent in vivo dose-response curve. The in vivo 

dose metric selected for relating exposure to toxicity was the maximal concentration in 

the liver tissue (Cmax), since acetaminophen hepatotoxicity is a result of acute poisoning 

(Bunchorntavakul and Reddy 2013). An in vitro biokinetic distribution model was applied 

for the estimation of the chemical’s free concentration in the culture medium (Kramer 

2010; Kramer et al. 2012). The model uses physicochemical properties of the compound to 

predict its in vitro distribution. Subsequently,  all calculated free concentrations, instead 

of the nominal concentrations, were considered equal to the hepatic Cmax levels and 

transformed to the corresponding external exposure using the two PBK models. The 

calculated equivalent external doses were analysed using the Benchmark Dose (BMD) 

approach, with the software PROAST (Slob 2002), so as to obtain the predicted in vivo dose-

response curves. For a quantitative comparison with the usual range of acetaminophen 

human overdose, leading to hepatotoxicity (Bunchorntavakul and Reddy 2013; Jaeschke et 

al. 2011), 90% confidence intervals were estimated for the underlying BMD at 10% effect size 

(BMD
10

) and at 20% effect size (BMD
20

) (EFSA 2017). The confidence intervals are denoted 

by the lower (BMDL) and upper (BMDU) limits. As a benchmark response HepaRG cell 

viability was used as recorded with the in vitro assay (Pery et al. 2013).

Results 

Chemical selection 

The twelve selected substances are presented in Table 2 whereas Figure 2 illustrates the 

range in lipophilicity (logD -2 to 6.5), ionization at blood pH (0 to 1), and plasma protein 

binding (0 to 1) taken into account in evaluating IndusChemFate’s applicability domain. 
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Hepatic metabolism is the main elimination route for most of the chosen compounds 

(Table 2) with the exception of amoxicillin (AMOX) with low hepatic metabolism (~30%), 

excreted renally mainly as a parent substance (Arancibia et al. 1980). Next to hepatic 

metabolism urinary excretion is the prime excretion route (for the parent or metabolites), 

apart from two compounds amiodarone (AMD) (Deng et al. 2011) and cyclosporin A (CyA) 

(Schwinghammer et al. 1991), which undergo enterohepatic removal and (partly) excretion 

via the faeces. Nevertheless, these two processes refer to the metabolites, since the parent 

compounds are extensively metabolized prior to excretion. Amongst these, five substances 

were included based also on specific toxicity to the liver: acetaminophen (APAP) (Mutlib 

et al. 2006), valproic acid (VPA) (Jawien et al. 2017), triclosan (TCS) (Wang et al. 2019), 

cyclosporin A (CyA) (Klintmalm et al. 1981) and amiodarone (AMD) (Buggey et al. 2015).

TABLE 2 Selected substances: chemical structure, physicochemical and biological properties, metabolism and excretion pathways. 

Substance Chemical Structure MW1
Fraction ionized 

pH 7.42
F

up 
3 LogD

 
4 Metabolism5 Excretion 5 Modelled Pathways

Amoxicillin (AMOX) 365.4 0.6 0.8 -2 Hepatic, <30%. Main metabolites: Amoxicilloic 

acid and Amoxicillin piperazine-2,5-dione.

Renal, mostly excreted as parent 

in urine, <30% as metabolites

AMOX → all metabolites

Theophylline (THEO) 180.2 0.3 0.6 -0.16 Hepatic, main elimination route, complex 

metabolism.

Renal, as metabolites, ~ 10% 

unchanged in urine.

THEO→ all metabolites

Caffeine (CAF) 194.2 0 0.64 -0.07 Hepatic, main elimination route; primarily 

xanthil (CYPs- paraxanthine ~80%, theobromine 

~12%, theophylline ~ 4%) & after, uracil derivatives. 

More than 25 metabolites identified in humans.

Renal, as metabolites, <1% 

unchanged in urine.

CAF→ all metabolites 

Acetaminophen (APAP) 151.2 0.01 1 0.46 Hepatic, main elimination route; glucuronidation 

(APAP G) & sulfonation (APAP S). Small fraction: 

NAPQI10 <5%, toxic highly reactive metabolite, 

excreted as APAP mercapurate & APAP cysteine 

(APAP cys), detoxification with GSH.

Renal, as metabolites, <5% 

unchanged in urine

APAP→ all metabolites 

Valproic acid (VPA) 144.2 1 0.8 0.49 Hepatic, main elimination route; glucuronidation 

(VPA G, 30-50%), β-oxidation (~30%). Hepatotoxic 

reactive metabolite is the VPA- 4-ene (4-ene-valproic 

acid)

Renal, as metabolites, <3% 

unchanged in urine.

VPA→ all metabolites 

Cyclosporin A (CyA) 1202.6 0 0.062 1 Hepatic (also some intestinal), main elimination 

route; over 30 metabolites.

Biliary (feces) excretion of 

metabolites (90% of dose, 

excreted mainly as metabolite); 

enterohepatic re-absorption. 

Only 6% of dose in urine. Total 

parent excretion: <1%

CyA→ all metabolites

10 NAPQI: N-acetyl-p-benzoquinone imine; Unconjugated NAPQI: binds covalently to proteins (cysteine 
groups), induces cell death & necrosis, liver failure
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Hepatic metabolism is the main elimination route for most of the chosen compounds 

(Table 2) with the exception of amoxicillin (AMOX) with low hepatic metabolism (~30%), 

excreted renally mainly as a parent substance (Arancibia et al. 1980). Next to hepatic 

metabolism urinary excretion is the prime excretion route (for the parent or metabolites), 

apart from two compounds amiodarone (AMD) (Deng et al. 2011) and cyclosporin A (CyA) 

(Schwinghammer et al. 1991), which undergo enterohepatic removal and (partly) excretion 

via the faeces. Nevertheless, these two processes refer to the metabolites, since the parent 

compounds are extensively metabolized prior to excretion. Amongst these, five substances 

were included based also on specific toxicity to the liver: acetaminophen (APAP) (Mutlib 

et al. 2006), valproic acid (VPA) (Jawien et al. 2017), triclosan (TCS) (Wang et al. 2019), 

cyclosporin A (CyA) (Klintmalm et al. 1981) and amiodarone (AMD) (Buggey et al. 2015).

TABLE 2 Selected substances: chemical structure, physicochemical and biological properties, metabolism and excretion pathways. 

Substance Chemical Structure MW1
Fraction ionized 

pH 7.42
F

up 
3 LogD

 
4 Metabolism5 Excretion 5 Modelled Pathways

Amoxicillin (AMOX) 365.4 0.6 0.8 -2 Hepatic, <30%. Main metabolites: Amoxicilloic 

acid and Amoxicillin piperazine-2,5-dione.

Renal, mostly excreted as parent 

in urine, <30% as metabolites

AMOX → all metabolites

Theophylline (THEO) 180.2 0.3 0.6 -0.16 Hepatic, main elimination route, complex 

metabolism.

Renal, as metabolites, ~ 10% 

unchanged in urine.

THEO→ all metabolites

Caffeine (CAF) 194.2 0 0.64 -0.07 Hepatic, main elimination route; primarily 

xanthil (CYPs- paraxanthine ~80%, theobromine 

~12%, theophylline ~ 4%) & after, uracil derivatives. 

More than 25 metabolites identified in humans.

Renal, as metabolites, <1% 

unchanged in urine.

CAF→ all metabolites 

Acetaminophen (APAP) 151.2 0.01 1 0.46 Hepatic, main elimination route; glucuronidation 

(APAP G) & sulfonation (APAP S). Small fraction: 

NAPQI10 <5%, toxic highly reactive metabolite, 

excreted as APAP mercapurate & APAP cysteine 

(APAP cys), detoxification with GSH.

Renal, as metabolites, <5% 

unchanged in urine

APAP→ all metabolites 

Valproic acid (VPA) 144.2 1 0.8 0.49 Hepatic, main elimination route; glucuronidation 

(VPA G, 30-50%), β-oxidation (~30%). Hepatotoxic 

reactive metabolite is the VPA- 4-ene (4-ene-valproic 

acid)

Renal, as metabolites, <3% 

unchanged in urine.

VPA→ all metabolites 

Cyclosporin A (CyA) 1202.6 0 0.062 1 Hepatic (also some intestinal), main elimination 

route; over 30 metabolites.

Biliary (feces) excretion of 

metabolites (90% of dose, 

excreted mainly as metabolite); 

enterohepatic re-absorption. 

Only 6% of dose in urine. Total 

parent excretion: <1%

CyA→ all metabolites

10 NAPQI: N-acetyl-p-benzoquinone imine; Unconjugated NAPQI: binds covalently to proteins (cysteine 
groups), induces cell death & necrosis, liver failure
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Substance Chemical Structure MW1
Fraction ionized 

pH 7.42
F

up 
3 LogD

 
4 Metabolism5 Excretion 5 Modelled Pathways

Lidocaine (LID) 234.3 0.7 0.2 1.93 Hepatic, main elimination route, complex 

metabolism.

Renal, as metabolites, <10% 

unchanged in urine.

Renal excretion is believed to be 

via non-ionic diffusion.

LID→ all metabolites

Methylparaben (MePa) 152.1 0.1 na 1.96 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. MePa→ primary 

metabolite PHBA

Propylparaben (ProPa) 180.2 0.1 na 3.04 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. ProPa→ primary 

metabolite PHBA 

Butylparaben (ButPa) 194.2 0.1 na 3.57 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. ButPa → primary 

metabolite PHBA 

Triclosan (TCS) 289.6 0.35 0.01 4.58 Hepatic, main elimination route. Predominant 

metabolites are glucuronide & sulphate 

conjugates.

Renal, mainly as metabolites; 

feces (10%), as parent.

TCS→ all metabolites

Amiodarone (AMD) 645.3 0.92 0.04 6.53 Hepatic, main elimination route; one main 

metabolite, desethyl-amiodarone (DEA), equally 

toxic to the parent.

Biliary (feces) excretion of 

metabolites; only 1% unchanged 

in urine, negligible renal 

excretion of metabolite, only 

metabolites identified in bile.

AMD→ DEA (major 

metabolite)

1 MW: Molecular weight taken from PubChem https://pubchem.ncbi.nlm.nih.gov/ 
2 Calculated based on pKa/pKb values as predicted with MarvinSketch (ChemAxon) and logP from EpiSuite.
3 Fraction Unbound, information for each individual source for every chemical provided in the Supplementary 
Material
4 Data taken from EPI (Estimation Programs Interface) Suite™ https://www.epa.gov/tsca-screening-tools/epi-
suitetm-estimation-program-interface
5 Information take as follows APAP: Mutlib et al. (2006); Pery et al. (2013), AMOX: Arancibia et al. (1980); Szultka 
et al. (2014), LID: Alexson et al. (2002); FDA (2010),  VPA: Argikar and Remmel (2009); Conner et al. (2018); 
Johannessen and Johannessen (2003), CAF: Arnaud (2011), THEO: Arnaud (2011), AMD: (Chen et al. 2015; Deng et 
al. 2011; Trivier et al. 1993), CyA: Pichard et al. (1996); Schwinghammer et al. (1991), Parabens: Aubert et al. (2012), 
TCS: Sandborgh-Englund et al. (2006).
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Substance Chemical Structure MW1
Fraction ionized 

pH 7.42
F

up 
3 LogD

 
4 Metabolism5 Excretion 5 Modelled Pathways

Lidocaine (LID) 234.3 0.7 0.2 1.93 Hepatic, main elimination route, complex 

metabolism.

Renal, as metabolites, <10% 

unchanged in urine.

Renal excretion is believed to be 

via non-ionic diffusion.

LID→ all metabolites

Methylparaben (MePa) 152.1 0.1 na 1.96 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. MePa→ primary 

metabolite PHBA

Propylparaben (ProPa) 180.2 0.1 na 3.04 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. ProPa→ primary 

metabolite PHBA 

Butylparaben (ButPa) 194.2 0.1 na 3.57 Hepatic, main elimination route; main 

metabolite is the hydrolysis product 

p-hydroxybenzoic acid (PHBA). Minor metabolite 

the glucuronide conjugate of the parent & PHBA.

Renal, mainly as PHBA. ButPa → primary 

metabolite PHBA 

Triclosan (TCS) 289.6 0.35 0.01 4.58 Hepatic, main elimination route. Predominant 

metabolites are glucuronide & sulphate 

conjugates.

Renal, mainly as metabolites; 

feces (10%), as parent.

TCS→ all metabolites

Amiodarone (AMD) 645.3 0.92 0.04 6.53 Hepatic, main elimination route; one main 

metabolite, desethyl-amiodarone (DEA), equally 

toxic to the parent.

Biliary (feces) excretion of 

metabolites; only 1% unchanged 

in urine, negligible renal 

excretion of metabolite, only 

metabolites identified in bile.

AMD→ DEA (major 

metabolite)

1 MW: Molecular weight taken from PubChem https://pubchem.ncbi.nlm.nih.gov/ 
2 Calculated based on pKa/pKb values as predicted with MarvinSketch (ChemAxon) and logP from EpiSuite.
3 Fraction Unbound, information for each individual source for every chemical provided in the Supplementary 
Material
4 Data taken from EPI (Estimation Programs Interface) Suite™ https://www.epa.gov/tsca-screening-tools/epi-
suitetm-estimation-program-interface
5 Information take as follows APAP: Mutlib et al. (2006); Pery et al. (2013), AMOX: Arancibia et al. (1980); Szultka 
et al. (2014), LID: Alexson et al. (2002); FDA (2010),  VPA: Argikar and Remmel (2009); Conner et al. (2018); 
Johannessen and Johannessen (2003), CAF: Arnaud (2011), THEO: Arnaud (2011), AMD: (Chen et al. 2015; Deng et 
al. 2011; Trivier et al. 1993), CyA: Pichard et al. (1996); Schwinghammer et al. (1991), Parabens: Aubert et al. (2012), 
TCS: Sandborgh-Englund et al. (2006).



2

C
H

A
PTER 2

40

SECTION I

FIGURE 2  Information on three physico-chemical 

characteristics of the selected chemicals: plasma protein 

binding, lipophilicity and ionization at physiological pH 

of 7.4 (blood).

Estimation of tissue:blood partition coefficients

For the distribution of substances between the blood and organs, both models incorporate 

QSARs than can perform predictions based solely on the chemical’s molecular structure. 

In the simpler IndusChemFate’s QSAR the distribution between the blood and tissues 

is described as a function of water and lipid content of tissues, with the n-octanol:water 

partition coefficient (logK
ow

) and the acid:base dissociation constant (pKa) as input 

parameters. Ionization is taken partly into account, since the logK
ow

 at different pHs 

(blood & skin) (or else logD) is applied (Jongeneelen and Berge 2011). Hence, based on this 

model concept only the non-ionized fraction of the chemical will diffuse into the tissues. 

On the other hand, the TNO Model has implemented a more sophisticated QSAR (Peyret et 

al. 2010), previously designed for environmental chemicals and pharmaceuticals, which 

takes into consideration the role of more tissue components other than lipid and water. 

This unified algorithm is based on the principle that the concentration of a chemical in a 

‘biological matrix’ is equal to the sum of its concentration in all respective compartments 

of the matrix. Each matrix (cell tissue, interstitial fluid, plasma, erythrocytes) consists of 

water, neutral lipids, phospholipids (neutral and charged) and proteins, with ionizable 

substances existing in an equilibrium between the ionized and non-ionized species (for 

details see Supplementary Material SM 1.5).

For six of the selected chemicals, experimental PC rat adipose tissue data were available. 

IndusChemFate-predicted rat PCs for the adipose tissue clearly were in better accordance 

with the in vivo measured experimental data compared to the TNO model-predicted 
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PCs (Figure 3), the TNO model calculating much lower PCs (min/max IndusChemFate/

TNO ratio: 1.5 – 178, for details, see Supplementary Material SM3, Table 1). As in the rat 

calculated human adipose PCs were much higher in IndusChemFate than in the TNO 

model (for details, see Supplementary Material SM3, Table 1). 

With regard to the other tissues, PC-predictions of both models were comparable (ratio 

<5-fold in most cases) and  in line with experimentally observed values (see Figure 4), CyA 

being a clear exception to the rule. The TNO model  highly underpredicted the PCs for 

CyA, which is also reflected in the overall estimates for this substance (see next section). In 

concordance with the rat IndusChemFate calculated human PCs were significantly higher 

than those of the TNO model (see Supplementary Material SM3, Figure 1). 

FIGURE 3 Comparison of the PBK model adipose 

tissue:blood partition coefficients (PCs)(green circles: 

IndusChemFate, red triangles: TNO Model) with data 

from experimental observations in the rat. The line of 

identity (slope equal to 1) is drawn, in order to depict 

the absolute differences between model predicted and 

experimentally determines PCs. Experimental results 

are taken as follows; CAF: Yun and Edginton (2013), 

APAP: Pery et al. (2013), VPA: Kobayashi et al. (1991), 

CyA: Kawai et al. (1998), AMD: Plomp et al. (1985).

Evaluation of the PBK-model predictions

Time-course kinetics
Except for metabolism both IndusChemFate and the TNO model can fully be calibrated 

on the basis of literature values (physiology), in silico (QSAR-based partition coefficients: 

PCs), experimentally determined absorption (TNO model) or default absorption kinetics 

(IndusChemFate: fraction absorbed and the absorption rate constant) and renal clearance. 

Given these constraints the hepatic Michaelis Menten metabolism parameters V
max

 and K
M

 

may (preferably) be obtained from of in vitro → in vivo scaling or by fitting the model to 

(the time-course) of in vivo  kinetics. Of course the latter procedure is to be considered 

as conditional given the constraints mentioned above, i.e. all other parameters assumed 

to be known. In addition in the case of IndusChemFate re-parametrisation of the default 

absorption parameters remains optional.



2

C
H

A
PTER 2

42

SECTION I

FIGURE 4 PBK-predicted and in vivo measured tissue:blood partition coefficients in the rat. Substances presented in the order 

of increasing lipophilicity (logD: -2 to 6.5). Experimental results taken from the  following sources; CAF: Yun and Edginton (2013), 

APAP: Pery et al. (2013), VPA: Kobayashi et al. (1991), CyA: Kawai et al. (1998), LID: Rodgers et al. (2005), AMD: Plomp et al. 

(1985).

For eight of the twelve selected chemicals metabolism parameters could be obtained from 

the literature, i.e. THEO, CAF, APAP, VPA, CyA, LID, TCS and AMD, leaving the parameters 

of AMOX and the parabens, MePa, ProPa and ButPa to be fitted on the in vivo kinetic data. 

Furthermore, for all chemicals human in vivo kinetic verification data were available, with 

the exception of the rat data for parabens. Simulations were made for the parent substance 

and not for their metabolites, except for the family of parabens where the sum of parent 

and primary metabolite (p-hydroxybenzoic acid, PHBA) was also modelled (because of 

toxicokinetic studies reporting on the total radioactive dose, thereby not discriminating 

between the parent paraben and the metabolite (Aubert et al. 2012).

The modelling was conducted by using in vitro measured intrinsic clearance after appropriate 

scaling (Barter et al. 2007). In the absence of in vitro measured hepatic elimination of the 

parent compound, respective parameter estimation was performed by fitting the hepatic 

ratio V
max

/K
M 

as a first order metabolic rate constant to in vivo data (AMOX and parabens).

Figure 5 shows the applicability of both the IndusChemFate and the TNO model for the 

time course of single-dose gavage kinetics of the chemicals (one of the kinetic studies 

per chemical). Graphs of the additional simulations (second kinetic study per example 

chemicals) are presented in the Supplementary Material (Supplementary Material SM4). 

With regard to the chemicals for which metabolism parameters could be obtained from 

the literature, IndusChemFate simulated the in vivo human THEO, CAF, APAP, CyA, and 

LID kinetics reasonably well for a generic PBK model. For comparison, the TNO model 
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simulated THEO, CAF, APAP, and LID, kinetics, as well, failing, however, in describing CyA 

kinetics. In more detail, in the case of APAP, IndusChemFate to some extent overestimated 

absorption kinetics, while slightly underestimating clearance from the blood. Here the 

TNO model described better the absorption kinetics, however, also underestimated the 

clearance from the blood. Both models slightly underestimated THEO kinetics. AMD 

kinetic profile was not so well predicted by both models. Neither IndusChemFate nor the 

TNO model were able to describe the kinetics of VPA and TCS, even after recalibration of 

the metabolism parameters, indicating the limitations of both model concepts to describe 

the human kinetics of these chemicals. In the case of AMOX and parabens calibrating the 

unknown (ratio) of the model parameters V
max

 and K
M

 led to a good description of human 

kinetics in the case of IndusChemFate, but (as expected because of a lack of metabolite PBK 

sub-models) not the TNO model. 
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FIGURE 5 Blood time-course PBK simulations. Smooth lines: models calibrated on measured intrinsic clearance in vitro and 

human data (circle, triangle symbols). Dashed lines: models calibrated on in vivo kinetic data; Amoxicillin: human data, Parabens: 

rat data). Black lines represent IndusChemFate simulations and golden lines TNO Model simulations. In vivo data represent mean 

values and the bars indicate the standard errors of mean (AMOX, VPA) or standard deviation (APAP). Theophylline (THEO): 

250 mg, single oral dose, two healthy volunteers (Dadashzadeh and Tajerzaden 2001). Caffeine (CAF): 100 mg, single oral dose 

(Zandvliet et al. 2005). Acetaminophen (APAP): 325 mg, single oral dose, eight healthy volunteers (Volak et al. 2013). Cyclosporin 

A (CyA): 875 mg, single oral dose, two bone marrow transplantation patients (Bertault-Pérès et al. 1985). Lidocaine (LID): single 

dose given as a 3-min intravenous infusion of 3 mg/kg bw, five healthy volunteers (Grillo et al. 2001). Amiodarone (AMD): 1400 

mg, single oral dose, one patient with cardiac arrhythmias (Kannan et al. 1982). Amoxicillin (AMOX), 500 mg, single oral dose, 

four healthy volunteers (Adam et al. 1982). Parabens: three parabens and their primary metabolite p-hydroxybenzoic acid (PHBA), 

100 mg/kg bw, single gavage dose, rat experimental data (Campbell et al. 2015) (original data from Aubert et al. 2012). Valproic 

acid (VPA): 500 mg, single oral dose, 14 healthy volunteers (Ibarra et al. 2013). Triclosan (TCS): 3.75 mg, single oral dose, healthy 

volunteers. Substances presented in the order of increasing lipophilicity (logD: -2 to 1).
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Toxicokinetic parameters’ comparison: Cmax, Tmax and AUC

Figure 6 shows the Cmax and AUC values as calculated from the two PBK-models (for 

actual values: see Supplementary Material SM5) together with respective values from the 

in vivo studies (per toxicokinetic study per chemical). Adequate predictions of the Cmax, 

Tmax and AUC parameters were performed by both models for THEO, CAF, APAP, AMOX 

(ratio <3-fold). IndusChemFate underpredicted the Cmax for LID, when administered via 

an intravenous route, as it is not fit for this administration11. For CyA, as already shown 

with the PCs, the TNO Model overpredicted the Cmax values and the substance’s clearance 

(faster than experimentally recorded). For the highly lipophilic AMD, predicted blood 

Cmax values were 3-fold and 4-fold lower with the TNO Model and IndusChemFate, 

respectively, when compared to the in vivo data (Kannan et al. 1982), and both models 

illustrated an earlier Tmax. The peak concentration in the blood was reached somewhat 

later in vivo (Tmax ~4.5 hours) than with the PBK model estimations (Tmax: IndusChemFate 

2.5 hrs, TNO Model 2 hrs). 

As expected (see above) for the highly ionized VPA in blood pH, IndusChemFate’s Cmax 

calculations do not fit well the experimental data, being larger by approximately a factor of 

10. Peak blood estimates by the TNO model were closer to the observed data, but the model 

overpredicted the chemical’s clearance. TCS’s blood Cmax was also more than an order 

of magnitude underpredicted by both PBK models. For VPA, additional simulations were 

performed this time with in vivo data on the hepatic elimination clearance (Ibarra et al. 

2013). Nevertheless, only a slightly better fit to the data could be achieved for the AUC, with 

the blood peak concentrations being underestimated by 7- and 5-fold with IndusChemFate 

and the TNO Model, respectively. Similarly, adaptations of the enterohepatic circulation 

rate (with IndusChemFate) did not seem to improve the model predictions (data not 

shown). The same was seen for TCS, with no substantial improvements of the model 

calculations, after adaptation of the hepatic clearance. 

FIGURE 6 Comparison of the PBK model predicted blood peak concentrations (Cmax) and Area Under the Curve (AUC) with 

experimental observations from different toxicokinetic studies for the selected chemicals (green circles: IndusChemFate, red 

triangles: TNO Model). Each circle or triangle represents a Cmax or AUC from a kinetic study and the respective PBK-model 

prediction (one or two measurements for each chemical depending on the number of available studies; for the numerical values see 

Supplementary Material SM5).

11  IndusChemFate was forced into IV predictions by increasing maximally the absorption rate of LID.
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For the family of parabens rat toxicokinetic data were used in order to optimize PBK model 

performance, since human data were not available. Parabens are rapidly hydrolysed in 

mammals to their primary metabolite PHBA which was also modelled here together with 

the parent substance. IndusChemFate-predicted Cmax values were 3-, 7- and 5-fold 

higher than in vivo measurements, for MePa, ProPa, and ButPa, respectively. 

Sensitivity analysis

A sensitivity analysis was performed for one of the tested chemicals (APAP), which was 

chosen for the QIVIVE hepatotoxicity case study (see below). The most sensitive parameters 

for the AUC predictions (blood and liver) and for both PBK models appear to be the V
max

 

and K
M

 of the hepatic metabolism as indicated in Figure 7. In addition, in the case of 

IndusChemFate, AUC estimations also largely influenced by the renal re-absorption, 

which is in essence determined by the logD and water solubility of the chemical. With the 

TNO Model, plasma protein binding seems also to have a high impact on blood AUC values. 

For the prediction of the Cmax in both compartments the absorption rate seems to have 

the highest influence in IndusChemFate, whereas for the TNO model parameters V
max

, K
M

, 

logP, Fup were categorized as ‘moderate impact level’.

FIGURE 7 Normalized sensitivity coefficients of the two PBK models for the predicted Cmax and AUC of acetaminophen (APAP) 

in both blood and liver.

QIVIVE for hepatotoxicity of acetaminophen 

For the QIVIVE example the liver toxicant APAP was selected because of the availability 

of 1. a well defined dose-response relationship for in vitro cytotoxicity, being a relevant 

proxy for in vivo hepatic toxicity and 2. an adequate human PBK model. HepaRG cells 

(Pery et al. 2013) were used as a starting point for the derivation of human equivalent 

dose-response curves with PBK model-based reverse dosimetry (Figure 8). Results with 

the in vitro biokinetics model revealed that APAP is expected to be almost 100% free in the 

in vitro medium, and hence no further corrections were considered necessary; as such the 

nominal levels were used for the reverse dosimetry approach. The PBK-estimated oral 

human equivalent 90% confidence intervals for the BMD
10

 and BMD
20

 were compared with 
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the data from APAP acute poisoning. The results were found to be very close to the reported 

range of human overdose with APAP, which is between 150 and 500 mg/kg bw (Jaeschke et 

al. 2011) (Table 3).

FIGURE 8 Predicted human dose-response curves for the hepatotoxicity of acetaminophen (APAP) and corresponding BMD 

analysis. Predicted curves were obtained from HepaRG in vitro concentration-response data with PBK modelling reverse 

dosimetry. The liver Cmax was chosen as dose metric for relating exposure to hepatotoxicity. BMD analysis was performed by model 

averaging for the 10 and 20% (left and right graph, respectively) effect size. A. Application of IndusChemFate. B. Application of the 

TNO Model.

TABLE 3 Model averaged 90% confidence intervals (BMDL-BMDU) at a 10% and 20% effect size for hepatotoxicity, as determined 

by a BMD analysis of the in vitro-based PBK modelling reverse dosimetry predictions. BMD analysis performed with PROAST 

software. Acetaminophen human overdose data are taken from Jaeschke et al. (2011). In vitro toxicity data on HepaRG cells 

are taken from Pery et al. (2013).

IndusChemFate TNO Model

Human 
overdose range 

(mg/kg bw)

Oral equivalent 90 % confidence intervals for the underlying human BMD
10

 and BMD
20 

(mg/kg bw)

BMDL
10

BMDU
10

BMDL
20

BMDU
20

BMDL
10

BMDU
10

BMDL
20

BMDU
20

47 85 110 165 93 163 210 312 150-500
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Discussion

The aim of this work was to extend a previous evaluation of the applicability domain of 

the generic PBK mode IndusChemFate and to compare this with that of a more complex 

model, i.e. a model incorporating more detailed organ:blood partition, liver metabolism 

and absorption kinetics (TNO model). Finally, the objective was to illustrate the potential 

application of IndusChemFate for QIVIVE purposes. Both models run with incorporated 

organ:blood and renal excretion QSARs and require minimum parameterization, 

stemming from in silico and in vitro sources. Substances selected for the simulations had 

a broad span in lipophilicity, blood ionization and blood protein binding, and where in 

parallel eliminated primarily via the liver. Together with findings reported elsewhere, 

this paper clearly shows the pros and contras in using generic PBK models in simulating 

chemical toxicokinetic in a data-limited environment. Furthermore, a PBK model-based 

reverse dosimetry for the hepatotoxicity of APAP is presented as a case study on QIVIVE 

with the use of such PBK models.

Both IndusChemFate and the TNO model consist of multiple compartments and contain 

a pre-defined structure with incorporated physiological and anatomical parameters for 

various species. Generated concentration-time curves (blood or organs) are perfusion-

limited. Incorporated QSARs predict the distribution partition coefficients based on 

compound-specific physicochemical characteristics. Their most fundamental model-

structure differences pertain to the distribution QSARs, hepatic metabolism, and blood 

protein binding consideration, which a priori were expected to be advantageous for 

the TNO Model, in terms of toxicokinetic predictions. Yet, the results demonstrate that 

in nine (AMOX, THEO, CAF, APAP, CyA, MePA, ProPa, ButPA, LID) out of twelve cases, 

IndusChemFate could straightaway be calibrated on literature data, to give a satisfactory 

description of available kinetic (time-course) data. However, IndusChemFate was not able 

to describe VPA, TCS and AMD kinetics. The more complex TNO model gave a satisfactory 

description of AMOX, THEO, CAF, APAP and LID kinetics. Comparison of the predictions 

with in vivo human data illustrated less than 3-fold differences with respect to the Cmax, 

Tmax and AUC parameters for AMOX, THEO, CAF, and APAP. Simulations of the three 

parabens and their primary metabolite by IndusChemFate, for the rat, also showed 

reasonable predictions. This was not the case for the TNO Model, but this can be explained 

by the fact that (as other generic PBK models) this model is not fit for the metabolite’s PBK 

predictions given the lack of metabolite kinetics and  renal clearance for the metabolite, 

placing the IndusChemFate in a more advantageous position.

For the very lipophilic AMD, Cmax calculations were with a small underestimation by 

both models, whereas visual inspection of the whole predicted and observed blood time-

course curves did not suggest a good overlay. This could possibly be the result of the known 

extensive tissue distribution of AMD, that warrants a substance-specific permeability-

limited PBK model (Algharably et al. 2019; Lu et al. 2016b), which does not fit the current 

PBK model concept. PBK estimates of lower accuracy were recorded for VPA and TCS, 
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with both Cmax and AUC underpredicted. Both models failed to provide a better fit to 

the empirical values, even after adaptation of the hepatic clearance, suggesting that both 

generic model concepts cannot describe the toxicokinetics of these chemicals, probably 

because of a lack of specific elements within the models, like active organ:blood transport 

processes. Another explanation for the failed predictions could be the incorporated QSARs 

for the calculation of the tissue:blood partition coefficients. For example, in the case of 

VPA both models predict much more chemical entering the tissues compared to what is 

recorded in vivo. As such, it cannot be excluded that the use of other distribution QSARs, for 

example Schmitt (2008b) or Rodgers et al. (2005); Rodgers and Rowland (2006), may have 

been more appropriate here. Nevertheless, the evaluation of other available distribution 

QSARs is beyond the scope of this paper and the default calculators were used as currently 

incorporated in the PBK models. It is acknowledged, however, that for the continuation 

of this work specific attention on the applied distribution QSARs shall be given when such 

generic PBK models are employed. In particular, their selection may be decided on a case-

by-case basis, in accordance with the physicochemical characteristics of the substance of 

interest and the applicability domain of the respective QSAR, when this is defined (see 

for example the recent paper by Punt et al. 2022). It shall also be noted again that the 

experimental PCs shown here are from rat and not from human data.

Overall, it seems that, within the applicability domain of the investigated compounds 

and the available data (blood concentrations) the use of a model structure beyond that of 

IndusChemFate does not offer added value.

Regarding the chemical-specific parameterization, both models are solely based on in 

silico and in vitro data. Mainly QSARs are used for deriving physicochemical properties, 

whereas in vitro data provide for example information on hepatic metabolism (Louisse 

et al. 2020a). For in vitro hepatic clearance, although several methods are currently 

available, guidance for performing such studies is lagging behind, hampering as such 

their systematic characterization and harmonization (Gouliarmou et al. 2018). Intrinsic 

clearance values for the same chemical, determined in different hepatocyte studies, were 

recently found to have a very high variation, ranging by more than one order of magnitude 

for most substances included in that study (Louisse et al. 2020a). Parameterization with 

high variation would substantially affect the toxicokinetics predictions of the PBK models, 

underpinning the importance for the standardization of the in vitro biokinetic assays.

With respect to the derivation of QIVIVE based (chronic) Human Equivalent Doses (HED) 

the extrapolation of  (preferably human) organ specific in vitro toxicity to “steady state” 

human organ kinetics is mandatory. Clearly, a priori, PBK models comply here, however 

classical 1- and 2-compartment models also may apply here  (when combined with organ 

specific partitioning within the “steady state” central compartment). In this context, when 

calibrated solely on in silico and in vitro metabolism data, both approaches have been shown 

to be able to describe basic in vivo kinetics. In this context Wambaugh et al. (2018) describe 

the applicability of in silico/in vitro calibrated rodent 1- and 2-compartment modelling in 
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estimating in vivo observed the C
max

/AUC for 48 compounds (pharmaceuticals and others) 

after single dose administration. Similar findings have been reported for 2- and 3- 

compartment PBK models for example by Wambaugh et al. (2015) (PBK model consisting 

of the gastrointestinal tract, liver and rest of the body, calibrated on 74 pharmaceuticals 

and 11 other compounds in the rat), and Kamiya et al. (2021); (2019; 2020) (PBK model 

consisting of gastro-intestinal tract, liver, kidney and rest of the body, calibrated on 246 

industrial chemicals in the rat) and for multi-compartment PBK models like for example 

by Punt et al. (2021a); (2022) (calibrated on 44 chemicals in the rat) and Fragki et al. (2017) 

(calibrated on 12 compounds in the rat). However, the modelling of human kinetics as 

shown in this manuscript only was presented in Wambaugh et al. (2015) (11 compounds). 

This stresses the need for additional analyses using human kinetic data as proposed by 

Breen et al. (2021) and (Sayre et al. 2020), using the above mentioned PBK models.

An important topic to be mentioned is the expected accuracy of the PBK model predictions 

(Shebley et al. 2018). Naturally, generic models cannot be expected to predict toxicokinetics 

as precisely as specific PBK models, fulfilling the commonly applied acceptability criterion 

for predicted values to be within two-fold of the observed values (WHO 2010). This 

criterion is prescribed for PBK models designed for a single or small group of chemicals, 

usually in a data-rich environment, where they can be properly evaluated and calibrated 

to fit experimental data. Generic PBK models by definition, may have lower accuracy, but 

a much larger applicability domain, and can be run with low parameterization. Although 

currently no consensus exists on how to evaluate the ‘goodness of fit’ for such generic 

models, a difference of up to a 10-fold in PBK-estimated dose metrics, compared to the in 

vivo observations, has often been recorded (Abdullah et al. 2016; Breen et al. 2021; Pletz et 

al. 2020; Punt et al. 2021b). Differences of such degree are within the intervals of biological 

variation (Janer et al. 2008a). Though it might be argued that IndusChemFate simulations 

in nine out of twelve compounds are within accepted variability of data underlying current 

chemical safety assessment additional analyses are needed to confirm this result, as 

well as to define the specific modifications needed to satisfactorily describe the kinetics 

of compounds like VPA and TCS. It shall be mentioned that in a recent evaluation of 

predictive performance of such generic PBK models for a large number of chemicals, Punt 

et al. (2022) proposes a quantitative criterion for the Cmax parameter: a 5-fold difference 

(predicted vs observed) is considered adequate, whereas a 10-fold difference, although less 

precise, is still seen as relevant. 

The final part of this work was to illustrate the potential application of generic PBK 

models for QIVIVE. For this end, an in vitro concentration response curve for cytotoxicity 

of HepaRG cells was transformed into an equivalent dose-response curve by PBK model-

based reverse dosimetry. APAP was selected as model compound since its toxicokinetics 

were well-predicted by both PBK models. The predicted BMDL-BMDU intervals based on 

data from HepaRG cells were in line with the reported ranges for human overdose (150-500 

mg/kg bw) (Jaeschke et al. 2011), associated with severe hepatotoxicity. It is acknowledged 
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that in vivo cell viability may not be the immediate endpoint for predicting human hepatic 

toxicity or failure. Nevertheless, cytotoxicity is often considered the main hepatotoxicity 

readout (Albrecht et al. 2019), and has been employed in several other PBK-facilitated 

reverse dosimetry examples (Chen et al. 2018a; Gilbert-Sandoval et al. 2020; Ning et al. 

2019a). It shall be mentioned though that prior to QIVIVE, the in vitro endpoints adequately 

reflecting the expected in vivo toxicity, as well as the appropriateness of the in vitro model 

shall be carefully considered (Knudsen et al. 2015). The HepaRG cell line chosen here is a 

unique model for studying hepatoxicity, cause it retains important liver features, like the 

expression of many metabolizing enzymes (Andersson et al. 2012). APAP exhibits this toxicity 

due to a highly reactive metabolite, NAPQI (Mutlib et al. 2006). Since the HepaRG cell model 

contains a metabolizing system, it is possible that the observed in vitro cytotoxicity, is at least 

partly due to the formation of NAPQI in the system. It is, however, acknowledged that this 

remains a hypothesis that needs to be verified with experimental data.

In conclusion, the results of this study suggest that generic PBK models with a basic pre-

defined structure are a useful tool for simulating first tier toxicokinetics of chemicals, 

with minimum parameterization, stemming from in vitro and in silico sources, whereas the 

development of bespoke probabilistic PBK models for use in a thorough in vitro/in silico- 

based risk assessment could be justified only for high priority chemicals. Nevertheless, the 

amount of chemicals applied was limited, and hence, more substances shall be evaluated 

according to the format laid down in this manuscript.  

Future research should focus on defining better the applicability domain of such models, 

and developing guidance criteria for their performance capacity. This could lead, for 

example, in the establishment of a QSAR algorithm that will define their prediction 

potential, based on substance’ physicochemical and biological properties. For start, 

in a data-poor environment, a minimal PBK model may suffice  as a first-tier tool to 

simulate mammalian toxicokinetics. Additional processes for any chemical of interest, 

like enterohepatic circulation or active-transport uptake mechanisms, may be added only 

when biologically plausible and experimental data allow their numeric identification. 

Generic PBK model testing may initially be based on the average kinetics, integrating 

inter-individual variability at a later stage.  



2

C
H

A
PTER 2

52

SECTION I

Acknowledgements

The authors acknowledge Yvonne Staal, National Institute for Public Health and the 

Environment (RIVM), Bilthoven, The Netherlands, for the critical reading of the paper and 

valuable comments.

Funding

This work was supported by Cosmetics Europe as part of the Long Range Science Strategy 

programme and the European Chemical Industry Council.

Disclosures of interest

The authors report no conflicts of interest.



2

A
pp

lic
ab

ili
ty

 o
f g

en
er

ic
 P

BK
 m

od
el

lin
g 

in
 c

he
m

ic
al

 h
az

ar
d 

as
se

ss
m

en
t

53

Generic PBK models

References

Abdullah R, Alhusainy W, Woutersen J, Rietjens IM, Punt A. 2016. Predicting points of departure for risk 

assessment based on in vitro cytotoxicity data and physiologically based kinetic (pbk) modeling: The case 

of kidney toxicity induced by aristolochic acid i. Food and chemical toxicology : an international journal 

published for the British Industrial Biological Research Association. 92:104-116.

Adam D, de Visser I, Koeppe P. 1982. Pharmacokinetics of amoxicillin and clavulanic acid administered alone and 

in combination. Antimicrob Agents Chemother. 22(3):353-357.

Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, 

Bal-Price A et al. 2011. Alternative (non-animal) methods for cosmetics testing: Current status and future 

prospects-2010. Archives of toxicology. 85(5):367-485.

Albrecht W, Kappenberg F, Brecklinghaus T, Stoeber R, Marchan R, Zhang M, Ebbert K, Kirschner H, Grinberg M, 

Leist M et al. 2019. Prediction of human drug-induced liver injury (dili) in relation to oral doses and blood 

concentrations. Archives of toxicology. 93(6):1609-1637.

Alexson SE, Diczfalusy M, Halldin M, Swedmark S. 2002. Involvement of liver carboxylesterases in the in vitro 

metabolism of lidocaine. Drug metabolism and disposition: the biological fate of chemicals. 30(6):643-647.

Algharably EAH, Kreutz R, Gundert-Remy U. 2019. Importance of in vitro conditions for modeling the in vivo dose 

in humans by in vitro-in vivo extrapolation (ivive). Archives of toxicology. 93(3):615-621.

Andersson TB, Kanebratt KP, Kenna JG. 2012. The heparg cell line: A unique in vitro tool for understanding drug 

metabolism and toxicology in human. Expert Opin Drug Metab Toxicol. 8(7):909-920.

Arancibia A, Guttmann J, González G, González C. 1980. Absorption and disposition kinetics of amoxicillin in 

normal human subjects. Antimicrob Agents Chemother. 17(2):199-202.

Argikar UA, Remmel RP. 2009. Effect of aging on glucuronidation of valproic acid in human liver microsomes and 

the role of udp-glucuronosyltransferase ugt1a4, ugt1a8, and ugt1a10. Drug metabolism and disposition: the 

biological fate of chemicals. 37(1):229-236.

Arnaud MJ. 2011. Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp 

Pharmacol. (200):33-91.

Aubert N, Ameller T, Legrand JJ. 2012. Systemic exposure to parabens: Pharmacokinetics, tissue distribution, 

excretion balance and plasma metabolites of [14c]-methyl-, propyl- and butylparaben in rats after oral, 

topical or subcutaneous administration. Food and chemical toxicology : an international journal published 

for the British Industrial Biological Research Association. 50(3-4):445-454.

Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen 

OR et al. 2007. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: 

Reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. 

Curr Drug Metab. 8(1):33-45.

Bertault-Pérès P, Maraninchi D, Carcassonne Y, Cano JP, Barbet J. 1985. Clinical pharmacokinetics of ciclosporin 

a in bone marrow transplantation patients. Cancer Chemother Pharmacol. 15(1):76-81.

Bessems JG, Loizou G, Krishnan K, Clewell HJ, 3rd, Bernasconi C, Bois F, Coecke S, Collnot EM, Diembeck W, 

Farcal LR et al. 2014. Pbtk modelling platforms and parameter estimation tools to enable animal-free risk 

assessment: Recommendations from a joint epaa--eurl ecvam adme workshop. Regulatory toxicology and 

pharmacology : RTP. 68(1):119-139.

Blaauboer BJ. 2008. The contribution of in vitro toxicity data in hazard and risk assessment: Current limitations 

and future perspectives. Toxicology letters. 180(2):81-84.

Bois FY, Jamei M, Clewell HJ. 2010. Pbpk modelling of inter-individual variability in the pharmacokinetics of 

environmental chemicals. Toxicology. 278(3):256-267.

Bouvier d’Yvoire M, Prieto P, Blaauboer BJ, Bois FY, Boobis A, Brochot C, Coecke S, Freidig A, Gundert-Remy U, 

Hartung T et al. 2007. Physiologically-based kinetic modelling (pbk modelling): Meeting the 3rs agenda. 

The report and recommendations of ecvam workshop 63. Altern Lab Anim. 35(6):661-671.

Breen M, Ring CL, Kreutz A, Goldsmith MR, Wambaugh JF. 2021. High-throughput pbtk models for in vitro to in 

vivo extrapolation. Expert Opin Drug Metab Toxicol. 17(8):903-921.

Buggey J, Kappus M, Lagoo AS, Brady CW. 2015. Amiodarone-induced liver injury and cirrhosis. ACG Case Rep 

J. 2(2):116-118.



2

C
H

A
PTER 2

54

SECTION I

Bunchorntavakul C, Reddy KR. 2013. Acetaminophen-related hepatotoxicity. Clin Liver Dis. 17(4):587-607, viii.

Campbell JL, Yoon M, Clewell HJ. 2015. A case study on quantitative in vitro to in vivo extrapolation for 

environmental esters: Methyl-, propyl- and butylparaben. Toxicology. 332:67-76.

Carmichael PL, Baltazar MT, Cable S, Cochrane S, Dent M, Li H, Middleton A, Muller I, Reynolds G, Westmoreland 

C et al. 2022. Ready for regulatory use: Nams and ngra for chemical safety assurance. Altex.

Chen L, Ning J, Louisse J, Wesseling S, Rietjens I. 2018. Use of physiologically based kinetic modelling-facilitated 

reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine 

and riddelliine in rat. Food and chemical toxicology : an international journal published for the British 

Industrial Biological Research Association. 116(Pt B):216-226.

Chen Y, Mao J, Hop CE. 2015. Physiologically based pharmacokinetic modeling to predict drug-drug interactions 

involving inhibitory metabolite: A case study of amiodarone. Drug metabolism and disposition: the 

biological fate of chemicals. 43(2):182-189.

Conner TM, Nikolian VC, Georgoff PE, Pai MP, Alam HB, Sun D, Reed RC, Zhang T. 2018. Physiologically 

based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and 

divalproex. European journal of pharmaceutical sciences : official journal of the European Federation for 

Pharmaceutical Sciences. 111:465-481.

Dadashzadeh S, Tajerzaden H. 2001. Dose dependent pharmacokinetics of theophylline: Michaelis-menten 

parameters for its major metabolic pathways. European journal of drug metabolism and pharmacokinetics. 

26(1-2):77-83.

DeJongh J, Verhaar HJ, Hermens JL. 1997. A quantitative property-property relationship (qppr) approach to 

estimate in vitro tissue-blood partition coefficients of organic chemicals in rats and humans. Archives of 

toxicology. 72(1):17-25.

Deng P, You T, Chen X, Yuan T, Huang H, Zhong D. 2011. Identification of amiodarone metabolites in human 

bile by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry. Drug 

metabolism and disposition: the biological fate of chemicals. 39(6):1058-1069.

Dent M, Amaral RT, Da Silva PA, Ansell J, Boisleve F, Hatao M, Hirose A, Kasai Y, Kern P, Kreiling R et al. 2018. 

Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. 

Computational Toxicology. 7:20-26.

Dent MP, Vaillancourt E, Thomas RS, Carmichael PL, Ouedraogo G, Kojima H, Barroso J, Ansell J, Barton-

Maclaren TS, Bennekou SH et al. 2021. Paving the way for application of next generation risk assessment 

to safety decision-making for cosmetic ingredients. Regulatory Toxicology and Pharmacology. 125:105026.

Edginton AN, Schmitt W, Willmann S. 2006. Development and evaluation of a generic physiologically based 

pharmacokinetic model for children. Clinical pharmacokinetics. 45(10):1013-1034.

EFSA. 2017. Update: Guidance on the use of the benchmark dose approach in risk assessment. Efsa journal 

2017;15(1):4658.

Evans MV, Andersen ME. 2000. Sensitivity analysis of a physiological model for 2,3,7,8-tetrachlorodibenzo-p-

dioxin (tcdd): Assessing the impact of specific model parameters on sequestration in liver and fat in the 

rat. Toxicol Sci. 54(1):71-80.

FDA. 2010. Fda report on lidocaine.

Fentem J, Malcomber I, Maxwell G, Westmoreland C. 2021. Upholding the eu’s commitment to ‘animal testing 

as a last resort’ under reach requires a paradigm shift in how we assess chemical safety to close the gap 

between regulatory testing and modern safety science. Alternatives to Laboratory Animals. 49(4):122-132.

Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. 2022. Integrating in vitro 

chemical transplacental passage into a generic pbk model: A qivive approach. Toxicology. 465:153060.

Fragki S, Piersma AH, Rorije E, Zeilmaker MJ. 2017. In vitro to in vivo extrapolation of effective dosimetry in 

developmental toxicity testing: Application of a generic pbk modelling approach. Toxicol Appl Pharmacol. 

332:109-120.

Gilbert-Sandoval I, Wesseling S, Rietjens I. 2020. Predicting the acute liver toxicity of aflatoxin b1 in rats and 

humans by an in vitro-in silico testing strategy. Mol Nutr Food Res. 64(13):e2000063.

Gouliarmou V, Lostia AM, Coecke S, Bernasconi C, Bessems J, Dorne JL, Ferguson S, Testai E, Remy UG, Brian 

Houston J et al. 2018. Establishing a systematic framework to characterise in vitro methods for human 

hepatic metabolic clearance. Toxicol In vitro. 53:233-244.



2

A
pp

lic
ab

ili
ty

 o
f g

en
er

ic
 P

BK
 m

od
el

lin
g 

in
 c

he
m

ic
al

 h
az

ar
d 

as
se

ss
m

en
t

55

Generic PBK models

Grillo JA, Venitz J, Ornato JP. 2001. Prediction of lidocaine tissue concentrations following different dose regimes 

during cardiac arrest using a physiologically based pharmacokinetic model. Resuscitation. 50(3):331-340.

Haddad S, Restieri C, Krishnan K. 2001. Characterization of age-related changes in body weight and organ 

weights from birth to adolescence in humans. J Toxicol Environ Health A. 64(6):453-464.

Hartung T, Blaauboer BJ, Bosgra S, Carney E, Coenen J, Conolly RB, Corsini E, Green S, Faustman EM, Gaspari A 

et al. 2011. An expert consortium review of the ec-commissioned report “alternative (non-animal) methods 

for cosmetics testing: Current status and future prospects - 2010”. Altex. 28(3):183-209.

Ibarra M, Vázquez M, Fagiolino P, Derendorf H. 2013. Sex related differences on valproic acid pharmacokinetics 

after oral single dose. J Pharmacokinet Pharmacodyn. 40(4):479-486.

ICRP. 2002. Basic anatomical and physiological data for use in radiological protection: Reference values. A report 

of age- and gender-related differences in the anatomical and physiological characteristics of reference 

individuals. Icrp publication 89. Ann ICRP. 32(3-4):5-265.

Jaeschke H, McGill MR, Williams CD, Ramachandran A. 2011. Current issues with acetaminophen hepatotoxicity-

-a clinically relevant model to test the efficacy of natural products. Life Sci. 88(17-18):737-745.

Janer G, Slob W, Hakkert BC, Vermeire T, Piersma AH. 2008. A retrospective analysis of developmental toxicity 

studies in rat and rabbit: What is the added value of the rabbit as an additional test species? Regulatory 

toxicology and pharmacology : RTP. 50(2):206-217.

Jawien W, Wilimowska J, Klys M, Piekoszewski W. 2017. Population pharmacokinetic modelling of valproic acid 

and its selected metabolites in acute vpa poisoning. Pharmacological reports : PR. 69(2):340-349.

Johannessen CU, Johannessen SI. 2003. Valproate: Past, present, and future. CNS Drug Rev. 9(2):199-216.

Jongeneelen FJ, Berge WF. 2011. A generic, cross-chemical predictive pbtk model with multiple entry routes 

running as application in ms excel; design of the model and comparison of predictions with experimental 

results. The Annals of occupational hygiene. 55(8):841-864.

Jönsson L, Liu X, Jönsson BA, Ljungberg M, Strand SE. 2002. A dosimetry model for the small intestine 

incorporating intestinal wall activity and cross-doses. J Nucl Med. 43(12):1657-1664.

Kamiya Y, Handa K, Miura T, Yanagi M, Shigeta K, Hina S, Shimizu M, Kitajima M, Shono F, Funatsu K et al. 

2021. In silico prediction of input parameters for simplified physiologically based pharmacokinetic models 

for estimating plasma, liver, and kidney exposures in rats after oral doses of 246 disparate chemicals. 

Chemical research in toxicology. 34(2):507-513.

Kamiya Y, Otsuka S, Miura T, Takaku H, Yamada R, Nakazato M, Nakamura H, Mizuno S, Shono F, Funatsu K et 

al. 2019. Plasma and hepatic concentrations of chemicals after virtual oral administrations extrapolated 

using rat plasma data and simple physiologically based pharmacokinetic models. Chemical research in 

toxicology. 32(1):211-218.

Kamiya Y, Otsuka S, Miura T, Yoshizawa M, Nakano A, Iwasaki M, Kobayashi Y, Shimizu M, Kitajima M, Shono 

F et al. 2020. Physiologically based pharmacokinetic models predicting renal and hepatic concentrations 

of industrial chemicals after virtual oral doses in rats. Chemical research in toxicology. 33(7):1736-1751.

Kannan R, Nademanee K, Hendrickson JA, Rostami HJ, Singh BN. 1982. Amiodarone kinetics after oral doses. 

Clinical pharmacology and therapeutics. 31(4):438-444.

Kawai R, Mathew D, Tanaka C, Rowland M. 1998. Physiologically based pharmacokinetics of cyclosporine a: 

Extension to tissue distribution kinetics in rats and scale-up to human. The Journal of pharmacology and 

experimental therapeutics. 287(2):457-468.

Klintmalm GB, Iwatsuki S, Starzl TE. 1981. Cyclosporin a hepatotoxicity in 66 renal allograft recipients. 

Transplantation. 32(6):488-489.

Knudsen TB, Keller DA, Sander M, Carney EW, Doerrer NG, Eaton DL, Fitzpatrick SC, Hastings KL, Mendrick 

DL, Tice RR et al. 2015. Futuretox ii: In vitro data and in silico models for predictive toxicology. Toxicological 

sciences : an official journal of the Society of Toxicology. 143(2):256-267.

Kobayashi S, Takai K, Iga T, Hanano M. 1991. Pharmacokinetic analysis of the disposition of valproate in pregnant 

rats. Drug metabolism and disposition: the biological fate of chemicals. 19(5):972-976.

Kramer N. 2010. Measuring, modeling, and increasing the free concentration of test chemicals in cell assays. 

Utrecht.

Kramer NI, Di Consiglio E, Blaauboer BJ, Testai E. 2015. Biokinetics in repeated-dosing in vitro drug toxicity 

studies. Toxicol In vitro. 30(1 Pt A):217-224.



2

C
H

A
PTER 2

56

SECTION I

Kramer NI, Krismartina M, Rico-Rico A, Blaauboer BJ, Hermens JL. 2012. Quantifying processes determining 

the free concentration of phenanthrene in basal cytotoxicity assays. Chemical research in toxicology. 

25(2):436-445.

Levitt DG, Heymsfield SB, Pierson RN, Jr., Shapses SA, Kral JG. 2007. Physiological models of body composition 

and human obesity. Nutr Metab (Lond). 4:19.

Li M, Gehring R, Riviere JE, Lin Z. 2017. Development and application of a population physiologically based 

pharmacokinetic model for penicillin g in swine and cattle for food safety assessment. Food and Chemical 

Toxicology. 107:74-87.

Louisse J, Alewijn M, Peijnenburg A, Cnubben NHP, Heringa MB, Coecke S, Punt A. 2020. Towards harmonization 

of test methods for in vitro hepatic clearance studies. Toxicol In vitro. 63:104722.

Louisse J, Beekmann K, Rietjens IM. 2017. Use of physiologically based kinetic modeling-based reverse dosimetry 

to predict in vivo toxicity from in vitro data. Chemical research in toxicology. 30(1):114-125.

Lu J, Goldsmith MR, Grulke CM, Chang DT, Brooks RD, Leonard JA, Phillips MB, Hypes ED, Fair MJ, Tornero-Velez 

R et al. 2016a. Developing a physiologically-based pharmacokinetic model knowledgebase in support of 

provisional model construction. PLoS Comput Biol. 12(2):e1004495.

Lu JT, Cai Y, Chen F, Jia WW, Hu ZY, Zhao YS. 2016b. A physiologically based pharmacokinetic model of 

amiodarone and its metabolite desethylamiodarone in rats: Pooled analysis of published data. European 

journal of drug metabolism and pharmacokinetics. 41(6):689-703.

Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S. 2006. Kinetics of acetaminophen 

glucuronidation by udp-glucuronosyltransferases 1a1, 1a6, 1a9 and 2b15. Potential implications in 

acetaminophen-induced hepatotoxicity. Chemical research in toxicology. 19(5):701-709.

Ning J, Chen L, Rietjens I. 2019. Role of toxicokinetics and alternative testing strategies in pyrrolizidine alkaloid 

toxicity and risk assessment; state-of-the-art and future perspectives. Food and chemical toxicology : an 

international journal published for the British Industrial Biological Research Association. 131:110572.

OECD. 2021. Guidance document on the characterisation, validation and reporting of physiologically based kinetic 

(pbk) models for regulatory purposes, oecd series on testing and assessment, no. 331, environment,health 

and safety,environment directorate, oecd.

Paini A, Leonard JA, Joossens E, Bessems JGM, Desalegn A, Dorne JL, Gosling JP, Heringa MB, Klaric M, Kliment T 

et al. 2019. Next generation physiologically based kinetic (ng-pbk) models in support of regulatory decision 

making. Comput Toxicol. 9:61-72.

Paini A, Tan YM, Sachana M, Worth A. 2021. Gaining acceptance in next generation pbk modelling approaches for 

regulatory assessments - an oecd international effort. Comput Toxicol. 18:100163.

Pang KS, Han YR, Noh K, Lee PI, Rowland M. 2019. Hepatic clearance concepts and misconceptions: Why the 

well-stirred model is still used even though it is not physiologic reality? Biochem Pharmacol. 169:113596.

Pearce RG, Setzer RW, Strope CL, Wambaugh JF, Sipes NS. 2017. Httk: R package for high-throughput 

toxicokinetics. J Stat Softw. 79(4):1-26.

Pendse SN, Efremenko A, Hack CE, Moreau M, Mallick P, Dzierlenga M, Nicolas CI, Yoon M, Clewell HJ, McMullen 

PD. 2020. Population life-course exposure to health effects model (plethem): An r package for pbpk 

modeling. Computational Toxicology. 13:100115.

Pery AR, Brochot C, Zeman FA, Mombelli E, Desmots S, Pavan M, Fioravanzo E, Zaldivar JM. 2013. Prediction of 

dose-hepatotoxic response in humans based on toxicokinetic/toxicodynamic modeling with or without in 

vivo data: A case study with acetaminophen. Toxicology letters. 220(1):26-34.

Peyret T, Krishnan K. 2011. Qsars for pbpk modelling of environmental contaminants. SAR QSAR Environ Res. 

22(1-2):129-169.

Peyret T, Poulin P, Krishnan K. 2010. A unified algorithm for predicting partition coefficients for pbpk modeling 

of drugs and environmental chemicals. Toxicol Appl Pharmacol. 249(3):197-207.

Pichard L, Domergue J, Fourtanier G, Koch P, Schran HF, Maurel P. 1996. Metabolism of the new immunosuppressor 

cyclosporin g by human liver cytochromes p450. Biochem Pharmacol. 51(5):591-598.

Pletz J, Blakeman S, Paini A, Parissis N, Worth A, Andersson AM, Frederiksen H, Sakhi AK, Thomsen C, Bopp 

SK. 2020. Physiologically based kinetic (pbk) modelling and human biomonitoring data for mixture risk 

assessment. Environ Int. 143:105978.



2

A
pp

lic
ab

ili
ty

 o
f g

en
er

ic
 P

BK
 m

od
el

lin
g 

in
 c

he
m

ic
al

 h
az

ar
d 

as
se

ss
m

en
t

57

Generic PBK models

Plomp TA, Wiersinga WM, Maes RA. 1985. Tissue distribution of amiodarone and desethylamiodarone in rats after 

repeated oral administration of various amiodarone dosages. Arzneimittelforschung. 35(12):1805-1810.

Punt A, Louisse J, Pinckaers N, Fabian E, van Ravenzwaay B. 2021a. Predictive performance of next generation 

physiologically based kinetic (pbk) model predictions in rats based on in vitro and in silico input data. 

Toxicological Sciences. 186(1):18-28.

Punt A, Louisse J, Pinckaers N, Fabian E, van Ravenzwaay B. 2022. Predictive performance of next generation 

physiologically based kinetic (pbk) model predictions in rats based on in vitro and in silico input data. Toxicol 

Sci. 186(1):18-28.

Punt A, Pinckaers N, Peijnenburg A, Louisse J. 2021b. Development of a web-based toolbox to support quantitative 

in-vitro-to-in-vivo extrapolations (qivive) within nonanimal testing strategies. Chemical research in 

toxicology. 34(2):460-472.

Punt A, Schiffelers MJ, Jean Horbach G, van de Sandt JJ, Groothuis GM, Rietjens IM, Blaauboer BJ. 2011. Evaluation 

of research activities and research needs to increase the impact and applicability of alternative testing 

strategies in risk assessment practice. Regulatory toxicology and pharmacology : RTP. 61(1):105-114.

Ramsey JC, Andersen ME. 1984. A physiologically based description of the inhalation pharmacokinetics of styrene 

in rats and humans. Toxicol Appl Pharmacol. 73(1):159-175.

Roberts MS, Rowland M. 1986. A dispersion model of hepatic elimination: 3. Application to metabolite formation 

and elimination kinetics. Journal of pharmacokinetics and biopharmaceutics. 14(3):289-308.

Rodgers T, Leahy D, Rowland M. 2005. Physiologically based pharmacokinetic modeling 1: Predicting the tissue 

distribution of moderate-to-strong bases. J Pharm Sci. 94(6):1259-1276.

Rodgers T, Rowland M. 2006. Physiologically based pharmacokinetic modelling 2: Predicting the tissue 

distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 95(6):1238-1257.

Rodgers T, Rowland M. 2007. Mechanistic approaches to volume of distribution predictions: Understanding the 

processes. Pharm Res. 24(5):918-933.

Rowland M, Benet LZ, Graham GG. 1973. Clearance concepts in pharmacokinetics. Journal of pharmacokinetics 

and biopharmaceutics. 1(2):123-136.

Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. 2006. Pharmacokinetics of triclosan following 

oral ingestion in humans. Journal of Toxicology and Environmental Health, Part A. 69(20):1861-1873.

Sayre RR, Wambaugh JF, Grulke CM. 2020. Database of pharmacokinetic time-series data and parameters for 144 

environmental chemicals. Scientific Data. 7(1):122.

Schmitt W. 2008. General approach for the calculation of tissue to plasma partition coefficients. Toxicology in 

vitro. 22(2):457-467.

Schwartz GJ, Brion LP, Spitzer A. 1987. The use of plasma creatinine concentration for estimating glomerular 

filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 34(3):571-590.

Schwinghammer TL, Przepiorka D, Venkataramanan R, Wang CP, Burckart GJ, Rosenfeld CS, Shadduck RK. 1991. 

The kinetics of cyclosporine and its metabolites in bone marrow transplant patients. British journal of 

clinical pharmacology. 32(3):323-328.

Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, Peters SA, Reddy VP, Zheng M, de 

Zwart L et al. 2018. Physiologically based pharmacokinetic model qualification and reporting procedures 

for regulatory submissions: A consortium perspective. Clinical pharmacology and therapeutics. 104(1):88-

110.

Slob W. 2002. Dose-response modeling of continuous endpoints. Toxicological Sciences. 66(2):298-312.

Sodhi JK, Wang HJ, Benet LZ. 2020. Are there any experimental perfusion data that preferentially support the 

dispersion and parallel-tube models over the well-stirred model of organ elimination? Drug metabolism 

and disposition: the biological fate of chemicals. 48(7):537-543.

Szultka M, Krzeminski R, Jackowski M, Buszewski B. 2014. Identification of in vitro metabolites of amoxicillin in 

human liver microsomes by lc-esi/ms. Chromatographia. 77(15):1027-1035.

Tebby C, van der Voet H, de Sousa G, Rorije E, Kumar V, de Boer W, Kruisselbrink JW, Bois FY, Faniband M, 

Moretto A et al. 2020. A generic pbtk model implemented in the mcra platform: Predictive performance 

and uses in risk assessment of chemicals. Food Chem Toxicol. 142:111440.

Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. 2011. Evolution of a detailed physiological 

model to simulate the gastrointestinal transit and absorption process in humans, part 1: Oral solutions. J 

Pharm Sci. 100(12):5324-5345.



2

C
H

A
PTER 2

58

SECTION I

Thelen K, Coboeken K, Willmann S, Dressman JB, Lippert J. 2012. Evolution of a detailed physiological model 

to simulate the gastrointestinal transit and absorption process in humans, part ii: Extension to describe 

performance of solid dosage forms. J Pharm Sci. 101(3):1267-1280.

Trivier JM, Libersa C, Belloc C, Lhermitte M. 1993. Amiodarone n-deethylation in human liver microsomes: 

Involvement of cytochrome p450 3a enzymes (first report). Life Sci. 52(10):PL91-96.

van der Voet H, Kruisselbrink JW, de Boer WJ, van Lenthe MS, van den Heuvel J, Crépet A, Kennedy MC, Zilliacus 

J, Beronius A, Tebby C et al. 2020. The mcra toolbox of models and data to support chemical mixture risk 

assessment. Food and chemical toxicology : an international journal published for the British Industrial 

Biological Research Association. 138:111185.

Volak LP, Hanley MJ, Masse G, Hazarika S, Harmatz JS, Badmaev V, Majeed M, Greenblatt DJ, Court MH. 2013. 

Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol 

(acetaminophen) pharmacokinetics in healthy volunteers. British journal of clinical pharmacology. 

75(2):450-462.

Wambaugh JF, Hughes MF, Ring CL, MacMillan DK, Ford J, Fennell TR, Black SR, Snyder RW, Sipes NS, Wetmore 

BA et al. 2018. Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicological sciences : an official 

journal of the Society of Toxicology. 163(1):152-169.

Wambaugh JF, Wetmore BA, Pearce R, Strope C, Goldsmith R, Sluka JP, Sedykh A, Tropsha A, Bosgra S, Shah I et 

al. 2015. Toxicokinetic triage for environmental chemicals. Toxicological sciences : an official journal of the 

Society of Toxicology. 147(1):55-67.

Wang L, Mao B, He H, Shang Y, Zhong Y, Yu Z, Yang Y, Li H, An J. 2019. Comparison of hepatotoxicity and 

mechanisms induced by triclosan (tcs) and methyl-triclosan (mtcs) in human liver hepatocellular hepg2 

cells. Toxicol Res (Camb). 8(1):38-45.

WHO. 2010. World health organization. International programme on chemical safety. Characterization and 

application of physiologically based pharmacokinetic models in risk assessment. Harmonization project 

document no. 9 

Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. 2004. A physiological model for the estimation of the 

fraction dose absorbed in humans. J Med Chem. 47(16):4022-4031.

Wilson JP. 1967. Surface area of the small intestine in man. Gut. 8(6):618-621.

Yang R. 2011. The application of physiologically based pharmacokinetic (pbpk) modeling to risk assessment.

Yoon M, Campbell JL, Andersen ME, Clewell HJ. 2012. Quantitative in vitro to in vivo extrapolation of cell-based 

toxicity assay results. Critical reviews in toxicology. 42(8):633-652.

Yoon M, Nong A, Clewell HJ, 3rd, Taylor MD, Dorman DC, Andersen ME. 2009. Evaluating placental transfer and 

tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures with a pbpk 

model. Toxicol Sci. 112(1):44-58.

Yun YE, Edginton AN. 2013. Correlation-based prediction of tissue-to-plasma partition coefficients using readily 

available input parameters. Xenobiotica. 43(10):839-852.

Zandvliet AS, Huitema AD, de Jonge ME, den Hoed R, Sparidans RW, Hendriks VM, van den Brink W, van Ree JM, 

Beijnen JH. 2005. Population pharmacokinetics of caffeine and its metabolites theobromine, paraxanthine 

and theophylline after inhalation in combination with diacetylmorphine. Basic Clin Pharmacol Toxicol. 

96(1):71-79.



2

A
pp

lic
ab

ili
ty

 o
f g

en
er

ic
 P

BK
 m

od
el

lin
g 

in
 c

he
m

ic
al

 h
az

ar
d 

as
se

ss
m

en
t

59

Generic PBK models

Supplementary Material 

SM1. TNO Model description

SM 1.1 Non-eliminating tissues
In all non-eliminating tissues (adipose, bone, brain, muscle, pancreas, spleen, kidney and 

remaining) the mass-balance is perfusion limited: 

:

tissue tissue
tissue arterial tissue

tissue blood

dA CQ C Q
dt P

= × − ×

Here, A
tissue

 is the amount in the tissue, Q
tissue

 is the blood flow to the tissue, C
arterial

 is the 

arterial blood concentration, C
tissue

 is the tissue concentration and P
tissue:blood

 is the tissue to 

blood partition coefficient.

SM 1.2 GI-tract
The GI tract is based on the  model as presented by Thelen et al. (2011), in which the small 

intestine is divided into one duodenum compartment, three jejunum compartments and 

three ileum compartments. In addition, we distinguish between the luminal part of the 

organ and the actual tissue. As a result, we have A
sto,lumen

 and A
sto

 to represent the amount in 

stomach lumen and stomach tissue, respectively, A
duo,lumen

 and A
duo

 to represent the amount 

in duodenal lumen and duodenal tissue, respectively, A
jej,lumen

 (compartments 1 to 3) and 

A
jej

 (compartments 1 to 3) to represent the amount in jejunal lumen and jejunal tissue, 

respectively, A
il,lumen

 (compartments 1 to 3) and A
il
 (compartments 1 to 3) to represent the 

amount in ileal lumen and ileal tissue, respectively and A
col,lumen

 and A
col

 to represent the 

amount in colon lumen and colon tissue, respectively.

1,
3_ 1 3, 1_ 2 1, , 1 1,

il lumen
jej il jej lumen il il il lumen abs il il lumen

dA
K A K A CL A

dt
= × − × − ×

2,
1_ 2 1, 2_ 3 2, , 2 2,

il lumen
il il il lumen il il il lumen abs il il lumen

dA
K A K A CL A

dt
= × − × − ×

,
_ , _ 1 , , ,

duo lumen
sto duo sto lumen duo jej duo lumen abs duo duo lumen

dA
K A K A CL A

dt
= × − × − ×

,
_ ,

sto lumen
sto duo sto lumen

dA
K A

dt
= − ×

1,
_ 1 , 1_ 2 1, , 1 1,

jej lumen
duo jej duo lumen jej jej jej lumen abs jej jej lumen

dA
K A K A CL A

dt
= × − × − ×

2,
1_ 2 1, 2_ 3 2, , 2 2,

jej lumen
jej jej jej lumen jej jej jej lumen abs jej jej lumen

dA
K A K A CL A

dt
= × − × − ×

3,
2_ 3 2, 3_ 1 3, , 3 3,

jej lumen
jej jej jej lumen jej il jej lumen abs jej jej lumen

dA
K A K A CL A

dt
= × − × − ×
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3,
2_ 3 2, 3_ 3, , 3 3,

il lumen
il il il lumen il col il lumen abs il il lumen

dA
K A K A CL A

dt
= × − × − ×

,
3_ 3, _ , , ,

col lumen
il col il lumen col out col lumen abs col col lumen

dA
K A K A CL A

dt
= × − × − ×

Here, K
tissue1_tissue2

 is the transfer rate of mass from one luminal compartment to the next 

and CL
abs,tissue

 is the absorption clearance from the luminal compartment. The absorption 

clearance is calculated based on the in vitro apparent permeability (Papp), multiplied 

with the effective luminal surface area (taking into account the presence of macro- and 

microvilli, as presented by Wilson (1967). After absorption, the compound distributes into 

the different GI tissues connected to the systemic circulation.

:

sto sto
sto arterial sto

stomach blood

dA CQ C Q
dt P

= × − ×

, ,
 :

duo duo
abs duo duo lumen duo arterial duo

small intestine blood

dA CCL A Q C Q
dt P

= × + × − ×

1 1
, 1 1, 1 1

 :

jej jej
abs jej jej lumen jej arterial jej

small intestine blood

dA C
CL A Q C Q

dt P
= × + × − ×

2 2
, 2 2, 2 2

 :

jej jej
abs jej jej lumen jej arterial jej

small intestine blood

dA C
CL A Q C Q

dt P
= × + × − ×

3 3
, 3 3, 3 3

 :

jej jej
abs jej jej lumen jej arterial jej

small intestine blood

dA C
CL A Q C Q

dt P
= × + × − ×

1 1
, 1 1, 1 1

 :

il il
abs il il lumen il arterial il

small intestine blood

dA CCL A Q C Q
dt P

= × + × − ×

2 2
, 2 2, 2 2

 :

il il
abs il il lumen il arterial il

small intestine blood

dA CCL A Q C Q
dt P

= × + × − ×

3 3
, 3 3, 3 3

 :

il il
abs il il lumen il arterial il

small intestine blood

dA CCL A Q C Q
dt P

= × + × − ×

, ,
 :

col col
abs col col lumen col arterial col

large intestine blood

dA CCL A Q C Q
dt P

= × + × − ×

SM1.3 Liver
The majority of the liver’s blood supply comes from the portal vein, which contains venous 

blood from the intestinal compartments and the spleen and pancreas. Metabolic clearance 

in the liver is represented by Michaelis-Menten kinetics with a maximum rate (V
max

) and 

Michaelis-Menten constant (K
m

).
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:  :

liver sto duo
liver arterial sto duo

stomach blood small intestine blood

dA C CQ C Q Q
dt P P

= × + × + ×

1 2 3
1 2 3

 :  :  :

jej jej jej
jej jej jej

small intestine blood small intestine blood small intestine blood

C C C
Q Q Q

P P P
+ × + × + ×

1 2 3
1 2 3

 :  :  :

il il il
il il il

small intestine blood small intestine blood small intestine blood

C C CQ Q Q
P P P

+ × + × + ×

 : : :

pancreas spleencol
col pancreas spleen

large intestine blood pancreas blood spleen blood

C CCQ Q Q
P P P

+ × + × + ×

:
total

liver max liv
liver

liver blood m liv

C V CQ
P K C

×
− × −

+

Here, A
liver

 is the amount in liver tissue, Q
tissue

 is the blood flow to the tissue, Q
liver,total

 is the 

sum of blood flows entering the liver, C
arterial

 is the arterial blood concentration, C
tissue

 is the 

tissue concentration and P
tissue:blood

 is the tissue to blood partition coefficient.

SM1.4 Blood
The removal of compounds from arterial blood is based on the glomerular filtration rate 

(GFR), the fraction unbound in plasma (f
unbound,plasma

) and the blood-to-plasma partition 

coefficient (P
blood:plasma

)

,
,

:

arterial unbound plasmaarterial
c lung blood c arterial

blood plasma

C fdA Q C Q C GFR
dt P

×
= × − × − ×

: : :

adiposevenous bone brain
adipose bone brain

adipose plasma bone plasma brain plasma

CdA C CQ Q Q
dt P P P

= × + × + ×

: : :
total

muscle skin liver
muscle skin liver

muscle plasma skin plasma liver plasma

C C CQ Q Q
P P P

+ × + × + ×

: :

kidney remaining
kidney remaining c venous

kidney plasma remaining plasma

C C
Q Q Q C

P P
+ × + × − ×

Here, A
arterial

 and A
venous 

are the amounts in arterial and venous blood, respectively, Q
c
 

is the cardiac output, Q
tissue

 is the blood flow to the tissue, C
arterial

 is the arterial blood 

concentration, C
venous

 is the venous blood concentration, C
tissue

 is the tissue concentration 

and P
tissue:blood

 is the tissue to blood partition coefficient. 
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SM1.5 Partitioning to the organs
The TNO Model has implemented the Peyret QSAR (Peyret et al. 2010), for environmental 

chemicals and pharmaceuticals, which takes into consideration the role of more tissue 

components other than lipid and water. This unified algorithm is based on the principle 

that the concentration of a chemical in a ‘biological matrix’ is equal to the sum of its 

concentration in all respective compartments of the matrix:

ct ct it it
tb

p p e e

P F P FP
P F P F
× + ×

=
× + ×  (1)

where P
tb

= tissue: blood partition coefficient (PC), P
ct

= cell tissue: water PC, F
ct

= fractional 

content of cells in tissue, P
it
= interstitial fluid: water PC, F

it
= fractional content of interstitial 

fluid in tissue, P
p
= plasma: water PC, P

e
= erythrocyte:water PC, F

e
=fractional content of 

erythrocytes in blood.

Each matrix (cell tissue, interstitial fluid, plasma, erythrocytes) consists of water, neutral 

lipids, phospholipids (neutral and charged) and proteins, with ionizable substances 

existing in an equilibrium between the ionized and non-ionized species.

Each matrix:water partition coefficient of Eq. (1) (i.e. P
ct

, P
it
, P

e 
and P

p
) can be computed as 

follows: 

( ) ( )1 1  
1

m wm ow nlm m aplw aplm m prw prm
mw

w

I F P F I P F I P F
P

I
+ × + × + × × + + × ×

=
+

 (2)

where P
mw

: matrix:water partition coefficient; I
m

: ionization term for the aqueous phase 

of the matrix m; F
wm

: fractional volume of water equivalent in the matrix; P
ow

: vegetable 

oil:water partition coefficient or n-octanol:water partition coefficient; F
nlm

: fractional 

volume of neutral lipids equivalent in the matrix; P
aplw

: acidic phospholipids:water 

partition coefficient; F
aplm

: fractional volume of acidic phospholipids in the matrix; P
prw

: 

protein:water PC; F
prm

: fractional volume of binding proteins in the matrix; I
w

: ionization 

term for water.

In Eq. (2), the term F
wm

 equals the sum of the fractional volume of water plus 70% of the 

content of neutral phospholipids, whereas the term F
nlm

 corresponds to the fractional 

volume of neutral lipids plus 30% of the content of neutral phospholipids (Poulin and 

Krishnan 1995a; 1995b). The ionization term of the matrix I
m

 was calculated using the 

Henderson–Hasselbach equation as follows (Rodgers and Rowland 2007):

0 mI =  for neutrals

10 pKa pH
mI −=  for monoprotic bases

10 pH pKa
mI −=  for monoprotic acids

2  1 2 2  10 10pKa pH pKa pKa pH
mI − + −= +  for diprotic bases

1 2 1 2 10 10pH pKa pH pKa pKa
mI − − −= +  for diprotic acids

  10 10pKabase pH pH pKaacid
mI − −= +  for zwitterions
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The implementation of these equations in the TNO model is presented below:

Pprw = (1/fup - 1 - (10^logP) * NL_p / (1 + ionization.p)) / P_p

Paplw = (((Pbp-Fp)/(fup*Fe)) - ((1+ionization.e)*W_e + (10^logP)*NL_e) / (1+ionization.p)) * 

((1+ionization.p) / (ionization.e*APL_e)))))

Pct = (((1 + ionization.ct) * (W_ct + 0.7 * NPL_ct) + ((10^logP) * (NL_ct + 0.3 * NPL_ct)) + 

(ionization.ct * Paplw * APL_ct)) / (1 + ionization.w))))

Pit = (((1 + ionization.it) * (W_it + 0.7 * NPL_it) + ((10^logP) * (NL_it + 0.3 * NPL_it)) + ((1 + 

ionization.it) * Pprw * P_it)) / (1 + ionization.w))))

Pe = (((1 + ionization.e) * (W_e + 0.7 * NPL_e) + ((10^logP) * (NL_e + 0.3 * NPL_e)) + (ionization.e 

* Paplw * APL_e)) / (1 + ionization.w))))

Pp = (((1 + ionization.p) * (W_p + 0.7 * NPL_p) + ((10^logP) * (NL_p + 0.3 * NPL_p)) + ((1 + 

ionization.p) * Pprw * P_p)) / (1 + ionization.w))))
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SM 2 Input parameters for IndusChemFate and the TNO Model                        

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source

Substance: Amoxicillin (AMOX)
Fraction absorbed from the GI tract default: 1 - Molecular weight 365.4 PubChem
Density (mg/cm3 or g/L) 1540 ChemSketch v.111 logP 3 0.87  EPI Suite ™
Molecular weight 365.4 PubChem Fraction unbound in plasma 0.8 CompTox Chemicals Dashboard 7

Vapour pressure (Pa) 2 1.7732E-11 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -2

EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 -2 pKa1 3.23 MarvinSketch 
Water solubility (mg/L) 4 4000 EPI Suite ™ pKa2 7.22 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   1.63 Alsenz and Haenel (2003)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 1.3E-13  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 250 Calibrated Vmax (nmol/min/g liver) 4.18 Calibrated
Km Liver (umol/L) 5 Calibrated Km (mg/L) 5.48 Calibrated
Substance: Lidocaine (LID)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 234.3 PubChem
Density (mg/cm3 or g/L) 1026 ChemSketch v.111 logP 3 2.44  EPI Suite ™
Molecular weight 234.3 PubChem Fraction unbound in plasma 0.2 Poulin and Theil (2002)
Vapour pressure (Pa) 2 0.0023065 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 0.19

EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 1.93 pKa1 13.78 MarvinSketch 
Water solubility (mg/L) 4 4100 EPI Suite ™ pKa2 7.75 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   61.7  
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.0000173  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1000 Calculation based on CLint 

(Louisse et al. 2020a)
Vmax (nmol/min/g liver) 16.67 Calculation based on CLint 

(Louisse et al. 2020a)Km Liver (umol/L) 21.7 Km (mg/L) 5
Substance: Caffeine (CAF)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 194.191 PubChem
Density (mg/cm3 or g/L) 1450 ChemSketch v.111 logP 3 -0.07  EPI Suite ™
Molecular weight 194.191 PubChem Fraction unbound in plasma 0.64 drugbank 8

Vapour pressure (Pa) 2 9.77E-07 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -0.07

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic base MarvinSketch 

Log(Kow) at blood pH 7.4 3 -0.07 pKa1 -1.16 MarvinSketch 
Water solubility (mg/L) 4 21600 EPI Suite ™ pKa2 - MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   81.1 Matsuzaki et al. (2019)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 7.33E-09  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1239 Calculation based on CLint 

(Louisse et al. 2020a)
Vmax (nmol/min/g liver) 20.65 Calculation based on CLint 

(Louisse et al. 2020a)Km Liver (umol/L) 245 Km (mg/L) 48
Substance:Theophylline (THEO)
Absorption rate into intestinal tissue (1/h) default: 3 NR Molecular weight 180.167 PubChem
Density (mg/cm3 or g/L) 1465 ChemSketch v.111 logP 3 -0.02  EPI Suite ™
Molecular weight 180.167 PubChem Fraction unbound in plasma 0.6 drugbank
Vapour pressure (Pa) 2 1.51E-09 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -0.02

 EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 -0.16 pKa1 7.82 MarvinSketch 
Water solubility (mg/L) 4 7360 EPI Suite ™ pKa2 -0.78 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   65.1 Matsuzaki et al. (2019)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 1.13E-11  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 54 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)
Vmax (nmol/min/g liver) 0.9 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)Km Liver (umol/L) 7.5 Km (mg/L) 1.4
Substance: Acetaminophen (APAP)
Absorption rate into intestinal tissue (1/h) default - Molecular weight 151.2 PubChem
Density (mg/cm3 or g/L) 1249 ChemSketch v.111 logP 3 0.46  EPI Suite ™
Molecular weight 151.2 PubChem Fraction unbound in plasma 1 Poulin and Theil (2002)
Vapour Pressure (Pa) 0.000259 5 EPI Suite ™  Blood:plasma partition coefficient 1.56 Taylor et al. (2013)
Log(Kow) at skin pH 5.5 0.46

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 0.46 pKa1 9.38 MarvinSketch 
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SM 2 Input parameters for IndusChemFate and the TNO Model                        

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source

Substance: Amoxicillin (AMOX)
Fraction absorbed from the GI tract default: 1 - Molecular weight 365.4 PubChem
Density (mg/cm3 or g/L) 1540 ChemSketch v.111 logP 3 0.87  EPI Suite ™
Molecular weight 365.4 PubChem Fraction unbound in plasma 0.8 CompTox Chemicals Dashboard 7

Vapour pressure (Pa) 2 1.7732E-11 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -2

EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 -2 pKa1 3.23 MarvinSketch 
Water solubility (mg/L) 4 4000 EPI Suite ™ pKa2 7.22 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   1.63 Alsenz and Haenel (2003)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 1.3E-13  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 250 Calibrated Vmax (nmol/min/g liver) 4.18 Calibrated
Km Liver (umol/L) 5 Calibrated Km (mg/L) 5.48 Calibrated
Substance: Lidocaine (LID)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 234.3 PubChem
Density (mg/cm3 or g/L) 1026 ChemSketch v.111 logP 3 2.44  EPI Suite ™
Molecular weight 234.3 PubChem Fraction unbound in plasma 0.2 Poulin and Theil (2002)
Vapour pressure (Pa) 2 0.0023065 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 0.19

EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 1.93 pKa1 13.78 MarvinSketch 
Water solubility (mg/L) 4 4100 EPI Suite ™ pKa2 7.75 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   61.7  
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.0000173  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1000 Calculation based on CLint 

(Louisse et al. 2020a)
Vmax (nmol/min/g liver) 16.67 Calculation based on CLint 

(Louisse et al. 2020a)Km Liver (umol/L) 21.7 Km (mg/L) 5
Substance: Caffeine (CAF)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 194.191 PubChem
Density (mg/cm3 or g/L) 1450 ChemSketch v.111 logP 3 -0.07  EPI Suite ™
Molecular weight 194.191 PubChem Fraction unbound in plasma 0.64 drugbank 8

Vapour pressure (Pa) 2 9.77E-07 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -0.07

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic base MarvinSketch 

Log(Kow) at blood pH 7.4 3 -0.07 pKa1 -1.16 MarvinSketch 
Water solubility (mg/L) 4 21600 EPI Suite ™ pKa2 - MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   81.1 Matsuzaki et al. (2019)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 7.33E-09  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1239 Calculation based on CLint 

(Louisse et al. 2020a)
Vmax (nmol/min/g liver) 20.65 Calculation based on CLint 

(Louisse et al. 2020a)Km Liver (umol/L) 245 Km (mg/L) 48
Substance:Theophylline (THEO)
Absorption rate into intestinal tissue (1/h) default: 3 NR Molecular weight 180.167 PubChem
Density (mg/cm3 or g/L) 1465 ChemSketch v.111 logP 3 -0.02  EPI Suite ™
Molecular weight 180.167 PubChem Fraction unbound in plasma 0.6 drugbank
Vapour pressure (Pa) 2 1.51E-09 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 -0.02

 EPI Suite ™ , MarvinSketch 6 
Ionization zwitterion MarvinSketch 

Log(Kow) at blood pH 7.4 3 -0.16 pKa1 7.82 MarvinSketch 
Water solubility (mg/L) 4 7360 EPI Suite ™ pKa2 -0.78 MarvinSketch 
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   65.1 Matsuzaki et al. (2019)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 1.13E-11  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 54 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)
Vmax (nmol/min/g liver) 0.9 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)Km Liver (umol/L) 7.5 Km (mg/L) 1.4
Substance: Acetaminophen (APAP)
Absorption rate into intestinal tissue (1/h) default - Molecular weight 151.2 PubChem
Density (mg/cm3 or g/L) 1249 ChemSketch v.111 logP 3 0.46  EPI Suite ™
Molecular weight 151.2 PubChem Fraction unbound in plasma 1 Poulin and Theil (2002)
Vapour Pressure (Pa) 0.000259 5 EPI Suite ™  Blood:plasma partition coefficient 1.56 Taylor et al. (2013)
Log(Kow) at skin pH 5.5 0.46

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 0.46 pKa1 9.38 MarvinSketch 
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SECTION I

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source
Water solubility (mg/L) 14000 EPI Suite ™ pKa2 - -
Resorption tubuli (?/estimated fraction) default: ? - Papp_(*10E-6 cm/s)   36.3 Paixão et al. (2012)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.0000629  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 44400 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)
Vmax (nmol/min/g liver) 740 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)Km Liver (umol/L) 4744 Km (mg/L) 717
Substance: Triclosane (TCS)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 289.6 PubChem
Density (mg/cm3 or g/L) 1490 ChemSketch v.111 logP 3 4.76  EPI Suite ™
Molecular weight 289.6 PubChem Fraction unbound in plasma 0.01 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.00062 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 4.76

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 4.58 pKa1 7.68 MarvinSketch 
Water solubility (mg/L) 4 10 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   184 Stec et al. (2013)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 4.65E-06  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1649

Ashrap et al. (2017)
Vmax (nmol/min/g liver) 27.5

Ashrap et al. (2017)
Km Liver (umol/L) 123 Km (mg/L) 35.6
Substance: Amiodarone (AMD)
Absorption rate into intestinal tissue (1/h) 0.3 Kannan et al. (1982) Molecular weight 645.32 PubChem
Density (mg/cm3 or g/L) 1580 ChemSketch v.111 logP 3 6.66  EPI Suite ™
Molecular weight 645.32 PubChem Fraction unbound in plasma 0.05 Poulin and Theil (2002)
Vapour pressure (Pa) 2 4.54E-11 5 EPI Suite ™  Blood:plasma partition coefficient 1.1 Poulin and Theil (2002)
Log(Kow) at skin pH 5.5 3 4.78

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic base MarvinSketch 

Log(Kow) at blood pH 7.4 3 6.53 pKa1 8.47 MarvinSketch 
Water solubility (mg/L) 4 0.000061 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   4 Sevin et al. (2013)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.41E-13  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 131.8

Algharably et al. (2019)
Vmax (nmol/min/g liver) 2

Algharably et al. (2019)
Km Liver (umol/L) 38.6 Km (mg/L) 25.1
Substance: Cyclosporin A (CyA)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 1202.6 PubChem
Density (mg/cm3 or g/L) 1016 ChemSketch v.111 logP 3 1  EPI Suite ™
Molecular weight 1202.6 PubChem Fraction unbound in plasma 0.062 Poulin and Theil (2002)
Vapour pressure (Pa) 2 1.00E-15 5 EPI Suite ™  Blood:plasma partition coefficient 1.283 Poulin and Theil (2002)
Log(Kow) at skin pH 5.5 3 1

EPI Suite ™ , MarvinSketch 6 
Ionization neutral MarvinSketch 

Log(Kow) at blood pH 7.4 3 1 pKa1 11.83 MarvinSketch 
Water solubility (mg/L) 4 1000000 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   8 Chiu et al. (2003)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 7.50E-18  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 384

Pichard et al. (1996)
Vmax (nmol/min/g liver) 6.4

Pichard et al. (1996)
Km Liver (umol/L) 5 Km (mg/L) 6
Substance: Valproic acid (VPA)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 144.214 PubChem
Density (mg/cm3 or g/L) 950 ChemSketch v.111 logP 3 2.75  EPI Suite ™
Molecular weight 144.214 PubChem Fraction unbound in plasma 0.4 ChemScreen
Vapour pressure (Pa) 2 11.3 5 EPI Suite ™  Blood:plasma partition coefficient 0.74 ChemScreen
Log(Kow) at skin pH 5.5 3 2.23

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 0.49 pKa1 5 MarvinSketch 
Water solubility (mg/L) 4 2000 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   48 Yee (1997)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.08475  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 101400 Calculation based on CLint 

Fortaner et al. (2021)
Vmax (nmol/min/g liver) 1690 Calculation based on CLint 

Fortaner et al. (2021)Km Liver (umol/L) 15648 Km (mg/L) 2256
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Generic PBK models

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source
Water solubility (mg/L) 14000 EPI Suite ™ pKa2 - -
Resorption tubuli (?/estimated fraction) default: ? - Papp_(*10E-6 cm/s)   36.3 Paixão et al. (2012)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.0000629  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 44400 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)
Vmax (nmol/min/g liver) 740 Calculation based on CLint 

(Sohlenius-Sternbeck et al. 2012)Km Liver (umol/L) 4744 Km (mg/L) 717
Substance: Triclosane (TCS)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 289.6 PubChem
Density (mg/cm3 or g/L) 1490 ChemSketch v.111 logP 3 4.76  EPI Suite ™
Molecular weight 289.6 PubChem Fraction unbound in plasma 0.01 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.00062 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 4.76

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 4.58 pKa1 7.68 MarvinSketch 
Water solubility (mg/L) 4 10 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   184 Stec et al. (2013)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 4.65E-06  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 1649

Ashrap et al. (2017)
Vmax (nmol/min/g liver) 27.5

Ashrap et al. (2017)
Km Liver (umol/L) 123 Km (mg/L) 35.6
Substance: Amiodarone (AMD)
Absorption rate into intestinal tissue (1/h) 0.3 Kannan et al. (1982) Molecular weight 645.32 PubChem
Density (mg/cm3 or g/L) 1580 ChemSketch v.111 logP 3 6.66  EPI Suite ™
Molecular weight 645.32 PubChem Fraction unbound in plasma 0.05 Poulin and Theil (2002)
Vapour pressure (Pa) 2 4.54E-11 5 EPI Suite ™  Blood:plasma partition coefficient 1.1 Poulin and Theil (2002)
Log(Kow) at skin pH 5.5 3 4.78

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic base MarvinSketch 

Log(Kow) at blood pH 7.4 3 6.53 pKa1 8.47 MarvinSketch 
Water solubility (mg/L) 4 0.000061 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   4 Sevin et al. (2013)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.41E-13  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 131.8

Algharably et al. (2019)
Vmax (nmol/min/g liver) 2

Algharably et al. (2019)
Km Liver (umol/L) 38.6 Km (mg/L) 25.1
Substance: Cyclosporin A (CyA)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 1202.6 PubChem
Density (mg/cm3 or g/L) 1016 ChemSketch v.111 logP 3 1  EPI Suite ™
Molecular weight 1202.6 PubChem Fraction unbound in plasma 0.062 Poulin and Theil (2002)
Vapour pressure (Pa) 2 1.00E-15 5 EPI Suite ™  Blood:plasma partition coefficient 1.283 Poulin and Theil (2002)
Log(Kow) at skin pH 5.5 3 1

EPI Suite ™ , MarvinSketch 6 
Ionization neutral MarvinSketch 

Log(Kow) at blood pH 7.4 3 1 pKa1 11.83 MarvinSketch 
Water solubility (mg/L) 4 1000000 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   8 Chiu et al. (2003)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 7.50E-18  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 384

Pichard et al. (1996)
Vmax (nmol/min/g liver) 6.4

Pichard et al. (1996)
Km Liver (umol/L) 5 Km (mg/L) 6
Substance: Valproic acid (VPA)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 144.214 PubChem
Density (mg/cm3 or g/L) 950 ChemSketch v.111 logP 3 2.75  EPI Suite ™
Molecular weight 144.214 PubChem Fraction unbound in plasma 0.4 ChemScreen
Vapour pressure (Pa) 2 11.3 5 EPI Suite ™  Blood:plasma partition coefficient 0.74 ChemScreen
Log(Kow) at skin pH 5.5 3 2.23

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 0.49 pKa1 5 MarvinSketch 
Water solubility (mg/L) 4 2000 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   48 Yee (1997)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 0.08475  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 101400 Calculation based on CLint 

Fortaner et al. (2021)
Vmax (nmol/min/g liver) 1690 Calculation based on CLint 

Fortaner et al. (2021)Km Liver (umol/L) 15648 Km (mg/L) 2256
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SECTION I

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source

Substance: Methylparaben (MePa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 152.149 PubChem
Density (mg/cm3 or g/L) 1209 ChemSketch v.111 logP 3 1.96  EPI Suite ™
Molecular weight 152.149 PubChem Fraction unbound in plasma default:1 -
Vapour pressure (Pa) 2 0.1139903 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 1.96

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 1.96 pKa1 8.5 MarvinSketch 
Water solubility (mg/L) 4 4250.6 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.07E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 65709  Calibrated Vmax (nmol/min/g liver) 1095 Calibrated
Km Liver (umol/L) 4000 Calibrated Km (mg/L) 608 Calibrated
Substance: Propylparaben (ProPa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 180.2 PubChem
Density (mg/cm3 or g/L) 1134 ChemSketch v.111 logP 3 3  EPI Suite ™
Molecular weight 180.2 PubChem Fraction unbound in plasma default:1 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.049 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 3.04

 EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 3.04 pKa1(acid) 8.5 MarvinSketch 
Water solubility (mg/L) 4 500 EPI Suite ™ pKa2(base) - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.07E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 180090 Calibrated Vmax (nmol/min/g liver) 3001 Calibrated 
Km Liver (umol/L) 6000 Calibrated Km (mg/L) 1081  Calibrated 
Substance: Butylparaben (ButPa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 194.2 PubChem
Density (mg/cm3 or g/L) 1108 ChemSketch v.111 logP 3 3.57  EPI Suite ™
Molecular weight 194.2 PubChem Fraction unbound in plasma default: 1 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.033 5 EPI Suite ™  Blood:plasma partition coefficient default: 1  
Log(Kow) at skin pH 5.5 3 3.57

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 3.57 pKa1 8.5 MarvinSketch 
Water solubility (mg/L) 4 207 EPI Suite ™ pKa2 - MarvinSketch 
Resorption tubuli default: ? NR Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 NR Vapour pressure (mmHg) 2.51E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 76950 Calibrated Vmax (nmol/min/g liver) 1283  Calibrated
Km Liver (umol/L) 1900 Calibrated Km (mg/L) 369  Calibrated

CLint: Clearance intrinsic; 1 ChemSketch v.11: (ACD/ChemSketch 2011); 2 QSAR (MPBPWIN v1.43) or experimental 

value ; 3 QSAR (KOWWIN v1.68) or experimental value for logP ,  ionisation information from MarvinSketch 

(ChemAxon); 4 QSAR (WSKOW v1.42) or experimental value; 5 EPI Suite ™ , US EPA: https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-program-interface; 6 MarviSketch: ChemAxon; 7 CompTox Chemicals 

Dashboard; 8 Drugbank: https://go.drugbank.com/drugs/DB00281; Papp: Apparent permeability coefficient; 

CompTox Chemicals Dashboard: https://comptox.epa.gov/dashboard/ 
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Generic PBK models

IndusChemFate TNO Model 

Input Parameters Value Data source Input Parameters Value Data source

Substance: Methylparaben (MePa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 152.149 PubChem
Density (mg/cm3 or g/L) 1209 ChemSketch v.111 logP 3 1.96  EPI Suite ™
Molecular weight 152.149 PubChem Fraction unbound in plasma default:1 -
Vapour pressure (Pa) 2 0.1139903 5 EPI Suite ™  Blood:plasma partition coefficient default: 1 -
Log(Kow) at skin pH 5.5 3 1.96

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 1.96 pKa1 8.5 MarvinSketch 
Water solubility (mg/L) 4 4250.6 EPI Suite ™ pKa2 - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.07E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 65709  Calibrated Vmax (nmol/min/g liver) 1095 Calibrated
Km Liver (umol/L) 4000 Calibrated Km (mg/L) 608 Calibrated
Substance: Propylparaben (ProPa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 180.2 PubChem
Density (mg/cm3 or g/L) 1134 ChemSketch v.111 logP 3 3  EPI Suite ™
Molecular weight 180.2 PubChem Fraction unbound in plasma default:1 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.049 5 EPI Suite ™  Blood:plasma partition coefficient default:1 -
Log(Kow) at skin pH 5.5 3 3.04

 EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 3.04 pKa1(acid) 8.5 MarvinSketch 
Water solubility (mg/L) 4 500 EPI Suite ™ pKa2(base) - -
Resorption tubuli default: ? - Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 - Vapour pressure (mmHg) 3.07E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 180090 Calibrated Vmax (nmol/min/g liver) 3001 Calibrated 
Km Liver (umol/L) 6000 Calibrated Km (mg/L) 1081  Calibrated 
Substance: Butylparaben (ButPa)
Absorption rate into intestinal tissue (1/h) default: 3 - Molecular weight 194.2 PubChem
Density (mg/cm3 or g/L) 1108 ChemSketch v.111 logP 3 3.57  EPI Suite ™
Molecular weight 194.2 PubChem Fraction unbound in plasma default: 1 CompTox Chemicals Dashboard
Vapour pressure (Pa) 2 0.033 5 EPI Suite ™  Blood:plasma partition coefficient default: 1  
Log(Kow) at skin pH 5.5 3 3.57

EPI Suite ™ , MarvinSketch 6 
Ionization monoprotic acid MarvinSketch 

Log(Kow) at blood pH 7.4 3 3.57 pKa1 8.5 MarvinSketch 
Water solubility (mg/L) 4 207 EPI Suite ™ pKa2 - MarvinSketch 
Resorption tubuli default: ? NR Papp_(*10E-6 cm/s)   40 Lakeram et al. (2008)
Enterohepatic removal (relative to liver venous blood) default: 0 NR Vapour pressure (mmHg) 2.51E-04  EPI Suite ™
Vmax Liver (umol/kg tissue/h) 76950 Calibrated Vmax (nmol/min/g liver) 1283  Calibrated
Km Liver (umol/L) 1900 Calibrated Km (mg/L) 369  Calibrated

CLint: Clearance intrinsic; 1 ChemSketch v.11: (ACD/ChemSketch 2011); 2 QSAR (MPBPWIN v1.43) or experimental 

value ; 3 QSAR (KOWWIN v1.68) or experimental value for logP ,  ionisation information from MarvinSketch 

(ChemAxon); 4 QSAR (WSKOW v1.42) or experimental value; 5 EPI Suite ™ , US EPA: https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-program-interface; 6 MarviSketch: ChemAxon; 7 CompTox Chemicals 

Dashboard; 8 Drugbank: https://go.drugbank.com/drugs/DB00281; Papp: Apparent permeability coefficient; 

CompTox Chemicals Dashboard: https://comptox.epa.gov/dashboard/ 
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SECTION I

SM3PBK-predicted tissue:blood partition coefficients by ICF and the TNO 
model 

SUPPLEMENTARY TABLE 1 PBK-predicted and in vivo measured adipose tissue:blood partition coefficients in the human and 

rat. Substances presented in the  order of increasing lipophilicity (logD: -2 to 6.5).

Substance

Human partition coefficients Rat partition coefficients

ICF
TNO 

Model
Ratio two 

models
ICF

TNO 
Model

Ratio two 
models

Exp. 
data

Ratio a ICF/
exp.data

Ratio TNO a 

Model/exp.data
AMOX 0.1 0.04 2.8 0.05 0.03 1.6 na - -
THEO 0.5 0.52 1.0 0.23 0.03 7.9 0.4 1.5 12.2
CAF 0.7 0.06 10.6 0.30 0.06 5.1 0.2 1.3 4.0
APAP 3 0.16 16.3 1 0.17 6.3 0.3 4.3 1.5
VPA 3 0.10 28.7 1 0.02 64.3 0.2 7.7 8.4
CyA 9 2 4.3 3 0.002 1782.2 9.1 2.7 4789.5
LID 56 11 5.0 16 0.68 24.2 na - -
MePA 59 5 11.8 17 6 3.1 na - -
ProPa 128 62 2.1 57 72 1.3 na - -
ButPa 138 80 1.7 80 178 2.2 na - -
TCS 142 5 28.3 97 9 11.3 na - -
AMD 142 295 2.1 88 9 10.1 223.0 2.5 25.4

na: not available, ICF: IndusChemFate, exp. data: experimental data, AMOX: amoxicillin, THEO: theophylline, 
CAF: caffeine, APAP: acetaminophen, VPA: valproic acid, CyA: cyclosporin A, LID: lidocaine, MePa: methylparaben, 
ProPa: propylparaben, ButPa: butylparaben, TCS: triclosane, AMD: amiodarone. a The ratio represents the ‘model 
simulation’:‘observed data’ or vice versa, depending on what is >1.

SUPPLEMENTARY FIGURE 1 PBK-predicted organ tissue:blood partition coefficients in the human.
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Generic PBK models

SM4 Blood time-course simulation: Additional toxicokinetic studies

SUPPLEMENTARY FIGURE 2 Blood time-course PBK simulations and human observed data. In vivo data represent the mean 

values and the bars (amoxicillin) indicate the standard deviation. Theophylline, 125 mg, single oral dose, eight healthy volunteers 

(Rovei et al. 1982)  caffeine, 270 mg, single oral dose, one healthy volunteer (Lelo et al. 1986); acetaminophen, 1400 mg, single 

oral dose, six healthy volunteers (Lau and Critchley 1994); lidocaine, intravenous administration of 1 mg/kg, 10 healthy volunteers 

(Orlando et al. 2004); amoxicillin, 500 mg, single oral dose, nine healthy volunteers (Arancibia et al. 1980); valproic acid, 250 mg, 

single oral dose, nine healthy volunteers (Chun et al. 1980; Conner et al. 2018).
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SECTION I

SM5 In vivo-Reported and PBK-model-predicted Cmax, Tmax, and AUC 
values in blood

Su
bs

ta
n

ce

Dose(mg)

Experimental measurements PBK-predictions  
 

Reference
 

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L)
(t: in hrs)

IndusChemFate TNO Model

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t: in hrs)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L)
(t: in hrs)

AMOX 500 8.2 (SE:0.9) 1.3 (SE: 0.1) 19.4 (SE:1.3) 5.4 1.2 20.3 (t:0-6) 2.7 2.1 13.3 Adam et al. (1982)

AMOX 500 na na 27.4 (SD:3.1) 5.4 1.2 22.3 (t:0-12) 2.7 2.1 13 (t:0-12) Arancibia et al. (1980)

LID 207c 13.1 (by eye) na na 1.2 0.1 0.51 (t:0-3) 13.8 0.05 1.82(t:0-3) Grillo et al. (2001)

LID 1d na na na 4.6 0.1 1.87(t:0-12) 1.4 0.05 0.68 (t:0-12) Orlando et al. (2004)

CAF 100 1.4 1.5 na 1.7 0.6 16 (t: 0-24) 1.3 1.0 7.7 (t: 0-24) Zandvliet et al. (2005)

CAF 270 4.4 1.6 na 4.5 0.6 43.6 (t: 0-24) 3.6 1.0 20.9 (t:0-24) Lelo et al. (1986)

THEO 125 4.1 (range: 3-6.7) 1.6 (range: 1-2) 52 (range: 31-94)(0-inf.) 2.3 0.6 21.6 (t:0-48) 2.9 1.2 17 (0-48) Rovei et al. (1982)

THEO 250 5.9 3.0 na 4.6 0.7 50.9 (t:0-32) 3.9 1.3 23.8 (t:0-32) Dadashzadeh and Tajerzaden (2001)

APAP 1000 20 (SD: 8.4) 0.35 (SD: 0.17) 45 (SD: 11)     42.8 (t:0-24)     50.2 (t:0-24) Prescott (1980)

APAP 1400a na 18.6 0.3 133.2 (t:0-24) 14.0 0.9 68 (t:0-24) Lau and Critchley (1994)

APAP 325 (N=8) 3.4 (SD: 0.8) 1.1 (SD:0.6) 14.6 (SD: 3.6) 4.3 0.3 30.7 (t:0-24) 3.2 0.9 16 (t:0-24) Volak et al. (2013)

TCS 4 (N=10) 0.218 (0.17-0.267)e 1.5 (1-2) na 0.0066 0.5 0.015 (t:0-24) 0.014 0.500 0.064 (t:0-24) Sandborgh-Englund et al. (2006)

TCS 3.8 0.243 4 (range 2-6) 2.8 0.006 0.5 0.017 (t:0-72) 0.012 0.5 0.05 (t:0-72) Bagley and Lin (2000)

VPA 250 (N=9) 27.2 (SD: 4.2) na 386.4 (SD: 91) 3.4 0.3 33 (t:0-40) 4.9 1.4 24.7 (t:0-40) Conner et al. (2018)

VPA 500 (N=14)
M: 35.6 (SE:5.2)
F: 55.3 (SE: 9.4)

2.0
M: 496.6 (SE:55.2, t:0-48) 

F: 809.4 (SE: 148.4, t:0-48)
6.9 0.3 67.6 (t:0-48) 10.3 1.4 51.9 (t:0-48) Ibarra et al. (2013)

AMD (SD: N=6) 6.9 (SD: 4.2, range: 3-14.2) 4.9 (SD: 1.2, range: 3-6.2) 4.5 1.6 2.2 19.6 (t:0-24) 2.6 2.0 18.3 (t:0-24) Kannan et al. (1982)

CyA 875a (N=15) range: 0.15-2.56 range: 2-6 range: 2.2-42.6 0.7 2.3 9.2 11.3 1.5 34.9 Bertault-Pérès et al. (1985)

CyA 280a (infusion, N=8) 2.6 2.5 na 1.0 1.0 3.7 13.0 2.5 35.9 Kawai et al. (1998)

MePA 100b 26.6-38.7 (M-F) 1- 0.5 (M-F) 82.1-143.6 (M-F) 79.0 0.6 308.1 na na 2547.0 Aubert et al. (2012)

ProPa 100b 11.4-42.3 (M-F) 0.5 58.3-118.1 (M-F) 73.3 0.6 170.0 na na 2095.0 Aubert et al. (2012)

ButPa 100b 15.2-21 (M-F) 0.5 73.6-99.3 (M-F) 69.7 0.6 143.7 na na 1962.4 Aubert et al. (2012)

N= Number of participants, SD: standard deviation, SE: standard error, NR: not reported, M: males, F: females, 

na: not available, AMOX: amoxicillin, THEO: theophylline, CAF: caffeine, APAP: acetaminophen, VPA: valproic 

acid, CyA: cyclosporin A, LID: lidocaine, MePa: methylparaben, ProPa: propylparaben, ButPa: butylparaben, TCS: 

trisclosane, AMD: amiodarone
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SM5 In vivo-Reported and PBK-model-predicted Cmax, Tmax, and AUC 
values in blood

Su
bs

ta
n

ce

Dose(mg)

Experimental measurements PBK-predictions  
 

Reference
 

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L)
(t: in hrs)

IndusChemFate TNO Model

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t: in hrs)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L)
(t: in hrs)

AMOX 500 8.2 (SE:0.9) 1.3 (SE: 0.1) 19.4 (SE:1.3) 5.4 1.2 20.3 (t:0-6) 2.7 2.1 13.3 Adam et al. (1982)

AMOX 500 na na 27.4 (SD:3.1) 5.4 1.2 22.3 (t:0-12) 2.7 2.1 13 (t:0-12) Arancibia et al. (1980)

LID 207c 13.1 (by eye) na na 1.2 0.1 0.51 (t:0-3) 13.8 0.05 1.82(t:0-3) Grillo et al. (2001)

LID 1d na na na 4.6 0.1 1.87(t:0-12) 1.4 0.05 0.68 (t:0-12) Orlando et al. (2004)

CAF 100 1.4 1.5 na 1.7 0.6 16 (t: 0-24) 1.3 1.0 7.7 (t: 0-24) Zandvliet et al. (2005)

CAF 270 4.4 1.6 na 4.5 0.6 43.6 (t: 0-24) 3.6 1.0 20.9 (t:0-24) Lelo et al. (1986)

THEO 125 4.1 (range: 3-6.7) 1.6 (range: 1-2) 52 (range: 31-94)(0-inf.) 2.3 0.6 21.6 (t:0-48) 2.9 1.2 17 (0-48) Rovei et al. (1982)

THEO 250 5.9 3.0 na 4.6 0.7 50.9 (t:0-32) 3.9 1.3 23.8 (t:0-32) Dadashzadeh and Tajerzaden (2001)

APAP 1000 20 (SD: 8.4) 0.35 (SD: 0.17) 45 (SD: 11)     42.8 (t:0-24)     50.2 (t:0-24) Prescott (1980)

APAP 1400a na 18.6 0.3 133.2 (t:0-24) 14.0 0.9 68 (t:0-24) Lau and Critchley (1994)

APAP 325 (N=8) 3.4 (SD: 0.8) 1.1 (SD:0.6) 14.6 (SD: 3.6) 4.3 0.3 30.7 (t:0-24) 3.2 0.9 16 (t:0-24) Volak et al. (2013)

TCS 4 (N=10) 0.218 (0.17-0.267)e 1.5 (1-2) na 0.0066 0.5 0.015 (t:0-24) 0.014 0.500 0.064 (t:0-24) Sandborgh-Englund et al. (2006)

TCS 3.8 0.243 4 (range 2-6) 2.8 0.006 0.5 0.017 (t:0-72) 0.012 0.5 0.05 (t:0-72) Bagley and Lin (2000)

VPA 250 (N=9) 27.2 (SD: 4.2) na 386.4 (SD: 91) 3.4 0.3 33 (t:0-40) 4.9 1.4 24.7 (t:0-40) Conner et al. (2018)

VPA 500 (N=14)
M: 35.6 (SE:5.2)
F: 55.3 (SE: 9.4)

2.0
M: 496.6 (SE:55.2, t:0-48) 

F: 809.4 (SE: 148.4, t:0-48)
6.9 0.3 67.6 (t:0-48) 10.3 1.4 51.9 (t:0-48) Ibarra et al. (2013)

AMD (SD: N=6) 6.9 (SD: 4.2, range: 3-14.2) 4.9 (SD: 1.2, range: 3-6.2) 4.5 1.6 2.2 19.6 (t:0-24) 2.6 2.0 18.3 (t:0-24) Kannan et al. (1982)

CyA 875a (N=15) range: 0.15-2.56 range: 2-6 range: 2.2-42.6 0.7 2.3 9.2 11.3 1.5 34.9 Bertault-Pérès et al. (1985)

CyA 280a (infusion, N=8) 2.6 2.5 na 1.0 1.0 3.7 13.0 2.5 35.9 Kawai et al. (1998)

MePA 100b 26.6-38.7 (M-F) 1- 0.5 (M-F) 82.1-143.6 (M-F) 79.0 0.6 308.1 na na 2547.0 Aubert et al. (2012)

ProPa 100b 11.4-42.3 (M-F) 0.5 58.3-118.1 (M-F) 73.3 0.6 170.0 na na 2095.0 Aubert et al. (2012)

ButPa 100b 15.2-21 (M-F) 0.5 73.6-99.3 (M-F) 69.7 0.6 143.7 na na 1962.4 Aubert et al. (2012)

N= Number of participants, SD: standard deviation, SE: standard error, NR: not reported, M: males, F: females, 

na: not available, AMOX: amoxicillin, THEO: theophylline, CAF: caffeine, APAP: acetaminophen, VPA: valproic 

acid, CyA: cyclosporin A, LID: lidocaine, MePa: methylparaben, ProPa: propylparaben, ButPa: butylparaben, TCS: 

trisclosane, AMD: amiodarone
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Abstract

Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key 

step for the realization of a non-animal testing paradigm, in the sphere of regulatory 

toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining 

systemic doses of chemicals at the target site is accepted to be an indispensable element 

for such purposes. Nonetheless, PBK models are usually designed for a single or a group 

of compounds and are considered demanding, with respect to experimental data needed 

for model parameterization. Alternatively, we evaluate here the use of a more  generic 

approach, ie. the so-called IndusChemFate model, which is based on incorporated QSAR 

model parametrization. The model was used to simulate the in vivo kinetics of three diverse 

classes of developmental toxicants: triazoles, glycol ethers’ alkoxyacetic acid metabolites 

and phthalate primary metabolites. The model required specific input per each class of 

compounds. These compounds were previously tested in three alternative assays: the 

whole- embryo culture (WEC), the zebrafish embryo test (ZET), and the mouse embryonic 

stem cell test (EST).  Thereafter, the PBK-simulated blood levels at toxic in vivo doses were 

compared to the respective in vitro effective concentrations. Comparisons pertaining to 

relative potency and potency ranking with integration of kinetics were similar to previously 

obtained comparisons. Additionally, all three in vitro systems produced quite comparable 

results, and hence, a combination of alternative tests is still preferable for predicting the 

endpoint of developmental toxicity in vivo. This approach is put forward as biologically 

more plausible since plasma concentrations, rather than external administered doses, 

constitute the most direct in vivo dose metric. 
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QIVIVE for developmental toxicity

Introduction

The transition from animal experiments to alternative mechanism-based in vitro assays or 

assays with lower organisms, as the main information source for chemical risk assessment, 

meets with significant challenges. To begin with, the toxicity endpoints examined in 

vitro diverge from those assessed in vivo, and hence, their relevance for the prediction of 

adversity at intact organism level  needs extrapolation of the underlying toxicodynamics 

and toxicokinetics (Blaauboer et al., 2008, 2012; Gülden and Seibert, 2005). This problem can 

partially be overcome by using a combination of in vitro and other alternative tests, which can 

measure several different endpoints and various mechanisms of toxicity, rather than one 

single assay(Gülden and Seibert, 2005; Kroese et al., 2015; Schenk et al., 2010; Piersma, 2006). 

Another critical issue is the quantitative in vitro to in vivo extrapolation (QIVIVE) of effective 

concentrations (Blaauboer, 2010; Gülden and Seibert, 2005) corresponding with the points of 

departure for the risk assessment. In vitro and in vivo exposure situations differ fundamentally, 

making such extrapolations complex. In the in vitro assays, the compound of interest is directly 

added to the assay medium, thereby allowing an apparently simple exposure situation when 

compared to the in vivo situation. However, even in vitro the exposure situation is not that 

obvious, as free (active) versus bound (inactive) compound fraction needs to be considered, 

as well as possible time-dependent decomposition and/or evaporation of the test substance 

from the culture medium (Kramer et al., 2012; Groothuis et al.,, 2015). Similarly, in vivo, 

binding of a substance into plasma or serum proteins will make it unavailable for diffusion/

transport across cell membranes (Alder et al., 2011; Banker and Clark, 2008). In addition, in 

an intact organism the route from external exposure to the target organ is confounded with 

absorption, distribution, metabolism and excretion (ADME) characteristics, determining 

actual target organ exposure levels both in terms of concentration and in terms of time-

dependency. Such processes are lacking in in vitro systems. 

Clearly, linking the toxic dose metric measured in vitro and the in vivo relevant effective 

dose, requires the integration of kinetics of both systems (Alder et al., 2011; NRC, 2007; 

Blaauboer et al., 2010).  Here the use of Physiologically Based Kinetic (PBK) modelling is 

deemed to be a key element (Alder et al., 2011; Bessems et al 2014; Bouvier d’ Yvoire et al., 

2007; Hartung et al., 2011; NRC, 2007; Punt et al., 2011; Yoon et al., 2015). PBK models can 

estimate the systemic effective doses of substances at a specific target site and vice versa, 

whereas with reverse dosimetry, they can be used for the prediction of external effective 

doses in vivo starting from the in vitro toxic concentrations, i.e. the presumed target doses 

(Alder et al., 2011; Blaauboer et al., 2008). Several PBK-reverse dosimetry approaches have 

been hitherto performed for different toxicity endpoints, as for example:   neurotoxicity 

( Forsby and Blaauboer 2007), nephrotoxicity (Abdulah et al., 2016) and hepatotoxicity 

(Klein et al., 2016). Furthermore reverse-dosimetry PBK modelling has been applied 

on high-throughput chemicals on the basis of in vitro assays on metabolism and protein 

binding and QSAR physical-chemical properties (Wambaugh et al., 2015; Wetmore et al., 

2012; Wetmore et al., 2013). Here we will focus on the in vitro/in vivo extrapolation of the 

endpoint of developmental toxicity.
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We previously correlated directly in vitro benchmark concentrations, occurring specifically 

from three alternative developmental toxicity models, with in vivo benchmark doses from 

existing animal experiments, for a series of embryotoxic compounds (de Jong et al., 2009, 

2011; Hermsen et al., 2011; Piersma et al., 2008). The assays employed were the rodent 

post-implantation Whole- Embryo Culture method (WEC), the zebrafish embryo test 

(ZET), and the mouse embryonic stem cell test (EST).  Amongst these the EST is the only 

test not requiring the sacrifice of animals, by utilizing a permanent murine cell line. The 

test uses the capacity of embryonic stem cells to differentiate in vitro to contracting cardiac 

myoblasts. Inhibition of this differentiation process, in the absence of cytotoxicity, is taken 

as predicting embryotoxicity (Scholz et al., 1999; Seiler and Spielmann, 2011). In contrast to 

EST, the WEC and ZET involve the development of whole embryos, either after explantation 

from a pregnant rat or using zebra fish eggs, respectively. In the WEC experimental model, 

the effects of substances given during a narrow exposure window (early organogenesis, 

gestation day (GD) 10-12) are examined in culture, after isolation of the embryos from 

pregnant animals (Chapin et al., 2008; Piersma et al., 2004). On the other hand, the ZET 

assesses chemical toxicity during up to 120 hours of embryogenesis including hatching of 

the larva (Brannen et al., 2010; Hill et al., 2005). The advantage of both tests is that they 

mirror general morphogenesis, at least within a given developmental time window, due to 

their use of the whole embryo, rather than a plain cell-line (Chapin et al., 2008).

In that research, it was demonstrated that for a more meaningful extrapolation of such 

alternative methods in vivo, integration of kinetics is necessary. . Inevitably, this presupposes 

that the alternative systems sufficiently represent the in vivo situation. Regarding the EST 

assay  some examples have been published, where in vitro concentration-response data 

were translated into in vivo dose-response data with the use of PBK modelling (glycol ethers 

and retinoic acid: Louisse et al., 2010, 2015; phenols: Strikwold et al., 2013, 2016; glycol 

ethers: Verwei et al., 2006). Those studies aimed at deriving a predicted human in vivo 

point of departure to be used for risk assessment, and illustrate the potential of combining 

in vitro results and PBK modelling in deriving human toxicity standards.  The PBK model 

parameters were derived either from combined in vivo/in vitro data (Verwei et al., 2006, 

Louisse et al., 2010), or solely from in vitro and in silico data (Strikwold et al., 2013, 2016).

Notwithstanding the fact that these studies proved the concept of reverse PBK dosimetry in 

deriving human toxicity standards, they all needed chemical specific PBK models, whereas 

the ever increasing number of chemicals would favour a more generic PBK modelling 

approach (Basketter et al., 2012; Bessems et al., 2014). Proving the suitability of a single  PBK 

model concept, which only requires a minimum input of information, for different groups 

of chemicals, would facilitate the PBK application for extrapolation purposes, thereby 

facilitating an animal-free toxicity testing paradigm. Furthermore, the in vitro - in vivo 

extrapolation rests on the assumption that the in vitro concentrations have equal potency 

in inducing toxicity in the developing embryo. Finally, the applied reverse dosimetry was 

limited to the EST assay.
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The objectives of the current study were therefore (1) to assess the feasibility of a generic PBK 

model in order to predict in vivo kinetics, (2) to correlate PBK predicted in vivo dosimetry, 

i.e. venous blood plasma concentrations corresponding to toxic in vivo effect levels, with 

the respective in vitro effect levels and (3) to extend the foregoing analysis beyond the EST 

assay, by including other relevant alternative developmental toxicity assays. 

The PBK model IndusChemFate (Jongeneelen and Ten Berge 2011) was used, a cross-

chemical predictive model, readily accessible, and in a form of an MS EXCEL Spreadsheet. 

The features of IndusChemFate are in line with what has been previously suggested to form 

the basis for the build-up of generic PBK-platforms: relatively simple, open access, with 

inclusion of a physiological data base, multiple exposure routes (oral, inhalatory, dermal) 

(Basketter et al., 2012; Leist et al., 2014) and species applicability (human, rat, mouse). 

Next to the EST, the WEC and the ZET assays were chosen as alternative embryotoxicity 

assays for comparison. Finally, three different classes of developmentally toxic chemicals 

were chosen as model compounds, i.e. six 1,2,4-triazole compounds, four glycol ether 

alkoxyacetic acid metabolites, and two monophthalates. These compounds represent three 

different classes in terms of challenges for PBK modelling, the complexity of the modelling 

moving from toxicity induced by the parent compound (triazoles), by hepatic formation 

of a primary metabolite (glycol ethers) or by metabolite formation in the gastrointestinal 

tract (phthalates), thereby allowing us to evaluate the extent to which the IndusChemFate 

model can generically be employed. 

Materials and Methods

In vivo toxicity data

1,2,4-Triazoles derivatives
1,2,4-Triazoles derivatives, referred to herein as triazoles, are fungicides some of which 

are known to induce developmental effects in laboratory animals (EFSA, 2009). The parent 

compound is known to be more potent than the metabolite free triazole (EFSA, 2009; FAO/

WHO, 2008). Six members of the group were used: hexaconazole (HEX), flusilazole (FLU), 

cyproconazole (CYP), triadimefon (TDI), myclobutanil (MYC), triticonazole (TTC). In vivo 

developmental toxicity studies were used as selected previously by de Jong et al. (2011). 

Study information was collected as presented in that article. In all studies the animal 

model was the rat, exposed orally (mostly by gavage) during gestation days 6 to 15 or 7 to 16. 

Other routes of administration and other species were not considered. Benchmark doses 

at a 10% effect size (BMD10) for skeletal variations12 were determined by de Jong et al. (2011), 

as this was the most sensitive endpoint for most of the substances (with the exception of 

flusilazole and myclobutanyl). The order followed in Table 1 is based on the BMD10 values 

(most potent to least potent).

12 Skeletal variation (supernumerary ribs, extra ossification centers in ribs, unossified sternebrae) was chosen 
as a sensitive developmental endpoint, previously by de Jong et al., 2011. The BMR was defined as a 10% 
additional incidence of skeletal variations (de Jong et al., 2011).
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Glycol ethers
Likewise, existing in vivo data were collected for the glycol ethers. In vivo BMD10 values for 

critical embryo toxic endpoints (malformations, fetal viability, skeletal variations) were 

taken for the glycol ethers ethylene glycol methyl ether (EGME) and ethylene glycol ethyl 

ether (EGEE) from Hermsen et al. (2011), and for ethylene glycol butyl ether (EGBE) from 

Louisse et al. (2010). The corresponding developmental toxicity studies were found either 

in the published literature or in international evaluations of each compound by US EPA 

or the EU Risk Assessment Committee (RAC). A standard developmental toxicity test with 

the parent substance ethylene glycol phenyl ether (EGPE) was identified in the available 

REACH dossier for this substance (study performed by BASF found at ECHA’s website). 

In this study the tested parent substance EGPE, did not exert any fetotoxic effect. In all 

four toxicity studies the animal species was the rat, exposed only via the oral route during 

specific days of the gestation period. 

Phthalates
The in vivo information for two representatives of the phthalates, was taken from two 

studies (Table 2), as selected previously (Janer et al., 2008a). The two compounds 

were di(2-ethylhexyl) phthalate (DEHP) and di(n-butyl) phthalate (DBP), known to 

be developmentally toxic (Ema et al., 2002; ECB, 2008). As with the two previous sets of 

chemicals, priority was given to rat studies. The animals were treated orally by gavage 

during gestation days 7 to 15. BMD50 for malformations and resorptions/implantation loss 

and BMD05 for fetal body weights were determined (Janer et al., 2008a). For all endpoints 

the compounds had similar potencies, but the BMD05 for fetal body weight was used here, 

as the lowest BMD.

TABLE 1 Developmental toxicity of the triazoles in rats

Substance
Rat 

strain
Route

Exposure 
Period

Dose 
(mg/kg bw/day)

dLEL 
(mg/kg bw/

day)*

BMD10 skeletal 
variations (mg/

kg bw/day) *

HEX Wistar oral gavage GD 7-16 0, 2.5, 25, 250 2.5 2.5

FLU CRL:CD (SD) oral in diet GD 7-16 0, 0.4, 2, 10, 50, 250 0.4a 2.9

CYP Wistar oral gavage GD 6-15  0, 6, 12, 24, 48 12 15.6

TDI CRL:CD (SD) oral gavage GD 6-15 0, 10, 25, 50, 100 50 26.9

MYC SD oral gavage GD 6-15 0, 31.3, 93.8, 312.6, 468.9 312.6b 314.8

TTC CRL:CD (SD) oral gavage GD 6-15 0, 40, 200, 1000 1000 1182.3c

* dLEL and BMD10 values taken from de Jong et al., 2011 (presented in the paper in µmol/kg, transformed here into 

mg/kg bw/day). The dLEL represents the Low Effect Level for the most sensitive endpoint, i.e. skeletal variations, 

except for the case of flusilazole and myclobutanyl (see below)
a This is the dLEL for flusilazole on urogenital malformations, while for skeletal development the dLEL was 10 

mg/kg bw/day.
b dLEL for skeletal variations was not the most sensitive for myclobutanyl; decreased viability index was recorded 

at 93.8 mg/kg bw /day
c BMD10 value is above the highest dose tested
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Physiologically Based Kinetic model

In order to simulate organ exposure, the  PBK model IndusChemFate, developed by 

Jongeneelen and Ten Berge (Jongeneelen and Berge 2011), was applied to all the selected 

substances. This model comprises, next to the blood, twelve body compartments13, and it 

can be applied for different routes of exposure (dermal, inhalation or oral), for different 

species (man, rat, mice) and for different exposure durations (single peak versus repeated 

chronic exposure). In this study, we applied the model for the rat and for single and 

repeated, daily oral exposure. In order to mimic the fetal exposure, the chemical’s average 

and average-peak concentration in the maternal blood were used as a proxy, in accordance 

with the developmental toxicity exposure windows. The model thus assumes that the 

maternal blood is an effective measure for fetal exposure to either of the investigated 

chemicals.  

As input the model requires physiological/anatomical parameters (organ volumes, 

blood flows, cardiac output and alveolar ventilation), biochemical parameters (hepatic 

Michaelis-Menten kinetics, i.e., maximal metabolic rate (V
max

), affinity constant for the 

parent compound and metabolites (K
M

) and physicochemical parameters (octanol-water 

partition coefficient, vapour pressure, molecular weight, water solubility and  density). 

In the model the latter parameters are used for calculating blood concentration: organ 

partition coefficients and renal clearance. In IndusChemFate chemical metabolism is 

implemented in a sequential way, i.e., the parent compound is only metabolized into its 

primary metabolite followed by metabolism of the primary metabolite into a secondary 

metabolite, etc. In the case of triazoles this results in the following principal metabolic 

pathway: biologically parent compound > less active metabolite. In the case of glycol ethers 

and phthalates the following pathway was modelled: parent compound → toxicologically 

active acidic  metabolite.

Physiological/anatomical parameters for the rat were as described in the IndusChemFate 

user manual (version 2.00). Physicochemical parameters (organ : blood partition 

coefficients; renal clearance) were obtained from QSAR models (see Table 3). Three 

model software packages (KOWWIN, MPBPWIN and WSKOW) automatically give the 

experimental value used to derive the predictive model, whenever a substance is present 

in the PhysProp database which is bundled with the EpiSuite software containing the 

model software packages (Agency) 2016). If an experimental value was available this was 

preferred over the estimated value. For this particular set of substances the differences 

between the experimental and estimated values were negligible. All models give a direct 

estimate of the  needed PBK parameter, except for the estimate for the biochemical 

parameters, i.e. hepatic V
max

 and K
M

, which is due to lack of general (freely available) QSAR 

estimation models for these parameters.  

13  Twelve body compartments: lung, heart, brain, skin, adipose tissue, muscles, bone, bone marrow, stomach 
and intestines, liver and kidney
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TABLE 2  Developmental toxicity of the glycol ethers and two phthalates in rats.

Substance Rat strain Route
Exposure 

Period
Dose 

(mg/kg bw/day)
Critical endpoint

dLOAEL 
(mg/kg bw/day)

BMD10 
(mg/kg bw/day)*

Reference

EGME (MAA) SD oral, in diet GD 7-18 0, 16, 31, 73, 140, 198, 290, 620 Fetal malformations: cardiovascular 31 38 a Nelson et al., 1989

EGEE (EAA) Wistar oral gavage GD 1-21 0, 11.5, 23, 46.5, 93, 186, 372 Skeletal variations & retardation 46.5 83 a Stenger et al., 1971c

EGBE (BAA) F344 oral gavage GD 9-11 0, 30, 100, 200 Fetal viability (resorptions) 200 185 b Sleet et al., 1989d

EGPE (PAA) Wistar oral gavage GD 6-19 0, 100, 300, 1000 No effects on the fetus NOAEL: 1000 - ECHA disseminated REACH dossier e

Substance Rat strain Route Exposure\ period
Dose 

(mg/kg bw/day)
Critical endpoint

dLOAEL 
(mg/kg bw/day)

BMD05 
(mg/kg bw/day)

Reference

DEHP (MEHP) Wistar oral gavage GD 7-15 0, 40, 200, 1000 Growth 1000 507.7 Hellwig et al., 1997

DBP (MBP) Wistar oral gavage GD 7-15 0, 500, 630, 750, 1000 Growth 500 (lowest dose tested) 528.8 Ema et al., 1993

* BMD10 values were taken from the respective publications (see below) in µmol/kg bw/day and calculated back 

to mg/kg bw/day based on the molecular weight of the parent compound
a Hermsen et al., 2011, b Louisse et al., 2010, c This is the original reference; however, the information presented was 

taken from the report of the EU RAC Committee on EGEE (2011)
d This is the original reference; however, data were collected from US EPA evaluation (US EPA, 2009) on EGBE
e ECHA disseminated dossier on EGPE

The biochemical parameters were obtained as follows. In the case of the triazoles the 

parent compound itself is known to be developmentally toxic (EFSA, 2009) and much 

more potent than the metabolite (EFSA, 2009; FAO/WHO, 2008). Hence, the kinetics of 

the parent fungicides are of major importance. For the modelling of the concentration of 

parent triazole compounds in maternal blood, the parent triazoles metabolic parameters, 

i.e. V
max

 and K
M

 values, are needed.  For the triazoles used in this study no PBK models or 

in vitro metabolic data from which V
max

 or K
m

 may be obtained have yet been developed. 

However, for these compounds whole body half-lives ranging from 22 to 53 hours are 

available (for details see supplementary material). Though the whole body half-life per 

se does not provide a PBK metabolism parameter, it allows for the setting of the ratio of 

the hepatic V
max

/K
M

 values as a first-order metabolic rate constant in concordance with the 

whole body half-life. 

For the glycol ethers not the parent compound, but a primary metabolite is responsible 

for the induced developmental toxicity (Brown et al., 1984, Cheever et al., 1984; Foster et 

al., 1984; Giavini et al., 1993), i.e. methoxyacetic acid (MAA), ethoxyacetic acid (EAA), 

butoxyacetic acid (BAA) and phenoxyacetic acid (PAA). Therefore, the kinetics of both 

the respective parent substance and its alkoxy acetic metabolite have to be modelled. 

Here existing glycol ether PBK models provided the necessary metabolism parameter 

information: Hays et al. (2000) on EGME metabolism to MAA and urinary excretion of MAA 

(observed plasma half-life: 20 hr), Gargas et al. (2000) on the metabolism of EGEE to EAA 

and urinary excretion of EAA (observed plasma half-life: 8 hr), Corley et al. (1994) on the 

metabolism of EGBE to BAA and urinary excretion of BAA (observed plasma half-life 1.5 hr) 

and Troutman et al. (2015) on the metabolism of EGPE to PAA, the metabolism of PAA and 

the urinary excretion of PAA (observed plasma half-life: 0.7 hr). These studies were also 

used for PBK model verification.  
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For the phthalates DEHP and DBP, the embryo toxic derivatives are their monoesters, 

mono(2-ethylhexyl)phthalate (MEHP) and mono(n-butyl) phthalate (MBP), respectively, 

rather than the parent di-ester (Janer et al., 2008). The metabolites are formed in the 

GI tract by hydrolysis of the di-phthalates (Keys et al., 1999, 2000). Existing PBK models 

for DEHP (Keys et al., 1999) and DBP (Keys et al., 2000) indicate that this conversion 

occurs relative fast and that the formed metabolites are absorbed much faster that their 

respective parents. For this reason the exposure to DEHP and DBP was modelled as 

instantaneous conversion of an orally administered dose of these compounds to their 

monoalkyl metabolites, followed by absorption of the formed metabolites. As indicated by 

Keys et al.,  (1999) the DEHP → MEHP conversion amounted to 6.5 %, i.e. an oral dose of 100 

mg DEHP/kg bw/day resulting in the same systemic exposure to MEHP as an oral dose of 

6.5 mg mono(2-ethylhexyl)phthalate/kg bw/day. Similarly, Keys et al. (2000) indicate 27% 

conversion of an oral DBP dose to MBP.  

TABLE 3 Models used to estimate input parameters required for the generic PBK model.

Phys Chem parameter QSAR models used for prediction

Log D at pH 5.4 (intestines) and 

pH 7.4 (blood serum)

KOWWIN v1.68 (US EPA, 2016), with JChem estimated pKa/pKb for 

dissociating substances, (Szegezdi and Csizmadia 2007)

Density (g/cm3) ChemSketch v.11 (ACD/ChemSketch 2011)

Molecular Weight (g/mol) Calculated from structural formula

Vapour pressure (Pa) MPBPWIN v1.43 (US EPA, 2016)

Water Solubility (mg/L) WSKOW v1.42 (US EPA, 2016)

TABLE 2  Developmental toxicity of the glycol ethers and two phthalates in rats.

Substance Rat strain Route
Exposure 

Period
Dose 

(mg/kg bw/day)
Critical endpoint

dLOAEL 
(mg/kg bw/day)

BMD10 
(mg/kg bw/day)*

Reference

EGME (MAA) SD oral, in diet GD 7-18 0, 16, 31, 73, 140, 198, 290, 620 Fetal malformations: cardiovascular 31 38 a Nelson et al., 1989

EGEE (EAA) Wistar oral gavage GD 1-21 0, 11.5, 23, 46.5, 93, 186, 372 Skeletal variations & retardation 46.5 83 a Stenger et al., 1971c

EGBE (BAA) F344 oral gavage GD 9-11 0, 30, 100, 200 Fetal viability (resorptions) 200 185 b Sleet et al., 1989d

EGPE (PAA) Wistar oral gavage GD 6-19 0, 100, 300, 1000 No effects on the fetus NOAEL: 1000 - ECHA disseminated REACH dossier e

Substance Rat strain Route Exposure\ period
Dose 

(mg/kg bw/day)
Critical endpoint

dLOAEL 
(mg/kg bw/day)

BMD05 
(mg/kg bw/day)

Reference

DEHP (MEHP) Wistar oral gavage GD 7-15 0, 40, 200, 1000 Growth 1000 507.7 Hellwig et al., 1997

DBP (MBP) Wistar oral gavage GD 7-15 0, 500, 630, 750, 1000 Growth 500 (lowest dose tested) 528.8 Ema et al., 1993

* BMD10 values were taken from the respective publications (see below) in µmol/kg bw/day and calculated back 

to mg/kg bw/day based on the molecular weight of the parent compound
a Hermsen et al., 2011, b Louisse et al., 2010, c This is the original reference; however, the information presented was 

taken from the report of the EU RAC Committee on EGEE (2011)
d This is the original reference; however, data were collected from US EPA evaluation (US EPA, 2009) on EGBE
e ECHA disseminated dossier on EGPE

The biochemical parameters were obtained as follows. In the case of the triazoles the 

parent compound itself is known to be developmentally toxic (EFSA, 2009) and much 

more potent than the metabolite (EFSA, 2009; FAO/WHO, 2008). Hence, the kinetics of 

the parent fungicides are of major importance. For the modelling of the concentration of 

parent triazole compounds in maternal blood, the parent triazoles metabolic parameters, 

i.e. V
max

 and K
M

 values, are needed.  For the triazoles used in this study no PBK models or 

in vitro metabolic data from which V
max

 or K
m

 may be obtained have yet been developed. 

However, for these compounds whole body half-lives ranging from 22 to 53 hours are 

available (for details see supplementary material). Though the whole body half-life per 

se does not provide a PBK metabolism parameter, it allows for the setting of the ratio of 

the hepatic V
max

/K
M

 values as a first-order metabolic rate constant in concordance with the 

whole body half-life. 

For the glycol ethers not the parent compound, but a primary metabolite is responsible 

for the induced developmental toxicity (Brown et al., 1984, Cheever et al., 1984; Foster et 

al., 1984; Giavini et al., 1993), i.e. methoxyacetic acid (MAA), ethoxyacetic acid (EAA), 

butoxyacetic acid (BAA) and phenoxyacetic acid (PAA). Therefore, the kinetics of both 

the respective parent substance and its alkoxy acetic metabolite have to be modelled. 

Here existing glycol ether PBK models provided the necessary metabolism parameter 

information: Hays et al. (2000) on EGME metabolism to MAA and urinary excretion of MAA 

(observed plasma half-life: 20 hr), Gargas et al. (2000) on the metabolism of EGEE to EAA 

and urinary excretion of EAA (observed plasma half-life: 8 hr), Corley et al. (1994) on the 

metabolism of EGBE to BAA and urinary excretion of BAA (observed plasma half-life 1.5 hr) 

and Troutman et al. (2015) on the metabolism of EGPE to PAA, the metabolism of PAA and 

the urinary excretion of PAA (observed plasma half-life: 0.7 hr). These studies were also 

used for PBK model verification.  



3

C
H

A
PTER 3

86

SECTION II

In vitro toxicity data

Triazoles
Existing in vitro data for the six triazoles, were collected from earlier work, as published 

by de Jong et al. (2011) and Hermsen et al. (2011). The substances were evaluated in 

three developmental toxicity alternative assays, the WEC, the ZET and the EST. Critical 

concentration levels representing thresholds of adverse effects in each of the assays 

were compiled. The results of all three tests were previously analyzed with a Benchmark 

Dose (BMD) approach, with the use of the PROAST software, and are presented in the 

aforesaid publications. The following benchmark responses were used as dose metrics 

for the in vitro assays: in the WEC the concentration associated with a 5% decrease in the 

Total Morphological Score (TMS), i.e. the BMC05
TMS 

(de Jong et al., 2011), in the ZET the 5% 

decrease on the General Morphology Score (GMS), i.e. the BMC05
GMS

 (Hermsen et al., 2011), 

and in the EST the concentration corresponding with a 50% decrease in the number of 

culture wells with beating embryoid bodies, i.e. BMCd50 (de Jong et al., 2011).

TABLE 4 Effect of the triazoles on embryonic development in the WEC and the ZET and on the differentiation of ES cells into 

beating cardiomyocytes (EST), as collected from published literature.

Substance WEC BMC05 TMS (µM) * ZET BMC05 GMS (µM) * EST BMCd50 (µM) *

FLU 19 4.8 5.7

CYP 335.9 27.7 31.8

TDI 178.6 29.2 32.2

HEX 149.9 7 16.6

MYC 138.6 30.2 30.5

TTC 272.1 80.5 35.8
*In vitro BMC values taken from de Jong et al., 2011.

Glycol ethers
Likewise, in vitro data were collected, as previously performed, for the glycol ethers, but 

in this case not for the parents, but for their embryotoxic alkoxyacetic acid metabolites. 

The in vitro data (Table 5) were taken from the published studies of de Jong et al. (2009) and 

Hermsen et al. (2011), for the EST and ZET, respectively. The tests were conducted directly 

with the toxic metabolites because the systems essentially lack metabolizing capacity 

(Piersma et al., 2004; Verwei et al., 2006). For the WEC, only data for three of the metabolites 

(excluding PAA) were available (Giavini et al., 1993).

As for the fungicides, the Benchmark Concentrations (BMCs) were obtained for ZET and 

EST from the published results, BMC05
GMS

 (Hermsen et al., 2011) and BMCd50 (de Jong et 

al., 2009), respectively. BAA and PAA did not induce any embryotoxic effects in the ZET. 

For the WEC only LOAECs were available (Giavini et al., 1993), while no data were found for 

PAA in this assay.  
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TABLE 5 Effect of the glycol ethers alkoxyacetic acid metabolites on embryonic development in the WEC and the ZET and on the 

differentiation of ES cells into beating cardiomyocytes (EST). Effects of the monophthlates in the WEC and EST.

Substance WEC LOAEC (mM) a ZET BMC05GMS (mM) b EST BMCd50 (mM) c

MAA 0.1 2.7 2.4

EAA 0.2 3.1 3.4

BAA 0.4 no effect 5.2

PAA not tested no effect 6.2

Substance WEC BMC05 TMS (µM)d no data on ZET EST ID50 (µM)e

MEHP 600 410

MBP 2900 1440
a Giavini et al., 1993, b Hermsen et al., 2011, c de Jong et al., 2009; Presented here is the average between the two lab 

results (given separately in the publication), d Janer et al., 2008, e Schulpen et al., 2013.

Phthalates
For the two phthalates DEHP and DBP, in vitro data were collected for the respective 

embryotoxic monoesters (MEHP and MBP), for the WEC and EST (Table 5). Unfortunately, 

benchmark responses were not available for the EST assay, and hence the ID50 

concentrations were used, as presented in the relevant paper (Schulpen et al., 2013). No 

information on the embryotoxic potential of the two mono-phthalates in the ZET assay 

could be identified in the public domain.

Correlation analysis

In order to determine correlations between the calculated PBK blood concentrations at 

the respective in vivo BMD10s and the corresponding in vitro BMC or LOAEC values, the 

triazole data were plotted against each other and analysed with a power function in excel. 

This procedure is in concordance with previous work of our group (de Jong et al. (2011), 

Hermsen et al. (2011), Piersma et al. (2008)).

Results

Verification of the PBK model 

Triazoles
In the case of triazoles the available kinetic information was used for the calculation of the 

whole body half-life, which ranged from 22 hr for triadimefon to 53 hr for cyproconazole. 

Without exception, physicochemical QSARs incorporated in the PBK model indicated the 

lipophilic character for all of these compounds. As expected the PBK model showed highest 

triazole levels in the maternal adipose tissue. Note the relative small difference between 

the average blood concentration and the peak concentration (see Figure 1 for flusilazole). 
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FIGURE 1 Time-course PBK model simulation 

of flusilazole exposure for the whole body, adipose 

tissue, venous blood, after oral administration of the 

substance for 10 consecutive days (external dose used in 

the simulations is the 2 mg/kg bw/day, chosen from the 

doses tested in the developmental toxicity study).

In a similar way, respective blood concentrations of the fungicide were calculated, for 

the dose range applied in the selected in vivo developmental toxicity study, i.e. orally 0.4 

- 250  mg/kg bw/day during the whole exposure period, i.e. gestation days 7 to 16 (study 

data shown in Table 1). As the appropriate in vivo dose metric for fetal exposure, either the 

average or the peak-average 10-day maternal blood concentrations could be taken. The 

predicted blood levels were plotted against the external administered doses(Figure 2). The 

relationship shown in  Figure 2 then was used to calculate the flusilazole average and peak-

average concentrations at the BMD10 level of the in vivo toxicity experiment (in the case of 

fluzilazole 2.9 mg/kg bw/day).  The results indicated that there is no substantial difference 

between the two blood concentrations (average and average-peak), and potentially they 

could both represent a suitable proxy for fetal exposure. The same procedure was repeated 

for each of the triazole compounds (data not shown).

FIGURE 2 Flusilazole average venous blood (A) and peak- average venous blood (B) concentration (µmol/L) in relation to the 

orally administered substance (mg/kg bw/day), for 10 consecutive days, as calculated by PBK-modeling.
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Glycol ethers 
In the case of glycol ethers existing PBK models provided suitable model verification 

data, i.e. time-course curves of both the parent compounds and its primary toxic acetic 

acid metabolite after gavage administration. Initial simulations revealed that the default 

IndusChemFate, predicting negligible urinary reabsorption of glycol ether metabolites, 

grossly overpredicted the clearance of such metabolites from the blood (data not shown). 

This overprediction could be avoided by incorporating substantial urinary reabsorption 

of glycol ether metabolites from tubular urine, the latter being in concordance with 

the modelling of the formation of glycol acetic from glycol (Corley et al., 2005). Figure 3 

illustrates the PBK simulations for EGME/MAA in venous blood as made with the modified 

IndusChemFate model, after oral exposure to the parent substance. The produced PBK 

results were close to  the in vivo measured concentrations from the experimental study of 

Hays et al. (2000), albeit with slight underprediction (Figure 3). 

FIGURE 3 Time-course PBK model simulation of the parent substance EGME and its metabolite MAA concentrations in the 

venous blood, after a single oral administration of EGME (3.3 mmol/kg bw) in the rat. PBK model incorporating reabsorption of 

MAA from tubular urine.

These results suggest that IndusChemFate can satisfactory estimate the in vivo blood levels 

of the primary metabolite MAA, after dosing of the parent compound. Similar results were 

found with the other three glycol ethers and their metabolites (see supplementary material).

As for the triazoles, the PBK model was used to predict both the average and peak-average 

venous blood concentrations of the glycol ethers’ primary metabolites in the rat, after 

consecutive daily oral exposure to the parent substance, for the whole dose range given in 

the selected developmental toxicity study (Figure 4).  

The average and peak blood levels significantly differed for EAA, BAA and PAA, but not so 

much for MAA. The differences were more pronounced with the least potent compound 

BAA and with the non-developmentally toxic PAA (Figure 4).

As with the triazoles, the PBK simulated relationship between the  metabolite blood 

concentrations and the respective oral doses of the parent substances was determined 

and .  used to translate the in vivo external effect doses of the parent substance, as defined 

by the benchmark approach (BMD10), into blood concentrations of the corresponding 
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alkoxyacetic acid metabolite, during the respective exposure period for each substance. As 

expected  the difference between corresponding average and peak levels was remarkable 

(data not shown).

FIGURE 4 (A) Time-course PBK model simulation of MAA in venous blood, after oral administration of eight consecutive daily 

doses of the parent EGME (dose: 620 mg/kg bw/day). The average venous blood terminal half-life of MAA was 20 hours. (B) Time-

course model simulation of EAA in venous blood, after oral administration of 21 consecutive daily doses of the parent EGEE (dose: 

372 mg/kg bw/day). The venous blood terminal half-life of EAA was 8 hours. (C) Time-course model simulation of BAA in venous 

blood, after oral administration of three consecutive daily doses of the parent EGBE (dose: 200 mg/kg bw/day). The venous blood 

terminal half-life of BAA was 1.5 hours. (D) Time-course model simulation of PAA in venous blood, after oral administration of 14 

consecutive daily doses of the parent EGPE (dose: 300 mg/kg bw/day). The venous blood terminal half-life of PAA was 0.7 hours.

Phthalates
As a default the IndusChemFate PBK model describes chemical kinetics as perfusion 

limited, i.e. kinetics being limited by the blood flowing to the organs. As shown by chemical 

specific PBK models this concept is unable to describe phthalate kinetics (Keys et al., 1999, 

2000). In concordance with the findings of Keys et al. indeed it was found that the default 

IndusChemfate PBK model leads to a gross overestimation of the concentration of mono-

phthalate metabolites after gavage exposure to the parent diphthalate (data not shown). 

However, as also shown by Keys et al. the incorporation of enterohepatic circulation leads 

to a satisfactory description of phthalate kinetics. In the case of phthalates inherent 

enterohepatic circulation of the IndusChemFate model was taken into account. This 

lead to a satisfactory description of the time-course of the blood concentrations of toxic 

monoester phthalates (Figure 5), the  PBK simulations are  comparable to the verification 
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data, i.e. in vivo measured concentrations from the experimental studies of Keys et al.,  

1999, 2000).  As with the glycol ethers the produced simulations were close to measured 

data (Keys et al., 1999, 2000). 

FIGURE 5 (A) Time-course PBK model simulation of MEHP in venous blood, after a single oral administration of the metabolite 

MEHP (100 mg/kg bw), with the PBK model incorporating  enterohepatic circulation of the formed metabolite. The experimental data 

were taken from Keys et al., (1999, Figure 5). (B) Time-course model simulation of MBP in venous blood, after oral administration 

of single doses of the parent DBP (doses: 50, 200, 857 mg/kg bw). PBK model incorporating  enterohepatic circulation of the formed 

metabolite. The experimental data were taken from Keys et al., (2000, Figure 4A).

The PBK model was used to predict both the average and peak-average venous blood 

concentrations of monoesters in the rat, after daily gavage exposure to the di-esters, for 

the whole dose range given in the selected developmental toxicity study (Figure 6). The two 

metrics differed between them clearly for both compounds. 

As with the triazoles and glycol ethers the PBK simulated relationship between the  

metabolite blood concentrations and the respective oral doses of the parent substances, 

the latter being calculated as a % conversion of the parent phthalate. The resulting 

relationships were used to predict the plasma levels of the metabolite at the corresponding 

BMD05 on fetal growth (data not shown).
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FIGURE 6 (A) Time-course PBK model simulation of the monophthalate MEHP concentrations in the venous blood, after repeated 

oral administration of the parent (1 g DEHP/kg bw/day→65 mg MEHP/kg bw/day, i.e. 6.5% conversion in the GI tract) in the rat, 

with activated enterohepatic circulation. (B) Time-course PBK model simulation of the monophthalate DBP concentrations in the 

venous blood, after repeated oral administration of the parent (1 g DBP/kg bw/d→270 mg MBP/kg bw/day, i.e. 27% conversion in 

the GI tract) in the rat, with activated enterohepatic circulation. 

In vitro-in vivo comparisons

Triazoles 
The fetotoxicity potency ranking of the triazoles resulting from the PBK model-predicted 

blood concentrations (average and peak), at the BMD10 level for skeletal variations, as well 

as from each alternative developmental toxicity test, is presented in Figure 7. As a dose 

metric for the in vitro assays the corresponding BMC values are used (Table 1). The results 

show that the triazoles’ effective internal concentration (average or average-peak) after 

oral exposure to each individual substance, produces the same potency ranking as that 

based on the BMD10 values. Hexaconazole seems to be the most potent compound of all six. 

The overall ranking is as follows: hexaconazole> flusilazole> cyproconazole> triadimefon> 

myclobutanyl> triticonazole. On the other hand, none of the three alternative assays could 

rank 100% correctly all six compounds, in agreement with their in vivo potency.

FIGURE 7 Potency ranking of the triazoles as resulting from each developmental toxicity alternative test, in vivo experiments and 

the PBK model-simulated venous blood concentrations. The potency is demonstrated either by the in vitro respective BMCs (µM) for 

the WEC, ZET and EST, the in vivo BMD10 skeletal variations, or the PBK simulated average and peak blood concentrations (µM) at 

the BMD10 level. Note that the higher the graph bar the lower the potency. 
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For the in vivo-in vitro correlations the average blood concentration was chosen as dose 

metric. Figure 8 illustrates the triazoles predicted average blood concentrations at the in 

vivo BMD10 levels (skeletal variations), in correlation with the BMC values for the triazole 

compounds, as found in the three alternative developmental toxicity assays. The highest 

correlation with a coefficient R2 of 0.85 was produced with the results from the ZET. The 

EST showed a moderate correlation (R2: 0.54), and the WEC a low correlation (R2: 0.29). 

FIGURE 8 PBK-predicted average venous blood 

concentrations of the triazoles, corresponding to 

the in vivo BMD10 values for developmental toxicity 

endpoints (BMD10 values taken from de Jong et al., 

2011) plotted against (A) in vitro WEC BMC values (de 

Jong et al., 2011), (B) ZET BMC values (Hermsen et al., 

2011), and (C) EST BMC values (de Jong et al., 2011).

The line of identity (slope equal to 1) was drawn, in order to depict the absolute differences 

between effect levels recorded in vitro and in vivo estimated blood levels (Figure 8); if the 

data points are precisely on the line of identity the in vitro and PBK effect levels are exactly 

the same. Results within the same order of magnitude are considered to be comparable, 

since such differences can stem solely from biological variation (Janer et al., 2008a). The 

compounds TDI and CYP were (almost) on the line of identity for both the ZET and the EST 

assays. MYC effective concentrations (in vitro vs. in vivo) differed more than one order of 

magnitude in these two tests (13.9-fold and 13.7-fold, respectively), with a lower potency 

in vivo. The same was seen for TTC in the ZET (14.9-fold), but a higher difference (33.6-

fold) was detected with the EST. Again here, as for MYC, the compound was shown to be 

more toxic in vitro than in vivo. In the WEC the main outliers are HEX and CYP, for which 

the potency is under-predicted (respective differences with blood effect levels: 110-fold, 15-
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fold, respectively). The fungicide FLU was borderline in respect to the 10-fold scale (11-fold), 

which is considered to be a normal variation in in vivo toxicity studies (Janer et al., 2008b).

Glycol ethers
In contrast to the result with the triazoles, the embryotoxicity potency ranking of the glycol 

ethers’ primary metabolites, i.e. the alkoxy acetic acids, as resulting from the PBK model-

predicted blood concentrations, appeared different for the average and average-peak  

blood concentrations (Figure 9). The ranking for the internal estimated concentrations 

corresponding to the peak exposures was in agreement with the order as sorted with the 

in vivo BMD10 values: MAA> EAA > BAA. This outcome suggests that in the case of glycol 

ethers the developmental effect might be primarily driven by the peak exposures rather 

than the average exposures of the embryo. The in vitro potency ranking of the glycol ether 

metabolites was the same as the in vivo BMD10 ranking, confirming the in vitro in vivo 

extrapolation. BAA and PAA did not induce any embryotoxic effects in the ZET. This is 

in fact in agreement with the in vivo data. BAA is embryotoxic at doses at which maternal 

toxicity is also observed (Sleet et al., 1989). In the oral developmental toxicity selected for 

EGPE, the substance, and consequently its metabolite, did not exert any adverse effects on 

the fetal development. Hence, comparison with these two compounds was not possible.

FIGURE 9 Potency ranking of the alkoxy acetic acid metabolites or the respective parents glycol ethers as resulting from each 

developmental toxicity alternative test, in vivo experiments and the PBK model-simulated venous blood concentrations. The 

potency is demonstrated either by the in vitro WEC LOAEL (µM), the in vitro respective BMCs (µM) for the ZET and EST, the in vivo 

BMD10 skeletal variations, or the PBK simulated average and peak blood concentrations (µM) at the BMD10 level. Note that the 

higher the graph bar the lower the potency. 

For the in vivo-in vitro correlations both the average and average-peak blood concentrations 

were used. Figure 10 (A and B) illustrates the metabolites’ predicted blood concentrations 

at the in vivo BMD10 levels, in correlation with the BMC values for the metabolites, as found 

in the two alternative developmental toxicity assays. The line of identity in the graphs 

demonstrates that in the WEC test the effective concentrations are slightly overestimated, 

as compared to the PBK simulated in vivo situation. On the other hand, in the EST the BMC 
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values are slightly higher in relation to the predicted effect blood concentrations at the 

BMD levels. This outcome indicates that the alternative assays might be over-sensitive or 

under-sensitive with respect to predicting the observed in vivo toxic effects. Nonetheless, 

with respect to the calculated peak blood concentrations, equivalent to the in vivo BMD10s 

(critical endpoints), the predicted effect levels by both tests did not differ more than 4.5-

fold (2- to 4.5-fold).

FIGURE 10 PBK-predicted average and peak venous blood concentrations of the glycol ethers alkoxyacetic metabolites (MAA, 

EAA and BAA), corresponding to the in vivo BMD10 values for developmental toxicity endpoints (BMD10 values taken from 

Hemsen et al., 2011 and Louisse et al., 2010) plotted against (A) in vitro WEC LOAEL values (Giavini et al., 1993) and (B) the in 

vitro EST BMCd50 values (de Jong et al., 2009).

Phthalates
In vivo, DEHP and DBP have comparable potency based on the two selected studies, with 

similar BMD05 values on fetal growth and BMD50s on malformations (Janer et al., 2008). 

Nevertheless, in the in vitro assays WEC and EST, the presumed toxic monophthalate MEHP 

appears to be more potent than MBP (3.5- to almost 5-fold), which could perhaps be a 

result of kinetics differences.

Indeed, the estimated blood concentrations of the two metabolites, corresponding to the 

BMD05 of fetal growth (or the BMD50s on malformations), have larger relative differences 

than the external BMD05 values. In particular, the peak plasma concentration of MBP was 

almost 10-fold higher than the respective blood level for the MEHP monoester, despite 

the similarity in the BMD05 doses. This outcome demonstrates a difference in potency 

between the two metabolites, in agreement with the observations of the two alternative 

tests. The PBK calculated peak blood concentrations at the BMD05 and the effect levels 

measured in the in vitro assays differ an order of magnitude or less, i.e. they are within 

the expected variation observed also in animal experiments in vivo (Janer et al., 2008b). 

However, this is not the case for the average blood concentrations (Figure 11). 
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FIGURE 11 PBK-predicted average and peak venous blood concentrations of the monophthalates MEHP and MBP, corresponding 

to the in vivo BMD05 values for developmental toxicity endpoints (BMD05 on fetal growth, taken from Janer et al., 2008) plotted 

against (A) in vitro WEC BMC05 TMS values (Janer et al., 2008) and (B) the in vitro EST ID50 values (Schulpen et al., 2013).

Discussion

A pivotal step towards QIVIVE concerns the correlation of the toxic potency of compounds 

in in vitro systems with that observed in vivo. As a first tier this may be obtained by direct 

comparison of in vitro biologically active concentrations with in vivo effective doses. 

This comparison may be improved by comparing biologically active in vitro and in vivo 

concentration at the cellular level, i.e. the concentration delivered at the relevant target 

site. In vitro this is relatively easy, initially being the nominal concentrations added to the 

cells. However, in vivo the delivery of an administered dose to the cells is subsequently 

affected by the ADME processes. In other words, linking in vitro to in vivo dosimetry, needs 

the integration of the kinetics of both systems. Though in vivo kinetic PBK models have been 

shown to be an indispensable tool here, they are mostly chemical - (Li et al., 2017; Louisse et 

al., 2105; Strikwold et al., 2103) or chemical class-(Louisse et al., 2010;  Strikwold et al., 2016) 

specific. The purpose of the present work was, as a proof of principle, to examine whether 

a PBK model with features which are in line with generic PBK modelling  can be used for 

the extrapolation of in vitro observed developmental toxicity to the in vivo situation for 

three different classes of chemicals known to be developmentally toxic in the rat, i.e. the 

triazoles, the glycol ethers and the phthalates. By employing the model for these diverse 

classes, we survey the generic nature and applicability domain of the model used.

Feasibility of IndusChemFate a generic PBK model

The results of this study show that  PBK modelling is able to extrapolate in vitro 

reproductive toxicity to systemic exposure in the intact organism, thereby refining the 

extrapolation paradigm previously applied by our group (de Jong et al., 2011; Hermsen et 

al., 2011).  Based on input parameters taken either from previously reported PBK models 

(metabolism parameters for glycol ethers and phthalates), physicochemical QSARs (all 

compounds) and from published regulatory literature (whole body half-life of triazoles) 

our results demonstrate that IndusChemFate can simulate the in vivo kinetics in the rat, 

for widely different chemical compounds. IndusChemFate incorporates several key 
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features of a generic modelling approach : open access, inclusion of a physiological data 

base,  multiple exposure routes (oral, inhalatory, dermal) (Basketter et al., 2012; Leist et 

al., 2014) and species (human, rat, mouse). The model avoids the disadvantage common 

to the development of PBK models which is generally considered quite complex and 

needs mathematical and programming expertise (Bessems et al., 2014). Furthermore, it 

overcomes the problem pertaining to availability of all partitioning model parameters of 

a substance, by incorporatingQSARs, developed to predict such parameters solely from 

physico-chemical characteristics (Jongeneelen and ten Berge, 2011). However, in addition, 

the model needs substantial non-QSAR input. Firstly, metabolism parameters should be 

available. Though such parameters may be obtained from available PBK models or by fitting 

the model to experimental in vivo kinetics preferably they should be obtained from in vitro 

experimental measurements using cellular or subcellular organ fraction. In this context 

the in vitro measurements of these parameters by Green et al., (1996) for glycol ethers still are 

exemplary. Secondly, essential chemical characteristics such as reabsorption from tubular 

urine (glycol ether metabolites) and stability in the gastrointestinal tract (phthalate parent 

compounds) a priori should be known in order to lead to successful modelling. In this 

context the Kow based QSAR for tubular reabsorption clearly was found at variance with 

the in vivo kinetics of glycol ether metabolites.

IndusChemFate: Fine tuning

In IndusChemFate the current model, blood:organ partitioning is based on the distribution 

of the non-ionised compound, between the blood and the organs. In the case of triazoles, 

parent glycol ethers and phthlates this is a valid approach for the parent compounds.

However for primary glycol ether and phthalate metabolites it may not, because these 

metabolites contain an acetic acid moiety, which at the pH of the blood or the organs is 

highly ionised. Though the present study and specific PBK models (Keys, 1999; 2000) 

indicates that the current PBK model concept gives a satisfactory description of glycol ether 

and phthlate kinetics without incorporation of a partitioning mechanism, which takes 

ionisation explicitly into account the extension of the current PBK model concept with pH 

dependent ionisation partitioning may improve the modelling of ionised compounds. As, 

in combination with perfusion-diffusion limitation, the non-ionised/ionised partitioning 

is the most generic chemical PBK distribution mechanism, we currently are extending the 

IndusChemFate model according to this mechanism.

A potential limitation is the use of maternal blood as a proxy for fetal exposure.  Here it 

should be realised that combining in vitro developmental toxicity results with a quantitative 

measure of placental diffusion (as revealed by the BeWo transport system) was found 

to increase the predictive power of the in vitro reproductive assays with respect to in vivo 

developmental toxicity (Li et al., 2015, 2016, 2017). Clearly, for such compounds in vitro 

toxicity testing should be combined with PBK modelling and the BeWo placental transport 

system in order to predict in vivo reproductive toxicity. As indicated by Li et al., (2017) only 

in the case of a high placental transfer rate a combination of PBK modelling and an in vitro 
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toxicity testing suffices to predict in vivo developmental toxicity. In that case, maternal 

blood is the ideal surrogate for fetal exposure, whereas in the case of chemicals with a 

low placental transfer rate the PBK model should be extended with a separate fetal sub-

compartment. In that case, alterations in chemical kinetics due to physiological changes 

occurring during pregnancy, or changes in kinetics due to placenta formation have to be 

taken into account In this study it was assumed that for all substances the placental barrier 

is negligible. Nonetheless, as shown for triazoles (Li et al., 2016) it cannot be excluded that 

the compounds have different transfer rates through the placenta and hence, this can 

influence the effect levels in vivo. 

Peak versus average exposure

Developmental toxicity is thought to result from a relatively short exposure period, i.e. a 

peak, even single, exposure during a well-defined critical time period within organogenesis. 

The sensitive window of specific morphogenetic processes may amount to less than 2-days. 

In contrast, toxicity may also be related to more sustained exposure, i.e. a substantial 

part or even the total duration of pregnancy. Kinetically both exposure situations relate 

to simulating the maximal (C
max

 approach) or the average (AUC-area under the curve 

approach) blood concentration. In this study we considered these exposure metrics and 

the results indicate that, depending on the chemical’s kinetic profile, both approaches 

may lead to different results. For example, triazoles display relatively slow kinetics. As a 

consequence, after repeated exposure, these chemicals are expected to reach a so-called 

quasi steady state situation in the body and the blood relatively quickly (see Figure 1). In 

such a situation additional dosing will lead to relatively low peak concentrations. Hence, 

the extrapolation of in vitro to in vivo does not differ much, whether based on a C
max 

or an 

AUC approach. This contrasts sharply with glycol ethers and phthalates which show much 

faster kinetics and, consequently, more variable blood kinetics after repeated exposure. As 

expected, the in vitro to in vivo extrapolation then may substantially differ when based on 

the C
max

 or the AUC approach. 

In vitro/in vivo comparison

Previous work directly correlated in vivo reference values of external dose versus in vitro 

effective concentrations, for the triazoles and the glycol ethers (de Jong, et al., 2009, 2011; 

Hermsen et al., 2011). The current study used a more refined approach, i.e. a comparison 

of the nominal in vitro effective concentration with the PBK simulated concentration in 

the blood after gavage exposure at the level of in vivo reproductive toxicity were used. 

This comparison showed that for the triazoles, correlations pertaining to relative potency 

and potency ranking with integration of kinetics, remain comparable with previous 

correlations (de Jong et al., 2011). For both the ZET and EST assays the fungicides MYC and 

TTC, were outside the 10-fold scale, which is considered to be a normal variation in in vivo 

toxicity studies (Janer et al., 2008b). Their predicted potencies differed at least one order of 

magnitude from the PBK estimated plasma concentrations (ZET: 13.9-fold and 14.9-fold, 

EST: 13.7-fold and 33.6-fold, respectively), while in vivo the two compounds appeared less 
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potent. In the WEC the main outliers are HEX, which exerted a 110-fold lower potency in the 

in vitro assay, compared to its in vivo effect level, followed by CYP with a 15-fold difference.

Within the class of glycol ethers, the toxic potency and ranking obtained from all three 

alternative assays was already in agreement with the ranking based on in vivo BMD10 values 

(embryotoxicity) of the parent substances. The in vitro effective concentrations were within 

the range (one order of magnitude) of estimated blood concentrations, corresponding to 

external effective doses from animal experiments.

The two chosen phthalates, DEHP and DBP, were shown to have comparable potency in 

animal experimental studies, with similar BMD05 values on fetal growth and BMD50s 

on malformations (Janer et al., 2008b). This was not seen in the alternative tests, where 

MEHP is 3.5- to almost 5-fold more toxic than MBP. Even so, such differences are within 

the allowable 10-fold scale. The calculated PBK peak blood concentrations showed an 

analogous pattern to the findings recorded in vitro, indicating that integration of kinetics 

in such extrapolations can quantitatively refine the comparisons. The in vitro effective 

concentrations differed less than an order of magnitude (or in one case an order of 

magnitude) from the plasma concentrations, corresponding to the in vivo BMC05s. 

Previously the straightforward assumption was made that equal concentrations at the 

target site in vitro and in vivo will induce similar toxic effects (Louisse et al., 2010, 2015; 

Strikwold et al., 2013, 2016; Li et al., 2017). Nonetheless, the interpretation of reproductive 

alternative assays as to what effect constitutes adversity versus non-toxic physiological 

changes and in vitro versus in vivo toxic potency warrants further elucidation. In the WEC, 

the ID20 on the total morphological score (TMS) is taken as the standard. This effect size 

does constitute clear adversity as a 20% reduction of TMS indicates significant retardation 

of embryo development. For the ZET, the ID20 on the general morphology score (GMS) is 

defined as the reference value, again based on a significant retardation of development at 

that effect size. In the EST, the ID50 on cardiomyocyte differentiation has been classically 

used as the easiest measure to derive on the sigmoid dose-response curves, which this 

method provides. This standard approach was also applied in the current comparison. The 

three assays used showed very comparable patterns as to in vitro to in vivo extrapolation of 

individual chemicals studied.

In conclusion, the IndusChemFate model  was found to be capable of describing the in vivo 

kinetics of the three classes of developmental toxicants employed, though at the expense 

of several chemcical specific adaptations.. However, future modelling will still need fine-

tuning, in terms of including for instance a placental-fetal compartment, alternative 

partitioning mechanisms such as ionization/non-ionization, diffusion-limitation, the fate 

of chemicals in the GI tract and renal clearance. 

Furthermore, we performed comparisons with three different developmental toxicity 

alternative assays. The current results indicate that for the time being it is not possible to 

discriminate which of the three assays outweighs the others in predicting in vivo toxicity. Hence, 

a combination of tests is preferable for predicting the endpoint of developmental toxicity.
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Triazoles 

Whole body half-life 
Compound Whole body half-life (hr) Source

Fluzilazole 30 (range: 14-57) FAO/WHO 2007/JMPR 2008

Triadimefon 22 JMPR 2007/IPCS/WHO 2004

Myclobutanil 41 (36-50) DAR myclobutanyl, 2006

Hexaconazole 38 (36-41) WHO 1990

Cyproconazole 53 (range: 39-62) DAR cyproconazole, 2006

Titriconazole 29 (22-33) DAR triticonazole, 2005

Glycol ethers

Model verification

SUPPLEMENTARY FIGURE 1 PBK-model predictions of the parent substance EGEE and its metabolite EAA concentrations in 

blood, following inhalation of EGEE at 100 ppm (rat, repeated dose). The experimental data are taken from Gargas et al., (2000, 

Figures 2A & B);rats were expose during GD 11-15.

SUPPLEMENTARY FIGURE 2 PBK-model predictions of the metabolite EAA concentrations in blood, following oral 

administration of the parent compound EGEE (two doses: 8.6 and 126 mg/kg bw/day). The experimental data are taken from 

Corley et al., (1994, Figure 3).
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SUPPLEMENTARY FIGURE 3 PBK-model predictions of the parent substance EGPE and its metabolite PAA concentrations in 

the blood, after oral administration of EGPE (rat, single dose: 152 mg/kg bw). The experimental data are taken from Troutman et 

al., (2015, Figure 2A).

SUPPLEMENTARY FIGURE 4 PBK-model predictions of the parent substance EGPE and its metabolite PAA concentrations in 

the blood, after oral administration of EGPE (rat, single dose: 456 mg/kg bw). The experimental data are taken from Troutman et 

al., (2015, Figure 2B).
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Abstract

With the increasing application of cell culture models as primary tools for predicting 

chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo 

(QIVIVE) has become increasingly important. For developmental toxicity this requires 

scaling the in vitro observed concentration effect levels to in vivo fetal exposure, by 

integration of in vivo kinetics, including information on the transplacental transfer. This 

transport of substances across the placental barrier, has been studied here with the use of 

the in vitro BeWo cell assay. Six model compounds with embryotoxic potential have been 

applied. Subsequently, the  BeWo assay results were incorporated in an existing generic 

Physiologically Based Kinetic (PBK) model, extended for the rat pregnancy as a ‘proof of 

principle’. The BeWo results illustrated different transport profiles of the chemicals across 

the BeWo monolayer, allocating the substances into two distinct groups: the ‘quickly-

transported’ and the ‘slowly-transported’. Exposure PBK-simulations during gestation 

demonstrated satisfactory kinetic predictions, when compared to experimentally 

measured maternal blood and fetal concentrations. A PBK modelling reverse dosimetry 

approach was applied to translate embryotoxicity in vitro concentrations-response curves 

of the chosen chemicals into equivalent in vivo dose-response curves. Selected in vitro tests 

were the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc 

and neural:ESTn). The in vitro-based predictions were compared to rat developmental 

toxicity data. Overall the in vitro to in vivo comparisons suggest a promising future for 

the application of such approaches in the chemical safety assessment of developmental 

toxicity, at least  for screening and prioritization purposes, although the clear need for 

further optimizations is acknowledged for a wider application such as in risk assessment.

Graphical Abstract
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Introduction 

During development the predominant physical link between the maternal circulation and 

the growing fetus is the placenta. As such, this transient organ has a fundamental role in 

fetal growth with several functions, like the exchange of nutrients and removal of waste 

products, hormonal secretion and transfer of maternal immunity. Amongst its functions, 

the placenta serves as an embryonic protection barrier from harmful xenobiotics circulating 

in the maternal blood (Furukawa et al. 2011; Griffiths and Campbell 2014; Pemathilaka et 

al. 2019). Even so, many compounds are known to eventually cross the placental passage 

and influence the development of the fetus; hence, developmental toxicity depends partly 

on the chemical’s ability to transport across the placenta (Furukawa et al. 2011; Griffiths 

and Campbell 2014).

Transplacental transfer of toxicants can be studied with the use of the BeWo cell assay, 

an in vitro model mimicking in vivo transport of a chemical from maternal blood across 

a cell barrier into the embryo. The BeWo cell line has been derived from a human 

choriocarcinoma14 (Pattillo and Gey 1968), and has been confirmed to form a confluent, 

polarized monolayer. It has been shown to preserve many characteristics of the typical 

placental trophoblasts, like hormonal secretion and microvillar projections on its apical 

side (Friedman and Skehan 1979; Liu et al. 1997; Parry and Zhang 2007). BeWo cells consist 

primarily of undifferentiated cytotrophoblasts (Wice et al. 1990), i.e. the stem cells that in 

vivo form the outermost layer of the placenta villi, which comes into direct contact with 

the maternal blood (syncytiotrophoblasts) (Furukawa et al. 2011). The cells are grown on 

transwell inserts, and as such, the formed monolayer divides the well into two distinct 

sections: the apical maternal compartment and the basolateral embryonic compartment. 

The apical side is exposed to the respective chemical and its transport to the basolateral 

side can be measured (Li et al. 2013).

In the field of chemical safety assessment, the evaluation of substances is at the moment 

evolving towards an animal-free setting and therefore, there is a joint effort on the 

utilization of in vitro approaches for predicting toxicity (Adeleye et al. 2015; Hartung 2018; 

Knudsen et al. 2015). For the endpoint of developmental toxicity various in vitro/alternative 

assays have been designed, such as the rodent post-implantation WEC (Chapin et al. 2008; 

Piersma et al. 2004) and the cardiac ESTc (Seiler et al. 2004; Seiler and Spielmann 2011). 

Both tests have already been scientifically validated by the European Centre for Validation 

of Alternative Methods (ECVAM) for over two decades, with respect to their capacity to 

distinguish different classes of embryotoxicants (Brown 2002; Genschow et al. 2002). 

Although these methods may not represent at the moment complete replacements for 

current animal tests, they can be used either as part of an in vitro testing battery approach 

or for screening and prioritization, leading as such to a reduction of animal sacrifice (RIVM 

2009; Spielmann 2009). Nevertheless, one of their main disadvantages is the fundamentally 

different exposure conditions when compared to whole organisms, including of course the 

14  Choriocarcinoma is a gestational tumor of the placental trophoblast (Friedman 1967).
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absence of the placental barrier. As such, to overcome this limitation, the BeWo cell assay 

could potentially be applied for predicting the transport of substances across the placenta. 

Previously, researchers combined  the embryotoxic potential of substances in the ESTc 

(Dimopoulou et al. 2018; Li et al. 2016; Li et al. 2015; Li et al. 2017a) and WEC (Dimopoulou 

et al. 2018)  with results from the BeWo monolayer, thereby improving  the prediction of a 

chemical’s potency to induce in vivo developmental toxicity. More specifically, in the BeWo 

assay chemical characteristics to cross the placenta were quantified by means of the so-

called apparent permeability coefficients (Papp). Thereby, Papps were used as correction 

factors for the in vitro derived effect levels, in order to compensate for the absence of 

placental barrier. The studies illustrated improvement of the correlation between in vitro 

and in vivo potency ranking of these compounds, suggesting the potential of the BeWo 

model application for chemical safety assessment purposes. 

In general, linking the environmental chemical exposure that can produce a target 

tissue concentration in a whole organism to an equivalent in vitro toxic concentration, 

is a prerequisite for the application of these assays for the prediction of developmental 

toxicity (Blaauboer 2010; Gülden and Seibert 2006; Hartung 2018; Yoon et al. 2015). Due to 

the different exposure conditions, the integration of in vivo kinetics is essential, and thus, 

they shall be used as a tool for understanding the in vitro toxicity results and extrapolating 

them to human exposure (Basketter et al. 2012; Tsaioun et al. 2016). As such, for example 

for developmental toxicity this would require scaling the in vitro observed concentration 

effect levels to in vivo actual fetal exposure. In general, implementation of kinetics in 

QIVIVE can be facilitated by the use of Physiologically Based Kinetic (PBK) models (Adler 

et al. 2011; Bessems et al. 2014; Bouvier d’Yvoire et al. 2007; Hartung et al. 2011; Punt et al. 

2011).  Earlier, we employed a generic PBK model (IndusChemFate) in order to compare 

PBK-predicted blood concentrations which correspond to toxic in vivo effect levels from 

animal studies, with the respective in vitro effect levels (Fragki et al. 2017). In this approach, 

it was hypothesized that maternal blood concentrations could serve as a surrogate 

for fetal exposure, thus, assuming a negligible effect of the placenta as a barrier for 

substances reaching the growing fetus. However, xenobiotics are known to have different 

transplacental transfer rates that depend on their physicochemical properties  (Pacifici 

and Nottoli 1995), and hence, information on the transplacental passage is indispensable 

for extrapolating in vitro observed toxicity to the in vivo situation. Furthermore, the applied 

PBK model was not suited for simulating fetal exposure. Finally, changes in chemical 

kinetics because of physiological alterations occurring in the maternal body during 

gestation were not yet considered.

The aim of the present study was to extend the previous QIVIVE generic PBK modelling 

approach by incorporating physiological alterations occurring in the maternal body during 

gestation, placental transfer based on the BeWo cell assay and fetal growth. The term 

generic signifies here a predictive tool that is relatively simple and user-friendly, and can 

be applied for a range of chemicals, among them data-poor chemicals. The original model 
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(IndusChemFate) (Jongeneelen and Berge 2011) contains a pre-defined compartmental 

structure with species-specific information, whereas substance-specific parameters have 

to be inserted. Several essential parameters, such as organ:blood partition coefficients, are 

calculated by the model with incorporated QSARs. The previously used IndusChemFate 

model was extended specifically for the rat pregnancy as a ‘proof of principle’ approach, 

considering that it is the most data-rich specie with respect to developmental toxicity. This 

included its adaptation to account for maternal body changes during pregnancy, as well as 

the addition of a specific fetoplacental sub-compartment. Subsequently, we: 1) explored 

the capacity of the BeWo-informed PBK model to predict fetal and maternal dosimetry 

during pregnancy, 2) applied an in vitro-based PBK modelling reverse dosimetry approach 

in order to predict effective dose levels from in vitro developmental toxicity data and 3) 

compared effective in vivo dosimetry with actual in vivo toxicity data. To this end, six known 

embryotoxicants were selected as “proof of principle”. 

Materials and methods

Test compounds and the BeWo b30 culture 

Six known developmental toxicants were selected as model compounds: flusilazole 

(FLU; CAS 85509-19-9), miconazole (MIC, CAS 22916-47-8), butoxyacetic acid (BAA, CAS 

2516-93-0), monobutyl phthalate (MBuP; CAS 131-70-4), valproic acid (VPA; CAS 99-66-

1), and 2-ethylhexanoic acid (EHA; CAS 149-57-5).  In the case of FLU, VPA and EHA, the 

parent compound and not its metabolites is known to be the most potent with respect to 

developmental toxicity (EFSA 2009; FAO/WHO ; Klug et al. 1990). BAA and MBUP are the 

embryotoxic metabolites of ethylene glycol butyl ether (EGBE) and di(n-butyl) phthalate 

(DBP), respectively (Giavini et al. 1993; Janer et al. 2008b). BAA is a product of hepatic 

metabolism, whereas MBuP is formed after hydrolysis very rapidly in the gastrointestinal 

tract (Keys 2000). No such information was found for MIC. Since it belongs to the azoles’ 

family we assumed this is the same as for other azoles (Giavini and Menegola 2010). 

Antipyrine (ANTI; CAS 60-80-0) and amoxicillin (AMOX; CAS 26787-78-0) were included 

as controls of high and low permeability of the BeWo layers, respectively. Test compounds 

were purchased from  Sigma-Aldrich (Zwijndrecht, The Netherlands). 

The BeWo b30 cell line was purchased from AddexBio (Cat. #C0030002, Lot. # 7985832; San 

Diego, USA). It was confirmed to be bacteria, yeast and mycoplasma negative (certificate 

of analysis from AddexBio). BeWo b30 cells were  subcultured  2 times per week in culture 

medium consisting of DMEM (11960-044) supplemented with 10% (v/v) heat inactivated 

FBS (Greiner Bio-One) , 1% (v/v) Penicillin/Streptomycin solution (15140-122) and 1% 

(v/v)  L-Glutamine (25030-024) under a humidified atmosphere of 5% CO2 at 37 °C. For 

the transport experiments the cells were harvested  by exposure to a  0.05% trypsin EDTA 

solution and  transferred to transwell polycarbonate membranes (6.5 mm diameter,  

3.0 µM pore size; Cat. #  3415, Corning Costar, USA). Cells were seeded at a density of1 
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x 105 cells/cm2 in 0.2 mLculture medium (apical compartment), while the basolateral 

compartment contained 1 mL culture medium, and cultured under standard conditions 

(37 °C and 5% CO2). The medium in both compartments was  changed 6 - 7 x per week until 

day  21 of post-seeding, when the transport experiments were performed. All ingredients 

were obtained from Gibco (Waltham, MA, USA). 

Transepithelial electrical resistance of the BeWo layer

Before the start of the transfer experiments, transepithelial electrical resistance (TEER) 

values were measured using a Millicell ERS-2 voltohmmeter. Millipore  TEER values were 

corrected for wells without the presence of cells, and transformed in Ω×cm2, by multiplying 

the measured values in Ω by the insert area (0.33 cm2). Only wells showing a TEER value ≥  

150 Ω×cm2 were used.

BeWo transport experiments

Transport data has been collected for the aforementioned eight substances (experiments 

in triplicate per concentration). Fresh stock solutions of the selected compounds were 

made for each respective concentration (20 mM FLU, 20 mM MIC, 400 mM MBuP, 4 M 

BAA,  400 mM EHA, 200 mM AMOX and 200 mM ANTI in DMSO, 400 mM VPA in medium). 

ANTI and AMOX were included as controls of high and low permeability of the BeWo layers, 

respectively. Subsequent dilutions (10 x or 5 x) in DMSO or medium were made to get the 

stock solutions for the respective concentrations. All stocks were diluted 400 x in medium 

to  obtain the resulting exposure medium. The resulting exposure concentrations were 50 

µM for FLU and MIC, 1000 µM for VPA, EHA and MBuP, 10000 µM for BAA, 50 µM for ANTI 

and 500 µM for AMOX,  with a maximum concentration of 0.25% DMSO in any case.  The 

concentrations selected were non-cytotoxic based on in house information.

At the start of the experiments,  200 µL of the exposure  medium  was added  apically  

and 1 mL medium was added to the basolateral compartment (in triplicate). Cells were 

incubated in a humidified atmosphere with 5% CO2 at 37°C. 100 µL of exposure medium 

was used as a control (time point 0 hrs).  After 2, 4, 6, 8, 24 and 48 hours of incubation, 

samples of 100 µL were collected from the basolateral compartment for measurement and 

replaced by an equal volume of  medium. To estimate the amount at the basolateral side 

for the second, the third etc. time point, a correction was made in order to compensate 

for the removal of the chemical at the earlier time points in accordance with previous 

literature (Li et al. 2013). At the end of the transport experiments, an additional sample of 

100 µL was collected from the apical compartment, for calculating the recovered amount 

of every tested compound. Collected samples were stored at −20 °C for further analysis by 

UHPLC–MS analysis.  At the end of the transport experiments, the transwells were washed  

once with  medium and equilibrated for  60 min in the incubator, with  0.2 mL  medium in 

the apical, and  1.0 mL  medium in the basolateral compartment.
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TEER values were determined again to verify the cell barrier integrity.  Hereafter,  0.2 

mL of MTT working solution was added to the apical compartment. After incubation 

of 60 min at 37 °C, MTT working solution  was replaced by 200 µL DMSO.  After 30 s of 

shaking,  100 µL of samples from the apical compartment were collected  in a 96-well plate. 

The absorbance was measured at wavelengths 570 and 690 nm using an SpectraMax M2 

spectrophotometer.

Ultra-high performance liquid chromatography (UHPLC) analysis

Collected samples were analysed using the Sciex Qtrap 6500 mass spectrometer – Shimadzu 

Nexera ultra-high performance liquid chromatography  (UHPLC-MS), in order to quantify 

the amount of the tested compounds transferred from the apical to the basolateral 

compartment. Samples with 5-50 µL injection volume were separated, dependent on the 

analyte,  on 2 analytical columns (Waters ACQUITY UPLC HSS C18 1.8 µm,  150 × 2.1 mm 

Part , No.186003534 or Thermo Scientific  HYPERCARB 3.0 µm 50 x 2.1 mm , Part35003-

052130 ) with a pre-column (Waters  ACQUITY Part no. 186003981). The UHPLC was 

performed in the gradient mode. For analyzing the LC–MS data, the operating software 

Sciex MultiQuant 3.0.3 was used.

Data analysis of the BeWo transport experiments

The time-dependent amounts of each chemical, as measured in the apical and basolateral 

compartment of the BeWo layer, were described with the use of a two-compartmental 

model. The first compartment represents the apical side, and the second compartment 

the basolateral side. The differential equations that describe the change of the amounts 

over time are presented in the Supplementary Material (1) 

Rat pregnancy PBK model structure

A generic PBK model for rat pregnancy has been developed in order to simulate exposure 

to the selected chemicals throughout gestation (Figure 1). This model is in essence an 

extension of the existing IndusChemFate model, which can perform kinetic predictions for 

several species, including the adult rat, but not for pregnancy. IndusChemFate  comprises, 

next to the blood, twelve body compartments, and it can be applied for different routes 

of exposure (dermal, inhalation or oral), and for different exposure durations (single 

peak versus repeated chronic exposure). IndusChemFate has been described previously 

(Jongeneelen and Berge 2011), and therefore, only its extension to simulate rat pregnancy is 

presented here. The original model runs as an application in MS-EXCEL, but for the current 

work it was transformed into the R-language (R Core Team 2020). The principal change in 

the model structure was the addition of separate compartments for the placenta and fetus, 

as well as, the maternal uterus and mammary tissue. Considering the many alterations 

occurring within the maternal body and fetus during the gestational period, several tissue 

volumes and hence, their respective blood flows, were described as growing over time. 

These include the following: maternal adipose tissue, uterus, and mammary tissue, as 
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well as the placenta and fetus. The remaining maternal tissues were not considered to 

change during pregnancy. The body weight of the animal and the total cardiac output were 

adjusted accordingly. Corresponding time-dependent equations and further description 

on the model structure can be found in the Supplementary Material. The pregnancy model 

is based on the earlier published model of O’Flaherty (1994). The mean number of fetuses 

per litter was set at 12 (O’Flaherty 1994). Uterus:blood and mammary tissue:blood partition 

coefficients were based on the partition coefficients of rapidly- and slowly-perfused tissues 

(liver and fat), respectively. The placenta:blood partition coefficient was assumed to be 

similar to that of a rapidly perfused tissue (liver). 

FIGURE 1 Schematic diagram of the generic PBK 

gestation model for the rat. Arterial  and venous blood 

are illustrated by the red and blue lines, respectively. 

The figure is for the parent compound, whereas the 

cycles for the metabolites have a similar PBK structure.

Integration of the BeWo assay data into the PBK model

For simplification  and in the context of a generic model, the fetus was considered as one 

single compartment. Mass of a chemical (i) flowing with arterial blood into the placenta 

equilibrates instantaneously with placental tissue according to a flow-limited process 

characterized by arterial blood into the placenta compartment at a certain flow rate (q
p
 

(t); L/hr). The partitioning between the placenta compartment and venous placental 

blood is characterized by the placental tissue:placental blood partition coefficient (P
p,i

). 

Furthermore during gestation (GD
x 

, where x is the gestation day, 0-23) placental tissue 

equilibrates instantaneously with the fetal compartment characterized by a flow rate. This 

flow rate is equivalent to clearance (hence, symbolized as CL
GDx,i

(t) L/hr thereon). The fetal 

tissue:placental tissue partition coefficients are (P
e,i

). The mathematical equations that 
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describe the chemical’s mass balance throughout gestation are given in the Supplementary 

Material (3.1). 

For ANTI an experimentally determined in vivo GD20 clearance has been reported for the 

rat  (Varma and Ramakrishnan 1985). CL
GD20, ANTI

 was therefore used as  the  starting point 

for the scaling of antipyrine clearance across pregnancy. Physiological scaling was applied, 

i.e. antipyrine clearance was assumed to be proportional to the maternal blood flow to the 

placenta. As mentioned in the Supplementary Material two parameters were estimated by 

the in vitro measured data, ‘pc’ and ‘flow’. The parameter ‘flow’  is equivalent to  ‘clearance’ of 

the chemical from one compartment to the other. Using the in vivo clearance of ANTI together 

with the modelled in vitro BeWo estimated clearances for each chemical would enable a 

biologically  sound extrapolation of the in vitro estimated value into an in vivo predicted 

clearance (see Supplementary Material for the mathematical equations, sections 3.2 & 3.3). 

Bile, enterohepatic circulation and fecal excretion

In the original IndusChemFate model the enterohepatic circulation is activated by setting 

the enterohepatic circulation rate at >0 (ECR, hr-1, default value: 0). The ECR reflects  the 

mass flow in the liver being discharged to the GI via the bile (~ ECR*AM
l
(t), with AM

l
(t) the 

amount in the liver) relative to the mass flow via the venous blood flowing out of the liver (~ 

Q
l
 * C

l
(t)/P

l
, with Q

l
 being the hepatic blood flow, C

l
 the liver concentration and P

l
 the liver: 

blood partition coefficient). For example, ECR =0.5 thus corresponds with ECR*AM
l
(t) = 0.5 

* Q
l
 * C

l
(t)/P

l
. Similarly ECR = 1 corresponds with ECR*AM

l
(t) = Q

l
 * C

l
(t)/P

l
. Furthermore it is 

assumed that all mass discharged via the bile is re-absorbed with a rate constant equal to 

0.3 hr-1, i.e. ten times lower than the (default) absorption rate constant of 3 hr-1 . Note that 

this way of modeling does not enable fecal excretion as route of excretion. To enable the 

feces as a route of  excretion we have therefore modified the model by allowing a fraction 

1-α of biliary discharged mass to be excreted into the feces and, hence, a faction α to be 

reabsorbed with a rate constant of 0.3 hr-1.    

PBK modelling for the developmental toxicants

As input the model requires chemical-specific physicochemical and biochemical 

parameters for each substance. In the model complete (100%) absorption is considered 

default for all compounds, while the absorption rate into the intestinal tissue can be 

manually adapted. The physicochemical characteristics are used for the calculation of  

tissue:blood partition coefficients and renal clearance (Jongeneelen and Berge 2011). 

Such information was obtained from QSARs or measured values when available (Table 1, 

Supplementary Material). Biochemical parameters (Vmax/K
M

) were also selected from the 

literature (Table 1, Supplementary Material).

PBK model verification and calibration
A literature search was performed in order to identify the in vivo toxicokinetic data during 

pregnancy for the model verification, (see more details in the Supplementary Material). 
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PBK model predictions for the maternal blood and embryo (mainly Cmax and Tmax, but 

also AUC when possible)  were compared to experimental data when available. When 

necessary  model parameters were optimized for better model fitting. 

PBK model predictions for developmental toxicity at BMD10 
Developmental toxicity studies relevant for the six substances were also collected from the 

open literature (Table 1) . The animal model was the rat, exposed orally, while other routes 

of administration and other species were not considered. Exposure periods of standard 

design, including the critical window for developmental toxicity such as gestation days 

(GD) 6 to 15, or 7 to 16, were preferred; when not possible other exposure scenarios were 

included. Studies performed under GLP and based on recognized guidelines were also given 

priority. In the case of BAA and MBuP, the embryotoxic derivatives of EGBE and DBP, in vivo 

developmental toxicity was based on studies with the parent substances. Studies with at 

least one control group and three dose groups were chosen in order to allow analysis using 

the Benchmark Dose (BMD) approach. Benchmark doses for the most sensitive quantal 

(not continuous) endpoint at a 10% effect size (BMD
10

), were determined (when possible) 

with the PROAST software 69.1 (Slob 2002). Eight dose-response models were fitted to the 

data as instructed for quantal data (EFSA 2017). The performance of each model fit was 

evaluated and the model with the smallest Akaikes Information Criterion (AIC) was chosen 

here as superior. Adverse effects for the BMD modelling were favoured when seen at the 

absence of maternal toxicity. The pregnancy BeWo PBK model was run for each substance 

at an external dose that equals the BMD
10

 in order to predict the time-course dosimetry for 

the maternal blood, placenta and fetus.

TABLE 1 Developmental toxicity of the selected chemicals in rats.

Compound Rat strain Route Exposure period Doses mg/kg bw/d Critical endpoint BMD
10

 mg/kg bw/d (90% CI) c Reference

FLU Sprague Dawley oral gavage GD 6-20 0, 0.5, 2, 10 or 50 skeletal abnormalities 12 (8.8-16.4) Munley (2000) a

VPA Sprague Dawley oral gavage GD 8-17 0, 200, 500, 600, or 800 malformations 195 (100-473) Binkerd et al. (1988)

EHA Wistar oral drinking water GD 6-19 0, 100,300, or 600 skeletal malformations 190 (68.5-350) Pennanen et al. (1992)

MIC not available oral gavage GD 7-16 not available skeletal abnormalities 107 b Ito (1976) 

EGBE (BAA) Fischer 344 oral gavage GD 9-11 0, 30, 100, or 200 resorptions 199 (171-264) Sleet (1989)

DBuP (MBuP) Wistar oral gavage GD 7-15 0, 500, 630, 750, 1000 resorptions 454 (282-633) Ema et al. (1993)
a Information taken as reported in JMPR (2008). Data sufficiently provided for PROAST modelling; b information 

(including BMD10) taken as reported in Dimopoulou et al. (2017). No data provided on the confidence intervals of 

the BMD10; c calculated by PROAST software unless indicated otherwise.

BeWo PBK model-based reverse dosimetry for in vitro developmental toxicity assays
In vitro/alternative developmental toxicity assays performed with the chemicals of interest 

were collected from the open literature. The assays chosen were the WEC, ESTc, and the 

mouse neural Embryonic Stem Cell Test (ESTn) (only for VPA and EHA). WEC data for each 

substance were taken from: FLU and MIC (Dimopoulou et al. 2017) , VPA (Klug et al. 1990), 

BAA (Giavini et al. 1993), MBuP (Saillenfait et al. 2001); ESTc data:  FLU (de Jong et al. 2011), 

MIC (Dimopoulou et al. 2018), VPA (unpublished data-manuscript in preparation), BAA 
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(de Jong et al. 2009), MBuP (Schulpen et al. 2013); ESTn data for VPA are taken from (de 

Leeuw et al. 2019). Not all assays were available for all six substances. 

The PBK model incorporating the BeWo assay estimates, was applied in a reverse-dosimetry 

approach so as to convert the in vitro toxicity concentration-response curves to in vivo dose-

response curves. The in vivo dose metric selected for relating exposure to toxicity was the 

maximal concentration in the fetal tissue (Cmax), since developmental effects are typically 

attributed to peak concentrations. Therefore, all nominally applied concentrations from the 

alternative assays were considered equal to the fetal Cmax  concentration and transformed 

to the corresponding external exposure using the pregnancy PBK model. The calculated 

external doses were analysed  with PROAST (Slob 2002) in order to obtain the predicted in 

vivo dose-response curves. For a quantitative comparison with the experimentally observed 

in vivo data the ED
50

 90% confidence interval was calculated, which is denoted by its lower 

(BMDL
50

) and upper (BMDU
50

) limits. The ED
50

 is defined as the dose that corresponds 

with an estimated risk of 50% and it was chosen here as it is considered the most stable 

point of the dose-response curve for quantal data (Slob 1999). Model averaging was applied 

in order to obtain a single model averaged ED
50

 90% confidence interval (EFSA 2017)The 

following benchmark responses were used: in the WEC the concentration associated with 

a 50% decrease in the Total Morphological Score (TMS) or 50% increase in the number of 

abnormal embryos, in the ESTc the concentration corresponding with a 50% decrease in 

the number of culture wells with beating embryoid bodies, and in the ESTn 50% increase 

in embryoid bodies defined as less than 75% intact surrounding corona of neurites relative 

to controls. In all cases these were analysed as quantal data, except for the WEC tests with 

TMS responses which were analysed as continuous. Accordingly, for the experimentally 

observed  in vivo developmental toxicity data the model averaged ED
50

 90% confidence 

interval was obtained with PROAST, for the same critical endpoint as selected above for 

the BMD
10

 derivation (see Table 1, Materials and methods, sub-section PBK modelling for 

the developmental toxicants). The resulting lower bound of the underlying ED
50

 (BMDL
50

) 

derived from the in vivo data was compared to the respective BMDL
50

 from the in vitro-based 

BeWo PBK modelling reverse dosimetry approach.

PBK model predictions for the maternal blood and embryo (mainly Cmax and Tmax, but 

also AUC when possible)  were compared to experimental data when available. When 

necessary  model parameters were optimized for better model fitting. 

PBK model predictions for developmental toxicity at BMD10 
Developmental toxicity studies relevant for the six substances were also collected from the 

open literature (Table 1) . The animal model was the rat, exposed orally, while other routes 

of administration and other species were not considered. Exposure periods of standard 

design, including the critical window for developmental toxicity such as gestation days 

(GD) 6 to 15, or 7 to 16, were preferred; when not possible other exposure scenarios were 

included. Studies performed under GLP and based on recognized guidelines were also given 

priority. In the case of BAA and MBuP, the embryotoxic derivatives of EGBE and DBP, in vivo 

developmental toxicity was based on studies with the parent substances. Studies with at 

least one control group and three dose groups were chosen in order to allow analysis using 

the Benchmark Dose (BMD) approach. Benchmark doses for the most sensitive quantal 

(not continuous) endpoint at a 10% effect size (BMD
10

), were determined (when possible) 

with the PROAST software 69.1 (Slob 2002). Eight dose-response models were fitted to the 

data as instructed for quantal data (EFSA 2017). The performance of each model fit was 

evaluated and the model with the smallest Akaikes Information Criterion (AIC) was chosen 

here as superior. Adverse effects for the BMD modelling were favoured when seen at the 

absence of maternal toxicity. The pregnancy BeWo PBK model was run for each substance 

at an external dose that equals the BMD
10

 in order to predict the time-course dosimetry for 

the maternal blood, placenta and fetus.

TABLE 1 Developmental toxicity of the selected chemicals in rats.

Compound Rat strain Route Exposure period Doses mg/kg bw/d Critical endpoint BMD
10

 mg/kg bw/d (90% CI) c Reference

FLU Sprague Dawley oral gavage GD 6-20 0, 0.5, 2, 10 or 50 skeletal abnormalities 12 (8.8-16.4) Munley (2000) a

VPA Sprague Dawley oral gavage GD 8-17 0, 200, 500, 600, or 800 malformations 195 (100-473) Binkerd et al. (1988)

EHA Wistar oral drinking water GD 6-19 0, 100,300, or 600 skeletal malformations 190 (68.5-350) Pennanen et al. (1992)

MIC not available oral gavage GD 7-16 not available skeletal abnormalities 107 b Ito (1976) 

EGBE (BAA) Fischer 344 oral gavage GD 9-11 0, 30, 100, or 200 resorptions 199 (171-264) Sleet (1989)

DBuP (MBuP) Wistar oral gavage GD 7-15 0, 500, 630, 750, 1000 resorptions 454 (282-633) Ema et al. (1993)
a Information taken as reported in JMPR (2008). Data sufficiently provided for PROAST modelling; b information 

(including BMD10) taken as reported in Dimopoulou et al. (2017). No data provided on the confidence intervals of 

the BMD10; c calculated by PROAST software unless indicated otherwise.
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Results

In vitro placental transport study

Transport data in the BeWo model have been collected for the six developmental toxicants 

and the two controls, ANTI and AMOX. Figure 3 illustrates the increasing amount of each 

chemical entering in the basolateral compartment during the 48 hours of the experiment. 

The mass balances showed that more than 80% of the initial amount was conserved in each 

transport experiment, with the exception of MIC (mass balance: ~70%). In all cases, an 

initial  linear increase of each substance was recorded in the basolateral compartment.  

The results clearly show that transport profiles of the chemicals across the BeWo monolayer 

can be rather different. In fact, the model compounds can be divided into two distinct 

categories: the ‘quickly-transported’ (FLU, VPA, EHA) and the ‘slowly-transported’ (MIC, 

MBuP, BAA). For the first class, the initial linear increase in the basolateral compartment 

is  evolving into a steady state. This steady-state is reached within the first 24 hours, with 

more than 75% of chemical crossing over to the basolateral compartment. On the other 

hand, for the second class the transplacental passage shows a linear profile throughout 

the whole experimental duration, whereas an equilibrium  is not yet achieved during the 

exposure period, implying as such that transport would continue further if the experiment 

was extended.  As such, these data suggest that an equilibrium would be reached after the 

48 hours. The slope of the curves is smaller compared to the slopes of the initial linear part 

in the first class, suggesting  transport at  considerable slower pace. As expected, ANTI 

(positive control) showed a high transwell passage, while AMOX (negative control) hardly 

crossed the cell barrier, remaining mainly at the apical side.

FIGURE 2 The amount of chemical 

detected in the basolateral compartment of 

the BeWo monolayer over time, expressed as 

percentage of the initial amount added at the 

apical compartment at the beginning of the 

experiment (t=0 hrs).

Data analysis of the BeWo transport experiments

The  data analysis of the BeWo results was described with a two-compartmental model 

(Figure 4). The data describe the results of 3 parallel experiments. Estimated parameters 

from the BeWo assay results were the ‘flow’ and ‘partition coefficient’  (Table 1). For the 

substances in the ‘slowly-transported’ group,  the data only partially  comply  with the 

applied modelling strategy. As such,  enforcing such data on this model results in unrealistic 
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or else non-identifiable calculated partition coefficient values for MBuP, BAA and MIC. 

Therefore, for the PBK model simulations of these three chemicals thereon, respective 

‘partition coefficient’ values, representing the fetal tissue:placental tissue partition 

coefficients, were set at ‘one’ were applied. This choice was based on the comparable 

water:lipid content in the placenta and fetus, consisting primarily of water (>75%), in both 

cases (Toro-Ramos et al. 2015). 

TABLE 2 ’Flow’ and ‘partition coefficient’ parameters for each compound as estimated from the in vitro data analysis. 

Compound flow  (µL/hr) Partition coefficient

FLU  54.46 1.95

EHA   29.32 0.96

VPA  22.68 1.2

MBuP    7.97 non-identifiable

BAA     5.02 non-identifiable

MIC    4.96 non-identifiable

ANTI   46 0.61

AMOX 0.26 non-identifiable

FIGURE 3 Amount of each chemical in the basolateral (blue line) and apical (red line) compartments of the BeWo transwell insert 

throughout the experiment, as fitted through the data. Dots represent the measured values of three replicate experiments and lines 

represent the model-based fitted values. 
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Verification of the rat pregnancy PBK model 

The rat pregnancy BeWo PBK model was used to simulate the in vivo kinetics in the pregnant 

rat of the selected embryotoxic compounds. For comparisons chemical toxicokinetic 

information throughout gestation were collected from the open literature. As such 

information is scarce,  data was only found for three out of the six applied substances: VPA, 

EHA and MBuP.  In our previous work, we could simulate the in vivo kinetics of FLU and BAA 

with the original PBK model IndusChemFate, for the adult non-pregnant rat (Fragki et al. 

2017). This was considered sufficient for the purpose of this work and in the absence of 

specific pregnancy kinetic data, the same biochemical input parameters (Vmax/K
M

) were 

introduced into the model. Nevertheless, it is acknowledged that such input parameters 

for a pregnant animal are not necessarily the same as for the non-pregnant. Verification 

for MIC PBK-predictions was not possible to perform; instead FLU toxicokinetic input 

parameters were applied for the model simulations. 

Existing kinetic rat studies with VPA, EHA and MBuP during segments of pregnancy were 

used for the pregnancy model verification. Default generic model scenarios were initially 

applied with respect to absorption  rate, enterohepatic cycling (none) and excretion 

(only renal, no fecal), which were thereafter, adapted for acquiring a better model fit to 

the experimental data. Initial PBK simulations for VPA revealed a faster clearance of the 

chemical from the maternal blood and fetus when compared to the measured values (Figure 

4). This overestimation of clearance was avoided by altering the enterohepatic circulation 

rate, which is in accordance with VPA kinetics (Dickinson et al. 1979; Kobayashi et al. 1991; 

Ogiso et al. 1986). Figure 4B depicts the model predictions of VPA in blood and fetus in 

comparison to in vivo measured concentrations from experimental studies (Binkerd et al. 

1988; Scott et al. 1994). The blood peak concentration Cmax was around 3.4- to 3.9-fold 

underpredicted by the PBK model for one of the studies (Binkerd et al. 1988), whereas 

very well predicted (1.1-fold) for the other study (Scott et al. 1994). This could be the result 

of the different exposure period during pregnancy applied in the two studies, i.e. GD 8 

and 12, respectively, or simply the expected variation between two different experiments. 

The model adequately captured the time of the peak concentration (Tmax, around 2-fold 

difference), as well as the fetal Cmax (1.8-fold lower compared to experimental data) 

(Scott et al. 1994).

Accordingly, a similar procedure was followed for its analogue EHA, with the activation 

of enterohepatic circulation for the modelling, albeit including here also a small fraction 

of fecal excretion (Figure 5); this are again as dictated by in vivo kinetics of the substance 

in the rat (English 1998). Model predictions illustrated a somewhat faster absorption and 

hence, the absorption rate was adapted accordingly from the ‘default’ scenario, by fitting 

the model calculated concentration values to the experimental values.  Unfortunately, 

Cmax and Tmax cannot be easily discerned from the available experimental data and were 

not reported in the respective paper.
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FIGURE 4  A. Concentrations of valproic acid (VPA) in blood after exposure at 200 and 600 mg/kg bw on GD8. Experimental data 

are taken from Binkerd et al. (1988), and they represent the mean and standard deviation (n=4). B. Concentrations of VPA in blood 

and fetus after exposure at 940 mg/kg bw on GD12. Experimental data are taken from Scott et al. (1994). The graph illustrates the 

effect of enterohepatic cycling (ECR) on the model prediction.

FIGURE 5 Concentrations of 2-ethylhexanoic acid (EHA)  in blood and fetus after exposure at 1800 mg/kg bw on GD12. The graph 

illustrates the effect of absorption rate (def. abs.= default absorption rate) on the model prediction. Experimental data are taken 

from (Scott et al. 1994).
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For both VPA and EHA, PBK-predicted embryonic concentrations were in close proximity 

to the predicted maternal blood levels, as also observed in vivo. The results show that the 

generic PBK model predicts the toxicokinetics of the two chemicals during certain periods 

of pregnancy, with less than 4- and around 2-fold differences in the predicted Cmax and 

Tmax values, respectively, for the maternal blood and embryo, when compared to the 

respective in vivo measurements. 

For the toxic monoester phthalate MBuP, biochemical model input parameters (Vmax/K
M

) 

were introduced as previously defined by Fragki et al. (2017), together with the activation of 

the enterohepatic cycling observed for the phthalates (Keys et al. 1999; 2000). As discussed 

earlier, the compound is considered the main embryotoxic derivative of its parent DBuP 

(Clewell et al. 2009), formed by hydrolysis in the gastrointestinal tract (Keys 1999, 2000). 

This conversion occurs very quickly and the formed MBuP is absorbed much better when 

compared to the parent chemical, leading as such to a major exposure to MBuP (Keys 2000). 

The produced PBK-simulations were compared with measured data from pregnant rat 

toxicokinetic studies at different doses and gestation days (Clewell et al. 2009; Saillenfait 

et al. 1998) (Figure 6). Although in the in vivo studies MBuP was absorbed rapidly after oral 

administration, and peak maternal blood concentrations were reached within 1 to 2 hours, 

model predictions show an even faster Tmax (0.3 hours) (Figure 6, Table 4). For the embryo 

these differences were smaller (1.3- to 2.3-fold).  Adaptation of the absorption rate did not 

result in a better PBK model prediction (data not shown).  Nevertheless, estimated Cmax 

values were reasonably predicted by the model when compared to in vivo observations: 1.9- 

to 2.8-fold for the fetus, and  1.4- to 1.7-fold for the  maternal blood, whereas AUC (0-8 hrs) 

differed 1.5- and 3.9-fold, respectively. Application of a very high dose (1500 mg/kg bw) 

(see Supplementary Material) did not seem to affect differently the predictions.

TABEL 4 In vivo-Reported and PBK model-predicted Cmax, Tmax, and AUC values in blood and fetus at specific timepoints during 

pregnancy.

Su
bs

ta
n

ce

D
os

e 
(m

g/
kg

 b
w

)

Ex
po

su
re

 Experimental measurements PBK-predictions Reference

Blood Fetus Blood Fetus  

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax
(hr)

AUC (mg*hr/L) 
(t:hr)

 

VPA 940 GD 12 431 0.8 na 745 0.8 nd 454 0.4 nd 419 0.8 nd Scott et al. (1994)

VPA 200 GD 8 341 ± 18 0.5 1019 ± 769 (0-24) na na na 89 0.4 469 (0-24) na na na Binkerd et al. (1988)

VPA 600 GD 8 911  ± 379  0.8 ± 0.8 6250  ± 3895 (0-24) na na na 271 0.4 1485 (0-24) na na na Binkerd et al. (1988)

EHA 1800 GD 12 na na na na na na 632 1.7 nd 531 1.9 nd Scott et al. (1994)

MBuP 400 GD 14 351 1.4 1467 (0-8) 84 1.4 289 (t= 0-8) 210 0.3 372 (0-8) 162 0.6 187 (0-8) Saillenfait et al. (1998)

MBuP 400 GD 19 320 2 na 133 2 na 227 0.3 nd 48 1.1 nd Clewell et al. (2009)

na: not available; nd: not determined;  VPA: valproic acid, EHA: 2-ethylhexanoic acid, MBuP: monobutyl 

phthalate; hr: hours
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FIGURE 6 Concentrations of MBuP in blood, growing fetus and placenta after exposure to the parent DBuP. A. Dose 500 mg/kg 

bw (equivalent to 400 mg/kg bw MBuP), GD19, experimental data (mean ± SEM, n=4) taken from Clewell et al. (2008). B. Dose 500 

mg/kg bw (equivalent to 400 mg/kg bw MBuP), GD14 experimental data (mean, n=3) taken from Saillenfait et al. (1995).

For both VPA and EHA, PBK-predicted embryonic concentrations were in close proximity 

to the predicted maternal blood levels, as also observed in vivo. The results show that the 

generic PBK model predicts the toxicokinetics of the two chemicals during certain periods 

of pregnancy, with less than 4- and around 2-fold differences in the predicted Cmax and 

Tmax values, respectively, for the maternal blood and embryo, when compared to the 

respective in vivo measurements. 

For the toxic monoester phthalate MBuP, biochemical model input parameters (Vmax/K
M

) 

were introduced as previously defined by Fragki et al. (2017), together with the activation of 

the enterohepatic cycling observed for the phthalates (Keys et al. 1999; 2000). As discussed 

earlier, the compound is considered the main embryotoxic derivative of its parent DBuP 

(Clewell et al. 2009), formed by hydrolysis in the gastrointestinal tract (Keys 1999, 2000). 

This conversion occurs very quickly and the formed MBuP is absorbed much better when 

compared to the parent chemical, leading as such to a major exposure to MBuP (Keys 2000). 

The produced PBK-simulations were compared with measured data from pregnant rat 

toxicokinetic studies at different doses and gestation days (Clewell et al. 2009; Saillenfait 

et al. 1998) (Figure 6). Although in the in vivo studies MBuP was absorbed rapidly after oral 

administration, and peak maternal blood concentrations were reached within 1 to 2 hours, 

model predictions show an even faster Tmax (0.3 hours) (Figure 6, Table 4). For the embryo 

these differences were smaller (1.3- to 2.3-fold).  Adaptation of the absorption rate did not 

result in a better PBK model prediction (data not shown).  Nevertheless, estimated Cmax 

values were reasonably predicted by the model when compared to in vivo observations: 1.9- 

to 2.8-fold for the fetus, and  1.4- to 1.7-fold for the  maternal blood, whereas AUC (0-8 hrs) 

differed 1.5- and 3.9-fold, respectively. Application of a very high dose (1500 mg/kg bw) 

(see Supplementary Material) did not seem to affect differently the predictions.

TABEL 4 In vivo-Reported and PBK model-predicted Cmax, Tmax, and AUC values in blood and fetus at specific timepoints during 

pregnancy.

Su
bs

ta
n

ce

D
os

e 
(m

g/
kg

 b
w

)

Ex
po

su
re

 Experimental measurements PBK-predictions Reference

Blood Fetus Blood Fetus  

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax 
(hr)

AUC (mg*hr/L) 
(t:hr)

Cmax 
(mg/L)

Tmax
(hr)

AUC (mg*hr/L) 
(t:hr)

 

VPA 940 GD 12 431 0.8 na 745 0.8 nd 454 0.4 nd 419 0.8 nd Scott et al. (1994)

VPA 200 GD 8 341 ± 18 0.5 1019 ± 769 (0-24) na na na 89 0.4 469 (0-24) na na na Binkerd et al. (1988)

VPA 600 GD 8 911  ± 379  0.8 ± 0.8 6250  ± 3895 (0-24) na na na 271 0.4 1485 (0-24) na na na Binkerd et al. (1988)

EHA 1800 GD 12 na na na na na na 632 1.7 nd 531 1.9 nd Scott et al. (1994)

MBuP 400 GD 14 351 1.4 1467 (0-8) 84 1.4 289 (t= 0-8) 210 0.3 372 (0-8) 162 0.6 187 (0-8) Saillenfait et al. (1998)

MBuP 400 GD 19 320 2 na 133 2 na 227 0.3 nd 48 1.1 nd Clewell et al. (2009)

na: not available; nd: not determined;  VPA: valproic acid, EHA: 2-ethylhexanoic acid, MBuP: monobutyl 

phthalate; hr: hours
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FIGURE 7 Time-course PBK model simulation of chemicals after oral administration during gestation in the rat. Model runs are 

performed  at the BMD
10

 for the selected critical endpoint and the predicted concentrations represent the placenta and growing 

fetus. For the lipophilic triazoles the adipose and mammary tissue are included.

PBK model predictions at BMD10 for the critical endpoints

The pregnancy PBK model was run for each of the substances for the rat at an external dose 

that equals the BMD
10

 for the selected critical endpoint from the developmental toxicity 

study (see Table 2- Supplementary Material). The time-course maternal blood, placenta 

and fetus concentrations are depicted in Figures 7 and 8. The shape of the placental, and 

consequently, fetal curves show the different dynamics of the placental compartment 

compared to the other organs, in terms of changes of volume and blood flow. In other 

words, the ratio of the volume change to the blood flow change alters over time for the 

placenta, whereas it is a constant for the other organs. In the case of the azoles, the model 

estimates illustrate the lipophilic character of the compounds with high concentrations 

in the two fat maternal compartments, adipose and mammary tissue (see for example 
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flusilazole). For both substances, the PBK model predicts higher concentrations in the 

growing embryo (Figure 7) compared to the maternal blood (Figure 8). For VPA and EHA 

simulated concentrations in the two compartments are comparable, whereas for BAA, 

and MBuP concentrations in the maternal blood are higher compared to the embryonic 

levels. For VPA,EHA, and MBuP this is in line with the experimental data from animal 

studies (Binkerd et al. 1988; Saillenfait et al. 1998; Scott et al. 1994), throughout the whole 

exposure period. 

FIGURE 8 Time-course PBK model simulation of chemicals after oral administration during gestation in the rat. Model runs are 

performed  at the BMD
10

 for the selected critical endpoint and the predicted concentrations represent the maternal blood. 

Quantitative in vitro to in vivo extrapolations with the pregnancy PBK model 

The predicted in vitro-based BeWo PBK dose response curves for embryotoxicity of FLU, 

VPA, EGBE (embryotoxic metabolite: BAA) and DBuP (embryotoxic metabolite: MBuP) are 

illustrated in Figure 9. The simulations were performed by equating the nominal in vitro 

concentrations, used in the embryotoxicity assays (ESTc, WEC, or ESTn), to the maximal 

concentration in the fetal tissue. Thereafter, these concentrations were translated into 
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respective in vivo oral doses with the use of the BeWo PBK model, after which the calculated 

in vivo doses were analysed with the BMD PROAST software.

In the case of BAA and MBuP, the embryotoxic derivatives of EGBE and DBuP, the BeWo PBK 

model translated the in vitro metabolite’ doses into equivalent parent external doses. The  

calculated  in vivo  dose–response curves for the four compounds were compared with the 

dose-response curve of experimentally observed toxicity. Unfortunately, the information 

available for EHA and MIC did not allow for the derivation of dose-response curves. 

Nevertheless, comparisons of the ED
50

 90% confidence intervals were still possible for EHA, 

whereas for MIC the BMD
10

 value was used (see below Table 4). Overall, the results indicate 

that the predicted WEC and ESTc in vitro-PBK dose-responses calculated by reverse dosimetry 

give a fairly good prediction of the in vivo data for VPA, EGBE and DBuP, but not for FLU. 

FIGURE 9 Predicted (dashed lines) and in vivo (solid green lines) dose- response curves for the developmental toxicity of A. 

flusilazole (FLU), B. valproic acid (VPA), C. ethylene glycol butyl ether (EGBE), and D. di (n-butyl) phthalate (DBuP). Predicted 

curves were obtained from in vitro concentration-response data with BeWo PBK modelling reverse dosimetry. The Cmax was 

chosen as dose metric for relating exposure to embryotoxicity. In vivo rat developmental toxicity data were collected from the open 

literature and the critical endpoints for the fours substances are the following: skeletal abnormalities (FLU), malformations (VPA), 

resorptions (EGBE), resorptions (DBuP).

For a quantitative evaluation the 90% confidence interval’s lower bound of the underlying 

ED
50

 (BMDL
50

) of each compound, predicted with the in vitro-based PBK modelling approach, 

was compared to the respective lower bound derived from the in vivo developmental 

toxicity studies. The ED
50

 90% confidence intervals were derived with PROAST by model 

averaging (Table 4).  ED
50s

 were selected as the metric for comparison since the analysed 
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data for the dose-response modelling with PROAST were primarily quantal. However, it is 

not meant here that the ED
50s

 shall necessarily be used as starting points in risk assessment. 

In general, BMDL
50

s within the same order of magnitude (10-fold) were considered to be 

comparable, as such differences are within the range of (inter-species) biological variation 

(Janer 2008). The reverse dosimetry  BMDL
50

s were within 10-fold (2.3-, 1.4-, 9.8-, 1.5-, 

2-fold, for FLU, VPA, MIC, EGBE, and DBuP, respectively) with the WEC as embryotoxicity 

assay. With the ESTc BMDL
50

s differed by 1.5-, 5.7- and 1.5-fold for VPA, EGBE and DBuP, 

respectively, whereas  more than 20-fold for the  two azoles. This suggests that the ESTc 

might not be a good predictor of the azole’s toxicity in vivo. Note here that the comparisons 

for MIC are based on BMD
10 

(instead of ED
50

) given the lack of the relevant information. 

BMDL
50

 predictions based on the ESTn assay for VPA and EHA did not seem to fit the 

respective in vivo BMDL
50

 (>10-fold different).

TABLE 3 Model averaged ED
50

 90% confidence intervals (BMDL
50

-BMDU
50

) determined by a BMD analysis from the in vitro-based 

BeWo PBK modelling reverse dosimetry predictions and the in vivo developmental toxicity data. BMD analysis performed with 

PROAST software.

Compound

In vitro-PBK reverse dosimetry In vivo data

Model averaging ED
50

 90% confidence intervals

WECa ESTcb ESTnc Rat dev. toxicity

FLU 21.6-23.2 2.86-3.07 na 49-62.4

VPA 147-162 381-496 15.1-23.1 205-374

EHA na na 81-133 932-13500

MICd 10.89 (7.5-16.1) 2.03 (1.77-2.32)  na 107.00

EGBE 145-2530 1220-1430 na 213-996

DBuP 988-1180 737-1060 na 493-651
a WEC data for each substance taken from: FLU and MIC (Dimopoulou et al. 2017), based on continuous data, VPA 

(Klug et al. 1990), BAA (Giavini et al. 1993), MBuP (Saillenfait et al. 2001); b ESTc data taken from: FLU (de Jong et 

al. 2011), MIC (Dimopoulou et al. 2018), VPA (unpublished data-manuscript in preparation), BAA (de Jong et al. 

2009), MBUP (Schulpen et al. 2013); c ESTn data for VPA and EHA are taken from (de Leeuw et al. 2019); d For MIC 

only the  BMD
10

 (Dimopoulou et al. 2017) was available without further information to allow for a proper BMD 

analysis and derivation of confidence intervals. Therefore, the respective BMD
10

 values were estimated for the in 

vitro-based BeWo PBK reverse dosimetry curves of the WEC and ESTc. The model fitting BMD
50

 based on the lowest 

AIC is presented here. 

Discussion

In this study we developed a first-tier methodology that integrates placental passage of 

chemicals, as derived from the in vitro BeWo assay, into a generic PBK model modified 

for rat pregnancy. In concordance with the generic nature of the PBK model several 

simplifications of pregnancy were assumed. Within all simplifications made the rat 

pregnancy BeWo PBK model was found to give a reasonable description of the toxicokinetics 

of VPA, EHA and MBuP at the level of the rat maternal blood-placental-fetal interface. 

Based on these findings the BeWo PBK model was used as a proof-of-principle in a QIVIVE 

reverse dosimetry approach in which the dose-response as observed in three in vitro 

embryotoxicity tests was extrapolated to the in vivo situation. In this extrapolation the fetal 
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Cmax was taken as the internal dose metric for the  induction of developmental toxicity. 

A comparison of extrapolated dose-response curves with in vivo data illustrates a fairly 

good prediction for the WEC, followed by the ESTc for thee out of the five compounds, 

with differences of the selected dose metric standing within the same order of magnitude 

(<10-fold).

Transplacental transport with the BeWo assay and mathematical analysis

Transport of chemicals across the placenta was determined with the BeWo cell line, 

which was previously shown to be a useful in vitro model for this purpose (Li et al. 2013; 

Poulsen et al. 2009; Prouillac and Lecoeur 2010). Earlier, BeWo assay data combined with 

embryotoxicity information from the ESTc and WEC have improved the prediction of 

a chemical’s potency to induce in vivo developmental toxicity (Li et al. 2015, 2016, 2017, 

Dimopoulou 2018). Commonly, transport rates of substances until so far were expressed 

with the Papp values, quantifying as such only the initial transplacental transport rate, 

up to a maximum of 120 minutes (Li 2015, 2016, 2017, Dimopoulou 2018). This approach 

assumes that the velocity of the transport does not change over the course of the 

experiment. In our study we explore further the kinetics of chemicals across the BeWo 

system by prolonging the experimental duration to 48 hours (instead of 2 hours). The 

observations regarding the transport from the apical to the basolateral chamber reveal 

in fact a biphasic profile, at least for FLU, VPA, and EHA (‘quickly-transported’ group), 

characterized by a fast initial stage, and a subsequent slow stage with an established 

equilibrium between the two compartments. Within the paradigm of kinetic theory such 

a dynamic equilibrium is presumably achieved by back-and-forth transport, i.e. not only 

from the donor to the receiver chamber, but also vice versa. Reverse transport experiments 

with the BeWo cell line have in fact confirmed this bidirectional transport (Heaton et al. 

2008; Huang et al. 2016; Magnarin et al. 2008; Utoguchi and Audus 2000), and hence, this 

was prescribed in the current modelling approach. For the other three substances (‘slowly-

transported’) different kinetics are displayed, with the transplacental passage remaining 

linear and much slower till the end of the experiment. An equilibrium between the two 

compartments is not reached and theresults showed that this steady state may be reached 

long after 48 hours. Additional timepoints (after 48 hours) should be included in future 

BeWo experiments, in order to achieve a steady-state concentration also for these ‘slowly-

transported’ compounds.

Why such a clear division regarding transport profiles exists amongst the studied xenobiotics 

is not clear from these data. In vivo, the main mechanism for passage of chemicals across 

the placental syncytiotrophoblast is passive diffusion (Magnarin et al. 2008; Syme et al. 

2004).   In general, this applies to substances with a small molecular weight (<500  Da), 

moderate lipid solubility, low polarity and low protein binding properties. The transport 

of highly ionized substances is in principle not favored by the lipid membrane bilayer of 

the placental cells (Mathiesen et al. 2014; Syme et al. 2004). Nevertheless, active transport 

of substances mediated by several carrier proteins located on the apical and basal side 
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of the syncytiotrophoblast has also been described for a wide spectrum of chemicals 

(Ganapathy et al. 2000; Joshi et al. 2016). Accordingly, in vitro,  substances cross the BeWo 

monolayer, being similar to the placental trophoblast, mainly via passive diffusion, but 

carrier-mediated transport possibly also occurs (Dallmann et al. 2019; Magnarin et al. 

2008; Utoguchi et al. 1999). Consequently, mechanism of transport (passive or active), 

and the physicochemical characteristics will define the transport of compounds across the 

model cell layer. 

The data obtained for passage of chemicals across the BeWo barrier were analyzed with 

compartmental modelling. A two-compartment model was employed with the first 

compartment corresponding to the apical side and the second compartment to the 

basolateral side of the cell layer. The BeWo data-based resulting parameters ‘partition 

coefficient’ and ‘flow’  characterize the transport rate in the place of the static Papp 

value. It shall be noted here that no discrimination between the nature of the transfer 

mechanism, passive diffusion or active transport, is performed given that this is implicitly 

factored into the two transfer parameters.  No intracellular compartment was included 

since such experimental measurements were not performed. The mass balances showed 

that more than 80% of the initial amount was conserved in each transport experiment, 

with the exception of MIC with a mass balance of ~ 70%. This suggests that a major part of 

the material was transferred from one side to the other, and vice versa. It shall also be noted 

that other aspects that may influence the in vitro distribution of  test compounds, such as 

non-specific binding, for example to the well’s plastic, or evaporation (Kramer et al. 2012), 

intracellular accumulation and/or metabolism (Dimopoulou et al. 2018; Li et al. 2013) 

could also be accountable for the observed mass loss. Specific corrections for these aspects 

were not considered in the present mathematical analysis of the BeWo system (since the 

mass loss is not large); it cannot, however, be excluded that the calculated transport rate 

from the apical to the basolateral chamber is in some cases slightly underestimated.

Integration into a generic PBK model

For its integration into the PBK model the BeWo assay was modelled as the first chamber 

(apical side) representing the placenta and the second the fetus (basolateral side). Previous 

research with the BeWo assay indicated that the rate of transplacental transport is a 

determinant for developmental toxicity. To mimic in vivo transport from the placenta to 

the embryo a one cellular in vitro transport system was incorporated into the PBK model. 

In contrast to transport measured in a static in vitro system, which postulates a constant 

initial transfer rate, in vivo placenta to embryo transport rate is dynamic, i.e. depending 

on placental, embryonic and placenta-embryo interface growth. Consequently, in vivo a 

constant transfer rate is not expected. For that reason in vivo the best measure for induced 

embryonic toxicity is the time integral of the transport rate, i.e. the amount transported 

or the embryonic concentration, the latter requiring information on embryonic growth. 

Using the concentration provides the most generic risk assessment approach based on 

BeWo measurements, for it assumes induced toxicity to scale directly to an homogeneous 
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distribution over the embryo. Although this is essentially a rather crude approach, we are 

here interested in the events at the placenta- embryo surface and therefore, refining the 

embryonic compartment in sub-compartments is considered beyond the scope of this 

manuscript.     

The PBK-simulated fetal concentrations are defined by the following elements: i) the 

concentration in the placenta, determined by the physicochemical properties of the 

substances leading to the QSAR placental tissue:maternal blood partition coefficients, 

ii) the transplacental clearance, determined from the BeWo parameter ‘flow’ and iii) the 

fetus:placenta partition coefficient, given (when feasible) by the BeWo-estimated ‘partition 

coefficient’. The BeWo-derived ‘flow’ was extrapolated to in vivo transplacental clearance 

rates for each substance (CL
BeWo,i

), by physiological scaling to the placental blood flow (as 

it changes throughout gestation). Prior to this, the in vitro ‘flow’ was expressed as relative 

flow to the positive control compound ANTI, for which in vivo clearance data in the rat are 

available (Varma 1985). Our method is in line with and further refines a previous attempt 

to translate BeWo-derived Papps into in vivo transplacental clearance, where allometric 

instead of physiological scaling was applied (Strikwold et al. 2017). 

The fetus:placenta partition coefficients were used per se as determined from the in vitro 

model, for the ‘quickly-transported’ group of chemicals. For the ‘slowly-transported’ 

group, with unidentifiable partition coefficients, values of one were applied, suggesting 

that the chemical concentrations for the two compartments are equal at steady-state. 

Although this is an arbitrary choice, kinetic animal data during rat pregnancy for MBuP 

(Saillenfait et al. 1998) suggest that it is defensible, at least for this substance. Such studies 

could not be found for BAA and MIC. Future BeWo experiments, as suggested above, are 

expected to clarify this further.

Feasibility of the generic PBK model

Generic PBK models, by definition, may have lower accuracy compared to models 

designed specifically for a single (or small group) of chemicals, and usually in a data-

rich environment, where they can be properly evaluated and calibrated so as to fit the 

experimental data. Nevertheless, generic models have a much larger applicability domain, 

they can be run with a relatively small amount of substance-specific input parameters, in 

contrast to heavy parameterization normally required for specific models (Bessems et al. 

2014; Jamei 2016a), allowing as such their wider application in a data poor environment. 

Within the context of generic PBK modelling, the model presented here shall be considered 

to provide reasonable estimations of the in vivo pregnancy toxicokinetics for VPA, EHA, 

MBuP, as shown by some experimental verification data (Binkerd et al. 1988; Clewell et 

al. 2009; Saillenfait et al. 1998; Scott et al. 1994). This is valid at least with respect to an 

important dose metric often linked with fetal toxicity, the Cmax. We have shown here 

that the PBK model can predict the maternal blood and fetal Cmax of the three chemicals 

with a less than 5-fold difference when compared to measured experimental data. In 

chemical risk assessment, which is currently based on animal data, it is customary to 
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employ a 10-fold safety factor so as to accommodate for species differences (Herrman and 

Younes 1999). Within this 10-fold a 4-fold factor accounts for the toxicokinetic differences 

(Renwick 1993).  This supports further the notion that the model can reasonably predict 

the pregnancy toxicokinetics at least for these three chemicals.

Quantitative in vitro - in vivo extrapolations 

The last part of this study was to describe (when possible) the dose-effect relationships 

for developmental toxicity, based on the BeWo PBKmodelling reverse dosimetry of in vitro 

toxicity assays.. The BeWo PBK modelwas used to translate the in vitro nominally applied 

concentrations, which were considered equal to levels in the fetus, into equivalent oral 

doses. For the in vitro data, the nominal concentrations were used, as applied at the site 

of action, and in vitro biokinetics were not considered here. The selected in vitro tests 

were the WEC, ESTc and ESTn. The resulting oral doses were analysed with PROAST for 

the derivation of the respective dose-response curves. A direct comparison of the curves’ 

BMDL
50

s was also performed. The aim of these comparisons was to quantitatively assess 

the performance of the BeWo PBK modelling reverse dosimetry approach 

In our earlier QIVIVE approach, we compared the nominal in vitro effective concentrations 

with PBK simulated concentrations in the blood after exposure at the level of 

developmental toxicity, assuming that maternal blood levels represent a good surrogate 

for fetal exposure (Fragki et al. 2017). The current study puts forward a more refined 

method, by simulating fetal concentrations with this adapted model, containing a fetal 

compartment, and capturing important parts of the kinetics during rat gestation. Instead 

of effective concentrations normally used for risk assessment purposes, such as BMD
10

, 

the complete concentration-response curves and the BMDL
50

 (lowest limit of the model 

averaged 90% confidence interval of the underlying ED
50

) are compared. ED
50

 was chosen 

for the comparisons since it is recommended for the case of quantal data (Slob 1999). 

For the comparisons the question raised was which magnitude in differences between in 

vitro-based and in vivo-based BMDL
50

s may be considered acceptable. An earlier retrospective 

analysis of developmental toxicity studies has demonstrated that developmental effect 

limits (NOAELs) for the same substance, species (either rat or rabbit) and exposure route 

may vary considerably,  in fact up to 10-fold (Janer et al. 2008a). Consequently, even a 

one order of magnitude difference may be within the intervals of biological variation. 

In addition, earlier PBK modelling reverse dosimetry efforts to translate in vitro toxicity 

into equivalent in vivo dose levels, performed with models specifically designed for the 

substance (or small group of substances) of interest  (Louisse et al. 2017; Louisse et al. 2015; 

Louisse et al. 2010; Strikwold et al. 2017) have illustrated differences within 10-fold. In the 

present work, comparison of the simulated dose-response curves and respective BMDL
50

s 

with in vivo data shows BMDL
50

s
 
standing within the same order of magnitude, for the 

WEC, followed by the ESTc for three out of the five compounds, suggesting as such a fairly 

good prediction for this first feasibility study. Nevertheless, the approach has to be further 

elaborated with more embryotoxicants.
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For the current QIVIVE exercise, the assumption was made that the Cmax is the most 

appropriate dose metric because embryotoxicity is commonly attributed to peak 

concentrations, since it can be induced by as little as a single exposure at a critical time 

window of gestation (Daston et al. 2010). However, it cannot be excluded that in some cases 

toxicity to the embryo may be better captured with time-dependent parameters, such as 

the AUC or a time-weighted average concentration. (Groothuis et al. 2015; Louisse et al. 

2017). Consequently, a clear approach has to be put forward in the future on the criteria 

for selection of the most appropriate dose metric for such in vitro to in vivo extrapolations.

Limitations

The BeWo system was previously evaluated to be a useful in vitro model to predict the 

transport of chemicals across the placenta, by comparisons to the human ex vivo placental 

perfusion model (Li et al. 2013). To our knowledge, data for the validation of the BeWo 

transport for these specific compounds are currently  not available, and consequently, 

it is not possible to conclude here whether the determined transport rates are well-

predicted. In order to validate the BeWo results for the chemicals applied here one has to 

perform an experiment, for example with the ex vivo placental perfusion model (Bassily 

et al. 1995). However, this method is labor intensive, and depends on the availability of 

fresh placental tissue, constituting it as such less appealing for safety assessment of large 

number of substances (Li et al. 2013). Nonetheless, it is acknowledged that investigating 

the applicability domain of the assay, but also the time of pregnancy it represents  would 

be useful for its wider application.

For the toxicokinetic predictions, activation of the enterohepatic cycling was necessary for 

VPA, EHA and MBuP. Also, gastrointestinal hydrolysis of the parent phthalate DBuP to MBuP 

and specific absorption rate parametrization for EHA had to be taken into consideration. 

This presupposes that some in vivo data shall be available beforehand in order to properly 

calibrate certain model parameters and leading as such to successful predicted results. 

This is of course an issue considering the lack of information on toxicokinetics during 

gestation.  It shall also be noted here that saturation of metabolic enzymes is not included 

in the generic structure of the model, and consequently simulations at very high dose 

levels, where toxicity may influence the toxicokinetics, may not be adequately captured. As 

such, without appropriate information to evaluate the model performance, its application 

for different chemicals may be problematic. For FLU and BAA substance-specific model 

parameterization was done based on former successful kinetic simulations with the 

original PBK model IndusChemFate for the non-pregnant rat (Fragki et al. 2017). Obviously, 

whether or not the simulated fetal concentrations are in close proximity with what occurs 

in reality cannot be discerned here, since, to our knowledge, such data are not available 

to investigate this further. Considering that toxicokinetic data on rat pregnancy are not 

commonly available, in particular for environmental chemicals, verification of the model 

predictions based on non-pregnancy kinetics seems the only option. Human data from 

cord-blood samples collected at term of pregnancy and/or biomonitoring information from 
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pregnant women (Bocca et al. 2019; Bocca et al. 2020; Cardenas et al. 2017; Freire et al. 2018) 

would also be a good alternative, provided that the PBK model is extended for the human.

Furthermore, the PBK model and also the reverse dosimetry approach applied here for 

the back calculation of external doses from in vitro concentrations uses a deterministic 

model, where all input parameters are fixed and hence, it does not accommodate for 

any uncertainty for these parameters. Nevertheless, it is acknowledged that parameter 

value uncertainty shall be taken into consideration when using such models for QIVIVE, 

although this was considered beyond the scope of the present paper.

The current methodology shall be seen as a ‘proof or principle’ exercise for QIVIVE 

purposes for developmental toxicity screening and prioritization. However, it shall be 

highlighted that species differences related to the source of data may constitute a limitation 

of the approach. For example, the BeWo cell line is derived from human choriocarcinoma, 

whereas developmental toxicity data and PBK model adaptations are for the rat animal. The 

rat model was selected here since it is the most informative with respect to data availability 

on developmental toxicity. Furthermore, the alternative embryotoxicity assays are based 

on the rat (WEC), but also on the mouse (ESTc and ESTn) species. It cannot be excluded 

that these species differences  could affect the results for both the transplacental transport 

and embryotoxicity. Currently, a major effort is put on the development of alternative 

assays with human embryonic stem cells, which may prove to be a more suitable model for 

detecting embryotoxicants (Aikawa 2020; Chong et al. 2014; Luz and Tokar 2018). In the 

future, cell systems of human origin in combination with a PBK model adapted for human 

pregnancy coupled with human biomonitoring data could possibly be more informative 

for human risk assessment purposes.

In conclusion, the developed generic PBK model coupled with the BeWo transplacental 

information for the different embryotoxicants seems a promising tool for simulating 

pregnancy kinetics in the rat. Further exploration of chemical kinetics in the BeWo assay 

with advanced experimental designs are expected to improve the PBK model simulations. In 

addition, the QIVIVE proof-of principle results suggest a good potential of the applied reverse 

dosimetry approach to predict in vivo developmental toxicity, so as to reduce animal testing. 

Nevertheless, this is still a work-in progress and further refinements and improvements are 

required, in order for such approaches to be applied in chemical risk assessment.  
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Supplementary Material 

Equations of the BeWo transport experiments

( ) ( ) ( )2 1
1'

2 1
A t A t

A t
V V
 

= − × × 
flow

pc

( ) ( )2 1'A t A t=′ −

where, A
1
, A

2
: amounts in apical (1) and basolateral (2) chamber, respectively (µmoL); 

A
1
(0):  initial amount added to the apical chamber; A

2 
(0): 0; t: time V

1
, V

2
: volumes of 

compartments (µL); pc: partition coefficient; flow: flow between the two chambers. 

The model parameters ‘pc: partition coefficient’ and ‘flow’ (µL/hr) were estimated from 

the in vitro measured data by the method least of squares, The criterium function to be 

minimized was the sum of squared differences between data and calculated amounts over 

all time points and for all 3 parallel experiments. The freely available R-software was used 

for performing the calculations (https://www.r-project.org/).

PBK equations

Fat Volume (L)

( ), 1.0  0.0165  F P PV V GD = × + ×   (1)

where:

V
F, P 

: Volume of fat tissue during pregnancy

V
F 

: Volume of fat tissue adult non-pregnant rat 

GD: Gestation Days

Mammary Tissue Volume (L)

( ), 1.0  0.27  M P MV V GD = × + ×   (2)

where:

V
M, P 

: Volume of mammary tissue during pregnancy

V
M 

: Volume of mammary tissue adult rat (= 0.01 x BW)

BW: Body Weight adult non-pregnant rat

GD: Gestation Days

Uterus Volume (L)

    , 1.0U P UV V= × ,   if GD<3                                                  (3)

      
( )1.6

, 1.0 0.77 3U P UV V GD = × + + − 
, if GD≥3              (4)

where:

V
U, P 

: Volume of uterus during pregnancy

V
U 

: Volume of uterus adult rat (= 0.002 x BW)

BW: Body Weight adult non-pregnant rat

GD: Gestation Days
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Body Weight (kg)

( ) ( ) ( ), , ,P F P F M P M U P U Plac FetBW BW V V V V V V V V= + − + − + − + +  (5)

with:

BW
P
: body weight during pregnancy

BW: body weight adult non-pregnant rat

V
Fet

: volume of fetus

Cardiac Output & Blood Flows (L/h)
The increase of the total cardiac output during pregnancy, i.e. Q

P
 – Q

C
, is distributed over 

the adipose tissue, the mammary tissue, the uterus and the placenta, or: 

( ) ( ) ( ), , ,P C F P F M P M U P U PlacQ Q Q Q Q Q Q Q Q− = − + − + − + (6)

With:

Q
P
: Cardiac output pregnancy

Q
C
: Cardiac output adult non-pregnant rat

Q
F,P 

: Blood flow to fat tissue during pregnancy

Q
F
: Blood flow to fat tissue adult non-pregnant rat

Q
M,P 

: Blood flow to mammary tissue during pregnancy

Q
M 

: Blood flow to mammary tissue adult non-pregnant rat 

Q
U,P 

: Blood flow to uterus during pregnancy

Q
U 

: Blood flow to uterus during adult non-pregnant rat

Q
Plac

: Blood flow to placenta

Conserving the fraction of the cardiac output flowing to the organs, i.e. as age-independent 

fractions of the cardiac output, scaling the blood flow to the fat, the mammary tissue and 

the uterus during pregnancy to organ volume then results in :

,
,

F P
F P F

F

V
Q Q

V
 

= × 
 

(7)

,
,

M P
M P M

M

V
Q Q

V
 

= × 
 

(8)

,
,

U P
U P U

U

V
Q Q

V
 

= × 
 

(9)

Except for placenta:  ( ) ( )placentaQ GD f GD=  (10) (see below)

Blood flow to the placenta (L/hr)  
The data used describing the placenta blood flow during gestation and the resulting curve 

are presented in Figure 1. No simple mathematical function can reproduce the data and 

hence, a spline function is used (R-function smooth.spline).
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SUPPLEMENTARY FIGURE 1 Blood flow to the 

placenta as a function of time (gestation days) in the 

rat as predicted by the PBK model (here expressed in L/

day). The placenta blood flow in the graph is for a single 

embryo. The predicted curve is a spline-based curve 

based on experimental measurements (dots)  (Buelke-

Sam 1982b, as reported in O’Flaherty 1992). The 

transient increase around gestation day 10 represents 

the period of a prominent yolk sac placenta.

Placental weight (kg or else L)

During rat pregnancy the fetus is nourished by two independent placental systems: the 

yolk-sac system (mainly operating from GD6 to GD12) and the chorioallantoic system 

(being operational from GD12 onwards). The growth of the yolk sac placenta is modeled as 

a linear increase (GD6-D10), followed by a gradual decline. A small amount of the yolk sac 

placenta remains till the end of pregnancy. The growth of the chorioallantoic placenta is 

modeled as an exponential function of GDs (GD10-23) (O’Flaherty 1992). O’Flaherty et al. 

(1992) provide reference values for the sum of those two placental systems during GD6-

GD23 (see graph).  

SUPPLEMENTARY FIGURE 2 Placental weight 

changes(per single fetus) throughout the gestation 

period as predicted by the PBK model. Experimental 

data are taken from (O’Flaherty 1994).

As such the developed equation for the total placental weight is:

( )
1 261

1000000

a a t

plac
e eV t

+− ×
= (11)(kg)

where: α
1
 = 2.133, α2 = 0 .0141

Fetal Growth (kg or L)
The graph below describes the   growth weight of an individual fetus during gestation for 

the rat. Before GD10  the weight of the fetus is almost negligible.  Data for fetal growth were 

obtained from O’Flaherty et al. (1992; Figure 3, as compiled from 4 early studies (1954 – 1982)). 

 

( ) 1 2

1000
b b t

fetus
eV t

+
= (12)(kg)

where: b
1
= -7.432 and b

2
= 0.023 
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SUPPLEMENTARY FIGURE 3 Rat fetal weight 

growth during gestation for a single fetus. Experimental 

data are from O’Flaherty (1994).

Integration of the BeWo assay data into the PBK model-Mathematical equations

The fetoplacental unit

During gestation (GD0-23) the equations that describe mass balance for the change of the 

amount of a chemical in the placenta (13) and fetus (14) are  the following:

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ),
, ,

*      *  
* *

p e
p p a GDx i p

p p i e e i

A t A td A t q t C t CL t C t
dt V t P V t P

   
= − + −   

     
(13)

( ) ( ) ( )
( ) ( ),

,

 *  
*

e
e GDx i p

e e i

A td A t CL t C t
dt V t P

 
= − − 

  
(14)

where:

q
p
(t) Maternal blood flow into the placenta (L/hr) (refers to the total sum of fetuses, 

assumed here N=12)
Cα(t) Concentration in (arterial) blood flowing into the placenta (amount/L)

A
p
(t) Amount in the placental tissue

V
p
(t) Placental volume (L)

P
p,i

Placental tissue:blood partition coefficient

CL
GDx,i

(t) Clearance  on different gestation days (refers to the total sum of fetuses (N=12) 
and it illustrates the placental exchange with umbilical cord blood)

A
e
(t) Amount in the fetus

V
e
(t) Volume of fetus (L)

Placental clearance: Antipyrine the index compound
In vivo antipyrine clearances were obtained at any time points across GD0-23: 

( ) ( )
, 20,

, 20

 *p t
GDx ANTI GD ANTI

p GD

q
CL t CL

q
= (15)

where:

CL
GDx,ANTI 

(t)In vivo clearance of ANTI (L/hr) by the embryo (from placenta tissue) throughout 
gestation 

q
p
(t) Blood flow into the placenta (L/hr)

q
p,GD20

Blood flow into the placenta (L/hr) at GD20

CL
GD20,ANTI

In vivo clearance of ANTI at GD20 (reference value 0.172 L/hr, Varma et al., 1985).
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Placental clearance: Incorporation of the BeWo assay results 
Consequently, the respective in vivo CL

GDx,i 
(t) for each substance will be:

( ) ( ),
, ,

,

 *BeWo i
GDx i GDx ANTI

BeWo ANTI

CL
CL t CL t

CL
= (16)

Consequently, from equations (15) and (16):

( ) ( ), 20,
,

, , 20

 *  *BeWo i GD ANTI
GDx i P

BeWo ANTI p GD

CL CL
CL t q t

CL q
 

=  
  

(17)

where:

CL
GDx,i 

(t) In vivo clearance of  compound i (L/hr) on different gestation days x (refers to 
the total sum of fetuses (N=12) and it illustrates the placental exchange with 
umbilical cord blood)

CL
BeWo,i 

 Estimated parameter ‘flow’ from the in vitro BeWo assay for substance i; 
equivalent to  ‘clearance’ of the chemical from one compartment to the other

CL
BeWo,ANTI 

 Estimated parameter ‘flow’ from the in vitro BeWo assay for ANTI

CL
GDx,ANTI 

(t) In vivo clearance of ANTI (L/hr) by the embryo (from placenta tissue) throughout 
gestation 

q
p,GD20

 Blood flow into the placenta (L/hr) at GD20

CL
GD20,ANTI

 In vivo clearance of ANTI at GD20 (Varma and Ramakrishnan 1985)

q
p
(t)  Blood flow into the placenta (L/hr)

The in vitro measured parameter ‘pc’ was used as a  proxy  for the unknown in vivo P
e,i

, 

representing the embryo:placental tissue partition coefficient.

SUPPLEMENTARY FIGURE 4 The fetoplacental unit as incorporated into the generic rat pregnancy PBK model. The 

rectangular shapes represent compartments and the arrows are showing the direction of transfer of the compounds. The model 

allows for the use of measured BeWo assay data as input parameters for PBK predictions. The transport between placenta and fetus 

is proportional to the q
p
(t).
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PBK model input parameters

SUPPLEMENTARY TABLE 1 Model input parameters for the generic PBK model. 

Substance Parameter Value Reference/QSAR model

FLU Absorption rate default 
Density (mg/cm3 or grams/litre) 1170 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 315.4 Calculated from structural formula
Vapour Pressure (Pa) 3.19E-05 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 3.7 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 3.7 ChemAxon Marvin Sketch 21.4.0
Water solubility (mg/litre) 54 WSKOW v1.42 (Episuite)

Vmax Liver (parent[total] micmol/kg tissue/hr) 6438
Fragki et al. (2017), based on whole body 

half-life

Km Liver (parent[total] micmol/litre) 3750
Resorption tubuli (?/estimated fraction) default

Enterohepatic removal (relative to liver venous 

blood)
default

Faeces fraction (relative to removal) default
VPA Absorption rate default 

Density (mg/cm3 or grams/litre) 950 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 144.214 Calculated from structural formula
Vapour Pressure (Pa) 11.3 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 2.23 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 0.49 ChemAxon Marvin Sketch 21.4.0
Water solubility (mg/litre) 2000 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 13438.36 Kobayashi et al. (1991)
Km Liver (parent[total] micmol/litre) 1941.56
Resorption tubuli (?/estimated fraction) default

Enterohepatic removal (relative to liver venous 

blood)
0.5 Fitting to experimental data

Faeces fraction (relative to removal) default
EHA Absorption rate 0.5 Fitting to experimental data

Density (mg/cm3 or grams/litre) 926 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 144.212 Calculated from structural formula
Vapour Pressure (Pa) 4 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 2.12 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 0.38
Water solubility (mg/litre) 2000 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 20250 Hamdoune et al. (1995)
Km Liver (parent[total] micmol/litre) 2200
Resorption tubuli (?/estimated fraction) default

Enterohepatic removal (relative to liver venous 

blood)
0.2 Fitting to experimental data

Faeces fraction (relative to removal) 0.1 Fitting to experimental data
MCZ Absorption rate default

Density (mg/cm3 or grams/litre) 1400 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 416.14 Calculated from structural formula
Vapour Pressure (Pa) 2.35E-08 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 5.23 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 6.2
Water solubility (mg/litre) 0.024 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 6438 as for FLU
Km Liver (parent[total] micmol/litre) 3750



4

In
te

gr
at

in
g 

in
 v

itr
o 

ch
em

ic
al

 tr
an

sp
la

ce
nt

al
 p

as
sa

ge
 in

to
 a

 g
en

er
ic

 P
BK

 m
od

el

147

QIVIVE for developmental toxicity

Substance Parameter Value Reference/QSAR model

Resorption tubuli (?/estimated fraction) default

Enterohepatic removal (relative to liver venous 

blood)
default

Faeces fraction (relative to removal) default
EGBE Absorption rate default

Density (mg/cm3 or grams/litre) 900 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 118.18 Calculated from structural formula
Vapour Pressure (Pa) 1.17E+02 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 0.83 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 0.83
Water solubility (mg/litre) 1.00E+06 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 94848 Corley et al. (2005)
Km Liver (parent[total] micmol/litre) 900
Resorption tubuli (?/estimated fraction) default 

Enterohepatic removal (relative to liver venous 

blood)
default

Faeces fraction (relative to removal) default
BAA Absorption rate default

Density (mg/cm3 or grams/litre) 1030 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 132.16 Calculated from structural formula
Vapour Pressure (Pa) 8.98E+00 MPBPWIN v1.43 (EpiSuite)
Log(Kow)  at skin pH 5.5 -0.44 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 -2.31
Water solubility (mg/litre) 46920 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 0
Km Liver (parent[total] micmol/litre) 0

Resorption tubuli (?/estimated fraction) 0.6
Fitting to experimental data, as in Fragki 

et al. (2017)

Enterohepatic removal (relative to liver venous 

blood)
default 

Faeces fraction (relative to removal) default
MBuP Absorption rate default

Density (mg/cm3 or grams/litre) 1170 ChemSketch v.11 (ACD/ChemSketch 2011)
Molecular weight 222.24 Calculated from structural formula
Vapour Pressure (Pa) 5.15E-03 MPBPWIN v1.43 (EpiSuite)
Log(Kow) at skin pH 5.5 0.44 ChemAxon Marvin Sketch 21.4.0
Log(Kow) at blood pH 7.4 -1.46
Water solubility (mg/litre) 1.26E+02 WSKOW v1.42 (Episuite)
Vmax Liver (parent[total] micmol/kg tissue/hr) 1993 Keys et al. (2000)
Km Liver (parent[total] micmol/litre) 81.9
Resorption tubuli (?/estimated fraction) default

Enterohepatic removal (relative to liver venous 

blood)
0.5 Fitting to experimental data

Faeces fraction (relative to removal) default
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In vivo toxicokinetic and toxicity data

A literature search was performed in PubMed for each of the six substances for retrieving 

information on toxicokinetics and developmental toxicity in the rat model. The following 

searches were included in ‘All fields’:

<substance> AND <rat> AND <pregnancy>; <substance> AND <rat> AND <gestation>; 

<substance> AND <rat> AND <toxicokinetics>; <substance> AND <rat> AND <transplacental 

transport> AND <pregnancy>; <substance> AND <rat> AND <developmental toxicity>

For the pesticide FLU information was collected as presented in the JMPR safety evaluation 

(JMPR 2008). For EGBE (BAA) and DBP (MBP) international evaluation reports by US EPA 

and the EU Risk Assessment Committee (RAC) were also consulted (RAC 2012; 2018; US 

EPA 2009).

MBuP pregnancy toxicokinetics
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SUPPLEMENTARY FIGURE 5 Concentrations of MBuP in blood, growing fetus and placenta after exposure to the parent 

DBuP. Dose 1500 mg/kg bw (equivalent to 1400 mg/kg bw MBuP), GD14, experimental data (mean, n=3) taken from Saillenfait 

et al. (1995).

BMD analysis with PROAST

SUPPLEMENTARY FIGURE 6 Dose-response analysis performed with PROAST for flusilazole based on the A. ESTc -based 

PBK modelling reverse dosimetry, B. WEC- based PBK modelling reverse dosimetry and C. experimental determined in vivo 

developmental toxicity rat data. The model with lowest AIC is presented here. References on the original data sets are provided 

within the manuscript in the section of Materials  & Methods.
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SUPPLEMENTARY FIGURE 7 Dose- response 

analysis performed with PROAST for valproic acid 

based on the A. ESTc -based PBK modelling reverse 

dosimetry, B. WEC- based PBK modelling reverse 

dosimetry and C. experimental determined in vivo 

developmental toxicity rat data. The model with lowest 

AIC is presented here. References on the original data 

sets are provided within the manuscript in the section 

of Materials  & Methods.

SUPPLEMENTARY FIGURE 8 Dose- response 

analysis performed with PROAST for 2-ethyl hexanoic 

acid based on the A. ESTn -based PBK modelling reverse 

dosimetry. The model with lowest AIC is presented here.  

References on the original data set is provided within 

the manuscript in the section of Materials  & Methods.



4

C
H

A
PTER 4

150

SECTION II

SUPPLEMENTARY FIGURE 9 Dose- response analysis performed with PROAST for miconazole based on the A. ESTc -based 

PBK modelling reverse dosimetry, and B. WEC- based PBK modelling reverse dosimetry. The model with lowest AIC is presented 

here. References on the original data sets are provided within the manuscript in the section of Materials & Methods.

SUPPLEMENTARY FIGURE 10 Dose- response 

analysis performed with PROAST for ethylene glycol 

butyl ether based on the A. ESTc -based PBK modelling 

reverse dosimetry, B. WEC- based PBK modelling 

reverse dosimetry and C. experimental determined in 

vivo developmental toxicity rat data. The model with 

lowest AIC is presented here.  References on the original 

data sets are provided within the manuscript in the 

section of Materials & Methods.
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SUPPLEMENTARY FIGURE 11 Dose- response 

analysis performed with PROAST for dibutyl phthalate 

based on the A. ESTc -based PBK modelling reverse 

dosimetry, B. WEC- based PBK modelling reverse 

dosimetry and C. experimental determined in vivo 

developmental toxicity rat data. The model with lowest 

AIC is presented here.  References on the original data 

sets are provided within the manuscript in the section 

of Materials  & Methods.
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Abstract

Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood 

lipids have been repeatedly observed in humans, but a causal relation has been debated. 

Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, 

occurring however at PFAS serum levels at least 100-fold higher than those in humans. This 

paper aims to present the main issues regarding the modulation of lipid homeostasis by the 

two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms 

relevant for humans.  Overall, the apparent contrast between human and animal data may 

be an artefact of dose, with different molecular pathways coming into play upon exposure 

to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent 

data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is 

complex. From a mechanistic perspective, research on human liver cells shows that PFOS/

PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear 

receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear 

receptor HNF4α signalling pathway, as well as perturbations of bile acid metabolism and 

transport might be important cellular events that require further investigation. Future 

studies with human-relevant test systems would help to obtain more insight into the 

mechanistic pathways pertinent for humans. These studies shall be designed with a 

careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically 

plausible quantitative extrapolations. Such research will increase the understanding of 

possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential 

implications for human health.
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Introduction 

Per- and polyfluoroalkyl substances (PFASs) are man-made substances with unique 

physicochemical properties, such as oil and water repellence, high temperature and 

chemical resistance, and emulsifying/surfactant properties. Because of these properties, 

PFASs have been in use since the 1950s for a wide range of industrial and consumer 

applications, including food contact materials, water-repellent fabrics, waxes, fire-

fighting foams, shampoos and cosmetics, as well as insecticides. Several long-chain PFASs, 

including the well-known PFOA perfluorooctanoic acid (PFOA) and perfluorooctane 

sulfonic acid  (PFOS), are extremely persistent in the environment and tend to 

bioaccumulate (OECD 2015). Measurable blood concentrations of PFOA and PFOS, and 

to a lesser degree other PFASs, have been found in populations worldwide (ATSDR 2018; 

Ballesteros et al. 2017; EFSA CONTAM Panel 2018a; 2020a; US EPA 2016a; 2016b). Moreover, 

this class of substances has been associated with various adverse health effects in humans, 

including serum lipid perturbations, immunotoxicity, and developmental toxicity (ATSDR 

2018; EFSA CONTAM Panel 2018a; 2020a; US EPA 2016a; 2016b). 

Despite agreements to phase out the production of certain PFASs by industry, part of the 

European population is still exposed to levels of PFASs15 exceeding the tolerable weekly 

intake (TWI) recently proposed by the EFSA CONTAM Panel, based on effects in humans 

(EFSA CONTAM Panel 2020a). Furthermore, alternative PFASs are increasingly being used 

without sufficient knowledge on their potential hazards and sources of emissions. Thus, 

PFASs are a public health concern deserving attention from health authorities and policy 

makers.

One of the human health concerns associated with PFAS exposure is potential perturbation 

of triglyceride (TG) and cholesterol homeostasis. PFASs, have been repeatedly  found to 

be positively associated with increased blood cholesterol concentrations, and in some 

cases TGs, in numerous human epidemiological studies. Increased serum cholesterol 

(total cholesterol of > 5.2 mmol/L, i.e. >200 mg/dL) (Ference et al. 2017; Leritz et al. 2016; 

Piepoli et al. 2016), and in particular its low density lipoprotein (LDL) fraction, is a well-

established risk factor for cardiovascular disease (CVD), including ischemic heart disease 

and ischemic stroke (Borén et al. 2020; Ference et al. 2017; Piepoli et al. 2016). The use 

of cholesterol-lowering drugs such as statins has been shown to decrease the risk of CVD 

(Ference et al. 2017; Piepoli et al. 2016). Moderate hypertriglyceridemia (>10 mmol/L) is 

also considered a CVD risk factor, albeit with a smaller correlation when compared to 

the correlation between hypercholesterolemia and CVD (Nordestgaard and Varbo 2014; 

Piepoli et al. 2016; Sandesara et al. 2019).  Consequently, even a small increase in serum 

lipids caused by PFASs can be considered a potential human health hazard. 

In contrast to the evidence from human data, rodent studies with PFASs, commonly 

performed with high doses, have demonstrated decreased serum cholesterol and TG levels, 

15  EFSA CONTAM Panel has considered four PFASs members for the calculation of a TWI: PFOS, PFOA, PFHxS 
(perfluorohexanesulfonic acid) and PFNA (perfluorononanoic acid) (EFSA CONTAM Panel 2020).
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accompanied by increased intrahepatic lipid (mainly TG) concentrations (Curran et al. 

2008; DeWitt et al. 2009; Loveless et al. 2006; NTP 2019a; 2019b; Seacat et al. 2003). Next to 

this, liver toxicity is one of the most frequently reported effects manifested as hypertrophy, 

steatosis, and in some cases, even necrosis (NTP 2019a; 2019b; RIVM 2018). The divergent 

results regarding blood lipids between rodents and humans raise debate about the human 

relevance of rodent data on lipid perturbation, but also about the causality of the human 

findings on PFAS-associated elevated serum lipids (EFSA CONTAM Panel 2018c).

Despite the fact that perturbed lipid homeostasis associated with PFAS exposure has received 

substantial attention, clear understanding of the mechanisms involved in both animals and 

humans, is still lacking. This is partly due to distinct species differences, pertaining to the 

combination of toxicokinetics and toxicodynamics, which have obscured the evaluation 

of causal pathways and their interpretation in the context of human health. Additionally, 

many studies focused on peroxisome proliferator-activated receptor α (PPARα)-mediated 

mechanisms, and less attention has been given to other possible mechanisms explaining 

the observed effects, such as interactions with other transcription factors. 

FIGURE 1 Chemical structure of PFOS (left) and PFOA (right).

The goal of the present paper is to present the state of the art knowledge on the disturbance 

of cholesterol and TG homeostasis by PFASs, and to bring forward the most important 

issues pertaining to this topic. Possible explanations for the findings and discrepancies 

observed between different lines of evidence are identified, with an emphasis on the 

underlying mechanisms, especially those that could be relevant for humans. Elucidating 

the mechanism through which PFASs might induce lipid perturbations would assist in 

explaining the epidemiological findings, as well as establishing the human relevance 

of experimental data. For this purpose, this review presents i) a summary of the main 

findings on PFAS-mediated lipid dysregulation, as recorded in epidemiological and 

animal studies, ii) an overview of the most important related mechanistic knowledge, as 

derived from mechanistic rodent studies and in vitro human-relevant test systems, and iii) 

the importance of PFAS species-specific toxicokinetics. The aim of the work is neither to 

perform a systematic review nor to evaluate the quality and reliability of all available data, 

since this has been previously performed (e.g. EFSA CONTAM Panel 2018a; 2020a), and 

hence, information used is mainly derived from studies that are highlighted in existing 

reviews and reports published by various agencies (EFSA CONTAM Panel 2018a; 2020a; 

Pizzurro et al. 2019; RIVM 2018), complemented with some recent scientific publications. 

The focus is on the two main congeners of the PFAS group, PFOS (Figure 1, left) and PFOA 

(Figure 1, right). Furthermore, this paper provides some recommendations on how to 
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address the identified issues and fill the knowledge gaps, and lays down important factors 

that require careful consideration when designing new studies. Altogether, this paper 

aims to contribute to a better understanding of PFAS-mediated lipid perturbations and 

the issues involved in their interpretation for human health risk assessment.

PFOS and PFOA: lipid homeostasis perturbations 

Effects observed in human studies

Both, PFOS and PFOA (further referred to as ‘PFOS/PFOA’ and/or PFASs), have been 

repeatedly found to be positively associated with increased blood cholesterol concentrations 

in multiple human epidemiological studies (EFSA CONTAM Panel, 2018). A few examples, 

which are representative for these findings, are shown in Table 1. The epidemiological 

evidence mainly comprises cross-sectional associations between serum PFOS/PFOA and 

increased levels of cholesterol in blood, with a few examples of longitudinal studies (EFSA 

CONTAM Panel 2018a). Most studies have used general population samples with the 

“normal” range of PFOS/PFOA concentrations for that country at that time (e.g. Eriksen 

et al. 2013; Geiger et al. 2014; Nelson et al. 2010; Starling et al. 2014) and some have used 

specific populations with occupational exposure (e.g. Olsen et al. 2003a; Sakr et al. 2007a; 

Sakr et al. 2007b) or contaminated community drinking water supplies (e.g. Canova et al. 

2020; Frisbee et al. 2010; Li et al. 2020; Steenland et al. 2009). Exposure to the chemicals 

was in general for several decades. In the majority of these studies, the general pattern 

observed was a significant increase in the total serum cholesterol or low density lipoprotein 

cholesterol (LDL-C) associated with increased blood levels of PFOS and/or PFOA, while the 

results reported for high density lipoprotein cholesterol (HDL-C) were inconsistent. For 

the general population studies, the magnitude of the increase in total serum cholesterol, 

based on highest versus lowest quantiles, was around 5% (Eriksen et al. 2013: PFOS +4.9%, 

PFOA +5.6%; Li et al. 2020: PFOA, PFOS +7-9%; Nelson et al. 2010: PFOS +6.8%; Steenland et 

al. 2009: PFOS +6.4%, PFOA +5.5%), which may correspond to a clinically relevant increase 

in the risk of CVD (Ference et al. 2017; Piepoli et al. 2016). 

The largest study is on 46 000 adults from the C8 cohort in the mid-Ohio valley, in which 

residents were exposed for many decades to various PFOA levels through contaminated 

drinking water and via food, and show a wide range of serum concentrations (Steenland 

et al. 2009). This study showed median blood PFOS and PFOA levels of 20 and 27 ng/mL, 

respectively. Notably, for PFOA very high blood levels (up to ~18 000 ng/mL) were observed 

in part of the population.  Much of the increase is observed at low PFOS/PFOA serum 

levels and seems to level off at higher levels (above about 50 ng/mL), as also shown by the 

modelling of the data (EFSA CONTAM Panel 2018a). Another large population with PFAS 

exposure from contaminated drinking water, predominantly PFOA, is in the Veneto region 

of Italy (Canova et al. 2020). A cross sectional analysis of PFASs and lipids was carried out 

in nearly 16 000 people, between 20-39 years. The median PFOA serum concentration 
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was 35.8 ng/ml, and the pattern broadly consistent with the C8 study, i.e. increasing 

cholesterol with PFOA concentration and a steeper slope at lower concentrations. Another 

recent study on a community, living in a PFAS-polluted area and exhibiting raised serum of 

levels of mainly PFOS (and other PFASs) and to a lesser degree PFOA, also reported positive 

associations with serum cholesterol (Li et al. 2020). In addition to the cross-sectional 

analyses associating concurrent serum measurements of PFASs and lipids, the authors 

included an ecological component showing higher cholesterol in the exposed community 

compared to subjects sampled in a nearby, non-exposed community. 

In contrast to the community studies, the reported magnitude of the effect on cholesterol is 

lower in workers at much higher serum concentrations, e.g. a + 2-3% increase in cholesterol 

per increase in serum PFOA levels of 1 000 ng/mL (Sakr et al. 2007b) with exposure for 

several years and higher serum concentrations of PFOS/PFOA (mean or median levels ≥ 1 

000 ng/mL, PFOA:7- 92 300 ng/mL, PFOS: 20- 6 240 ng/mL) (e.g. Olsen et al. 2003a; Olsen 

et al. 2007; Sakr et al. 2007a; Sakr et al. 2007b). Olsen and Zobel (2007) re-analysed the data 

from 2003 (Olsen et al. 2003a) and after some exclusions, e.g. people using cholesterol 

lowering drugs, no longer observed an association between total cholesterol and LDL-C. 

Positive associations between increased serum levels of TGs and PFOS and/or PFOA were 

also recorded in both workers and the general population,  but in relatively few studies 

(e.g. Olsen et al. 2003a; Olsen and Zobel 2007; Steenland et al. 2009). 

TABLE 1 Representative human studies reporting associations between serum levels of PFOS and/or PFOA and serum levels of 

lipids.16

Substance
Study information, 
No of subjects

Findings 
in serum

Serum levels 
(ng/mL)

Reference

Cross-sectional studies general population 

PFOS/PFOA
Denmark DCH, 753 

individuals
PFOS vs TC ↑ Mean PFOS 36,  

Mean PFOA 7.1

Eriksen et al. 

(2013)PFOA vs TC ↑ 

PFOS/PFOA NHANES, USA, 860 adults

PFOS vs TC ↑

Median PFOS 20, Median PFOA 

3.8

Nelson et al. 

(2010)

PFOS vs non-HDL-C ↑
PFOS vs LDL-C ↑
PFOA vs TC ↑
PFOA vs non-HDL ↑
PFOA vs LDL-C ↑

PFOS/PFOA C8 cohort, 46 000 adults PFOS vs TC ↑ 

Median PFOS 20

Steenland et al. 

(2009)

  PFOS vs LDL-C ↑
  PFOS vs TGs ↑
  PFOA vs TC ↑ 

Median PFOA 27  PFOA vs LDL-C ↑
  PFOA vs TGs ↑

16 Only significant positive or inverse (negative) associations are mentioned in the Table. However, some 
studies showed also negative findings (no associations).
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Substance
Study information, 
No of subjects

Findings 
in serum

Serum levels 
(ng/mL)

Reference

PFOS/PFOA
C8 cohort, 12 500, 

children, 1–18 y

PFOS vs TC ↑ Mean PFOS 23

Frisbee et al. 

(2010)

PFOS vs LDL-C ↑
PFOS vs HDL-C ↑
PFOA vs TC ↑ Mean PFOA 69
PFOA vs LDL-C ↑
PFOA vs HDL-C ↑  

PFOS/PFOA Sweden, 1 945, adults17 PFOS vs TC ↑ 
Median PFOS 157

Li et al. (2020)
  PFOS vs LDL-C ↑  
  PFOA vs TC ↑ 

Median PFOA 8.6
 

    PFOA vs LDL-C ↑  

Cross-sectional studies occupational settings

PFOS/PFOA
USA (3M), and Belgium, 

518 individuals

PFOS vs TC ↑
High, mean PFOS and PFOA 

about 1 000

Olsen, Burris, et 

al. (2003)
PFOS vs TGs ↑
PFOA vs TC ↑
PFOA vs TGs ↑

PFOA

USA (3M) and Belgium, 

506 individuals (re-

evaluation of 2003 data)

PFOA vs HDL-C ↓
High, median PFOS of 720 

(range 20 to 6 240), median 

PFOA of 2 210 (range 10 to 92 

000)

Olsen and Zobel 

(2007)
PFOA vs TGs ↑

PFOA
USA (DuPont), 1 025 

individuals

PFOA vs TC High, median PFOA 114-494 

across 4 categories (range 8 

to 9550)

Sakr et al. (2007a)PFOA vs LDL-C ↑
PFOA vs VLDL-C ↑

Longitudinal studies general population

PFOS/PFOA
C8 cohort, 

560 individuals

PFOS vs  TC ↑ Geometric Mean  PFOS: from 

10 to 8 Fitz-Simon et al. 

(2013)
PFOS vs  LDL-C ↑ 
PFOA vs  TC ↑ Geometric Mean PFOA: from 

75  to 31PFOA vs LDL-C ↑ 

PFOA

C8 cohort, 32 000 

individuals, general 

population and workers

PFOA vs TC↑ 

Median PFOA general 

population 24 and workers 113. 

Modelled cumulative PFOA: 

20th percentile 215 ng/mL*yr 

and 80th percentile 1 820 ng/

mL*yr

Winquist and 

Steenland (2014)

Longitudinal studies occupational settings

PFOS/PFOA
USA (3M), and Belgium, 

174 individuals 

PFOA vs TC ↑ High, mean PFOS and PFOA 

about 1 000

Olsen, Burris, et 

al. (2003)PFOA vs TGs ↑ 

PFOA
USA (DuPont), 454 

individuals
PFOA vs TC ↑ 

High, mean PFOA about 

1 000
Sakr et al. (2007b)

Therapeutic studies

PFOA

49 cancer patients, phase 

1 dose-escalation trial, no 

control group, 50-1200 

mg, weekly for 6 weeks

PFOA vs TC ↓ 

150 000 – 230 000 
Convertino et al. 

(2018)
PFOA vs LDL-C ↓ 

DCH: Diet Cancer and Health; C8: study performed in the ‘C8’ area where drinking water was contaminated by 

PFOA from a DuPont plant; ‘↑ ’ sign illustrates a statistically significant positive association; ‘↓ ‘ sign illustrates 

inverse a statistically significant association, TC: Total cholesterol, TGs: triglycerides, LDL-C: Low-Density 

lipoprotein, HDL-C: High- Density lipoprotein.

17  Municipality where one out of two waterworks had been heavily contaminated from aqueous fire-fighting 
foams, and from a nearby control area.
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Although the associations between serum levels of total cholesterol, LDL-C and TGs and 

serum levels of PFOS/PFOA have been recorded repeatedly, the causality of these exposure-

effect relationships is still an issue requiring further scientific inquiry (EFSA CONTAM Panel 

2020a). In addition, the available evidence for an association between PFOS/PFOA exposure 

and an associated adverse outcome, i.e. CVD, is missing (EFSA CONTAM Panel 2020a).

An important limitation of most of the studies, is that they were cross-sectional in design, 

and so the direction of causality is unknown and may be vulnerable to confounding 

affecting serum concentrations of both PFOS/PFOA and cholesterol. An example of 

potential confounding is related to the enterohepatic cycling of PFOS/PFOA and bile acids. 

PFOS/PFOA have been shown to be excreted to the bile and it was estimated that thereafter, 

most of the PFOS/PFOA must undergo extensive enterohepatic re-absorption from the 

gastrointestinal tract to explain the long half-lives in humans (Fujii et al. 2015; Harada et 

al. 2007) (see section Species differences in toxicokinetic properties of PFOS and PFOA). 

In line with this, absorption of PFOS/PFOA was shown to be mediated by the transporters 

that also participate in absorption of bile acids (Zhao et al. 2015b). Given that differences in 

the absorption of bile acids due to genetic factors, such as interindividual variations, food 

composition or medicines can result in altered levels of serum cholesterol, it is plausible 

that confounding related to excretion and re-absorption in the enterohepatic cycling 

process may play a role in the cross-sectional associations observed for PFOS/PFOA and 

total serum cholesterol (EFSA CONTAM Panel 2020a). 

A few studies had a longitudinal design (see example in Table 1), and as such were subject 

to a smaller risk of confounding. For example, in a longitudinal study within the C8 

cohort, the incidence of the diagnosis of increased serum cholesterol levels was related to 

the modelled serum PFOA in the population. The exposure model was based on the water 

concentrations and intake, not individual measurements, and thus was not vulnerable to 

the confounding described above. A modest, but significant, increase of serum cholesterol 

levels in relation to modelled PFOA intake was found (Winquist and Steenland 2014). 

The same study assessed CVD in relation to PFOA and did not find an association. A 

subgroup of subjects in the C8 study participated in a longitudinal follow-up study with 

repeated blood testing about 4 years after the first survey (Fitz-Simon et al. 2013), showing 

a general decline of serum PFOS/PFOA levels by an average of about 60% reflecting the 

half-life of approximately 3 years. The mean total cholesterol level did not fall, but was 

slightly increased, which may be explained by increasing age or change in life-style. When 

stratifying the group according to the extent of decrease in serum PFOS or PFOA levels, it 

was shown that those with the highest decrease in PFOS/PFOA showed a relative decrease 

in serum cholesterol levels, compared to the group with the lowest decrease in PFOS/PFOA. 

These results also suggest that the effect of PFOS/PFOA on cholesterol levels is reversible. 

The similarity in the direction of results across different study designs (cross sectional, 

ecologic and longitudinal) supports a causal role for the PFOA in increasing cholesterol. On 

the other hand, one would expect an exposure-related increase in cardiovascular risk, but 

there is little evidence for this.
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A recently published human study (Convertino et al. 2018) does not seem to support the 

findings regarding increased cholesterol, as observed in a large number of epidemiological 

studies. This was a clinical phase 1 dose-escalation study with 49 cancer patients, who were 

administered for 6 weeks very high doses of PFOA, resulting in serum levels of 150 000 – 230 

000 ng/mL (Table 1). The authors reported a subsequent dose-dependent reduction in total 

cholesterol and LDL-C levels in blood. However, this study is probably of little relevance 

for the general and worker population, since it was conducted in a small population of 

late-stage cancer patients, whose metabolic activity may differ considerably from healthy 

individuals. In addition, high doses of PFOA were applied for a limited time period.

In parallel to cholesterol changes, an increased incidence of mildly elevated serum levels 

of the liver enzyme alanine transferase (ALT) associated with PFOA exposure was recorded 

(Darrow et al. 2013; Gallo et al. 2012a; Gleason et al. 2015; Jain and Ducatman 2019; Lin et 

al. 2010; Nian et al. 2019; Salihovic et al. 2018). Some studies reported similar findings for 

PFOS (Gallo et al. 2012a; Lin et al. 2010; Salihovic et al. 2018). Nevertheless, the magnitude 

of the associations between serum ALT and PFOA (and PFOS) levels was small (~ 3%). In 

addition, the observed changes in ALT were not accompanied by observable adverse health 

effects, such as liver damage and metabolic disorders (EFSA CONTAM Panel 2018a; 2020a). 

Effects observed in animal toxicity studies

The interpretation of perturbations in lipid homeostasis observed in human studies 

becomes more challenging when considering the apparent lack of similar effects in rodent 

models. In fact, rodent data in general demonstrate opposite findings, i.e. a hypolipidemic 

effect characterized by decreased levels of serum cholesterol (~20-40%) and TGs (~30-80%) 

after exposure to PFOS/PFOA. Some representative studies are presented in Table 2. It 

should be noted that the purpose of this manuscript is not to perform a comprehensive 

review; thus, Table 2 lists only examples of typical studies. In rodents, decreases in 

serum cholesterol and TGs have been observed after repeated exposure (starting already 

at exposure durations of 2-4 weeks) and at doses between 0.3 to 10 mg/kg bw/d, which 

resulted in serum levels of 50 000 - 500 000 ng/mL (Bijland et al. 2011; Curran et al. 2008; 

DeWitt et al. 2009; Loveless et al. 2006; Minata et al. 2010; NTP 2019a; 2019b; see some 

information in Table 2; Yan et al. 2015b). These PFAS serum  levels are much higher than 

those levels associated with increased serum lipids in humans (observed at mean serum 

concentrations as low as 20-30 ng/mL; Table 1). For PFOS, decreases in serum cholesterol 

were also reported after longer exposure durations (13-14 weeks)  (Butenhoff et al. 2012a; 

Seacat et al. 2003), whereas for PFOA these endpoints were not examined in longer-term 

studies (Butenhoff et al. 2012b; Perkins et al. 2004). Very few investigations in animals 

used PFOS/PFOA doses that were low enough to have given serum concentrations like 

those seen in humans. At these low exposure levels, serum lipids were not affected by 

PFOS/PFOA treatment in rodents (Pouwer et al. 2019; Seacat et al. 2003; Yan et al. 2015b). 

Nevertheless, only one of these studies illustrates a dose-response (Pouwer et al. 2019), 

discussed further in sub-section Species differences in lipoprotein homeostasis in relation 

to PFAS lipid-related effects, whereas only a single dose level was applied in the other two. 
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Most investigations on the effects of PFOS/PFOA have been performed in rats and mice, 

with a few exceptions, in which monkeys have been used (examples in Table 2). PFOS 

lowered the serum cholesterol in cynomolgus monkeys after repeated exposure, when 

administered at doses comparable to those in the high dose rodent studies (serum: 15 000 – 

70 000 ng/mL) (Chang et al. 2017; Seacat et al. 2002). A 6-month oral PFOA administration 

in monkeys (serum: 70 000 - 160 000 ng/mL) produced a mild increase in circulating TGs, 

whereas blood cholesterol appeared unaffected (Butenhoff et al. 2002). 

In parallel to the hypolipidemic effects in the blood, other lipid disturbances observed 

include enhanced intrahepatic accumulation of lipids, mainly TGs, in rodents for both 

PFOS (Bijland et al. 2011; Wan et al. 2012; Wang et al. 2014), and PFOA (Das et al. 2017; Hui 

et al. 2017; Nakagawa et al. 2012; Schlezinger et al. 2020; Tan et al. 2013; Wang et al. 2013; 

Wu et al. 2018) (see Table 2 for examples). The liver appears to be a major target organ 

for both compounds in rats and mice, as indicated by increased liver weight, hypertrophy 

of centrilobular hepatocytes, induction of peroxisomal and mitochondrial ß-oxidation, 

and in some cases necrosis. Liver damage in rodents is also indicated by increased serum 

transaminases (Curran et al. 2008; Elcombe et al. 2012; NTP 2019a; 2019b; Son et al. 2008; 

Yu et al. 2009). Similarly, in primates the liver appears to be a target organ for PFOS/

PFOA, with effects manifested as increased liver weights with hepatocellular hypertrophy 

and vacuolation (Butenhoff et al. 2002; Chang et al. 2017; Seacat et al. 2002). It has been 

speculated that the observed liver damage, like steatosis and necrosis, can be attributed to 

the alterations in the hepatic lipid metabolism (EFSA CONTAM Panel 2020a). 

TABLE 2 Example studies in animals reporting on lipid perturbations induced by PFOS/PFOA. Only induced effects are reported 

in the table. 

Su
bs

ta
n

ce

Experimental design
Lipid perturbation-
related findings

LO(A)EL 
(mg/kg 
bw/d)

Serum levels 
at LO(A)EL 

(µg/mL)

Liver levels  at 
LO(A)EL (µg/g)

Reference

Studies in rats

PFOS

Sprague Dawley rats (m,f),   
4 weeks, in feed 
0, 0.14, 1.33, 3.21, 6.34 (m) 
0, 0.15, 1.43, 3.73, 7.58 (f) mg/
kg bw/d

↓ serum TC (m) 3.21 20.93 ± 2.36 856.90 ± 353.83

Curran et 
al. (2008)

↓ serum TGs (m) 3.21 20.93 ± 2.36 856.90 ± 353.83

↓ serum TC (f) 3.73 31.93 ± 3.6 597 ± 158

↓ serum TGs (f) 3.73 31.93 ± 3.6 597 ± 158

PFOS

Sprague Dawley rats (m,f), 4 
weeks, gavage 
0, 0.312, 0.625, 1.25, 2.5, 5 mg/
kg bw/d 

↓ serum TC (m) 0.312 23.73 ± 1.11 87.17 ± 3.03 NTP (2019a)
↓ serum TGs (m) 5 318.2 ± 8.86 867.1 ± 26.8
↓ serum TC (f) 5 413.55 ± 8.07 NR
↓ serum TGs (f) 2.5 237.5 ± 5.218 NR

PFOS

Sprague Dawley rats (m,f), 14 
weeks, feed 
0, 0.05, 0.2, 0.4, 1.5 mg/kg 
bw/d

↓ serum TC (m) 1.5 148 ± 14 568 ± 107
Seacat et al. 

(2003)

PFOA
Sprague Dawley rats (m), 2 
weeks, gavage 
0, 0.3, 1, 3, 10, 30 mg/kg bw/d

↓ serum TC 0.3 20 ± 3.2 

NR
Loveless et 
al. (2006)

↓ serum TGs 0.3 20 ± 3.2 
↓ non-HDL-C 0.3 65 ± 11
↓ HDL-C 3 137 ± 18
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Su
bs

ta
n

ce
Experimental design

Lipid perturbation-
related findings

LO(A)EL 
(mg/kg 
bw/d)

Serum levels 
at LO(A)EL 

(µg/mL)

Liver levels  at 
LO(A)EL (µg/g)

Reference

PFOA

Sprague Dawley rats (m,f), 4 
weeks, gavage 
0, 0.625, 1.25, 2.5, 5, 10 (m) mg/
kg bw/d 
0, 6.25, 12.5, 25, 50, 100 (f) mg/
kg bw/d

↓ serum TC (m) 0.625 50.69 ± 2.2 54.61 ± 2.23

NTP (2019b)
↓ serum TGs (m) 0.625 50.69 ± 2.2 54.61 ± 2.23

↑ serum TC  (f) 50  9.32 ± 1.82 NR

↑ serum TGs (f) 50 9.32 ± 1.82 NR

Studies in Mice

PFOS
CD-1 mice (m), 3,7,14,21 days, 
gavage 
0, 1, 5, 10 mg/kg bw 

↓ serum TC 5

NR NR
Wan et al. 

(2012)
↓ serum VLCL-C 5
↓ serum LDL-C 5
↑ liver lipids 5

PFOA
SV129 mice (m), 7 days, gavage 
0, 10 mg/kg bw

↑ liver lipids 10 NR NR
Das et al. 

(2017)

PFOA

C57BL/6N mice (m), 3 weeks, 
standard chow or Western 
type diet 
0, 5 mg/kg bw/d

↑ liver lipids 5 NR NR
Tan et al. 

(2013)

PFOA
Crl:CD®-1(ICR)BR mice (m),  2 
weeks, gavage 
0, 0.3, 1, 3, 10, 30 mg/kg bw/d

↓ serum TC 3 69 ± 10
NR

Loveless et 
al. (2006)↓ HDL-C 3 69 ± 10

PFOA
29S4/SvlmJ mice (m), 4 weeks, 
gavage 
 0, 5.4, 10.8, 21.5 mg/kg bw/d

↓ serum TC 10.8 46.9 ± 3.2 198.8 ± 15.4
Minata et 
al. (2010)

PFOA

C57BL/6 & BALB/c mice 
6 weeks, in feed, Western type 
diet (m,f) 
0, 0.5 mg/kg bw/d

↑ serum TC (f, C56BL/6) 0.5 8.6

NR
Rebholz et 
al. (2016)

↑ serum TC (m, C56BL/6) 26.9

↑ serum TC (m, BALB/c) 28.2

↓ liver TC (m.f BALB/c)

PFOA

BALB/c mice (m), 4 weeks, 
gavage 
0, 0.08, 0.31, 1.25, 5, 20 mg/
kg bw/d

↓ liver TC 0.31 NR
(Yan, Wang, 
et al. 2015)

Studies in genetically modified mice

PFOS

APOE*3-Leiden CETP mice (m) 
4-6 weeks, in feed, Western 
type diet 
0, 3 mg/kg bw/d

↓ serum TC 3
86–125 (mean 
range from 3 
experiments)

NR
Bijland et 
al. (2011)

↓ serum TGs 3 86–125 
↓ serum non-HDL-C 3 86–125 
↓ serum HDL-C 3 86–125 
↑ liver lipids 3 86–125 
↓ hepatic CYP7A1  gene 
expression

3 86–125 

PFOA

APOE*3-CETP mice (m) 
4-6 weeks, in feed, Western 
type diet 
0, 0.001, 0.03, 3.2 mg/kg bw/d 

↓ serum TGs 3.2 90-150 NR

Pouwer et 
al. (2019)

↓ serum TC 3.2 90-150 

↓ non-HDL 3.2 90-150 

↑ HDL-C 3.2 90-150 

PFOS
WT and PPARa null mice (m), 
7 days 
0, 3, 10 mg/kg bw/d

↑ expression of 
genes related to liver 
cholesterol biosynthesis

10 NR NR
Rosen et al. 

(2010)

PFOA
hPPARα mice, 6 weeks, gavage 
0, 1, 5 mg/kg bw/d

↓ serum TGs 1
NR NR

Nakagawa et 
al. (2012)↑ liver TGs 1
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Su
bs

ta
n

ce

Experimental design
Lipid perturbation-
related findings

LO(A)EL 
(mg/kg 
bw/d)

Serum levels 
at LO(A)EL 

(µg/mL)

Liver levels  at 
LO(A)EL (µg/g)

Reference

PFOA

hPPARα mice (m,f), 6 weeks, 
drinking water, Western type 
diet 
0, 0.7 mg/kg bw/d

↑ liver lipids 0.7 48 NR
Schlezinger 
et al. (2020)

Studies in Monkeys

PFOS
Cynomolgous monkeys (m,f) 
26 weeks (182 days), gavage 
0, 0.03, 0.15, 0.75 mg/kg bw/d

↓ serum TC (m) 0.03 15.8 ±  1.4 17.3 ± 4.7

Seacat et al. 
(2002)

↓ serum TGs (m) 0.15 82.6 ±  25.2 58.8 ± 19.5
↓ serum HDL-C 0.03 15.8 ±  1.4 17.3 ± 4.7
↑ liver lipids (m) 0.75 173 ±  37 395 ± 24
↓ serum TC (f) 0.75 171 ±  22 273 ±  14
↓ serum HDL-C 0.75 171 ±  22 273 ±  14
↑ liver lipids (f) 0.75 171 ±  22 273 ±  14

PFOS

Cynomolgous monkeys (m,f) 
1 year, gavage applied only on 
certain and few days during 
the experimental period 
11-17.2 mg/kg bw, given to 
achieve respective serum levels

↓ serum TC (m)

NR

74

NR
Chang et al. 

(2017)

↓ serum HDL-C 74

↓ serum TC (f) 76

↓ serum HDL-C 76

m: males, f: females, bw: body weight, NR: not reported, TC: total cholesterol, HDL-C: high-density lipoprotein 

cholesterol, TGs: triglycerides, hPPARα: human Peroxisome Proliferator-Activated Receptor, WT: wild-type, ‘↑ ’ 

sign illustrates a statistically significant increase; ‘↓ ‘ sign illustrates a statistically significant decrease.

Interpretation of human versus rodent data

Several population studies have repeatedly found correlations between increased blood 

levels of PFOS/PFOA and elevated blood total cholesterol and LDL-C, (and to a lesser extent 

TGs). Nevertheless, these findings have not been linked to a corresponding adverse health 

effect  and are inconsistent with toxicological animal studies, where high doses of PFOS/

PFOA were found to lower serum cholesterol and TGs, and increase liver lipids.  These 

apparent divergent findings thus present the health risk assessors a conundrum.As noted 

above, some representative studies on these findings are described in Tables 1 and 2. For a 

complete picture of the epidemiological and animal data the reader is referred to the EFSA 

CONTAM Panel Opinions (2018a; 2020a).

Considering the large differences in exposure levels between humans and laboratory 

animals and in order to facilitate the discussion, serum levels of PFOS/PFOA together with 

externally administered doses are mentioned here, when available. Furthermore, it should 

be highlighted that not only PFOS/PFOA serum concentrations are of importance in such 

evaluations, but also the related hepatic concentrations (also reported when available). A 

relatively higher retention of PFOS/PFOA in the liver in one species compared to another 

could also play a role in the different outcomes. 

Next to the exposure levels, exposure duration may also be divergent, i.e. several decades 

for humans versus several (2-14) weeks  for animals18. Consequently, one could argue that 

18 One decade in human life would correspond to approximately 12 weeks for the rat considering its two-year 
life span.
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in humans, PFOS/PFOA chronic exposure leads to a different lipid response and balance, 

whereas this is not the case for rats exposed for shorter periods. It cannot be excluded that 

such differences may also contribute to the differential responses between the two species. 

It shall be noted here that irrespective of the shorter exposure duration, data indicate that 

a serum steady-state concentration is also reached in the rat for both compounds (Gomis 

et al. 2018). 

Apart from the exposure levels and exposure duration, other reasons are known 

or suspected to be implicated in the observed differences, including differences in 

mechanisms underlying the observed effects and in PFAS species-specific toxicokinetics. 

An understanding of the causal pathway that may lead from chemical exposure to 

potential adverse outcomes could assist in a better understanding of the epidemiological 

data. An overview of such mechanisms, which may explain the PFOS/PFOA-mediated lipid 

disturbances, is presented below. Information discussed stems from mechanistic rodent 

studies (including genetically modified mice) and in vitro test systems performed with 

human relevant material, such as human hepatocytes. Next to this, PFOS/PFOA species-

specific toxicokinetics issues are presented.

Mechanistic pathways involved in PFAS-induced lipid perturbations 

Species differences in lipoprotein homeostasis

General information on lipoprotein circulation
The liver is the primary organ tightly controlling lipid homeostasis, in humans, as well as 

in other primates and rodents, to ensure a balance between influx, generation, and efflux 

of lipids. Main functions of the liver with respect to lipid homeostasis include the fatty acid 

β-oxidation for energy supply, cholesterol biosynthesis and lipogenesis. Circulation of the 

lipids through the body occurs via specific carrier molecules, i.e. the lipoproteins, also 

synthetized in the liver (Dietschy et al. 1993; Kwiterovich 2000) (Figure 2). Lipoproteins 

contain a hydrophobic core comprising cholesteryl-esters and TGs, and a amphipathic 

part, which consists of apolipoproteins  and phospholipids (Imes and Austin 2013) . 

After a meal, the intestine releases chylomicrons, which are mainly composed of TGs and 

to a lesser extent cholesteryl-esters. Most of the TGs are cleared in the adipose tissue and 

muscle through the action of lipoprotein lipase. The leftover TGs and the cholesteryl-esters 

are taken up by the liver as part of chylomicron remnants (Figure 2). The liver uses the 

cholesterol to synthesize bile acids, which together with cholesterol are secreted into the 

bile. During fasting, the liver serves as a sink for circulating adipose tissue-derived free 

fatty acids, which are either fully oxidized or converted into ketone bodies. In addition, 

incoming fatty acids are esterified into TGs and stored within lipid droplets or secreted as 

very low-density lipoproteins (VLDL) for delivery of primarily TGs to the peripheral tissues 

(Zhang et al. 2014). In the blood, VLDL are further metabolized through the removal of 
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the TG portion into LDL, the latter being the main carrier of cholesterol to many tissues 

including the liver, and taken up via the LDL-receptor (LDLR). On the other hand, the 

HDL particles participate in the reverse cholesterol transport pathway, i.e. acquiring 

excess cholesterol effluxed from peripheral tissues and returning it to the liver. The 

main apolipoprotein in VLDL and LDL particles is apolipoprotein B (apoB) and in HDL 

apolipoprotein A-I (apoA-I)  (Feingold 2000; Imes and Austin 2013; Marques et al. 2018). 

Disturbances in these metabolic pathways can promote fatty-liver disease and lead to 

alterations in plasma lipid levels (Adiels et al. 2008). 

FIGURE 2 Overview of the lipid circulation throughout the human body with their carrier molecules, the lipoproteins. LPL: 

lipoprotein lipase, LDL: low-density lipoprotein, VLDL: very low-density lipoprotein, TGs: triglycerides, ApoB: apolipoprotein B. 

(Created with BioRender.com).

The above described processes comprise some general characteristics of lipid homeostasis 

that overall  are  well-conserved across species (Bergen and Mersmann 2005; Dietschy 

et al. 1993). Nevertheless, several aspects of lipid homeostasis are known to be specific 

for humans or rodents. These include differences pertaining to lipoprotein metabolism 

(Dietschy and Turley 2002; Princen et al. 2016), which ultimately results in different 

proportions of the circulating lipoproteins amongst species (Bergen and Mersmann 2005; 

Kaabia et al. 2018; Lee-Rueckert et al. 2016). Hence, in mice and rats, serum cholesterol 

is for the major part confined to HDL, while the levels of cholesterol carried by VLDL and 

LDL are low. In contrast, in humans and non-human primates, the majority of cholesterol 

is contained in the apoB-containing lipoproteins LDL and to a lesser extent VLDL, thereby 

resulting in a higher proportion of LDL relative to HDL in the blood (Krause and Princen 
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1998; Princen et al. 2016). This occurs due to a faster LDL clearance pathway in rodents 

compared to humans (Dietschy and Turley 2002; Dietschy et al. 1993), and the complete 

absence of cholesteryl ester transfer protein (CETP) in rats and mice. CETP is a central 

element in lipoprotein metabolism and is responsible for the transfer of cholesteryl-esters 

from HDL to apoB-containing lipoproteins in exchange for TGs (Chapman et al. 2010; 

Morton and Izem 2014; Princen et al. 2016). Consequently, the choice of the animal model 

should be carefully considered.

Species differences in lipoprotein homeostasis in relation to PFAS lipid-related effects
A few studies attempted to clarify the relevance of such species-specific differences for the 

observed PFOS/PFOA lipid-disturbing effects (Bijland et al. 2011; Pouwer et al. 2019). For 

this, the genetically engineered mouse model APOE*3-Leiden.CETP (Westerterp et al. 2006) 

was used, which mimics human lipoprotein metabolism and the response to clinically 

used hypolipidemic drugs, such as statins, fibrates, niacin and the novel PCSK9-inhibitors 

(Ason et al. 2014; Kühnast et al. 2015; Pouwer et al. 2020; Zadelaar et al. 2007). At the two 

highest doses tested, both PFOS (86 000- 125 000 ng/mL, 4-6 weeks) and PFOA (90 000- 

150 000 ng/mL, 4-6 weeks) induced hypolipidemia in the blood, which was characterized 

by decreased levels of TGs (50-70%) and total cholesterol (30-60%) (mainly the non-HDL 

fraction)(Bijland et al. 2011; Pouwer et al. 2019). These findings are in line with other 

studies with PFOS/PFOA conducted in wild-type mice and rats, with similar dose levels 

and exposure durations. However, in the wild-type animals the decrease in cholesterol is 

presumed to be mainly due to the HDL fraction. Unfortunately, most of the animal studies 

did not discriminate between the lipoproteins and mainly measured total cholesterol. 

Concurrently, PFOS exposure enhanced intrahepatic TG and cholesterol concentrations 

in APOE*3-Leiden.CETP mice (Bijland et al. 2011), while such lipid changes were not seen 

with PFOA at a similar dose (Pouwer et al. 2019). Mechanistic studies revealed that the 

decreased serum lipid levels occurred through PFOS/PFOA-enhanced (lipoprotein lipase-

mediated) VLDL-TG clearance and PFOS/PFOA-decreased hepatic VLDL-TG and apoB 

production. The observations were further supported by gene expression alterations and 

pathway analysis confirming the changes in lipoprotein metabolism measured (Bijland et 

al. 2011; Pouwer et al. 2019). It should be noted that these effects were only seen at doses 

and respective serum levels that are several orders of magnitude higher than those relevant 

in humans (Table 2), whereas they were absent at lower, human-relevant environmental 

or occupational serum levels (50- 2 000 ng/mL); only PFOA was tested at these low doses 

(Pouwer et al. 2019).

These findings from the studies using the APOE*3-Leiden.CETP model indicate that the 

known differences in lipoprotein metabolism between humans and rodents, as discussed 

above,  cannot sufficiently explain the observed discrepancy in PFOS/PFOA-induced lipid 

perturbations. Although the APOE*3-Leiden.CETP mouse has a humanized lipoprotein 

metabolism, it does not integrate other species differences that possibly play a fundamental 

role in the respective lipid perturbations (see next sections). On the other hand, the findings 
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observed could be interpreted otherwise, and  one could hypothesize that substantial 

differences in serum PFOA concentrations (at least two or three orders of magnitude) are 

indeed the main determinant of the interspecies differences reported (the slight reduction 

in cholesterol reported for cancer patients with very high serum PFOA (Convertino et al. 

2018) is consistent with this finding. Perhaps at such high serum levels different pathways 

come into play, both in humans and animals. Accordingly, exposure to PFOA at low doses 

may not have a significant effect on serum lipid homeostasis, as illustrated by the findings 

from the APOE*3-Leiden.CETP mouse. The resulting uncertainty regarding the causality 

of the epidemiological observations and PFOS/PFOA exposure could be reduced by further 

elucidation of the mechanism(s) involved. 

Additionally, when evaluating the different effects of PFOS/PFOA on blood lipids between 

humans and rodents, it is important to realize that rodent chow contains much less fat and 

almost no cholesterol when compared to the high-fat Western type diet of humans. For 

this reason, some studies were performed with rodents fed with a more human-relevant 

diet (Bijland et al. 2011; Pouwer et al. 2019; Rebholz et al. 2016; Wang et al. 2014), in order 

to delineate whether dietary factors are responsible for the absence of the increased blood 

lipid effect of PFASs in rodents fed conventionally.

Wang et al. (2014) treated BALB/c mice with PFOS combined with a normal or high fat diet 

(Table 2). Indeed, in the control animals, fed with the high-fat diet alone, a significant 

increase in blood cholesterol (HDL and LDL), together with an increase in hepatic fat 

content, was reported (Wang et al. 2014). Nevertheless, unlike the controls, the PFOS-

treated mice exhibited reduced levels of serum lipids and lipoproteins, independent of the 

dietary regimen. Administration of a Western-type diet together with PFOS or PFOA was 

also employed with the aforementioned studies on the APOE*3-Leiden.CETP mice (Bijland 

et al. 2011; Pouwer et al. 2019). Similarly, blood cholesterol and TGs were decreased in 

PFOS or PFOA-treated animals. These results suggest that the dietary fat does not interfere 

with the PFOS/PFOA-induced lipid perturbations observed in rodents. On the other hand, 

one single study demonstrated different results, where C57BL/6 mice showed increased 

blood cholesterol (35% in males, 70% in females), when receiving PFOA together with a 

cholesterol/lipid-rich diet, in comparison to the animals treated only with the lipid rich 

diet (Rebholz et al. 2016). A less pronounced increase in blood cholesterol (20%) was seen 

in male BALB/c mice, whereas blood cholesterol remained unaffected in the PFOA-treated 

BALB/c female mice when compared to control animals being on the high fat diet alone.  

The increased cholesterol was contained in the (large) HDL fraction, as expected for the 

rodents. Unfortunately, only one dose level was applied, while a control group fed on 

standard chow was not included. Overall, no conclusive differences were identified that 

can fully justify the contrasting lipid disturbances in rodents versus humans upon PFAS 

exposure; still, it cannot be excluded that diet might play a role, but effects need to be 

further clarified.
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The role of PPARα in PFOS/PFOA-induced lipid perturbations

General information on the PPARα 
The regulation of hepatic lipid and cholesterol metabolism occurs largely at the level of 

gene transcription by nutrient-sensitive transcription factors, encompassing several 

nuclear receptors. One of the main nuclear receptors involved in the regulation of hepatic 

lipid metabolism is  PPARα, which is primarily activated by fatty acids and various fatty 

acid derivatives (Göttlicher et al. 1992). The activation of PPARα in rodent and human 

hepatocytes induces the expression of numerous genes involved in various pathways of 

lipid metabolism, such as fatty acid storage, β-oxidation, and transport (Kersten 2014; 

Kersten and Stienstra 2017). For example, PPARα serves as direct molecular target of 

fibrate drugs, which are used in the treatment of dyslipidemia and lower blood lipid 

levels by inducing lipoprotein lipase-mediated VLDL-TG clearance (Chapman et al. 2010; 

Fabbrini et al. 2010; Kim and Kim 2020; Schoonjans et al. 1996).

Lipid homeostasis and activation of PPARα by PFOS/PFOA in rodents
PFOS/PFOA structurally resemble fatty acids and are well-established ligands of PPARα in 

the rat and mouse liver (Elcombe et al. 2012; Perkins et al. 2004; Rosen et al. 2017; Rosen 

et al. 2010; Wolf et al. 2014; Wolf et al. 2012; Wolf et al. 2008). Consequently, activation of 

the PPARα signalling pathway upon exposure to PFOS or PFOA is believed to be, at least 

partly, responsible for the observed perturbations of lipid homeostasis in animals (DWQI 

2017; 2018; EFSA CONTAM Panel 2018a). In fact, gene expression studies conducted on 

liver samples from PFOS/PFOA-exposed rodents revealed that a substantial proportion of 

the up- or down-regulated genes (e.g. Cyp4a1, Acox1) are under the control of the PPARα 

receptor (Pouwer et al. 2019; Ren et al. 2009; Rosen et al. 2008a; Rosen et al. 2017; Rosen 

et al. 2010). In terms of the PPARα activation potency, PFOA was shown to be more potent 

when compared to PFOS, both in reporter gene assays and in gene expression studies with 

rat hepatocytes. (Bjork and Wallace 2009; Takacs and Abbott 2007; Wolf et al. 2012; Wolf 

et al. 2008). Also, in the recent NTP studies in male rats (2019a,b), PFOA appeared to be 

a more potent inducer of Acox1 and Cyp4a1 gene expression in livers than PFOS, despite a 

lower accumulation in liver.

As prototypical PPARα agonists, PFOS/PFOA induce the mitochondrial and peroxisomal 

ß-oxidation of fatty acids for their degradation to acyl-CoA-moieties in the rodent liver 

(Bijland et al. 2011; Pouwer et al. 2019; Rosen et al. 2010; Wan et al. 2012; Wang et al. 2014). 

Furthermore, they induce the fatty acid transport across the mitochondrial membrane 

(Bijland et al. 2011; Pouwer et al. 2019; Rosen et al. 2010; Wang et al. 2014). In parallel, 

they decrease the hepatic VLDL-TG and apoB production, disturbing as such the hepatic 

secretion of TGs (and indirectly cholesterol) into the blood.  Furthermore, they promote 

lipoprotein lipase-mediated lipolysis of TG-rich plasma lipoproteins (Bijland et al. 2011; 

Pouwer et al. 2019). These processes appear to contribute to the lowered blood TG levels 

but also to the enhanced hepatic TG concentrations in PFOS/PFOA-treated rodents.
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PPARα is also known to play a role in cholesterol homeostasis, including inhibition of 

cholesterol and bile acid synthesis in mice and man) (Li and Chiang 2009; Post et al. 2001), 

regulation of HDL metabolism and promotion of reverse cholesterol transport (Li and 

Glass 2004; Li and Chiang 2009; Ory 2004). Nevertheless, the role of PPARα in the PFAS-

induced changes on blood and liver cholesterol in rodents is still elusive. This is further 

discussed in section Mechanisms linked to disturbance of cholesterol homeostasis.

Although the general view remains that the PPARα plays a pivotal role in PFOS/PFOA-

induced lipid disturbances in rats and mice (ATSDR 2018; EFSA CONTAM Panel 2018a), 

some evidence suggests its role is of less importance. Actually, the effects observed upon 

PFOS/PFOA exposure are not per se consistent with effects of other well-studied PPARα 

activators, such as fibrates and Wyeth (WY)-14643. For example, typical PPARα activators 

commonly do not cause liver steatosis in rodents at comparable doses and exposure 

durations (Larter et al. 2012; Pawlak et al. 2015), contrary to what is seen after exposure to 

PFOS/PFOA.

Some information from PPARα-null mice studies further support the notion for 

the involvement of PPARα-independent pathways in the PFOS/PFOA-exerted lipid 

disturbances. However, it is important to emphasize that knocking out the receptor itself 

in mice affects lipid metabolism, leading to steatosis in the liver of control PPARα-null 

mice (Corton et al. 2014a; Das et al. 2017; Howroyd et al. 2004), which might interfere 

with the interpretation of the results obtained for PFOS/PFOA treated PPARα-null mice. 

Still, it has been shown that PPARα-null mice exhibit hepatic lipid accumulation and/or 

alterations in genes linked to lipid metabolism upon exposure to PFOA (Das et al. 2017; 

Minata et al. 2010; Nakagawa et al. 2012; Rosen et al. 2008a; Rosen et al. 2008b) or PFOS 

(Rosen et al. 2010), which counterargues that these effects should be attributed to PPARα 

activation. Nakagawa et al. (2012), for example, demonstrated that the liver steatosis in 

the PFOA-exposed PPARα-null mice is more prominent when compared to the WT mice 

(1 and 5 mg/kg b/d, 6 weeks). In that study, control PPARα-null mice showed only a slight 

and not statistically significant increase in hepatic TG accumulation, contrary to what is 

commonly seen with such knock-out animals (Corton et al. 2014b; Das et al. 2017; Howroyd 

et al. 2004). Overall, data on PFOA-exposed PPARα-null mice seem to corroborate the 

contribution of other PPARα-independent signalling pathways in the lipid disturbances 

induced by PFOS/PFOA in rodents. 

Are PPARα-mediated effects in rodents relevant for human health?
The importance of the PPARα receptor in human liver has been questioned in the past, 

due to the perceived low expression of PPARα in humans and minimal responsiveness of 

human liver cell lines to PPARα activation (Auboeuf et al. 1997; Palmer et al. 1998; Tugwood 

et al. 1996). Accordingly, the potential human relevance of the PFOS/PFOA-induced lipid 

perturbations seen in rodents, and, at least partially, driven by activation of the PPARα 

pathway, has been subject to debate (DWQI 2017; 2018; EFSA CONTAM Panel 2018a). 

However, later research indicates that the quantitative expression of PPARα is similar 
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in human and mouse liver (Kersten and Stienstra 2017) and that in human hepatocytes 

and liver slices, PPARα is able to effectively induce the expression of genes involved in 

numerous lipid metabolic pathways. Still, remains to a lesser extent compared to mouse 

or rat hepatocytes and mouse liver slices (Corton et al. 2014a; Heusinkveld et al. 2018; 

Janssen et al. 2015; Liss and Finck 2017; Okyere et al. 2014). Indeed, studies using chimeric 

mice, harbouring murine as well as human hepatocytes in the liver, underscore the more 

modest PPARα-mediated gene trans-activation in human hepatocytes compared to their 

murine counterparts (de la Rosa Rodriguez et al. 2018). Apart from these quantitative 

interspecies differences, qualitative differences have also been illustrated recently, after 

comparisons of PPARα signalling transcriptional networks in primary human hepatocytes 

and rats (McMullen et al. 2020). Such differences could in principle result in differential 

effect-responses in humans and rats when exposed to PPARα-ligands.

With respect to the activation of the human PPARα (hPPARα) by PFOS/PFOA, studies with 

hPPARα expressing mice suggest a lower response to PFOA, when compared to their wild 

type (WT) counterpart. This is seen by lower increase in transcripts and protein levels of 

PPARα target genes (Nakagawa et al. 2012; Nakamura et al. 2009). Still, in combination 

with these gene expression changes, PFOA-treated hPPARα mice showed increased lipid 

accumulation in liver (Nakagawa et al. 2012; Schlezinger et al. 2020). Actually, despite the 

reduced responsiveness of hPPARα to PFOA, hPPARα mice appeared to be substantially 

more susceptible to liver steatosis than the WT mice, as shown by larger increases in 

hepatic TG levels (Nakagawa et al. 2012). This further supports that the PFOA-induced liver 

steatosis, specifically the increase in TG levels, might be driven by PPARα-independent 

pathways. With respect to cholesterol, blood levels remained unaffected by the treatment 

in hPPARα mice, contrary to the WT mice that showed the typical decrease, when exposed 

to PFOA. Similar studies with PFOS have not been identified in the literature.

The activation of the hPPARα by PFOA, but also PFOS, was likewise seen with in vitro assays 

performed in human liver cells, such as human primary hepatocytes, or human liver cell 

lines (HepG2 and HepaRG) (Beggs et al. 2016; Behr et al. 2020b; Bjork et al. 2011; Louisse 

et al. 2020c). These studies support the activation of PPARα signalling, at concentrations 

commonly ranging from 10 µM to 100 µM (PFOA: ~4 000 to 40 000 ng/mL, PFOS: ~5 000 to 

50 000 ng/mL). These concentrations are high when compared directly to the serum levels 

recorded even at the highly exposed populations or at workers in occupational settings. 

However, in one study, gene expression network analysis showed a simulation of the PPARα 

signalling already at a concentration of 1 µM for PFOA (Buhrke et al. 2015). As seen in vivo 

for PFOA, in vitro studies comparing responses upon PFOS/PFOA exposure between rodent 

and human primary hepatocytes support the view that induction of PPARα transcriptional 

responses are more pronounced in rodent than in human hepatocytes (Bjork et al. 2011; 

Bjork and Wallace 2009). 

As already stressed for rodents, some in vitro studies have demonstrated differences with 

respect to the hPPARα activation potency between PFOS and PFOA. Again, PFOA seems a 
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more potent activator of the hPPARα than PFOS in reporter gene assays (Takacs and Abbott 

2007; Wolf et al. 2012; Wolf et al. 2008), but also in gene expression studies with human 

hepatocytes (Bjork et al. 2011; Buhrke et al. 2015; Louisse et al. 2020c). These differences 

can be also related to the differences in cellular uptake. For example, cellular uptake of 

the PFASs in HepG2 cells was shown to be low for PFOA (0.24%), but 10-fold lower for PFOS 

(0.04%) (at a concentration of 10 µM, 10% serum), with absolute cellular concentrations 

of 39 and 4 nmol/mg protein for PFOA and PFOS, respectively (Rosenmai et al. 2018). In 

that study, PFOA induced PPARα-mediated reporter gene expression at relatively high 

concentrations (30 and 100 µM) whereas PFOS did not induce PPARα-mediated reporter 

gene expression, possibly reflecting the differences in cellular uptake, but perhaps also 

in PPARα affinity. However, preliminary data on human HepaRG cells (own unpublished 

data) indicate the reverse, i.e. PFOS accumulating more in the cells than PFOA. To our 

knowledge, data on cellular uptake of PFASs are currently very limited. It should be 

emphasized here that overall the lack of information on this aspect is an important 

limitation of these in vitro data. Such measurements would in principle assist in more 

appropriate comparisons on actual exposure levels, since the nominal concentrations 

applied in the in vitro systems might not be a good proxy for serum levels. As such it is 

difficult to assess at this state whether the effective concentrations in vitro are relevant for 

human exposure.

Conclusions 
The role of PPARα activation by PFOA in the observed lipid perturbations in rodents, but 

also its relevance for human health, has been extensively studied, including examinations 

in hPPARα and PPARα-null mice, and in rodent and human hepatocytes. For PFOS less data 

are available. Overall, PFOA and to a lesser extent PFOS activate PPARα, both its murine and 

human version, and the observed lipid alterations may depend to a certain extent on the 

PPARα-signalling pathway. Effects on PPARα-null mice indicate, however, the involvement 

of other pathways. With respect to the human situation, the large differences in exposure 

scenarios when compared to rodents, combined with the reduced hPPARα responsiveness 

to PFOS/PFOA, warrant the need for careful consideration when comparing rodent and 

human findings. It cannot be excluded that in humans higher exposure is required for 

the manifestation of the effects on lipid metabolism, but it should be stressed that certain 

PFASs accumulate to a higher extent in humans than in rats and mice (see section Species 

differences in toxicokinetic properties of PFOS and PFOA). As such, due to the life-long 

exposure of humans to such substances, along with high exposure rates, a certain critical 

body burden necessary to affect lipid homeostasis by this pathway might be achieved.
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Other nuclear receptors potentially involved in PFOS/PFOA-mediated lipid 
disturbances

PXR, CAR and other signalling pathways
As discussed above, it is suggested that PPARα-independent signalling pathways are also 

involved in the lipid disturbances induced by PFOS/PFOA. In particular the transactivation 

of other nuclear receptors by PFOS/PFOA, such as PPARγ, constitutive androstane receptor 

(CAR), pregnane X receptor (PXR), liver X receptor (LXR) and farsenoid X receptor (FXR), 

have been studied in rats and mice. It has been suggested that the nuclear receptors PPARγ 

(Rosen et al. 2008b), CAR (Abe et al. 2017; Ren et al. 2009; Rosen et al. 2008b; Schlezinger et 

al. 2020) and PXR (Bjork et al. 2011; Pouwer et al. 2019; Ren et al. 2009), are also  activated by 

PFOS/PFOA in the murine liver. These receptors are in general associated with cholesterol 

and TG homeostasis (Ory 2004; Yan et al. 2015a; Yin et al. 2011), implying that they might 

also play a role in the effects induced by PFOS/PFOA. Considering that gene expression 

is rarely dependent on a sole transcription factor, and that cross-talk between various 

transcription factors is known to occur, PFOS/PFOA effects in rodents are probably a result 

of multiple inter-linked pathways. 

In vitro studies with human relevant material reported somewhat contradicting results, 

which could also be the outcome of variable experimental designs, i.e. different 

concentrations, exposure durations, cell systems etc. In human primary hepatocytes (Bjork 

et al. 2011), in HepaRG (Abe et al. 2017) and in HepG2 cells (Zhang et al. 2017), multiple 

nuclear receptors (CAR, PXR, LXR) were activated by PFOS and PFOA, as illustrated by 

increased expression in some selected marker genes. Yet, other gene expression studies in 

human hepatocytes and/or reporter gene assays have shown that PFOS/PFOA may activate 

to a very limited (if any) extent all these receptors, including PPARγ and FXR (Behr et al. 

2020b; Buhrke et al. 2015; Louisse et al. 2020c; Vanden Heuvel et al. 2006). Louisse et al. 

(2020c) compared the effects of PFOS/PFOA on gene expression in HepaRG cells with the 

effects of a known LXR-agonist and a FXR-agonist (data from Wigger et al. 2019), suggesting 

that PFOS/PFOA do not activate these receptors. 

Disruption of HNF4a signalling pathway by PFOS/PFOA
Amongst the other nuclear receptors, of particular interest is the hepatocyte nuclear factor 

HNF4α, that seems to be affected by PFOS/PFOA (Beggs et al. 2016; Pouwer et al. 2019; Yan 

et al. 2015b). HNF4α is considered a master regulator of liver-specific gene expression and 

essential for liver development and liver function, including lipid homeostasis (Hayhurst et 

al. 2001; Yeh et al. 2019; Yin et al. 2011). Dysregulation of HNF4α function has been associated 

with a large number of human diseases, including non-alcoholic fatty liver disease (Yeh et 

al. 2019). There is cross-talk between HNF4α and other nuclear receptors like PPARα, for 

which both antagonism and synergism have been reported (Chamouton and Latruffe 2012; 

Lu 2016). There is also evidence for inhibitory cross-talk between PXR and HNF4α as well as 

CAR and HNF4α in hepatic lipid metabolism. While HNF4α is a transcriptional activator of 
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CYP7A1, the rate-limiting enzyme in bile acid biosynthesis, PPARα and PXR inhibit CYP7A1 

expression, probably by competing with HNF4α for a common transcriptional coactivator 

(Li and Chiang 2005; Miao et al. 2006). Similarly, CAR downregulates HNF4α target genes 

(Miao et al. 2006). Repression of CYP7A1 results in decreased transformation of cholesterol 

into bile acids (see sub-section Intrahepatic disturbances in the enterohepatic cycle and 

bile acid formation), leading to lipid accumulation in the liver and increased LDL-C levels 

in humans (Lasker et al. 2017). 

In studies with mice, PFOS and PFOA exerted reduction in the HNF4α protein expression 

(10 and 3 mg/kg bw/d, respectively), after a short, i.e. 7-day exposure, while HNF4α mRNA 

levels were not affected (Beggs et al. 2016). Upon a longer exposure to PFOA (1.25 and 5 mg/

kg bw/d, 28 days), HNF4α mRNA levels were slightly decreased; still, this reduction of the 

transcription factor was not reflected in representative target genes (Yan et al. 2015b). In 

the humanized APOE*3.Leiden.CETP mouse, the expression of HNF4α mRNA was mildly 

increased after treatment with a similar dose, i.e. 3.2 mg/kg bw/d (serum levels ~ 90 000 

ng/mL at 4 weeks), whereas in silico prediction of transcription factor activity based on the 

expression changes of known target genes was decreased (Pouwer et al. 2019). 

Data from in vitro assays with human cells exposed to PFOS/PFOA also point towards a 

downregulation of the HNF4α pathway. A proteomic study with human HepG2 cells 

(Scharmach et al. 2012) showed inhibition of HNF4α signalling upon exposure to 25 µM of 

PFOA (10 000 ng/mL). Such effects were also seen in primary human hepatocytes after a 

96-h treatment with PFOS or PFOA (Beggs et al. 2016), with protein levels of HNF4α (but not 

mRNA levels) decreasing at the highest concentration tested (10 µM; ~4 000 ng/mL). PFOA-

induced inhibition of HNF4α in primary human hepatocytes was also observed in another 

study, albeit at higher concentrations (25 and 100 µM; 10 000 – 42 000 ng/mL) (Buhrke et 

al. 2015). In human HepaRG cells, Behr et al. (2020a) reported a downregulation of HNF4α 

gene expression at concentrations of 50 µM and above after a 24- or 48-hour exposure. 

In another HepaRG study, HNF4A was not significantly downregulated by 100 µM PFOS/

PFOA, but expression of CYP7A1 was decreased (Louisse et al. 2020c). 

Conclusions
In conclusion, there is evidence indicating the involvement of other nuclear receptors 

important in lipid homeostasis, such as PXR, in the PFOS/PFOA-induced lipid dysregulation 

in rodents. With respect to human liver cells, such data are limited and hence, their 

relevance for the potential induced lipid perturbations by PFOS/PFOA in humans, is not 

clear.  Regarding the HNF4α pathway there are some indications that it might be involved 

in potential effects of PFOS/PFOA on cholesterol and lipid homeostasis. However, this 

evidence is not so strong and more investigations are required to potentially support this 

mechanism. In addition, it remains unclear whether in reality PFOS/PFOA exposures result 

in serum levels at which suppression of the HNF4α pathway is likely to occur. More in vitro 

studies on primary human hepatocytes and liver cell lines would help elucidate this further.
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Mechanisms linked to disturbance of cholesterol homeostasis 

Cholesterol biosynthetic pathway and hepatic uptake
Regarding PFOS/PFOA-induced changes in cholesterol observed in humans, it is of interest 

to also consider  a possible direct effect on the intrahepatic cholesterol biosynthetic 

pathway, and/or perturbation on its import to/export from the liver. In the liver, regulation 

of cholesterol levels is achieved through a negative feedback mechanism, in which hepatic 

cholesterol accumulation suppresses its de novo synthesis, and concurrently, the liver’s 

uptake of cholesterol from the blood (Brown and Goldstein 1997; DeBose-Boyd 2008; 

Feingold 2000). The expression of genes that are involved in de novo cholesterol synthesis, 

but also uptake, is under control of the hepatic transcription factor sterol regulatory 

element-binding proteins (SREBP) (Horton et al. 2002; Jeon and Osborne 2012; Shao and 

Espenshade 2012). Amongst these genes are the HMGCR (3-hydroxy-3-methyl-glutaryl 

(HMG)-coenzyme A reductase), encoding the rate-limiting enzyme of the cholesterol 

biosynthetic pathway (converts HMG-CoA to mevalonate; Figure 3), as well as the gene 

encoding the LDL receptor (LDLR). The LDLR is the main receptor involved in cholesterol 

uptake from the blood to the liver via endocytosis, and its activity regulates the plasma 

levels of cholesterol (Brown and Goldstein 1997). SREBP stimulates in parallel the hepatic 

cholesterol synthesis and clearance from the blood and thus, the balance between these two 

processes determines ultimately the levels of cholesterol in the liver and serum circulation 

(Brown and Goldstein 1997; Horton et al. 2002). Cholesterol export from the liver into the 

circulation occurs via the VLDL particles, which are metabolized into LDL-C in the blood. 

Exposure to high PFOS/PFOA doses has been demonstrated to decrease the hepatic VLDL-

TG and apoB production in the liver of the APOE*3-Leiden.CETP mouse concomitantly 

with enhanced lipoprotein lipase-mediated VLDL clearance (Bijland et al. 2011; Pouwer 

et al. 2019), resulting in decreased cholesterol and TG levels in serum. In these studies 

with the APOE*3-Leiden.CETP mouse, hepatic accumulation of cholesterol and TGs was 

only seen upon PFOS exposure and not with PFOA (see sub-section Species differences in 

lipoprotein homeostasis in relation to PFAS lipid-related effects).

There are some reports on the effect of PFOS/PFOA on intrahepatic cholesterol synthesis, as 

well as on hepatic cholesterol uptake from the bloodstream. In murine liver, PFOA and PFOS 

were shown to enhance SREBP activity, as indicated by an increased expression on both the 

transcriptional and protein level. In parallel, a significant upregulation of relevant target 

genes, such as HMGCR and LDLR, was detected (Rosen et al. 2010: 10 mg/kg bw/d, 7 days; 

Yan et al. 2015b: 1.25-20 mg/kg bw/d, 4 weeks). However, histopathological examinations 

did not reveal hepatic lipid accumulation in the case of PFOS (Rosen et al. 2010), while total 

hepatic cholesterol levels were reduced after PFOA exposure (Yan et al. 2015b). In contrast 

to the two aforementioned studies, others reported reduced expression of certain SREBP 

target genes, accompanied by elevated intrahepatic cholesterol levels. In rats, both PFOS/

PFOA lowered hepatic cholesterol synthesis, as reflected by a reduced activity of liver HMGCR 

enzyme (Haughom and Spydevold 1992) or mRNA levels (Guruge et al. 2006: 5 mg/kg bw/d, 
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3 weeks). Similarly, the expression of HMGCR and LDLR was decreased by PFOA in both WT 

and hPPARα mice (Schlezinger et al. 2020: 0.7 mg/kg b/d, 6 weeks). Despite the lowered 

expression of the biosynthetic genes, exposures to PFOS or PFOA led to a pronounced hepatic 

cholesterol accumulation. These data imply that increased intrahepatic cholesterol, as seen 

in rodents after exposure to PFOS/PFOA, might not be directly related to de novo cholesterol 

biosynthesis. Instead, the effects could be the consequence of other impaired pathways, such 

as the secretion as VLDL particles and/or cholesterol metabolism into bile acids.

In vitro results with human cells pertaining to affected genes involved in cholesterol 

synthesis and PFOS/PFOA seem to be somewhat inconsistent. Using a human fetal liver 

cell line (L-02), Peng et al. (2013) combined a gene expression and metabolomics analysis, 

and reported an effect of PFOA on cholesterol biosynthesis. Measurement of cholesterol 

suggested a concentration-dependent increase in intracellular levels (significant at the 

high concentration: 120 µM, 72 h). In addition, several cholesterol biosynthesis genes 

were upregulated at the same concentration. Opposing to these findings, Behr et al. 

(2020a) reported a downregulation of such genes (e.g. HMGCR, SQLE, and LDLR) and the 

transcription factor SREBP in HepaRG cells after 24 or 48 h, at concentrations ≥ 10 and 

25 µM for PFOA and PFOS, respectively. Intracellular cholesterol levels were not affected. 

Similar results were obtained for PFOA and PFOS in a recent transcriptomics study with 

HepaRG cells (Louisse et al. 2020c; 100 µM, 24 h), showing a downregulation of gene sets 

related to cholesterol biosynthesis and SREBP signalling. In primary human hepatocytes, 

PFOA induced a concurrent upregulation (e.g. MVK: mevalonate kinase, PMVK: 

phosphomevalonate kinase) and downregulation (e.g. SQLE, FDFT1: farnesyl-diphosphate 

farnesyltransferase 1) of few cholesterol biosynthesis genes, whereas most remained 

unaffected (Buhrke et al. 2015; 100 µM, 24 h). 

FIGURE 3 The principal steps of the hepatic cholesterol biosynthetic pathway (figure created with BioRender.com). HMGCS1: 

HMG-CoA synthase 1, HMGCR: HMG-CoA reductase. HMGCS1 catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to 

HMG-CoA. In a following step HMG-CoA is converted by HMGCR to mevalonate. Subsequently, several enzymatic reactions are 

required for the synthesis of cholesterol.  SQLE: Squalene epoxidase. SQLE catalyzes the first oxygenation step in sterol biosynthesis. 

CYP7A1: cholesterol 7-alpha hydroxylase. CYP7A1 catalyses the transformation of excess cholesterol into bile acids. (Created with 

BioRender.com). 
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Intrahepatic disturbances in the enterohepatic cycle and bile acid formation
Another possible explanation for the PFOS/PFOA-induced changes in blood and liver 

cholesterol is perturbation of bile acid synthesis from cholesterol. Excess cholesterol in the 

liver is stored, exported or converted into bile acids; the predominant pathway in human 

liver is the classic bile acid synthesis pathway, which is initiated by the rate-limiting 

enzyme cholesterol 7-alpha hydroxylase (CYP7A1) (Chiang 2017; Princen et al. 1997). The 

enzyme’s gene expression and the bile acid synthesis rate are inhibited by bile acids, which 

return to the liver through the enterohepatic circulation (Chiang 1998; Li and Chiang 2009; 

Thompson 1996). Hence, an elevated hepatic re-uptake of bile acids induces a negative 

feedback loop via the farnesoid X receptor (FXR) to lower the de novo synthesis of bile acids 

from cholesterol, by CYP7A1 inhibition. Alterations in serum bile acid levels suggest either 

a direct disruption of the bile acid flow or/and a disturbance of the intrahepatic bile acid 

synthesis from cholesterol (Thompson 1996).

In rats, PFOS/PFOA have been shown to increase the levels of serum bile acids (PFOS at 2.5 

and PFOA at 5 mg/kg bw/d) after a 28-day exposure (NTP 2019a; 2019b). In APOE*3-Leiden.

CETP mice, PFOS, inhibited bile acid excretion in the feces (Bijland et al. 2011: 3 mg/kg 

bw/d, 4-6 weeks). In addition, downregulation of hepatic CYP7A1 gene expression upon 

exposure to PFOS (Bijland et al. 2011; Wang et al. 2014: 5 mg/kg bw/d, 2 weeks) or PFOA 

(Pouwer et al. 2019; Schlezinger et al. 2020) was seen. These findings show impairment of 

the bile flow and synthesis, through which PFOS/PFOA may affect cholesterol homeostasis. 

It should be noted that next to the FXR the main transcription factors regulating CYP7A1 

include HNF4α and PPARα (Chen et al. 2001; Kir et al. 2012), which have already been 

suggested as molecular target of PFOS and PFOA (see section Mechanistic pathways 

involved in PFAS-induced lipid perturbations).

Reduction of CYP7A1 expression has been also demonstrated in vitro, in human hepatocytes 

(Beggs et al. 2016: 10 µM, 96 h) and in HepaRG cells (Behr et al. 2020a: 10 µM, 48 h; Louisse 

et al. 2020c: 100 µM, 24 h). 

Interference of PFOS/PFOA with the enterohepatic cycling may also play a role. PFOS/

PFOA have been shown to be excreted in the bile (Fujii et al. 2015; Harada et al. 2007), and 

thereafter, are believed to be substantially re-absorbed from the gastrointestinal tract (see 

section Species differences in toxicokinetic properties of PFOS and PFOA). Both substances 

have been reported to share the same transporters (e.g. NTCP: Na+/taurocholate co-

transporting polypeptide, ASBT: apical sodium-dependent bile salt transporter, OATPs: 

organic anion transporting polypeptides)  as bile acids for excretion via bile into the 

intestine and re-absorption in the ileum (Zhao et al. 2015b; Zhao et al. 2017a). Therefore, 

PFOS/PFOA may alter the absorption of bile acids through competition for the same 

transporter, interfering as such with the negative feedback control of the conversion of 

cholesterol to bile acids and perturbing cholesterol levels. For example, losses of bile 

acids are compensated by enhanced bile acid synthesis from cholesterol, the mechanism 

behind the cholesterol lowering effect of the drug cholestyramine. This resin binds bile 
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acids in the gastrointestinal lumen to prevent reabsorption and indirectly lowers serum 

cholesterol levels via enhanced conversion of cholesterol to bile acids, which in turn leads 

to activation of SREBP-mediated LDLR expression. Interestingly, in rats application of 

cholestyramine also strongly increased the excretion of PFOA via feces (Genuis et al. 2010; 

Genuis et al. 2013). 

With  respect to the enterohepatic circulation in humans, differences in the absorption 

of bile acids due to genetic factors, food composition or medicines can lead into altered 

levels of serum cholesterol. For example,  dietary fiber intake was recently reported to be 

associated  with lower PFAS serum concentrations in humans (Dzierlenga et al. 2020b). 

Consequently, it is plausible that confounding related to excretion and re-absorption in 

the enterohepatic cycling process may play a role in the associations for PFOS/PFOA and 

total serum cholesterol reported repeatedly in the cross-sectional epidemiological studies. 

Nevertheless, confounding due to this biological mechanism is till now only a postulation 

with no available supporting evidence (see section PFOS and PFOA: lipid homeostasis 

perturbations; effects observed in human studies) (EFSA CONTAM Panel 2020a).

Conclusions
Collectively, there are indications that PFOS/PFOA influence different aspects of cholesterol 

metabolism, including biosynthesis, import/export from the liver and conversion into bile 

acids. Despite this, the molecular events leading to the alterations in serum cholesterol 

that may be caused by PFOS/PFOA exposure in animals and humans remain unclear. More 

insight into the mechanisms involved  is needed in order to understand the molecular 

events that are potentially triggered by PFOS/PFOA and how these may ultimately lead to 

cholesterol alterations in blood and/or liver. Additionally, it should be noted once more 

that for the interpretation of such findings the exposure levels should be taken into 

consideration, which are different between animals and humans. For interpretation of 

data from in vitro assays difference in the free fraction between the in vitro assay and the in 

vivo situation has to be considered. Currently, this is hindered by lack of data on the free 

fraction of PFOS/PFOA in the medium of different in vitro studies and/or the related cellular 

concentrations in in vitro systems.

Species differences in toxicokinetic properties of PFOS and PFOA

Apart from the toxicodynamic differences analysed above, toxicokinetic differences 

have been reported for the PFASs, with most data on PFOS and PFOA. In general, both 

chemicals are well absorbed from the intestinal tract and are excreted unmetabolized 

(ATSDR 2018; EFSA CONTAM Panel 2018a; US EPA 2016a; 2016b). Once absorbed, PFOS/

PFOA bind extensively to serum albumin (>90%), as shown in several species (Beesoon and 

Martin 2015; Ehresman et al. 2007; Han et al. 2012), while also binding to the liver fatty 

acid binding protein (L-FABP) has also been reported for the rat and human (Luebker et 

al. 2002a; Woodcroft et al. 2010) .
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With regard to organ distribution it is often mentioned that PFOS/PFOA accumulate in the 

liver and kidney (EFSA CONTAM Panel 2018a). However, as shown recently, PFOA does 

not deposit preferentially in the liver (NTP 2019b), based on the average liver: plasma 

partition coefficient (PC) in male rats after a 28-day exposure 19 (range across doses: 0.87-

1.17). This is somewhat  lower than what has been previously shown in other studies in 

the male rat with a single PFOA exposure (showing PCs of for example 2.2 and 0.8 at a low 

and high dose (Kudo et al. 2007) and 2.3 (Kim et al. 2016). The NTP finding is important 

considering the repeated exposure, which is not commonly applied in toxicokinetic studies. 

For PFOS current evidence indicates a higher retention in the liver (Curran et al. 2008; NTP 

2019a; Seacat et al. 2003). In this case, the liver: plasma PCs obtained for example from 

a 14-week exposure (Seacat et al. 2003) are in the range of 6.3 to 12.2 across doses , but 

lower after shorter (NTP 2019a: 4 weeks, range across doses: 2.74-3.76) and single (Kim et 

al. 2016; mean: 2.6) exposures. With regard to the kidney, neither of the two substances 

show accumulation in the rat, with kidney: plasma PCs of ~0.4 to 1 for PFOA (Dzierlenga et 

al. 2020a; Kim et al. 2016; Kudo et al. 2007) and ~0.3 to 1 for PFOS (Huang et al. 2019; Kim 

et al. 2016).

Human data  are unfortunately very limited in number (Ericson et al. 2007; Olsen et al. 

2003b; Perez et al. 2013). In order to facilitate a  preliminary  comparison with the rat 

data, human organ:plasma PCs were calculated (Table 3, N=20) based on the available 

information. It should be mentioned though that for these calculations data of PFOS/

PFOA levels in the tissues and blood plasma do not stem from the same study (see 

Table 3, furthermore note the high variability of organ measurements), i.e. they come 

from different persons; they are, however, from the same region. The results suggest a 

substantial higher distribution to the liver for both PFOA and PFOS in a substantial part of 

the human population, probably reflecting the long human exposure period. Calculated  

kidney:plasma PCs, in humans versus rats, are comparable for PFOA, whereas PFOS seems  

to accumulate  more  in some  human kidneys compared to the rat kidney (Dzierlenga et al. 

2020a; Huang et al. 2019; Kim et al. 2016; Kudo et al. 2007). For the time being, and in the 

absence of more information, these data imply that at comparable blood concentrations 

a substantial part of the human population  may have higher intrahepatic levels of PFOS/

PFOA and higher intrarenal PFOS levels when compared to rodents. 

Species differences also exist regarding the elimination and excretion mechanisms. An 

overview of the blood terminal half-lives is presented in Table 4, designating much longer 

half-lives in humans as compared to rodents and monkeys. PFOS shows accumulating 

properties in all species, with an elimination half-life in the range of a month for the rat 

and mouse (20-40 days), and with a remarkable half-life of ~ 5 years recorded in humans. 

In the case of PFOS, limited differences are observed between males and females of the 

same species. PFOA also shows high accumulation potential in many species, except for 

the rat (0.15 to 2 days). In addition, in the rat a remarkable gender difference has been 

observed for PFOA, which is briefly discussed below. 

19  Liver levels were not analyzed in female rats.
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In most species, urinary clearance seems to be the primary elimination pathway (EFSA 

CONTAM Panel 2018a). For PFOA, clear differences have been reported between male and 

female rats pertaining to the renal elimination and they have been linked specifically to the 

active protein-mediated transport that governs tubular secretion and re-absorption (from 

the pre-urine back to the kidney and blood circulation) (Han et al. 2012). Sex-hormone 

mediated expression of organic anion transporting polypeptide (Oatp)1a1, located on 

the apical tubular membrane, was demonstrated to play a role in the observed renal 

re-absorption of PFOA in the male rat (Yang et al. 2009). However, more transporters, 

including organic anion transporters (OATs) may be involved (Kudo et al. 2002). This 

information provides  an explanation on the observed faster renal excretion of PFOA in 

female as opposed to male rats. 

TABLE 3 PFOS/PFOA organ concentrations in humans and calculated human organ: plasma partition coefficients (based on 

mean/median organ concentrations).

Organ concentrations (ng/mL)
(mean + SDa, medianb; rangec)

Calculated human organ : plasma partition 
coefficients (median, rangec)

PFOA PFOS PFOA PFOS

Blood1
1.80 + 0.66a

1.65b

7.64 + 3.54c

7.60b

Plasma2 3.2 + 1.2a 13.6 + 6.3a 1 1

Liver3
4.0b

3-98.9c

41.9b

3-405c

1.3

0.9 – 30.9

3.1

0.2 - 29.8

Brain3 < LOD (=2.45)
1.9b

3-22.5c
Not available

0.1

0.2-1.6

Lung3
12.1b

6-87.9c

28.4b

3-61.8c

3.8

1.9 -  27.5

2.1

0.1-2.0

Kidney3
1.5b

3-11.9c

55b

3-369c

0.5

0.9-3.7

4.0

0.2 - 27.1
1Ericson et al. (2007), N=48, age: 55. 5 + 5.5 years; 2 Fàbrega et al. (2014), applying a 0.56 blood →plasma conversion 

while ignoring erythrocyte binding; 3Perez et al. (2013), N=20 age: 28- 83 years.

TABLE 4 Information of terminal half-lives for PFOS and PFOA in various species (taken from RIVM (2018) and complemented 

with more recent data).

Substance 
Species/Terminal half- life Species/Terminal half- life

Rat Mouse Pig Monkey Humans

PFOS 27.8 days (m) 
24.8 days (f) 

(Kim et al. 2016)

42.8 days (m) 
37.8 days (f) 

(Chang et al. 2012)

634 days  

(Numata et al. 2014)

132 days (m) 
110 days (f) 

(Chang et al. 2012)

Occupational workers: 5.4 years (Olsen and Zobel 2007)

Community (contaminated drinking water): 3.4 years (Li et al. 2020)

PFOA 1.6-1.8 days (m) 
0.15-0.19 days (f)  
(Kim et al. 2016)

21.7 days (m) 
15.6 days (f) 

(Lou et al., 2009)

236 days  

(Numata et al. 2014)

21 days (m) 
30 days (f) 

(Butenhoff et al. 2004)

Occupational workers: 3.8 years (Olsen and Zobel 2007) 

Adults (contaminated drinking water): 2.3 years (Bartell et al. 2010), 3.3 years (Brede et al. 2010)

Community (contaminated drinking water): 2.7 years (Li et al. 2020)

m: males, f: females



5

Sy
st

em
ic

 P
FO

S 
an

d 
PF

O
A

 e
xp

os
ur

e 
an

d 
di

st
ur

be
d 

lip
id

 h
om

eo
st

as
is

183

Exploration of NAMs for the perfluoroalkyl substances

Elimination of PFOS/PFOA in humans is thought to be primarily via urinary excretion. 

However, there is a clear lack of studies on fecal excretion (EFSA CONTAM Panel 2018a). 

PFOS and PFOA are shown to be highly excreted in the bile; still, most of the quantity 

excreted into the gut is believed to undergo extensive enterohepatic re-absorption (>97%) 

(Harada et al. 2007) (Fuji et al 2015). Renal re-absorption via kidney transporters has 

been demonstrated for PFOS and PFOA (Han et al. 2012; Nakagawa et al. 2009). Such re-

absorption processes, both renal and intestinal, are believed to contribute substantially to 

the observed long elimination half-lives of both PFOS and PFOA in humans.

Overall, from a kinetic perspective there are species- (and gender)-dependent differences, 

primarily regarding the terminal half-life, intra-hepatic and -renal concentrations and 

excretion patterns for PFOS/PFOA. These differences further complicate the extrapolation 

of rodent data to the human situation. Kinetic differences have to be carefully considered 

prior to such extrapolations, by scaling of rodent data to humans and vice versa. For risk 

assessment purposes it is important to consider body burdens or serum levels rather than 

the exposure levels. Toxicokinetic modelling, based on available data from animal and 

human studies, may provide a better basis for such extrapolations. In vitro kinetic studies 

may also provide insight into the various input parameters for such models. It is emphasized 

here that with regard to the in vitro toxicity assays toxicokinetics are also very important to 

consider, prior to extrapolations of effective doses to humans. A direct comparison of the 

nominally applied concentration of PFOS/PFOA in vitro with the respective human PFOS/

PFOA blood levels is not necessarily a good approach. Given that in vitro and in vivo exposure 

situations differ fundamentally, extrapolations from these cell systems to humans are 

complex and shall not be performed without integration of the kinetic aspects. 

In most species, urinary clearance seems to be the primary elimination pathway (EFSA 

CONTAM Panel 2018a). For PFOA, clear differences have been reported between male and 

female rats pertaining to the renal elimination and they have been linked specifically to the 

active protein-mediated transport that governs tubular secretion and re-absorption (from 

the pre-urine back to the kidney and blood circulation) (Han et al. 2012). Sex-hormone 

mediated expression of organic anion transporting polypeptide (Oatp)1a1, located on 

the apical tubular membrane, was demonstrated to play a role in the observed renal 

re-absorption of PFOA in the male rat (Yang et al. 2009). However, more transporters, 

including organic anion transporters (OATs) may be involved (Kudo et al. 2002). This 

information provides  an explanation on the observed faster renal excretion of PFOA in 

female as opposed to male rats. 

TABLE 3 PFOS/PFOA organ concentrations in humans and calculated human organ: plasma partition coefficients (based on 

mean/median organ concentrations).

Organ concentrations (ng/mL)
(mean + SDa, medianb; rangec)

Calculated human organ : plasma partition 
coefficients (median, rangec)

PFOA PFOS PFOA PFOS

Blood1
1.80 + 0.66a

1.65b

7.64 + 3.54c

7.60b

Plasma2 3.2 + 1.2a 13.6 + 6.3a 1 1

Liver3
4.0b

3-98.9c

41.9b

3-405c

1.3

0.9 – 30.9

3.1

0.2 - 29.8

Brain3 < LOD (=2.45)
1.9b

3-22.5c
Not available

0.1

0.2-1.6

Lung3
12.1b

6-87.9c

28.4b

3-61.8c

3.8

1.9 -  27.5

2.1

0.1-2.0

Kidney3
1.5b

3-11.9c

55b

3-369c

0.5

0.9-3.7

4.0

0.2 - 27.1
1Ericson et al. (2007), N=48, age: 55. 5 + 5.5 years; 2 Fàbrega et al. (2014), applying a 0.56 blood →plasma conversion 

while ignoring erythrocyte binding; 3Perez et al. (2013), N=20 age: 28- 83 years.

TABLE 4 Information of terminal half-lives for PFOS and PFOA in various species (taken from RIVM (2018) and complemented 

with more recent data).

Substance 
Species/Terminal half- life Species/Terminal half- life

Rat Mouse Pig Monkey Humans

PFOS 27.8 days (m) 
24.8 days (f) 

(Kim et al. 2016)

42.8 days (m) 
37.8 days (f) 

(Chang et al. 2012)

634 days  

(Numata et al. 2014)

132 days (m) 
110 days (f) 

(Chang et al. 2012)

Occupational workers: 5.4 years (Olsen and Zobel 2007)

Community (contaminated drinking water): 3.4 years (Li et al. 2020)

PFOA 1.6-1.8 days (m) 
0.15-0.19 days (f)  
(Kim et al. 2016)

21.7 days (m) 
15.6 days (f) 

(Lou et al., 2009)

236 days  

(Numata et al. 2014)

21 days (m) 
30 days (f) 

(Butenhoff et al. 2004)

Occupational workers: 3.8 years (Olsen and Zobel 2007) 

Adults (contaminated drinking water): 2.3 years (Bartell et al. 2010), 3.3 years (Brede et al. 2010)

Community (contaminated drinking water): 2.7 years (Li et al. 2020)

m: males, f: females
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Conclusions and recommendations

Many epidemiological studies have shown associations between increased blood levels 

of PFOS/PFOA and increased blood total cholesterol, and in some cases TGs. Exposure to 

the substances have occurred for several decades. Nonetheless, many of these studies are 

cross-sectional and consequently, the extent to which the relationships between PFOS/

PFOA exposure and these altered levels of blood lipids are causal remains uncertain. Also, 

there are no associations with related adverse outcomes, like CVD. Even so, given the very 

small changes in the involved risk factors, such effects could be possibly detected only 

in very large studies. The recorded associations could also be the result of confounding 

related to excretion and re-absorption in the enterohepatic cycling process of PFOS/PFOA 

and bile acids, which can affect serum cholesterol levels. However, until now this remains 

only a postulation that requires experimental evidence.

Intriguingly, studies with shorter durations and high exposures of PFOS/PFOA in rodents 

and in some cases monkeys, have demonstrated opposite effects, i.e. decreased serum 

cholesterol and TGs. Such effects occur at much higher (at least >100-fold) serum levels and 

are commonly accompanied by enhanced intrahepatic lipid (mainly TG) concentrations. 

This complicates the interpretation of the human findings. In order to support (or not) 

a causal inference and to elucidate whether such findings are a real health concern for 

humans, a clear mechanistic understanding relevant for humans is essential. 

Mechanistic evidence discussed in this manuscript stems from studies performed primarily 

with rodents and with human liver-derived cells. In rodents, most of the studies focus on 

the role of PPARα, and its activation by PFOS/PFOA appears to play, at least partially, a role 

in PFOS/PFOA-induced lipid perturbations, but it is not the sole mechanism. With respect 

to humans, studies in hPPARα mice demonstrate a  reduced responsiveness of the human 

PPARα to PFOA when compared to rodents. The same is recorded for both PFOS/PFOA in 

human liver cells. This, together with the large differences in exposure levels and durations 

between animals and humans, indicates that comparisons between rodent and human 

findings shall be done with caution. Also, other pathways that do not directly involve PPARα 

seem to play a role in the PFOS/PFOA-induced lipid disturbances, as shown in rodents 

and rodent-derived hepatocytes. These relate to the activation of other nuclear receptors 

important for lipid homeostasis, such PXR and CAR. Nonetheless, studies with PFOS/PFOA 

on human hepatocytes indicate contradicting results, rendering the relevance of these 

receptors for humans uncertain. A possible role of these receptors remains to be clarified. 

In addition, available data suggest that the effect of PFOS/PFOA on cholesterol and lipid 

homeostasis may also be mediated via suppression of the HNF4α pathway. Furthermore, 

there are indications that PFOS/PFOA may affect the cholesterol levels, by interfering with 

its metabolism and specifically its transformation into bile acids (including interference 

with CYP7A1), as well as the transport of the latter. Such observations are indeed valuable 

for better understanding of the mode of action, but they require further elucidation. In 
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summary, the underlying mechanism of PFOS/PFOA-induced lipid disturbances seems to 

be rather complex and hitherto, not fully delineated. 

Similarly, there is no simple mechanistic explanation for the differences in findings 

between animals and humans. The discrepancy in effects between rodents and humans 

may be related to profound interspecies differences in physiology regarding lipid 

homeostasis, and/or PFAS-species differences in toxicokinetics, as well as basic nutrition. 

These differences and potential interpretations are discussed throughout the manuscript 

(summarized in Figure 4).

The explanation for the observed differences in health effects in rodents versus humans 

may also lie with the large differences in exposure levels and durations between animals 

and humans. Cholesterol and TG changes in humans are recorded after chronic exposure 

and at serum concentrations of PFOS/PFOA at least two to three orders of magnitude lower, 

when compared to the respective serum concentrations in rodents. This is mainly due to 

the higher doses commonly used for the performance of the animal studies, while animal 

studies using low doses, resulting in serum PFOS/PFOA levels that are comparable to the 

human situation, are scarce. One single 4-week study using more relevant exposure levels 

in APOE*3-Leiden.CETP mice showed recently that environmental (approximately 50 ng/

ml) or occupational (approximately 1500 ng/ml) levels of PFOA exposure, representative 

for exposed community populations and fluorochemical production workers respectively, 

did not increase plasma cholesterol and TG levels, whereas exposure to high PFOA levels 

(90 000-150 000 ng/ml) did decrease TGs, total cholesterol and non-HDL-C levels and 

increased HDL-C level (Pouwer et al. 2019). This is in accordance with the slight reduction 

in cholesterol reported for cancer patients exposed for 6 weeks to very high PFOA levels 

(Convertino et al. 2018), although the interpretation of these data is difficult due to some 

methodological issues (see section PFOS and PFOA: lipid homeostasis perturbations; effects 

observed in human studies). Perhaps at such high serum levels and such exposure durations, 

both in humans and animals, different pathways come into play, than at the much lower 

concentrations and longer exposure durations observed in background populations and 

even in areas with increased exposure. Therefore, there are indeed few indications that 

the discrepancy in findings between humans and rodents might be the result of the large 

differences in exposure conditions. Nevertheless, it must be highlighted that PFOS/PFOA 

accumulate much more in humans than in rodents, as illustrated by the terminal half-

lives measured in occupational workers and a highly exposed population (Table 4). In 

addition, human data (although limited) suggest that at comparable blood concentrations 

humans  may have higher intrahepatic levels of PFOS/PFOA and higher intrarenal PFOS 

levels when compared to rodents. The life-long exposure of humans to PFOS/PFOA could 

possibly lead to continuously elevated body burdens, sufficient to cause effects on lipid 

homeostasis.  Overall, it appears that the interpretation of the existing rodent data on 

PFOS/PFOA-induced lipid perturbations, with respect to the human situation, is complex.  
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FIGURE 4 Summarized human- and rodent- specific differences related to PFOS/PFOA exposure, as well as species-specific 

differences with respect to lipoprotein metabolism and nutrition. CETP: cholesteryl ester transfer protein, LDL: low-density 

lipoprotein, HLDL: high-density lipoprotein, TGs: triglycerides, PPARα: peroxisome proliferator-activated receptor α, hPPARα: 

human PPARα,  HNF4α: hepatocyte nuclear factor 4 α, CYP7A1: cholesterol 7-alpha hydroxylase (rate-limiting enzyme in bile acid 

synthesis),  PXR: pregnane X receptor, CAR: constitutive androstane receptor, PPARγ: peroxisome proliferator-activated receptor 

γ (Created with BioRender.com).

In the case of the in vitro experiments with human hepatocytes, only single short exposures 

are generally used, attempting to mimic effects occurring in vivo after repeated chronic 

exposures. In addition, only nominal concentrations applied into the cell cultures are 

reported, whereas actual intracellular concentrations are rarely reported. These nominal 

concentrations in the culture medium are commonly much higher, when compared 

directly to serum PFOS/PFOA levels associated with increased cholesterol and TGs in 

humans. However, it is unclear whether these PFOS/PFOA in vitro concentrations constitute 

an appropriate surrogate for serum levels, especially considering the very high protein 

binding of these compounds. Quantitative in vitro to in vivo extrapolations (QIVIVE) would 

assist in translating effect levels observed in the in vitro test systems into the equivalent 

human PFOS/PFOA serum levels. This shall be done with the integration of kinetics, while 

preferably the cellular uptake of the chemicals shall be determined experimentally. 

An important new asset to delineate the species differences and the inherent differences in 

signalling pathways between rodents and humans is to make use of mice with a humanized 

chimeric liver (Tateno et al. 2004). In these mice > 80% of the mouse hepatocytes are 

replaced by human hepatocytes. The chimeric mice exhibit a “humanized” circulating 

lipoprotein cholesterol profile with an LDL-C/HDL-C ratio similar to that observed in 

humans, as well as bile acid regulation more characteristic of humans (Ellis et al. 2013).  

Importantly, with respect to the substantial species differences in PPARα expression and 
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affinity of PFOS/PFOA for the receptor expression levels of human PPARα are as in humans 

and their interaction with other relevant transcription factors have a human context. The 

same applies to other relevant biological processes. These mice have been used to elucidate 

the discrepancy in circulating cholesterol induced by obeticholic acid, an FXR-agonist and 

clinical candidate for treatment of NASH, between rodent models and humans, where 

obeticholic acid increased LDL-C in humans and consistently reduced total cholesterol 

levels in rodents (Papazyan et al. 2018). Studies with these mice, and importantly with 

different escalating exposure levels relevant to humans, may help elucidate the mechanism 

of action of PFOS/PFOA relevant for humans.

Together with studies on chimeric mice, further in vitro investigations with human 

hepatocytes  may help clarify the pathway underlying the potential PFOS/PFOA-induced lipid 

perturbations. Specifically, more information is needed on the involvement of the HNF4α 

signalling pathway, as well as interference of PFOS/PFOA with cholesterol transformation 

into bile acids. Still, given the specific limitations of such in vitro models, the extrapolation 

of the effects to humans shall be done carefully by taking into consideration  the dosing and 

integrating the kinetic aspects. The latter can be achieved with the use of physiologically-

based kinetic modelling, together with measurements of the actual intracellular 

concentrations of the compounds. If such studies are finetuned to the human situation and 

interpreted in the context of the intact human, they can generate valuable information that 

will contribute to a better understanding of  PFAS-mediated lipid perturbations and the 

issues involved in their interpretation for human health risk assessment.
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Abstract

Per- and polyfluoroalkyl substances (PFASs) are omnipresent and have been shown to 

induce a wide range of adverse health effects, including hepatotoxicity, developmental 

toxicity and immunotoxicity. The aim of the present work was to assess whether human 

HepaRG liver cells can be used to obtain insight into differences in hepatotoxic potencies 

of a series of PFASs. Therefore, the effects of 18 PFASs on cellular triglyceride accumulation 

(AdipoRed assay) and gene expression (DNA microarray for PFOS and RT-qPCR for all 18 

PFASs) were studied in HepaRG cells. BMDExpress analysis of the PFOS microarray data 

indicated that various cellular processes were affected at the gene expression level. From 

these data, ten genes were selected to assess the concentration-effect relationship of all 18 

PFASs using qRT-PCR analysis. The AdipoRed data and the qRT-PCR data were used for 

the derivation of in vitro relative potencies using PROAST analysis. In vitro relative potency 

factors (RPFs) could be obtained for 8 PFASs (including index chemical PFOA) based on 

the AdipoRed data, whereas for the selected genes in vitro RPFs could be obtained for 11-

18 PFASs (including index chemical PFOA). For the readout OAT5 expression, in vitro RPFs 

were obtained for all PFASs. In vitro RPFs were found to correlate in general well with 

each other (Spearman correlation) except for the PPAR target genes ANGPTL4 and PDK4. 

Comparison of in vitro RPFs with RPFs obtained from in vivo studies in rats indicate that 

best correlations (Spearman correlation) were obtained for in vitro RPFs based on OAT5 

and CXCL10 expression changes and external in vivo RPFs. HFPO-TA was found to be the 

most potent PFAS tested, being around 10-fold more potent than PFOA. Altogether, it may 

be concluded that the HepaRG model may provide relevant data to provide insight into 

which PFASs are relevant regarding their hepatoxic effects and that it can be applied as a 

screening tool to prioritize other PFASs for further hazard and risk assessment.
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Introduction

Per- and polyfluoroalkyl substances (PFASs) are very persistent chemicals and 

omnipresent in the environment (Wang et al., 2017). PFASs are defined as “fluorinated 

substances that contain at least one fully fluorinated methyl or methylene carbon atom 

(without any H/Cl/Br/I atom attached to it)” (OECD, 2021). They are widely used in various 

industrial and consumer applications, such as firefighting foams, electronics, textiles, 

food contact materials, and cosmetics. The production and use of the most studied PFASs, 

perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), have been 

restricted given the concerns of adverse effects to human health and the environment (EU, 

2019; EU, 2020; UNEP, 2009).

In experimental animals, PFASs have been shown to induce a wide range of adverse 

effects, including hepatotoxicity, developmental toxicity, immunotoxicity, and a decrease 

in thyroid hormone levels (ATSDR, 2021; EFSA CONTAM Panel, 2018, 2020). The most 

consistent endpoint is increased liver weight, characterized by a combined hyperplasia 

and hypertrophy, which has been observed for many PFASs with clear differences in 

potencies. Disturbances in lipid metabolism, including hepatocellular steatosis and 

other hepatotoxic effects, have also been reported (EFSA CONTAM Panel, 2020). Also in 

humans, rather low serum levels of PFOS and PFOA have been associated with disturbed 

lipid homeostasis, in which the liver may play a role. However, the causality of this 

relationship has been debated (see for a recent review Fragki et al. (2021)). Furthermore, 

epidemiological evidence has correlated serum levels of both PFOS and PFOA to a small 

elevation in serum levels of the hepatic enzyme ALT (alanine transferase), a biomarker for 

liver damage (Gallo et al., 2012). However, whether that limited increase in ALT reflects 

serious liver damage is questionable.

Bil et al. (2021; 2022a) used data on hepatotoxicity in individual studies with male rats to 

derive external relative potency factors (RPFs) for 16 PFASs (using PFOA as index chemical). 

External RPFs of 7 other PFASs were estimated based on read across. In addition, Bil et 

al. (2022b) reported eight internal RPFs, which are based on the same toxicological 

information as the external RPFs reported by Bil et al. (2021; 2022a), but estimated by 

translating external doses to internal blood concentrations using kinetic models. For 

assessment of risks upon combined exposure to PFASs, such RPFs may be of use to take 

potency differences in PFASs into account. In that regard, external RPFs may be of use when 

considering external exposure and internal RPFs when considering internal exposure. 

The number of existing PFASs is estimated to be around a few thousands, and for many of 

these toxicity data are lacking. Performing in vivo animal studies to obtain toxicity data for 

all these PFASs is not considered feasible, given the high costs and demand of resources, 

and also not desirable, because of ethical issues and the uncertainty related to possible 

species differences between laboratory animals and humans. Instead, application of novel 

approach methodologies (NAMs), such as in vitro toxicity assays, may be used, in the first 
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place to prioritize those PFASs for which a more extensive hazard and risk assessment would 

be considered most relevant, and within a next generation risk assessment paradigm, to 

provide in vitro effect concentrations that can be translated to in vivo oral equivalent dose 

levels (Punt et al., 2021), providing data that may be used for the risk assessment. 

Recently, we demonstrated that treatment of human HepaRG liver cells with PFOA, PFOS, 

and PFNA resulted in an increase in triglyceride levels (Louisse et al., 2020), which is 

considered to be a potential relevant readout for PFAS-induced liver toxicity (Fragki et al., 

2021). Furthermore, microarray analysis indicated that these three PFASs, at a concentration 

of 100 µM, downregulated genes involved in cholesterol biosynthesis. The data also pointed 

to, amongst others, changes in cellular processes, such as PERK/ATF4 signalling, tRNA 

aminoacylation and expression of amino acid transporters by PFOA, PFOS and PFNA. It 

is of interest to assess whether such in vitro effects may be of use for obtaining insight into 

potency differences of different PFASs. Therefore, the present study aimed to assess the 

concentration-dependent effects of 18 PFASs (Figure 1) on triglyceride levels (applying the 

AdipoRed assay) and expression of genes (as measured with RT-qPCR) in HepaRG cells. This 

study includes 11 perfluoroalkyl carboxylic acids (PFCAs), 5·perfluoroalkyl sulfonic acids 

(PFSAs) and 2 perfluoroalkyl ether carboxylic acids (PFECAs, including GenX (HFPO-DA)). 

To identify genes for RT-qPCR analysis, concentration-dependent PFOS transcriptomic 

data were analysed with BMDExpress software, providing insight into PFOS-induced 

effects on gene expression and their concentration-dependency in HepaRG cells. Based 

on these data, genes were selected to assess the concentration-dependent changes in 

expression upon exposure to the 18 PFASs (Figure 1). Concentration-response data on the 

increase in triglyceride levels and effects on gene expression of the selected genes were 

analysed with PROAST software to obtain insight into in vitro potency differences for the 18 

PFASs. The obtained in vitro RPFs were compared with reported external and internal RPFs 

obtained from animal studies to provide insights into differences and similarities in the 

outcomes of using in vitro human cell-based and in vivo animal-based approaches.

FIGURE 1 Chemical structures of the PFASs tested in the present study. Full names of abbreviations are provided in the Materials 

and methods section under ‘Chemicals’.
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Materials and methods

Chemicals

The following PFASs were tested in the present study: perfluoropentanoic acid (PFPeA; 

C5), perfluorohexanoic acid (PFHxA; C6), perfluoroheptanoic acid (PFHpA; C7), 

perfluorooctanoic acid (PFOA; C8), perfluorononanoic acid (PFNA; C9), perfluorodecanoic 

acid (PFDA; C10), perfluoroundecanoic acid (PFUnDA; C11), perfluorododecanoic acid 

(PFDoDA; C12), perfluorotetradecanoic acid (PFTeDA; C14), perfluorohexadecanoic acid 

(PFHxDA; C16), perfluorooctadecanoic acid (PFODA; C18), perfluorobutane sulfonate 

(PFBS; C4), perfluorohexane sulfonate (PFHxS; C6), perfluoroheptane sulfonate 

(PFHpS; C7), perfluorooctane sulfonate (PFOS; C8), perfluorodecane sulfonate (PFDS; 

C10), hexafluoropropylene oxide dimer acid (HFPO-DA, also known as GenX; C6) and 

hexafluoropropylene oxide trimer acid (HFPO-TA; C9) (Figure 1). All stocks were prepared 

in 100% dimethyl sulfoxide (DMSO HybriMax, Sigma-Aldrich), which were stored at -20 ºC. 

More information about suppliers, purity, catalog numbers, CAS numbers and maximum 

concentrations tested in the present study is presented in Supplementary Table 1. The 

highest concentration tested was determined by the degree of solubility of each PFAS.

HepaRG cell culture

The human hepatic cell line HepaRG was obtained from Biopredic International (Rennes, 

France) and cultured in growth medium consisting of William’s Medium E + GlutaMAX™ 

(ThemoFisher Scientific, Landsmeer, The Netherlands) supplemented with 10% fetal 

bovine serum (FBS; Corning (35-079-CV), United States of America), 1% PS (100 U/mL 

penicillin, 100 µg/mL streptomycin; Capricorn Scientific, Ebsdorfergrund, Germany), 

50 µM hydrocortisone hemisuccinate (sodium salt) (Sigma-Aldrich), and 5 µg/mL 

human insulin (PAN™ Biotech). Seeding, trypsinization (using 0.05% Trypsin-EDTA 

(ThermoFisher Scientific)) and maintenance of the cells was performed according to the 

HepaRG instruction manual from Biopredic International. For cell viability and triglyceride 

accumulation studies, cells were seeded in black-coated 96-well plates (Greiner Bio-One, 

Frickenhausen, Germany; 9000 cells per well in 100 µL). For gene expression studies, 

cells were seeded in 24-well plates (Corning, Corning, NY; 55000 cells per well in 500 µL). 

After two weeks on growth medium, cells were cultured for two days in growth medium 

supplemented with 0.85% DMSO to induce differentiation. Subsequently, cells were 

cultured for 12 days in growth medium supplemented with 1.7% DMSO (differentiation 

medium) for final differentiation. At this stage, cells were ready to be used for toxicity 

studies. Cells that were not immediately used were kept on differentiation medium for 

a maximum of three additional weeks. Cell cultures were maintained in an incubator 

(humidified atmosphere with 5% CO
2
 at 37°C) and the medium was refreshed every 2–3 

days during culturing. Prior to toxicity studies, differentiated cells were incubated for 24 

h in assay medium (growth medium containing 2% FBS) supplemented with 0.5% DMSO.
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Cell exposure

Test chemicals were diluted from 200-fold concentrated stock solutions in assay medium, 

providing a final DMSO concentration of 0.5%. In each experiment a solvent control (0.5% 

DMSO) was included. PFASs were tested in concentrations up to 400 µM (if solubility 

allowed). After exposure, effects of the PFASs on cell viability and gene expression were 

assessed. Highest tested concentrations that could be tested for each PFAS are presented in 

Supplementary Table 1.

Stability studies HFPO-DA and HFPO-TA

To assess whether HFPO-DA and HFPO-TA are stable under the culture conditions applied 

in this study, we incubated 50 µM HFPO-DA or HFPO-TA in culture medium (0.5% DMSO) 

for 24 h in an incubator (humidified atmosphere with 5% CO2 at 37°C) and took samples at 

t= 0 h, 6 h and 24 h for quantification using LC-MS analysis. We also assessed the stability 

of stock solutions in DMSO kept at -20 ºC. To 50 uL culture medium, 850 uL methanol 

(Actuall Chemicals, Oss, The Netherlands) containing internal standard (13C3-GenX 

(Wellington Laboratories, Canada)) was added. These dilutions were vortexed well before 

centrifugation at maximum speed for 10 minutes at 4 °C. Samples were further another 

1200 times diluted with methanol and internal standard and HFPO-DA and HFPO-TA 

concentrations were determined using LC-MS/MS analysis. LC-MS/MS analysis was based 

on a Sciex UHPLC system containing: 2 pumps (ExionLC AD); column oven (ExionLC AC); 

controller (ExionLC); degasser (ExionLC); and sample tray holder (ExionLC AD) (Sciex, 

Framingham, MA, USA). An Luna Omega PS C18 analytical column (100Å , 100 × 2.1 mm 

i.d., 1.6 µm, Phenomenex, Torrance, CA, USA), was used to separate the PFASs at a column 

temperature of 40°C. Additionally, a Gemini C18 analytical column (110Å , 50 x 3 mm 

i.d., 3 µm, Phenomenex, Torrance, CA, USA) was used as an isolator column, placed between 

the pump and the injector valve to isolate and delay interferences out of the LC system. The 

mobile phase consisted of 20 mM ammonium acetate (Merck Millipore, Darmstadt, Germany) 

in water Ultra LC/MS grade (Actu-All Chemicals, Oss, The Netherlands) (mobile phase A) and 

Acetonitrile ULC/MS grade (Biosolve, Dieuze, France) (mobile phase B). The injection volume 

used was 20 µL. The chromatographic gradient was operated at a flow rate of 0.8 mL min-

1 starting from 15% mobile phase B in the first 1.0 min, a linear increase to 98% B in 6 min 

with a final hold of 0.5 min. The gradient was returned to 15% B within 0.1 min for 0.7 min to 

equilibrate before the next injection, resulting in a total run of 8.3 min. Detection was carried 

out by MS/MS using a Sciex QTRAP 7500 system (Sciex, Framingham, MA, USA) in negative 

electrospray ionization (ESI-) mode, with the following conditions: ion spray voltage (IS) of 

-1500 V; curtain gas (CUR) of 45 psi; source temperature (TEM) of 400°C; gas 1 (GS1) of 40 psi; 

gas 2 (GS2) of 80 psi; and collision gas (CAD) 9. The PFASs were fragmented using collision 

induced dissociation (CID) using argon as target gas. The analyses were performed in multiple 

reaction monitoring (MRM) mode, using two mass transitions per component selected based 

on the abundance of the signal and the selectivity of the transition. In Supplementary Table 

2 information on the MRM transitions, entrance potential (EP), collision energy (CE) and cell 



6

In
 v

itr
o 

he
pa

to
to

xi
c 

po
te

nc
ie

s 
of

 P
FA

Ss
 

207

Exploration of NAMs for the perfluoroalkyl substances

exit potential (CXP) are presented. Data were acquired using SciexOS and processed using 

MultiQuantTM software (Sciex, Framingham, MA, USA).

Cell viability studies

The effects of the 18 PFASs on the viability of HepaRG cells cultured in 96-well plates, 

was determined using the WST-1 assay. This assay determines the conversion of the 

tetrazolium salt WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulfonate) to formazan by metabolically active cells. For PFOA, PFNA, PFHxS 

and PFOS, the effects on cell viability were studied upon a 24-h and a 72-h exposure, given 

that both exposure times were studied for optimization of the exposure time for assessing 

effects of these PFASs on triglyceride accumulation. All other PFASs were only tested upon 

a 24-h exposure. After exposure, the medium was removed and the cells were washed 

with Dulbecco’s Phosphate Buffered Saline (DPBS; ThermoFisher Scientific). Next, WST-

1 solution (Sigma-Aldrich) was added to the cell culture medium (1:10 dilution) and 100 

µL was added to each well. After 1 h incubation in an incubator (humidified atmosphere 

with 5% CO
2
 at 37°C), the plate was shaken at 1000 rpm for 1 min, and absorbance at 450 

nm was measured (background absorbance at 630 nm was subtracted) using a Synergy 

HT Microplate Reader (BioTek, Winooski, VT). Three independent studies, with in each 

study three technical replicates per condition, were performed. Cell viability upon PFAS 

treatments was expressed as percentage of the cell viability of the solvent control.

Triglyceride accumulation studies

The effect of the 18 PFASs on triglyceride levels was determined using the AdipoRed 

assay essentially according to the instructions of the supplier (Lonza, Basel, Switzerland). 

We used the approach as applied in the study of Luckert et al. (2018), in which HepaRG 

cells were exposed to the steatotic compound cyproconazole. In that study, 72 hours was 

shown to be the optimal time point to assess the effects of cyproconazole on triglyceride 

accumulation as determined with the AdipoRed assay. We first assessed whether this 

time point was also the optimal time point for assessing effects of PFASs on triglyceride 

accumulation, by studying the effects of a 24-h or a 72-h exposure to PFOA, PFNA, PFHxS 

and PFOS in the AdipoRed assay, also including cyproconazole as positive control. After 

exposure for 24 or 72 h, the medium was removed and the cells were washed with 200 

µL DPBS and subsequently incubated for 10 min at room temperature with 200 µL 

AdipoRed-DPBS solution. The latter solution was prepared by adding 25 µL AdipoRed to 

1 mL DPBS. Subsequently, fluorescence was measured using a 485/20 nm excitation and 

590/35 emission filter set on the Synergy HT Microplate Reader. The results from that 

study indicate that a 24-h exposure was considered better than a 72-h exposure to study 

effects of PFASs (see Results section). Therefore, all other PFASs were tested upon a 24-h 

exposure. For each PFAS, three independent biological replicates, with three technical 

replicates per condition were obtained. Data were used for dose-response analysis using 

PROAST software (see below).
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Whole genome gene expression: microarray hybridisations and BMDExpress 
analysis

To obtain insight into the PFOS concentration-dependent induced gene expression 

changes, differentiated cells were exposed for 24 h to 6.25, 12.5, 25, 50, 100, 200 or 400 

µM PFOS. An exposure duration of 24 h was selected based on our previous study (Louisse 

et al., 2020). After exposure, total RNA was isolated and purified using the RNeasy Minikit 

(Qiagen). RNA quality and integrity was assessed using the RNA 6000 Nano chips on the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Amsterdam, The Netherlands). Purified 

RNA (100 ng) was labeled with the Ambion WT expression kit (Invitrogen) and hybridized 

to Affymetrix Human Gene 2.1 ST arrays (Affymetrix, Santa Clara, CA). Hybridization, 

washing, and scanning were carried out on an Affymetrix GeneTitan platform according 

to the instruction by the manufacturer. Obtained data (CEL-files) were further processed 

using Bioconductor in R, performing quality control and normalization. For array 

normalization, the Robust Multiarray Average method (Bolstad et al., 2003; Irizarry et al., 

2003) was applied. Probe sets were defined according to Dai et al. (2005). In this method 

probes are assigned to Entrez IDs as a unique gene identifier. CEL file normalization 

was performed with the Robust Multichip Average method using the Bioconductor oligo 

package (version 3.8) and the human Entrez-Gene custom CDF annotation from Brain 

Array version 23.0.0 containing 965365 probes and 29635 probesets (http://brainarray.

mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp).

BMDExpress is a software tool for BMD analysis of transcriptomic data (Yang et al., 2007; 

Philips et al., 2018). BMDExpress2 (Version 2.20.0180) was applied following the workflow 

(loading expression data, filtering, BMD analysis, and Pathway analysis (functional 

analysis)) as described on https://github.com/auerbachs/BMDExpress-2/wiki. Expression 

data were organized in a tab-delimited plain text file and are  provided as Supplementary 

Material. Each column in the data matrix corresponds to an individual expression 

experiment. The first row contains information in the sample label, the second row on 

the PFOS concentration and all further rows the data for one probe ID. Regarding loading 

of the expression data, ‘Generic’ was selected for the platform, and ‘BASE2’ for the Log 

Transformation. Regarding the filtering, ANOVA was used, using a P-value Cutoff of 

0.05, applying the Benjaminin & Hochberg correction for multiple testing, filtering out 

control genes, and without applying a Fold Change Filter (i.e. Fold Change Value of 1.0 

was selected). Regarding BMD analysis, the continuous models Exp2, Exp3, Exp4, Exp5, 

Linear, Poly2, Poly3, Hill and Power were selected. A BMR factor of 1.021 was selected. At 

1.021 times the standard deviation of the control group the gene expression is thought to 

change by 5% compared to background as also applied by Chang et al. (2020). Applying 

such a low response as BMR allows inclusion of genes that may show limited changes in 

expression. Application of a higher BMR may provide more robust BMC estimations, but 

may exclude genes (and as a possible consequence related gene sets) that show limited 

gene expression changes that could be relevant from a biological perspective. Regarding 

the functional analysis, we performed a defined category analysis using gene sets from 
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the Reactome Pathway Database (https://reactome.org/; Wu and Haw, 2017), applying the 

following data source options: ‘Remove Promiscuous Probes’, ‘Remove BMD> Highest Dose 

from Category Descriptice Statistics’, ‘Remove BMD with p-Value < Cutoff: 0.1’, ‘Remove 

genes with BMD/BMDL >: 20’, ‘Remove genes with BMDU/BMDL >: 40’, ‘Remove Genes 

With Max Fold Change <: 1.2’, and ‘Identify conflicting probe sets: 0.5’. The applied probe 

file and category file used for the analysis are provided in the Supplementary Materials. For 

further analysis we applied the following filters: Fisher’s Exact Two Tail ≤ 0.1, ‘genes that 

passed all filters’ of a gene set were set at 5, and the percentage of genes regulated of the gene 

was set at ≥ 20%. For the gene sets remaining upon application of these filters, information 

was collected and organized in an Excel file, which is available as Supplementary Material.

RT-qPCR

For selected genes, concentration-dependent expression levels were determined in PFAS-

exposed HepaRG cells. To that end, cells were exposed to increasing concentrations of the 

18 PFASs for 24 h and total RNA was extracted from the cells using the RNeasy Mini Kit 

(Qiagen, Venlo, The Netherlands). Subsequently, 500 ng RNA was used to synthesize cDNA 

using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Veenendaal, The Netherlands). 

Changes in gene expression were determined by RT-qPCR on a CFX384 real-time PCR 

detection system (Bio-Rad Laboratories) by using SensiMix (Bioline; GC Biotech, Alphen 

aan den Rijn, The Netherlands). The PCR conditions consisted of an initial denaturation 

at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 10 s and annealing 

extension at 60°C for 15 s. Relative gene expression was quantified with the standard curve 

method, using a standard curve generated from a serial dilution of pooled sample cDNA, 

and subsequently normalized to RPL27 gene expression. Primer sequences were taken 

from the Harvard PrimerBank and ordered from Eurogentec (Liège, Belgium). Sequences 

of the used primers are listed in Table 1. The concentration-response data were subjected 

to dose-response analysis using PROAST software as described below. 

TABLE 1 Primer sequences used for RT-qPCR

Name 
Primer Sequence

Forward Reverse

ANGPTL4 CACAGCCTGCAGACACAACTC GGAGGCCAAACTGGCTTTGC

ATF4 CCCTTCACCTTCTTACAACCTC TGCCCAGCTCTAAACTAAAGGA

CXCL10 GAACTGTACGCTGTACCTGCA TTGATGGCCTTCGATTCTGGA

HMGCR TGATTGACCTTTCCAGAGCAAG CTAAAATTGCCATTCCACGAGC

LSS GCACTGGACGGGTGATTATGG TCTCTTCTCTGTATCCGGCTG

OAT5 TGGTGTTTGCTCCAGCTTG GCCTTATCCACTCAGTAATGGGC

PDK4 TGGAGCATTTCTCGCGCTAC ACAGGCAATTCTTGTCGCAAA

RPL27 ATCGCCAAGAGATCAAAGATAA TCTGAAGACATCCTTATTGACG

SLC7A11 GGTCCATTACCAGCTTTTGTACG AATGTAGCGTCCAAATGCCAG

THRSP CAGGTGCTAACCAAGCGTTAC CAGAAGGCTGGGGATCATCA

YARS1 TGGTCACACAGCACGATTCC CGGGGTATAAGAGGCCACTC
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Dose-response analysis of AdipoRed and RT-qPCR data with PROAST

AdipoRed data and RT-qPCR data were used for concentration-response modelling with 

dose-response analysis software PROAST version 70.2 and 70.7tmp (National Institute for 

Public Health and the Environment 2018) in R (version 4.2.0). Data were available from 

three independent experiments. First, it was determined whether differences between 

the independent experiments (for individual PFASs) exist. For this, PROAST version 

70.2 was used. This analysis was performed using the data of OAT5 gene expression. It 

appeared that the background (parameter a) differed for some PFASs between different 

experiments, based on which it was decided to not use summary data for the further dose-

response analysis to determine RPFs, but to run the PROAST analyses (in version 70.7tmp) 

with the following covariates: substance (parameter b and var) and substance-experiment 

(parameter a). Data of all PFASs were analysed simultaneously to ensure the parallel 

curves required to derive RPFs (Bosgra et al., 2009; Bil et al., 2021; 2022a; 2022b; van der 

Ven et al., 2022; van den Brand et al., 2022). Tab-delimited text files containing data on 

concentration, effect and experiment number were made and analysed as continuous data. 

Non-normalized gene expression and AdipoRed data were used for dose-response analysis 

since possible differences in background are accounted for by the covariate on background 

parameter a. Then, the exponential model, with parameters a, b, c, and d describing the 

response at dose 0 (background value), the potency of the PFAS, maximum fold change in 

response compared with background response (upper or lower plateau), and steepness of 

the curve (on a log-dose scale), respectively, was fitted with and without fixing parameter 

c to a large value to determine if a maximum fold change could be established. The model 

(with or without fixed parameter c) with the lowest Akaike information criterion (AIC) was 

chosen to determine the RPFs and the corresponding 90% confidence intervals (Bil et al., 

2022a,b; van den Brand et al., 2022). PFOA was used as the index chemical. For some PFASs 

it was not possible to determine an RPF and for some compounds determination of the 

lower bound RPF (RPFL) was not possible, because the data did not show a clear trend. 

Comparisons of obtained in vitro RPFs and reported in vivo RPFs

We compared the RPFs obtained from the different in vitro readouts (AdipoRed and selected 

genes) to assess whether different conclusions would be drawn based on the readout 

selection. Subsequently we compared the in vitro RPFs with RPFs reported in the literature 

obtained from in vivo rat studies, for which RPFs are available for external (Bil et al., 2021; 

2022a) and internal exposure (Bil et al., 2022b).

Results

Stability studies HFPO-DA and HFPO-TA

HFPO-DA and HFPO-TA were added to cell culture medium (0.5% DMSO) at a concentration 

of 50 µM and incubated in an incubator (humidified atmosphere with 5% CO
2
 at 37°C). 
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Samples were taken at t= 0 h, 6 h and 24 h, and were measured using LC-MS analysis. Results 

indicate that under these conditions HFPO-DA and HFPO-TA are stable (Supplementary 

Figure 1), indicating that these culture conditions are adequate to determine the effects of 

these PFASs on the HepaRG cells. 

Cell viability studies

The effect of a 24-h (all PFASs) and 72-h (PFOA, PFNA, PFHxS and PFOS) exposure of HepaRG 

cells to the PFASs on cell viability was determined using the WST-1 assay. Concentrations 

up to 400 µM were used, except for PFDoDA/ PFTeDA (up to 100 µM) and PFHxDA/PFODA 

(up to 25 µM), due to limited solubility of these PFASs (Supplementary Table 1). The results 

of the 72-h exposure studies indicate that PFOA is clearly cytotoxic at 400 µM, PFNA at 200 

and 400 µM and that no effects were found for PFHxS and PFOS (Supplementary Figure 2). 

The results of the 24-h exposure studies indicate that four of the 18 tested PFASs decrease 

cell viability in a concentration-dependent manner, being PFNA, PFDA, PFHpS and 

HPFO-TA (Supplementary Figure 3), with HFPO-TA being the most potent PFAS, followed 

by PFDA and PFNA. The other PFASs did not show cytotoxicity in the WST-1 assay for the 

concentration range tested (Supplementary Figure 3). Maximum concentrations for the 

further studies were selected as the highest concentrations causing less than 25% decrease 

in cell-based WST-1 conversion, amounting to 50 µM HPFO-TA, 100 µM PFNA, 100 µM 

PFDA and 200 µM PFHpS.

Triglyceride accumulation studies

We first assessed whether a 24-h or a 72-h exposure was considered optimal to assess 

effects of PFASs on triglyceride accumulation, as measured with the AdipoRed assay, by 

determining the effects for PFOA, PFNA, PFHxS and PFOS, also including cyproconazole, 

for which earlier studies indicated that most effects were found upon a 72-h exposure 

(Luckert et al., 2018). The results show that for the four PFASs, in contrast to cyproconazole, 

more effects were observed upon exposure for 24 h compared to a 72-h exposure 

(Supplementary Figure 4). Therefore, for all other PFASs, the effect of a 24-h exposure 

to the PFASs on triglyceride accumulation in HepaRG cells was determined. In general, 

changes in AdipoRed signal were limited, at maximum amounting to a 1.4-fold increase 

at 50 µM HPFO-TA compared to the solvent control (Supplementary Figure 5), comparing 

to a measured maximum 1.6-fold increase for the positive control cyproconazole 

(Supplementary Figure 4). Dose-response analysis using parallel curve fitting was applied 

on the AdipoRed data to determine in vitro RPF values, which could be obtained for PFNA, 

PFDoDA, PFHxDA, PFHxS, PFOS and PFDS (Figure 2). PFNA, PFDoDA, PFHxDA and HFPO-

TA were more potent than PFOA, but it must be noted that confidence intervals of PFHxDA’s 

RPF are large (Figure 2). PFOS showed a similar potency as PFOA, and PFHxS and PFDS 

were slightly less potent than PFOA (Figure 2). 
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FIGURE 2 In vitro RPFs based on PROAST dose-

response analysis of AdipoRed data obtained from 

HepaRG cells exposed to various PFASs. RPFs are 

presented as vertical lines, with the 5% lower bound 

and 95% upper bound of the confidence interval as 

whiskers. PFOA was used as index chemical, i.e., has 

an RPF of 1 (dotted line). NA: not applicable, RPF could 

not be determined.

Transcriptomics studies PFOS-exposed HepaRG cells and BMDExpress 
analysis

HepaRG cells were exposed for 24 h to 0 (solvent control), 6.25, 12.5, 25, 50, 100, 200 

or 400 µM PFOS and subjected to DNA microarray analysis. Data were analysed using 

BMDExpress as described in the Materials and Methods section. With the applied criteria 

for the identification of regulated gene sets (Fisher’s Exact Two Tail ≤ 0.1, number of genes 

that passed all filters of a gene set ≤  5, and the percentage of genes of the gene set regulated 

≥ 20, see Materials and Methods section), 18 Reactome gene sets were upregulated (≥ 60% 

of the regulated genes upregulated) and 90 downregulated (≥ 60% of regulated genes 

downregulated). Figure 3 shows for each of the 108 regulated gene sets the percentage 

of genes that is affected by PFOS plotted against the median BMC value of the regulated 

genes. One can conclude that, in general, high micromolar concentrations of PFOS are 

required to cause effects and that differences in effect concentrations between gene sets 

are considered minor, based on the comparison of median BMC values. Gene sets related 

to cellular processes that were previously identified to be affected by PFOA, PFNA and 

PFOS (Louisse et al., 2020) are indicated in Figure 3. For the selection of genes to assess 

differences in potencies between different PFASs, genes related to these gene sets may be 

of particular interest, as these have been shown before to be regulated by at least three 

PFASs in HepaRG cells(Louisse et al., 2020). The expression data for the regulated genes 

for these selected gene sets are presented in Figure 4. It must be noted that another 11 

Reactome gene sets were identified to be regulated using the applied selection criteria 

(Fisher’s Exact Two Tail ≤ 0.1, number of genes that passed all filters of a gene set ≤  5, 

and the percentage of genes regulated of the gene set ≥ 20, see Materials and Methods 

section) that were not clearly up- or downregulated, i.e. 40-60% of the regulated genes 

were upregulated and the other 40-60% of the regulated genes were downregulated. More 

detailed information on the results of the BMDExpress analysis for all these 119 regulated 

gene sets (90 downregulated, 18 upregulated, 11 not clearly up- or downregulated) are 

provided in the Supplementary Materials.
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FIGURE 3 Overview of upregulated (grey squares) and downregulated (white circles) Reactome gene sets based on microarray 

data of PFOS-exposed HepaRG cells as analysed with BMDExpress. Each gene set is positioned based on the percentage of affected 

genes of the gene set and the median BMC value of the gene set. Gene sets related to cellular processes that were previously found to 

be affected by PFOA, PFOS and PFNA in HepaRG cells (Louisse et al., 2020) are indicated. More information on the regulated genes 

of these gene sets is presented in Figure 4. More information on all affected gene sets is presented in the Supplementary Materials.
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FIGURE 4 Concentration-dependent modulation of genes belonging to a selection of Reactome gene sets that are re g u l a t e d 

in HepaRG cells upon PFOS exposure. Regulated gene sets presented here are A) ‘cholesterol biosynthesis’ (R-HSA-191273), 

B) ’ATF4 activates genes in response to endoplasmic reticulum stress’ (R-HSA-380994), C) ‘cytosolic tRNA aminoacylation’ 

(R-HSA-379716), and D)‘amino acid transport across the plasma membrane’ (R-HSA-352230). For each PFOS exposure 

(concentration given in µM above the plots), data from three independent samples (independent studies) are shown. Expression is 

normalized against average expression of the solvent control (0), showing the Log2 ratio of expression upon PFOS treatment versus 

expression in the control.

As a next step, the concentration-response data were analysed to identify genes that were 

relatively sensitive to PFOS treatment. Besides those selected from gene sets as indicated in 

Figures 3 and 4, such genes may be good candidates to assess relative potency differences 

between PFASs, as also PFASs with a relatively low potency may induce a response. For this, 

genes were selected for which a BMC value was obtained and that showed at 100 µM at least 

a 2-fold change compared to the solvent control. Microarray expression data of these genes 

are presented in Figure 5. It is of interest to note that some of these are part of the selected 

gene sets presented in Figure 4, whereas many are not.
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FIGURE 5 Concentration-dependent modulation of selected sensitive genes in HepaRG cells upon PFOS exposure. Data for genes 

are presented for which a BMC was obtained and that showed an average fold-change at 100 µM of at least 2 compared to the 

solvent control.

In addition, the microarray data for PPARα response genes were examined, given that 

PPARα is a cellular target often mentioned in relation with PFAS-induced (liver) toxicity. 

Figure 6 shows the microarray data for PFOS-exposed cells for genes that were previously 

shown to be regulated by both the PPARα agonist GW7646 (Wigger et al., 2019) and by 

PFOS (Louisse et al., 2020) in HepaRG cells. It is of interest to note that some of these 

genes showed a non-typical concentration-response (PLIN1, SLC27A2, CPT2), i.e., showing 

a concentration-dependent increase in expression up to and including 100 µM, and a 

decrease at 200 and 400 µM (Figure 6).
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FIGURE 6 Concentration-dependent modulation of PPARα-regulated genes by PFOS in HepaRG cells. Data for genes are 

presented that were previously shown to be induced by the PPARα agonist GW7646 (Wigger et al., 2019) and by PFOS (Louisse et 

al., 2020) in HepaRG cells.

Selection of genes for RT-qPCR analysis to assess potency differences of 18 PFASs

Subsequently, the concentration-response microarray data presented in Figures 4 to 

6 were analysed in more detail to select genes suitable for analysing the concentration-

dependent effects of 18 PFASs (Figure 1) and to provide insights into potency differences. 

To that end, genes were selected that showed clear concentration-response curves for 

PFOS and covering diverse biological processes, as well as genes with relatively low BMC 

values. The ten genes selected include five genes that were upregulated and five that were 

downregulated upon PFOS treatment (see concentration-response data for microarray 

data in Supplementary Figure 6), and are shortly described below.

ATF4: Activating transcription factor 4 (ATF4) is a transcription factor activated upon 

endoplasmic reticulum stress and/or amino acid starvation (Harding et al., 2000), 

upregulating genes that play a role in cell recovery, adaptation to stress conditions, and 

restoration of cell homeostasis (Rozpedek et al., 2016). Member of the upregulated gene set 

‘ATF4 activates genes in response to endoplasmic reticulum stress’ (Figure 4B).

SLC7A11: The SLC7A11 gene codes for an amino acid transporter importing cysteine and 

exporting glutamate. It is one of the amino acid transporters that is upregulated by ATF4 upon 

amino acid starvation (Adams 2007; Shan et al., 2016; Krokowski et al., 2013; Han et al., 2013). 

Member of the upregulated gene set ‘Amino acid transport across the plasma membrane’ 

(Figure 4D). Highly upregulated even at relatively low PFOS concentrations (Figure 5).

YARS1: Tyrosyl-tRNA synthetase (YARS) is an aminoacyl-tRNA synthetase (ARS) catalyzing 

the aminoacylation of transfer RNA (tRNA) by its cognate amino acid tyrosine. It is one of 

the ARS genes that is upregulated by ATF4 upon amino acid starvation (Adams 2007; Shan 

et al., 2016; Krokowski et al., 2013; Han et al., 2013). Member of the upregulated gene set 

‘Cytosolic tRNA aminoacylation’ (Figure 4C).
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PDK4: pyruvate dehydrogenase (PDH) kinase 4 (PDK4) (Kwon and Harris, 2004) diminishes 

PDH activity, thereby reducing the conversion of pyruvate to acetyl-CoA. PDK4 expression 

has been reported to be upregulated upon fasting and/or a switching from glucose to fatty 

acids as an energy source (Zhang et al., 2014; Pettersen et al., 2019). PDK4 expression has 

been reported to be regulated by retinoic acid receptors (Kwon and Harris, 2004) and by 

PPARα (e.g. Wigger et al., 2019). Thus, considered to be a PPARα response gene (Figure 6). 

Highly upregulated even at relatively low PFOS concentrations (Figure 5).

ANGPTL4: angiopoietin-like protein 4 (ANGPTL4) is a member of the angiopoietin-related 

family, and has been reported to play a crucial role in regulating angiogenesis and 

glucolipid metabolism (Hato et al., 2008). Regulation of ANGPTL4 gene expression has been 

reported to be mediated via PPARs and HIF-1α (La Paglia et al., 2017). Thus, considered to 

be a PPARα response gene (Figure 6).

LSS: The protein encoded by the LSS gene catalyzes the conversion of (S)-2,3 oxidosqualene 

to lanosterol in the cholesterol biosynthesis pathway (Wada et al., 2020). Member of the  

downregulated gene set ‘Cholesterol biosynthesis’ (Figure 4A). 

HMGCR: The gene codes for HMG-CoA reductase, the rate-limiting enzyme in the 

cholesterol biosynthetic pathway, which catalyzes the conversion of HMG-CoA to 

mevalonic acid (Luskey and Stevens, 1985). Member of the downregulated gene set 

‘Cholesterol biosynthesis’ (Figure 4A). Highly downregulated even at relatively low PFOS 

concentrations (Figure 5).

OAT5: Organic anion transporter 5 (OAT5) is an anion exchanger. Expression in the liver 

has been reported to be regulated via hepatocyte nuclear factor-1α (HNF-1α) (Klein et al., 

2010). Highly downregulated even at relatively low PFOS concentrations (Figure 5).

THRSP: Thyroid hormone responsive (THRSP) is primarily a nuclear protein that plays a role 

in the regulation of lipid metabolism. Expression has been reported to be downregulated 

upon fasting (Kuemmerle and Kinlaw, 2011). Highly downregulated even at relatively low 

PFOS concentrations (Figure 5).

CXCL10: C-X-C motif chemokine ligand 10 (CXCL10) is a chemokine capable of stimulation 

of monocytes, natural killer cell and T-cell migration, regulation of T-cell and bone marrow 

progenitor maturation, modulation of adhesion molecule expression, and inhibition 

of angiogenesis (Neville et al., 1997). Highly downregulated even at relatively low PFOS 

concentrations (Figure 5).

Effects of 18 PFASs on expression of selected genes

In order to determine the relative potencies of the 18 PFASs, HepaRG cells were exposed for 

24 h to increasing concentrations of the 18 PFASs shown in Figure 1. After exposure, RNA was 

collected and used for RT-qPCR analysis of the ten selected genes. Supplementary Figure 7 

shows concentration-response data of these genes for PFOS, PFOA and HPFO-TA, the latter 

being the PFAS that was found to be most potent in the present study based on cell viability 
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and triglyceride accumulation as well as for gene expression modulation. Concentration-

response data for the 18 PFASs for all genes are presented in the Supplementary Materials. 

These data were then used to perform PROAST dose-response analysis using parallel curve 

fitting to obtain in vitro RPFs related to PFAS-induced gene expression changes. For the 

selected genes, only for OAT5 RPFs could be obtained for all tested PFASs (18 including 

PFOA). For CXCL10 and THRSP, RPFs were obtained for 14 PFASs, for LSS, HMGCR and 

ANGPTL4 for 13 PFASs, for ATF4 and PDK4 for 12 PFASs, and for SLC7A11 and YARS1 for 11 

PFASs. Figure 7 presents the RPFs based on gene expression data for PDK4, HMGCR, OAT5 

and THRSP. RPFs for all genes are presented in Supplementary Figure 8.

FIGURE 7 In vitro RPFs based on PROAST dose-response analysis of gene expression and AdipoRed data obtained from HepaRG 

cells exposed to various PFASs. RPFs are presented as vertical lines, with the 5% lower bound and 95% upper bound of the confidence 

interval as whiskers. PFOA was used as index chemical, i.e., has an RPF of 1 (dotted line). NA: not applicable, RPF could not be 

determined.

Gene-specific differences in RPF values were observed, although some general patterns 

could be identified. In general, RPFs obtained for the PPAR response genes PDK4 and 

ANGPTL4 were similar, but differed for many PFASs from RPFs obtained from the other 
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genes (Supplementary Figures 8 and 9). For PDK4 and ANGPTL4, all studied PFASs, except 

HFPO-TA, were less potent than PFOA. For the majority of the other genes (ATF4, SLC7A11, 

YARS1, LSS, HMGCR, OAT5, and THRSP), PFNA, PFDA, PFUnDA, PFDoDA, PFHpS, PFOS and 

HFPO-TA were consistently more potent than PFOA, and PFHpA, PFHxS and PFDS less 

potent than PFOA.

For PFNA, PFHxS, PFOS, and HFPO-TA in vitro RPFs were obtained for all readouts 

(AdipoRed data and gene expression data), whereas for other PFASs this was not the case 

(Supplementary Figure 9). Of these 4 PFASs, RPFs related to all in vitro readouts were 

smaller than 1 for PFHxS.  RPF patterns of PFPeA, PFHxA, PFHpA, PFBS, PFDS and HFPO-

DA were similar as for PFHxS, i.e., having in general RPFs lower than 1 (Supplementary 

Figure 9). HFPO-TA was the only PFAS tested for which all in vitro RPFs were found to be 

larger than 1. For PFNA, RPFs related to expression of PPAR response genes (PDK4 and 

ANGPTL4) were smaller than 1, whereas these were larger than 1 for the other readouts. 

For PFOS, potencies for the two PPAR response genes and CXCL10 were lower than that 

of PFOA, whereas for other genes these were similar or slightly higher. PFHpS showed a 

similar RPF pattern as that of PFOS, as well as PFDoDA, although for the latter PFAS no 

RPFs could be determined for the PPAR response genes (Supplementary Figure 8). For the 

longer-chain PFASs PFTeDA, PFHxDA and PFODA, RPFs were only obtained for 2, 4 and 5 

readouts, respectively (Supplementary Figure 6).

Comparison in vitro RPFs with internal in vivo RPFs

We then performed a Spearmann correlation analysis using GraphPad Prism 9 to assess 

whether potency rankings obtained with different readouts are correlated and to assess 

whether certain in vitro-based potency rankings correlated with in vivo potency rankings 

based on reported external in vivo RPFs (Bil et al., 2021; 2022a) or internal in vivo RPFs 

(Bil et al., 2022b). The results of the correlation analysis point to a reasonable correlation 

between most of the in vitro RPFs, except for ANGPTL4 and PDK4, both PPAR target genes 

(Supplementary Figure 10). A reasonable correlation was found between the in vitro RPFs 

based on CXCL or OAT5 expression and external in vivo RPFs (Supplementary Figure 10). 

Regarding internal RPFs, the best correlation was found for HMGCR expression, but it must 

be noted that this was only based on data for 4 PFASs. Figure 8 presents the external and 

internal in vivo RPFs in comparison with the in vitro RPFs for OAT5 and CXCL10 expression, 

and OAT5 and HMGCR expression, respectively. Although in vitro RPFs based on changes 

in OAT5 expression correlated well with external in vivo RPFs (Supplementary Figure 10), 

PFHxDA and PFODA are major outliers, showing in vitro RPFs > 1 and in vivo external RPFs 

< 0.1 (Figure 8A). The slightly better correlation between in vitro RPFs based on CXCL10 

expression and external in vivo RPFs (Supplementary Figure 10), may relate to the fact that 

for PDHxDA and PFODA, no in vitro RPFs could be obtained (Supplementary Figures 8 and 

9), being therefore excluded from the correlation analysis. In vitro RPFs correlated to a lesser 

extent to internal RPFs than to external RPFs (Supplementary Figure 10), showing the best 

correlation for RPFs based on HMGCR expression (Figure 8B). As indicated above, this was 
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only based on data for 4 PFASs. When comparing in vitro RPFs based on OAT5 with internal in 

vivo RPFs, it becomes clear that PFHxA and HFPO-DA are the main outliers, showing in vitro 

RPFs < 0.1 and in vivo RPFs > 1 (Figure 8B). All in vitro and in vivo RPFs used for these analyses 

are presented in an Excel-file that can be found in the Supplementary Materials.

FIGURE 8 Comparison of A) in vitro RPFs based on OAT5 or CXCL10 gene expression data with reported external RPFs for PFAS-

induced liver toxicity in rats and B) in vitro RPFs based on OAT5 or HMGCR gene expression data with reported internal RPFs for 

PFAS-induced liver toxicity in rats.

Discussion

The present study evaluated the in vitro toxicity of 18 PFASs in human HepaRG liver 

cells, by studying the effects on cellular triglyceride accumulation and gene expression 

changes, and assessed whether these in vitro data can be used to obtain insight into potency 

differences regarding hepatotoxicity of PFASs. In vitro RPFs could be obtained for 8 PFASs 

(including index chemical PFOA) based on the triglyceride accumulation data, whereas 

for the selected genes in vitro RPFs could be obtained for 11-18 PFASs (including index 
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chemical PFOA). Only for PFNA, PFHxS, PFOS, and HFPO-TA in vitro RPFs were obtained for 

all readouts. For the readout OAT5 expression, in vitro RPFs were obtained for all PFASs. In 

vitro RPFs were found to correlate in general well with each other (Spearman correlation) 

except for the PPAR target genes ANGPTL4 and PDK4. Comparison of in vitro RPFs with 

reported in vivo RPFs in rats indicate that best correlations (Spearman correlation) were 

obtained for in vitro RPFs based on OAT5 and CXCL10 expression changes and external in vivo 

RPFs. HFPO-TA was found to be the most potent PFAS tested, being around 10-fold more 

potent than PFOA. 

To assess effects of PFASs on triglyceride accumulation, we applied the AdipoRed assay. 

Interestingly, we found for the PFASs a more pronounced effects (and better concentration-

dependent effects) upon a 24-h exposure than upon a 72-h exposure, in contrast to 

cyproconazole, for which a 72-h exposure was found to show most effects, and which was 

used as a model steatotic compound in an in vitro study on adverse outcome pathway (AOP)-

driven analysis of liver steatosis (Luckert et al., 2018). This may relate to different modes 

of action underlying chemical-induced steatotic effects, as indicated by the available 

AOPs on this endpoint (Vinken, 2013; 2015; Mellor et al., 2016). It is of interest to note that 

upon a 72-h exposure, the AdipoRed signal returned in various exposure conditions for 

PFHxS and PFOS to the same levels as in the solvent control (Supplementary Figure 4). The 

toxicological meaning of that finding is not clear, but it may point to a possible cellular 

response to increased cellular triglyceride levels at earlier time points. Various studies 

have shown PFAS-induced increased hepatic triglyceride levels in experimental animals. 

PFOA, PFNA, PFHxS and PFOS have been shown to increase hepatic triglycerides in male 

mice (Bijland et al., 2011; Das et al., 2017; Huck et al., 2018; Hui et al., 2017; Wan et al., 

2012). As indicated in recent Opinions of the EFSA CONTAM Panel, thorough knowledge of 

the mode of action underlying the development of hepatocellular steatosis in PFAS-treated 

rodents is missing (EFSA CONTAM Panel 2018; 2020). 

Although we identified some genes that can be considered relevant readouts to screen PFASs 

for possible liver toxicity, one would like to mechanistically relate the gene expression 

change(s) to adverse effects to the liver. Ideally such gene expression changes would be 

a key event (KE) of an AOP related to liver toxicity. The AOP-wiki was consulted to assess 

whether in vitro effects measured in the present study are part of (putative) AOPs related to 

liver toxicity (https://aopwiki.org/; latest access: 28-12-2022). Of the in vitro readouts of the 

present study, triglyceride accumulation was found in the AOP-wiki as proposed key event 

related to liver steatosis. In light of the possible endoplasmic reticulum stress induced by 

the PFASs tested (indicated by activation of ATF4 signalling), it is of interest to note that the 

updated AOP on liver steatosis (from Mellor et al. (2016) based on earlier work of Vinken 

(2013; 2015) includes an induction of endoplasmic reticulum stress as a key event following 

increase of triglyceride accumulation. The selected genes are not present as key events in 

the AOPs present in the AOP-wiki, but it may still be possible that changes in expression of 

the genes can be related to certain KEs of relevance for liver toxicity, which would require 
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a more extensive assessment. In the Supplementary Materials, some more information on 

the possible link of gene expression changes of the selected genes assessed in the present 

study in relation to (liver) toxicity is provided.

When comparing RPFs obtained for the different readouts, it was shown that for most 

readouts good correlations were found. Correlations were rather poor, though, for the 

PPAR response genes PDK4 or ANGPTL4 and the other readouts. It must be noted that for the 

8 genes for which the RPFs correlate well, still considerable differences in RPFs are found. 

It is difficult to select one gene that would provide the best data on relative potencies, and 

it can be expected that the study set-up, including the choice of exposure time (24 h in the 

present study) will affect the RPFs obtained. The data should therefore rather be used to 

obtain a general indication of whether a certain PFAS is expected to be a relatively potent 

hepatotoxicant or whether it will be of less concern related to its hepatotoxic effects. As 

we obtained RPFs for all PFASs based on changes in OAT5 expression, the comparison of 

OAT5-based RPFs with available external and internal RPFs reported in the literature is 

of specific interest (Figure 8). From that comparison, in vitro RPFs were in general good 

in line with RPFs based on in vivo studies, with most striking exceptions for PFHxDA and 

PFODA for external RPFs and PFHxA and HFPO-DA for internal RPFs. The discrepancy for 

PFHxDA and PFODA regarding external RPFs (high in vitro RPFs vs low external in vivo RPFs) 

may relate to a relatively low systemic uptake of these large molecules upon oral exposure. 

Relative differences in systemic exposure is accounted for by using internal RPFs, for which 

kinetic models were applied to estimate internal exposure (Bil et al., 2022b). Internal RPFs 

are, however, not available for PFHxDA and PFODA. The discrepancy for PFHxA and HFPO-

DA regarding internal RPFs (low in vitro RPFs vs high internal in vivo RPFs) is more difficult 

to explain. It is of interest to further investigate these in vitro-in vivo differences in future 

studies. They may, amongst others, relate to possible species differences in PFAS-induced 

effects on the liver (Fragki et al., 2021). Of course, also differences in exposure duration 

or other differences between the in vitro and in vivo situation may play a role. Studies that 

assess possible species differences in human and rat liver cells in vitro may shed more light 

on this. It shall be noted here that the evaluation of the predictive capability of in vitro 

assays should not necessarily be based on a comparison to animal in vivo data (van der Zalm 

et al., 2022). Ideally, one would like to compare the in vitro HepaRG data with effect data 

in humans. Epidemiological evidence has correlated PFOS and PFOA exposure to a small 

elevation in serum levels of the hepatic enzyme ALT (alanine transferase), a biomarker for 

liver damage (Gallo et al., 2012). As indicated before, whether that limited increase in ALT 

is causal and reflects serious liver damage is questionable. Also, data on other PFASs are 

scarce or lacking, making these in vitro human vs in vivo human comparisons cumbersome. 

It would be interesting to compare the present in vitro potency ranking from human 

HepaRG cells with similar data obtained from rodent hepatic cells, which may provide 

possible insights into species-dependent differences in toxicodynamics. To obtain in vivo 

relative potencies based on in vitro toxicity data, information on toxicokinetics should be 

included in the assessment. In that regard, we have been working on the quantitative in 
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vitro to in vivo extrapolation (QIVIVE) of the toxicity data of PFOA, PFNA, PFHxS and PFOS, 

translating cell-associated PFAS levels to oral equivalent doses using physiologically based 

kinetic (PBK) modelling, providing information that will be of use in the assessment of 

relative potencies of PFASs in humans (Fragki et al., 2023).

Although the main aim of this study was to select in vitro readouts related to liver toxicity that 

can be used to determine in vitro potency differences for PFASs, the obtained concentration-

response microarray data may be of use to increase our insights into mechanisms related 

to the liver toxicity of PFASs in humans. The BMDExpress analysis indicated 18 gene sets 

to be upregulated and 90 gene sets to be downregulated. Many of the regulated gene sets 

are related to cholesterol biosynthesis and lipid metabolism as also indicated by Rowan-

Carroll et al. (2021), who assessed the concentration- and time-dependent effects of 

PFOA, PFBS, PFOS and PFDS on gene expression in human primary hepatocyte spheroids. 

In a later study, this work was extended to include more PFASs and to estimate relative 

potencies (Reardon et al., 2021), testing carboxylates (PCFAs), sulfonates (PFSAs) and 

fluorotelomers and sulfonamides. In general, PFCAs and PFSAs caused gene expression 

changes with increased potency with increasing carbon chain-length (Reardon et al., 2021), 

being in line with findings for some of the genes in the present study. In general, effective 

concentrations in the present study are for most genes in the high micromolar range, which 

are not expected to be reached in vivo in relevant exposure scenarios. Rowan-Carroll et al. 

(2021) and Reardon et al. (2021) found effects at low micromolar concentrations, which 

may relate to the difference in test system used (2D culture HepaRG cells in present study 

vs. 3D primary hepatocyte model) as well as difference in exposure duration (24 h vs. up to 

14 days in the study of Rowan-Carroll et al. (2021) and up to 10 days in the study of Reardon 

et al. (2021). We recently showed that HepaRG cells cultured in an organ-on-a-chip device 

can be cultured for at least 8 weeks, allowing chronic exposure studies (Duivenvoorde et 

al., 2021). Such long-term studies may provide more insights into effects at more relevant 

human effect concentrations, but given the low throughput, such models are less suitable 

for screening a large number of PFASs. 

Of the PFASs tested in the present study, HFPO-TA was shown to be the most potent. 

Sheng et al. (2018) assessed the effects of HPFO-TA in mice and concluded it to be a potent 

hepatotoxicant, causing hepatomegaly, necrosis, and increase in serum ALT, as well as 

a dose-dependent decrease in total cholesterol and triglycerides in the liver, and they 

concluded it to be more potent than PFOA, which was tested in an earlier study from the 

same group (Yan et al., 2014). In 2017, Pan and coworkers were the first to report on the 

environmental occurrence (Xiaoqing River in China), bioaccumulation (in carp) and 

presence in human serum of HFPO-TA, concluding that the emerging usage of HFPO-TA in 

the fluoropolymer manufacturing industry raises concerns about its toxicity and potential 

health risks to aquatic organisms and humans (Pan et al., 2017). In a more recent study, 

HFPO-TA was measured in the serum of residents living near a fluorochemical plant in 

Shandong, China, showing median serum concentrations of ~2 ng/mL (low pM range), 
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almost 100 times lower than the median PFOA serum concentrations of these individuals 

(Yao et al., 2020). Based on our in vitro studies, which seems to be in line with the limited 

in vivo evidence (Sheng et al., 2018), HFPO-TA is a rather toxic PFAS, suggesting that its 

production and/or application should be discouraged and that human exposure should 

be prevented.

Altogether, the present study shows an approach to select in vitro gene expression readouts 

in HepaRG cells that can be used to obtain information on relative potencies of PFASs 

related to liver toxicity in vitro. It may be concluded that the HepaRG model may provide 

relevant data to provide insight into which PFASs are relevant regarding their hepatoxic 

effects and that it can be applied as a screening tool to prioritize other PFASs for further 

hazard and risk assessment.
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Supplementary Material

SUPPLEMENTARY TABLE 1 Suppliers, purity, catalog numbers, CAS numbers and maximum concentrations of PFASs tested 

in the present study.

PFAS Full name Supplier Purity
Catalog 
number

CAS 
number

Highest tested 
concentration 

(µM)

PFPeA perfluoropentanoic acid Sigma-Aldrich 97% 396575-5ML 2706-90-3 400

PFHxA perfluorohexanoic acid
Synquest 

laboratories 
97% 2121-3-39 307-24-4 400

PFHpA perfluoroheptanoic acid Sigma-Aldrich 99% 342041-5G 375-85-9 400

PFOA perfluorooctanoic acid Sigma-Aldrich 95% 171468-5G 335-67-1 400

PFNA perfluorononanoic acid Sigma-Aldrich 99% 91977-50MG 375-95-1 400

PFDA perfluorodecanoic acid Sigma-Aldrich 98% 177741-5G 335-76-2 400

PFUnDA perfluoroundecanoic acid Sigma-Aldrich 95% 446777-5G 2058-94-8 400

PFDoDA perfluorododecanoic acid Sigma-Aldrich 95% 406449-1G 307-55-1 100

PFTeDA perfluorotetradecanoic acid Sigma-Aldrich 96% 446785-5G 376-06-7 100

PFHxDA perfluorohexadecanoic acid abcr GmbH 95% AB 108458 67905-19-5 25

PFODA perfluorooctadecanoic acid abcr GmbH 95% AB 108482 16517-11-6 25

PFBS perfluorobutane sulfonate Sigma-Aldrich 97% 562629-5G 375-73-5 400

PFHxS perfluorohexane sulfonate
Synquest 

laboratories 
95% 6164-3-2T 355-46-4 400

PFHpS perfluoroheptane sulfonate
Synquest 

laboratories 
99% 6164-3-2S 375-92-8 400

PFOS perfluorooctane sulfonate
Synquest 

laboratories 
97% 6164-3-08 1763-23-1 400

PFDS perfluorodecane sulfonate

Toronto 

Research 

Chemicals

* P286540 335-77-3 200

HFPO-DA 

(GenX)

hexafluoropropylene oxide 

dimer acid

Synquest 

laboratories 
97% 2121-3-13 13252-13-6 400

HFPO-TA
hexafluoropropylene oxide 

trimer acid
abcr GmbH 97% 164194-5G 13252-14-7 400

* Information on purity not provided by supplier.

SUPPLEMENTARY FIGURE 1 HFPO-DA and 

HFPO-TA levels in culture medium upon 0, 6 or 24 hour 

incubation. 
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SUPPLEMENTARY FIGURE 2 Effect of 72-h 

exposure to PFOA, PFNA, PFHxS or PFOS on viability 

of HepaRG cells as determined with the WST-1 assay 

and expressed as percentage of the solvent control 

(0.5% DMSO). Data are presented as mean ± SD of 

three independent experiments (using per independent 

experiment the mean of three technical replicates).

SUPPLEMENTARY FIGURE 3 Effect of 24-h exposure to PFASs on viability of HepaRG cells as determined with the WST-1 

assay and expressed as percentage of the solvent control (0.5% DMSO). Data are presented as mean ± SD of three independent 

experiments (using per independent experiment the mean of three technical replicates).
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SUPPLEMENTARY FIGURE 4 Effect of 24-h 

or 72-h exposure to cyproconazole, PFOA, PFNA, 

PFHxS or PFOS on triglyceride levels in HepaRG cells 

as determined with the AdipoRed assay and expressed 

as percentage of the solvent control (0.5% DMSO). 

Data are presented as mean ± SD of three independent 

experiments (using per independent experiment the 

mean of three technical replicates).
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SUPPLEMENTARY FIGURE 5 Effect of 24-h exposure to PFASs on triglyceride levels in HepaRG cells as determined with 

the AdipoRed assay and expressed as percentage of the solvent control (0.5% DMSO). Data are presented as mean ± SD of three 

independent experiments (using per independent experiment the mean of three technical replicates).
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SUPPLEMENTARY FIGURE 6 Concentration-response microarray data of PFOS for selected genes to determine in vitro 

potency differences of PFASs. Average values and standard deviations of data from three independent studies are presented.
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SUPPLEMENTARY FIGURE 7Concentration-response data of PFOA- (black triangles), PFOS- (white squares) and HFPO-

TA- (grey circles) induced effects on the expression of selected genes based on RT-qPCR analysis. Average values of data from three 

independent studies are presented.   
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SUPPLEMENTARY FIGURE 8 In vitro RPFs based 

on PROAST dose-response analysis of ATF4, SLC7A11, 

YARS1. PDK4, ANGPTL4, LSS, HMGCR, OAT5, 

THRSP and CXCL10 gene expression data obtained 

from HepaRG cells exposed to various PFASs. RPFs are 

presented as vertical lines, with the 5% lower bound 

and 95% upper bound of the confidence interval as 

whiskers. PFOA was used as index chemical, i.e., has 

an RPF of 1 (dotted line). NA: not applicable, RPF could 

not be determined.
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SUPPLEMENTARY FIGURE 9 In vitro RPFs 

based on PROAST dose-response analysis of gene 

expression and AdipoRed data obtained from HepaRG 

cells exposed to various PFASs. RPFs are presented as 

vertical lines, with the 5% lower bound and 95% upper 

bound of the confidence interval as whiskers. PFOA 

was used as index chemical, i.e., has an RPF of 1 (dotted 

line). NA: not applicable, RPF could not be determined.
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SUPPLEMENTARY FIGURE 10 Results of Spearman correlation analysis performed using Graphpad Prism 9, presenting 

obtained r-values (A) and p-values (B). Correlation with both an r-value > 0.8 and a p-value < 0.05 are accentuated by a black 

border.
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Information on selected genes and possible relation to liver toxicity

OAT5

Limited information on the function and regulation of expression of OAT5 is available. 

Klein et al. (2010) showed that OAT5 expression in the liver is regulated via HNF-1α. A 

downregulation of OAT5 may therefore relate to a downregulation and/or diminished 

action of HNF-1α. Interestingly, HNF-1α was shown to be an essential regulator of bile acid 

and plasma cholesterol metabolism in mice (Shih et al., 2001). An important role of HNF-

4α deregulation in PFAS-induced disturbance of lipid homeostasis has been suggested 

(recently reviewed by Fragki et al., 2021). Diminished HNF-1α activity may be linked to 

diminished HNF-4α activity, as HNF-4α has been shown to act as an HNF-1α coactivator 

(Eeckhoute et al., 2014). This may indicate that PFAS-induced OAT5 downregulation is 

possibly (also) accomplished through PFAS-induced diminished HNF-4α activity, but 

more focused studies would be required to conclude on this, which was out of the scope of 

the present study. It is of interest to mention that HNF-4α is a transcriptional activator of 

the rate-limiting enzyme CYP7A1 in the bile acid biosynthesis (Miao et al. 2006). Although 

not selected here as a basis for the RPF derivation, CYP7A1 was downregulated by PFOS in 

the present study (Figure 5). Reduction of CYP7A1 expression has been observed before 

in HepaRG cells (Behr et al., 2020, Louisse et al., 2020), but also in human hepatocytes 

(Beggs et al. 2016) after exposure to PFASs. Currently, an AOP is under development on 

‘HNF4alpha suppression leading to hepatic steatosis’ (access AOP-wiki 18-07-2022).

ATF4, SLC7A11, YARS1

Upon endoplasmic reticulum stress and/or amino acid starvation (Harding et al., 2000), 

genes that play a role in cell recovery, adaptation to stress conditions, and restoration of 

cell homeostasis are upregulated by the transcription factor ATF4 (Rozpedek et al., 2016). 

SLC7A11 and YARS1 have been described to be regulated by ATF4 (Adams, 2007; Shan et al., 

2016; Krokowski et al., 2013; Han et al., 2013). Various of the PFASs tested in the present 

study caused an increase in the expression of ATF4, SLC7A11 and/or YARS1. The SLC7A11 

gene codes for an amino acid transporter, and the YARS1 gene codes for the aminoacyl-

tRNA synthetase (ARS) that catalyzes the aminoacylation of tRNA with tyrosine. Although 

these processes may not directly play a role in liver toxicity, they may point to (PFAS-

induced) endoplasmic reticulum stress and/or amino acid starvation that can be related 

to adverse effects to the liver. PFOA-induced endoplasmic reticulum stress in the liver has 

been reported in vivo in mice, and related liver toxicity was attenuated by the endoplasmic 

reticulum stress inhibitor 4-phenylbutyrate (Yan et al., 2015). Also other studies point to 

a possible role of endoplasmic reticulum stress in liver disease (Malhi and Kaufman, 2011; 

Maiers and Malhi, 2019).
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PDK4 and ANGPTL4

PDK4 and ANGPTL4 are PPARα-response genes, where it must be noted that PDK4 

expression is also regulated by retinoic acid receptors (Kwon and Harris, 2004). The 

present study shows that the PFCAs and PFSAs up to C10/C11 are activators of PDK4 and 

ANGPTL4 expression, whereas the longer chain PFASs (PFDoDA, PFTeDA, PFHxDA, PFODA 

and PFDS) are not. PPARα activity of the shorter chain PFASs has been reported before 

by Behr et al. (2020), whereas they did not test the effects of the longer chain PFAS that 

were not active in our study. Interestingly, the long-chain PFASs have been reported to be 

rather potent in vivo with regard to liver toxicity, which may suggest that liver toxicity is 

not necessarily related to PPARα activation. Although PPARα activation has been suggested 

to play a role in certain adverse effects to the liver, it is not typically related to the relative 

liver weight increase which was the endpoint used for RPF derivation based on in vivo 

studies (Bil et al., 2021; 2022a; 2022b; Hall et al., 2012).

HMGCR and LSS

HMGCR and LSS are cholesterogenic genes that were already found to be downregulated 

by PFOA, PFOS and PFNA in our previous study (Louisse et al., 2020). Various human 

(epidemiological) studies have reported a relationship between PFOA/PFOS (internal) 

exposure and increased cholesterol levels, but the causality is debated, and an established 

mode of action supporting such a relationship is lacking (Fragki et al., 2021). The 

downregulation of these genes found in HepaRG cells may at first seem better in line 

with the reported PFOA-induced decrease in cholesterol as observed in late-stage cancer 

patients in a phase I dose-escalation trial exposed to high doses of PFOA for six weeks 

(Convertino et al., 2018) as well as the PFAS-induced decrease in cholesterol in several 

animal studies (see review in Fragki et al. (2021)). On the other hand, suppressed de novo 

biosynthesis of cholesterol may point to an increase in intrahepatic cholesterol (Brown 

and Goldstein, 1997; Feingold et al. 2000; DeBose-Boyd, 2008). It is of importance to note 

that processes involved in regulation of cholesterol homeostasis in vivo are complex, and 

extrapolation of findings from a single cell model in vitro to consequences for in the in vivo 

situation is not straightforward.

CXCL10

CXCL10 may play a role in liver disease, but this is reported to be related to interaction with 

the immune system, playing a role in inflammation reactions upon liver damage (Chen et 

al., 2013). The impact of a decrease in CXCL10 gene expression in liver cells upon PFAS 

exposure as observed in the present study on liver function is not known. It is, however, 

tempting to speculate about a possible role of a decrease in CXCL10 on the immune 

system, as an immunotoxic effect (decreased response to vaccination) has been selected 

as the critical endpoint for derivation of the health based guidance value of combined 

exposure to PFOA, PFNA, PFHxS and PFOS by EFSA (EFSA CONTAM Panel, 2020). CXCL10 

is a chemokine playing a role in the stimulation and migration of immune cells and the 
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regulation of T-cell and bone marrow progenitor maturation (Neville et al., 1997). PFOA and 

PFOS were shown before to decrease CXCL10 gene expression in primary human liver cells 

(Beggs et al., 2016) and to decrease CXCL10 excretion by human bronchial epithelial cells 

(HBEC3-KT cell line) (Sørli et al., 2020). CXCL10 has been shown to work as an adjuvant, 

i.e., triggering an immune response to injected antigens in a mouse model (Krathwohl 

and Anderson, 2006). It is therefore tempting to speculate on a possible role of PFAS-

induced CXCL10 suppression in the decreased vaccine response in humans (Grandjean 

et al., 2012; Abraham et al., 2020) and the decreased T-cell-dependent antibody response 

(TDAR) in experimental animals (Peden Adams et al., 2008; DeWitt et al., 2008; DeWitt et 

al., 2009; Dong et al., 2009), given that the mode of action underlying the immunotoxicity 

of PFASs has not been unraveled yet. CXCL10 has been shown to be directly involved in 

the generation of a parasite specific CD8+ T cell-mediated immune response in mice, 

evidenced by a significant reduction of CD8+ T cells in mice depleted of CXCL10 (Majumder 

et al., 2012). A PFAS-induced decrease in CXCL10 has not been reported in vivo, so any role 

in the immunotoxicity of PFASs is to be further investigated.

THRSP

THRSP has been reported to be involved in the regulation of lipid metabolism. It is induced 

by thyroid hormone, progestin, glucose and estradiol (Kuemmerle and Kinlaw, 2011: Ren 

et al., 2017). Expression has been reported to be downregulated upon fasting. A role of 

THRSP in PFAS-induced hepatotoxicity has not been described. Thrsp was up-regulated 

in livers of two mouse models (db/db mice and high-fat-diet-fed mice) for studying 

nonalcoholic fatty liver disease pathogenesis (Wu et al., 2013). This study also showed 

that hepatic overexpression of Thrsp increased triglyceride accumulation with enhanced 

lipogenesis in livers of C57Bl/6 mice, and that hepatic Thrsp gene silencing attenuated 

the fatty liver phenotype in db/db mice. THRSP expression has been reported to be 

regulated via various transcription factors, such as TH, PXR and CAR. Our previous study, 

compared the expression changes induced by PFOA, PFNA and PFOS in HepaRG cells with 

data published by Wigger et al. (2019) on the LXR agonist GW3965. Whereas the PFASs 

decreased THRSP expression, the LXR agonist GW3965 increased THRSP expression. Also 

various other genes induced by GW3965 were downregulated by the PFASs, suggesting a 

PFAS-induced downregulation of LXR-regulated genes. LXR activation has been described 

as the molecular initiating event in an AOP for liver steatosis (Vinken, 2015). A a role of 

inhibition of LXR-mediated gene expression in chemical-induced liver toxicity has not 

been described.
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Abstract

Per- and polyfluoroalkyl substances (PFASs) have been associated with increased blood 

lipids in humans. Perfluorooctanoic acid (PFOA) has been also linked with elevated 

alanine transferase (ALT) serum levels in humans, and in rodents the liver is a main target 

organ for many PFASs. With the focus on New Approach Methodologies, the chronic oral 

equivalent effect doses were calculated for PFOA, PFNA (perfluorononanoic acid), PFHxS 

(perfluorohexanesulfonic acid) and PFOS (perfluorooctane sulfonic acid) based on in 

vitro effects measured in the HepaRG cell line. Selected in vitro readouts were considered 

biomarkers for lipid disturbances and hepatotoxicity. Concentration-response data 

obtained from HepaRG cells on triglyceride (TG) accumulation and expression changes 

of 12 selected genes (some involved in cholesterol homeostasis) were converted into 

corresponding human dose-response data, using physiologically based kinetic (PBK) 

model-facilitated reverse dosimetry. Next to this, the biokinetics of the chemicals were 

studied in the cell system. The current European dietary PFASs exposure overlaps with the 

calculated oral equivalent effect doses, indicating that the latter may lead to interference 

with hepatic gene expression and lipid metabolism. These findings illustrate an in vitro-in 

silico methodology, which can be applied for more PFASs, to select those that should be 

prioritized for further hazard characterization.  
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Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of synthetic 

chemicals, comprising more than 4700 members (OECD 2018), with a broad range of 

industrial and consumer applications. They all contain carbon-fluorine bonds, which 

impart to these substances unique physicochemical properties, rendering them non-

degradable in the environment and therefore, known as the ‘forever chemicals’. As such, 

PFASs contaminate soil, and groundwater, but also enter in the food chain via food and 

drinking water. Certain PFASs are known to persist for years in man (Bartell et al. 2010; 

Olsen et al. 2007; Zhang et al. 2013b) and have been associated with numerous adverse 

human health effects, including serum lipid perturbations, which are considered risk 

factors for cardiovascular disease (CVD), immunotoxicity, and developmental toxicity 

(ATSDR 2018; EFSA CONTAM Panel 2018b; 2020b). The use of two main family congeners, 

perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), as well as of their 

precursors, has been restricted within the EU (Regulation (EU) 2019/1021, 2020/784), but 

also globally (UNEP/POPS/COP.4/17 2009). Currently, the national authorities of five EU 

Member States are working on the restriction of all PFASs in the EU (https://www.rivm.

nl/en/pfas/pfas-news), whereas an EU ban of 200 group members will begin in February 

2023 (https://pfascentral.org/news/press-release-the-eu-bans-200-pfas-substances-

on-swedish-initiative). At the moment, human exposure data indicate that part of the 

European population is exposed to levels higher than the Tolerable Weekly Intake (TWI) 

established by European Food Safety Authority (EFSA) for the sum of four PFASs: PFOA, 

PFNA (perfluorononanoic acid), PFHxS (perfluorohexanesulfonic acid), and PFOS (EFSA, 

2020). This was further confirmed by recent human biomonitoring data obtained within 

the European HBM4EU project20.

In several epidemiological studies, increased serum levels of PFASs (PFOS, PFOA and PFNA) 

have been repeatedly associated with lipid disturbances, mainly seen as elevated blood 

cholesterol (total and Low Density Lipoprotein-Cholesterol: LDL-C) and (in some cases) 

triglycerides (TG) (Eriksen et al. 2013; Olsen et al. 2003a; Steenland et al. 2009). Still, these 

findings could not be linked to a corresponding adverse health outcome (like CVD) and 

contradict the evidence from animal toxicity studies, where much higher PFASs doses 

frequently decreased serum cholesterol and TGs, and increased intrahepatic lipid levels 

(steatosis) (recently reviewd by Fragki et al. 2021). Administration of very high PFOA doses 

to end-term cancer patients for 6-weeks was found to slightly reduce blood total cholesterol 

(Convertino et al. 2018), supporting that the divergent outcomes between humans and 

animals may be related to different PFASs exposure conditions (chronic low dose vs. short-

term high dose). It has been postulated that, next to the PFAS exposure levels, interspecies 

differences in lipid homeostasis, as well as toxicokinetics, may play a role in the observed 

species differences of PFAS-induced effects (Fragki et al. 2021). In parallel with the lipid 

perturbations, human studies have also associated PFAS exposure with a small elevation in 

20  HBM4EU data can be found here: EU HBM Dashboard – HBM4EU – science and policy for a healthy future. 

https://www.hbm4eu.eu/what-we-do/european-hbm-platform/eu-hbm-dashboard/
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serum levels of the hepatic enzyme ALT (alanine transferase), a liver damage biomarker (Gallo 

et al. 2012b). These results are in line with the observations from animal studies, where liver 

toxicity is one of the most commonly recorded effects, exhibited as increased liver weight 

(hypertrophy and hyperplasia), steatosis, or even necrosis (Bil et al. 2021; NTP 2019a; 2019b). 

Nevertheless, this information is only available for a small number of the PFASs.

Given the large number of existing PFASs and the lack of in vivo toxicity data for the majority 

of the congeners, application of novel approach methodologies (NAMs), combined with 

information on (estimated) exposure, may assist in their toxicological screening and 

prioritization for further hazard assessment. NAMs are emerging tools in chemical risk 

assessment, which include in vitro approaches and in silico approaches or combinations 

thereof (Ball et al. 2022; Carmichael et al. 2022b; Dent et al. 2021b; Punt et al. 2020). 

For the case of PFASs, in vitro toxicity readouts to build such NAMs may be obtained from 

studies with human hepatocytes or liver cell lines, considering their potential for causing 

hepatotoxicity and the liver playing a fundamental role in the regulation of cholesterol 

and lipid homeostasis. Exposure of human HepaRG liver cells (Behr et al. 2020a; Louisse 

et al. 2020b) (also Louisse et al. 2023, in press), and human primary hepatocyte spheroids 

(Reardon et al. 2021; Rowan-Carroll et al. 2021), to various PFASs was shown to induce 

a downregulation of several genes related to the cholesterol biosynthesis pathway, 

cholesterol uptake from the liver and SREBP21 signaling. Additionally, PFOS and PFOA were 

shown to strongly decrease bile acid synthesis, the main catabolic product of cholesterol 

(Behr et al. 2020a) and induce a concentration-dependent increase in TG accumulation in 

HepaRG cells  (Louisse et al. 2020b) (Louisse et al. 2023, in press). 

Application of NAMs for human health risk assessment should also include a quantitative 

interpretation of the in vitro toxicity data in the context of the intact human. In vitro 

concentrations have to be extrapolated into the equivalent PFASs serum levels, and 

corresponding external exposure, i.e. the oral equivalent doses. This extrapolation, known 

as QIVIVE (quantitative in vitro to in vivo extrapolations), needs the integration of human 

toxicokinetics and, preferably, the biokinetics of the in vitro system. In this manuscript, 

a PFAS QIVIVE approach is presented and applied to in vitro concentration-response data 

of PFAS-induced TG accumulation and changes in expression of selected genes in the 

HepaRG cell line. Genes were selected on the basis of concentration-response data from 

whole-genome gene expression studies with PFOS-exposed HepaRG cells (see Louisse et 

al. 2023, in press) and represented various biological processes and cellular pathways, 

including those related to cholesterol homeostasis. As a case study, data on four members 

of the PFASs family were used: PFOA, PFNA, PFHxS and PFOS. Chemical toxicokinetics 

were implemented in the QIVIVE following a reverse dosimetry approach facilitated by 

physiologically-based kinetic (PBK) modelling. For PFOA and PFOS the existing human 

21 SREBP: sterol regulatory element-binding protein; cellular cholesterol biosynthesis is regulated by 
intracellular cholesterol levels, which is mediated by SREBPs 1 and 2 DeBose-Boyd RA. 2008. Feedback 
regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of hmg coa reductase. 
Cell Res. 18(6):609-621, DeBose-Boyd RA, Ye J. 2018. Srebps in lipid metabolism, insulin signaling, and 
beyond. Trends Biochem Sci. 43(5):358-368.
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PBK models of Loccisano et al. (2011) were applied. The models were extended in order to 

describe the toxicokinetics of PFNA and PFHxS, based on information on their reported 

elimination half-lives (Olsen et al. 2007; Zhang et al. 2013b). A specific exposure scenario 

was considered to be of interest: a long (50-year) exposure in accordance with EFSA’s 

assessment (EFSA CONTAM Panel 2018b; 2020b). For PFOA specifically  a shorter 6-week 

exposure was applied in accordance with the Convertino clinical study (Convertino 

et al. 2018). Although in most reverse dosimetry approaches with PBK modelling, 

nominally applied in vitro concentrations are seen as the proxy for blood or target tissue 

concentrations (Fragki et al. 2022; Fragki et al. 2017; Li et al. 2017a; Louisse et al. 2017; 

Louisse et al. 2015), we put forward here the use of experimentally measured PFAS cell-

associated concentrations. As such, the biokinetics of PFASs in the HepaRG cells were 

assessed in the present study by determining time- and concentration-dependent cell-

associated concentrations of the chemicals. These data provided relevant in vitro dosimetry 

information for the QIVIVE. The QIVIVE resulted in the calculation of the chronic daily 

human intake, or else oral equivalent effect dose, corresponding with a (predefined) in 

vitro effect level. The calculated oral equivalent effect doses were compared to current 

chronic dietary human exposure estimates (EFSA CONTAM Panel 2020b). The results 

indicate that the current European dietary PFASs exposure overlaps with the calculated 

oral equivalent effect doses, suggesting that it may interfere with hepatic gene expression 

and lipid metabolism.

Materials and Methods

Test chemicals

Perfluorooctanoic acid (PFOA, 95% purity) and perfluorononanoic acid (PFNA, 99% purity) 

were obtained from Sigma-Aldrich (Zwijndrecht, The Netherlands). Perfluorohexane 

sulfonate (PFHxS, 95% purity) and perfluorooctane sulfonate (PFOS, 97% purity) were 

obtained from Synquest laboratories (Alachua FL, USA). All stocks were prepared in 100% 

dimethyl sulfoxide (DMSO HybriMax, Sigma-Aldrich).

HepaRG cell culture

The cell line human hepatic HepaRG was obtained from Biopredic International (Rennes, 

France) and it was cultured in growth medium consisting of William’s Medium E + 

GlutaMAX™ (ThemoFisher Scientific, Landsmeer, The Netherlands) supplemented with 

10% fetal bovine serum (FBS; Corning (35-079-CV), United States of America), 1% PS 

(100 U/mL penicillin, 100 µg/mL streptomycin; Capricorn Scientific, Ebsdorfergrund, 

Germany), 50 µM hydrocortisone hemisuccinate (sodium salt) (Sigma-Aldrich), and 5 

µg/mL human insulin (PAN™ Biotech). Seeding, trypsinization (using 0.05% Trypsin-

EDTA (ThermoFisher Scientific)) and maintenance of the cells was performed according 

to the HepaRG instruction manual from Biopredic International. HepaRG cells were 
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seeded in 24-well plates (Corning, Corning, NY; 55000 cells per well in 500 µL). The 

cells remained two weeks on growth medium, and thereafter, they were cultured for two 

days in growth medium supplemented with 0.85% DMSO so as to induce differentiation. 

Subsequently, cells were cultured for 12 days in growth medium supplemented with 1.7% 

DMSO (differentiation medium) for final differentiation. At this final stage, the cells were 

considered ready to be used for biokinetic studies. Cells that were not immediately used 

were kept on differentiation medium for a maximum of three additional weeks. Cell 

cultures were maintained in an incubator (humidified atmosphere with 5% CO
2
 at 37°C) 

and the medium was refreshed every 2–3 days during culturing. Prior to biokinetic studies, 

differentiated HepaRG cells were incubated for 24 h in assay medium (growth medium 

containing 2% FBS) supplemented with 0.5% DMSO, being the same as the conditions used 

in our previous in vitro studies studies (Louisse et al. 2023, in press).

In vitro biokinetic studies

 In vitro biokinetic studies were designed based on the study of Rosenmai et al. (2018), who 

assessed the cellular accumulation of PFASs in HepG2 cells. Test chemicals were diluted 

from 200-fold concentrated stock solutions in assay medium, providing exposure medium 

with a final DMSO concentration of 0.5%. PFOA and PFOS biokinetics were first assessed 

upon a nominal exposure to 6.25 µM for 5, 15, 60 minutes or 6 or 24 hours. Biokinetics of 

all PFASs were assessed upon a 24-hour exposure to 6.25, 12.5, 25, 50 and 100 µM. Cells 

were exposed to 550 µL exposure medium and at t=0, a 50 µL medium sample was taken 

from the well to allow for mass-balance analysis. At the desired time point, all remaining 

medium (500 µL) was removed. Medium samples were stored in Eppendorf vials at -80 °C 

and thawed when needed for LC-MS analysis. Cells were washed 5 times with Dulbecco’s 

Phosphate Buffered Saline (DPBS; ThermoFisher Scientific). Subsequently, 250 µL lysis 

buffer (Thermo Scientific, Waltham, MA) was added to lyse the cells. Cell lysates were 

stored in Eppendorf vials at -80 °C and thawed when needed for LC-MS analysis and for 

quantification of the protein concentration.

Sample preparation and LC-MS analysis

Methanol (850 µL) (Actuall Chemicals, Oss, The Netherlands) containing internal 

standards (13C
4
-PFOA, 13C

5
-PFNA, 18O

2
-PFHxS and 13C

4
-PFOS (Wellington Laboratories, 

Canada) was added to 50 µL cell lysate or medium sample. These dilutions were vortexed 

well before centrifugation at maximum speed for 10 minutes at 4 °C. PFAS concentrations 

in the supernatant were determined using LC-MS/MS analysis. If needed, samples were 

further diluted using methanol with internal standards. LC-MS/MS analysis was based on 

a Shimadzu UHPLC system containing: 2 pumps (LC 20AD xr); column oven (Shimadzu 

CTO-20AC); pump switch (Shimadzu FCV-11AL); degasser (Shimadzu DGU-20A3); and 

sample tray holder (Shimadzu SIL-20 AC XR model) (Shimadzu Corporation, Kyoto, 

Japan). An Acquity BEH-C18 analytical column (50 × 2.1 mm i.d., 1.7 µm, Waters, Milford, 

MA, USA) was used to separate the PFAS at a column temperature of 35°C. Additionally, a 

symmetry C18 analytical column (50 x 2.1 mm i.d., 5 µm, Waters, Milford, MA, USA) was 
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used as a guard column, placed between the pump and the injector valve to isolate and 

delay interferences out of the LC system. The mobile phase consisted of 2 mM ammonium 

acetate (Merck Millipore, Darmstadt, Germany) in Milli-Q water (prepared using a Milli-Q 

system with a resistivity of at least 18.2 M Ω cm−1 (Merck Millipore)) (mobile phase A) and 

Acetonitrile ULC/MS grade (Actu-All Chemicals, Oss, The Netherlands) (mobile phase B). 

The injection volume used was 20 µL. The chromatographic gradient was operated at a 

flow rate of 0.3 mL min-1 starting from 25% mobile phase B in the first 0.1 min, a linear 

increase to 100% B in 6 min with a final hold of 2.5 min. The gradient was returned to 25% 

B within 0.1 min for 3.9 min to equilibrate before the next injection, resulting in a total 

run of 12.5 min. 

Detection was carried out by MS/MS using a Sciex QTRAP 5500 system (Sciex, Framingham, 

MA, USA) in negative electrospray ionization (ESI-) mode, with the following conditions: 

ion spray voltage (IS) of -4500 V; curtain gas (CUR) of 30 L h-1; source temperature (TEM) 

of 350 °C; gas 1 (GS1) of 55 L h−1; gas 2 (GS2) of 60 L h−1; and collision gas (CAD) high. The 

PFAS were fragmented using collision induced dissociation (CID) using argon as target 

gas. The analyses were performed in multiple reaction monitoring (MRM) mode, using 

two mass transitions per component selected based on the abundance of the signal and the 

selectivity of the transition. In Supplementary Table 1 information on the MRM transitions, 

declustering potential (DP), entrance potential (EP), collision energy (CE) and cell exit 

potential (CXP) are presented. Data were acquired using Analyst software and processed 

using MultiQuantTM software (Sciex, Framingham, MA, USA).

Determination protein concentration

Cellular PFAS content was normalized to cellular protein. To that end, 25 µL from each 

cell lysate was used to determine the protein concentration (technical duplicate) using the 

Pierce BCA Protein Assay Kit (Thermo Scientific, Waltham, MA). First, samples were diluted 

two times with lysis buffer directly in a 96-wells plate (PS, F-bottom, clear; Greiner Bio-

One, Alphen aan den Rijn, The Netherlands) and in each plate a BSA standard curve (0.05 

– 2 mg/mL in lysis buffer) was included allowing protein quantification of the samples. 

The manufacturer’s protocol was followed for the subsequent steps and absorbance was 

measured using a microplate reader (Synergy™ HT BioTek, Winooski, VT) at 562 nm.

Selection of the in vitro readouts for QIVIVE

In our other study (Louisse et al. 2023, in press), the effect of the four PFASs on TG levels 

in HepaRG cells was determined using the AdipoRed assay. In vitro concentration-response 

data on TG, were used as a basis for the QIVIVE. Accordingly, in vitro gene expression 

concentration-response data, as collected the same study (Louisse et al. 2023, in press), 

were used as a basis for the QIVIVE. In this study, the effects of PFASs on the gene expression 

of 10 selected genes (as measured by RT-qPCR) were used for the derivation of in vitro 

relative potency factors (RPFs). These ten genes (ATF4, SLC7A11, PDK4, YARS1, ANGPTL4, LSS, 

HMGCR, OAT5, THRSP, and CXCL10) were selected based on concentration-response curves 
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from microarray studies with PFOS-exposed HepaRG cells, being members of modulated 

genes sets and covering various biological processes (see Louisse et., 2023, in press). Some 

information on these genes is presented below:

ATF4: encodes for the activating transcription factor 4, activated upon endoplasmic 

reticulum stress and amino acid starvation (Harding et al. 2003), upregulating genes 

important for cell recovery, adapting to stress conditions, and cell homeostasis (Rozpedek 

et al. 2016). Within the upregulated gene set ‘ATF4 activates genes in response to 

endoplasmic reticulum stress’ (see Louisse et al. 2023, in press).

SLC7A11: encodes for an amino acid transporter and upregulated by ATF4 upon amino 

acid starvation (Martin and Gardner 2015). Within the upregulated gene set ‘Amino acid 

transport across the plasma membrane’ (see Louisse et al. 2023, in press).

YARS1: encodes for tyrosyl-tRNA synthetase, upregulated by ATF4 upon amino acid 

starvation (Han et al. 2013; Krokowski et al. 2013). Within the upregulated gene set 

‘Cytosolic tRNA aminoacylation’ (see Louisse et al. 2023, in press).

PDK4: encodes for pyruvate dehydrogenase kinase 4; it has been reported to be regulated 

by PPARα (Wigger et al. 2019). Considered to be part of the PPARα response genes (see 

Louisse et al. 2023, in press).

ANGPTL4: encodes for angiopoietin-like protein 4 (ANGPTL4), important in regulating 

angiogenesis and glucolipid metabolism (Hato et al. 2008). The regulation of its expression 

has been reported to be mediated via PPARs and HIF-1α (La Paglia et al. 2017). Considered 

to be part of the PPARα response genes (see Louisse et al. 2023, in press).

HMGCR: encodes for the rate-limiting enzyme of the cholesterol biosynthetic pathway 

hydroxy-3-methylglutaryl coenzyme A reductase (converts HMG-CoA to mevalonate) in 

the liver (Brown and Goldstein 1997; Trapani et al. 2012). Member of the downregulated 

gene set ‘Cholesterol biosynthesis’ (see Louisse et al. 2023, in press).

LSS: encodes for lanosterol synthase which catalyzes the conversion of (S)-2,3 oxidosqualene 

to lanosterol in the cholesterol biosynthesis pathway (Wada et al. 2020). Member of the 

downregulated gene set ‘Cholesterol biosynthesis’ (see Louisse et al. 2023, in press).

OAT5: encodes for the organic anion transporter 5, which is an anion exchanger. The 

hepatic expression of the transport in the liver has been reported to be regulated via 

hepatocyte nuclear factor-1α (HNF-1α) (Klein et al., 2010). 

THRSP: encodes for the thyroid hormone responsive protein that plays a role in the 

regulation of lipid metabolism. Expression has been reported to be downregulated upon 

fasting (Kuemmerle and Kinlaw 2011).

CXCL10: encodes a chemokine of the CXC subfamily, which is involved in  monocyte, 

natural killer cell and T-cell migration, regulation of T-cell and bone marrow progenitor 

maturation, modulation of adhesion molecule expression, and inhibition of angiogenesis 

(Neville et al. 1997). 
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It was previously suggested that PFOA and PFOS may affect different aspects of cholesterol 

homeostasis, including its intrahepatic de novo biosynthesis, import/export from the liver, 

as well as its catabolism to bile acids (Fragki et al. 2021). As such, a set of key genes of these 

three processes were selected, including two genes that were studied in our previous study 

(Louisse et al. 2023, in press): 

HMGCR and LSS: see information above

CYP7A1: regulates the pathway of cholesterol conversion into bile acid, by encoding the 

rate-limiting enzyme cholesterol 7-alpha-hydroxylase (Tavares-Sanchez et al. 2015). 

CYP8B1: encodes for the protein sterol 12-alpha-hydroxylase, a key regulatory enzyme in 

the bile acid formation from cholesterol (Tavares-Sanchez et al. 2015).

LDLR: encodes for the low density lipoprotein receptor, main receptor involved in the 

uptake of cholesterol from the blood to the liver, regulating as such serum cholesterol 

levels (Brown and Goldstein 1997; Trapani et al. 2012).

SREBF2: gene encoding the sterol regulatory element binding protein 2 (isoform 2); 

transcription factor that stimulates in parallel the de novo hepatic cholesterol synthesis 

and its clearance from the blood. HMGCR, LDLR, as well as many other genes of the 

cholesterol biosynthesis pathway are under the control of SREBF (Horton et al. 2002; Shao 

and Espenshade 2012). Member of the downregulated gene set ‘Regulation of cholesterol 

biosynthesis by SREBP (SREBF)’ (Louise et al. 2023, in press).

For the two genes HMGCR and LSS of the cholesterol biosynthetic pathway, RT-qPCR gene 

expression concentration-response data were used as generated earlier (Louisse et al. 2023, 

in press). An RT-qPCR analysis of the concentration-dependent effects of all four PFASs 

(PFOA, PFNA, PFHxS, PFOS) on the other four genes was performed in the present study.

RT-qPCR for the four cholesterol-related genes: CYP7A1, CYP8B1, LDLR, and 
SREBF2

For the four selected genes linked to cholesterol homeostasis, concentration-dependent 

expression levels were determined in PFAS-exposed HepaRG cells. cDNA samples from 

our earlier study (Louisse et al. 2023, in press) were used. Changes in the expression of 

genes were determined by RT-qPCR on a CFX384 real-time PCR detection system (Bio-Rad 

Laboratories) by the application of SensiMix (Bioline; GC Biotech, Alphen aan den Rijn, 

The Netherlands). The PCR conditions consisted of an initial denaturation at 95°C for 10 

min, followed by 40 cycles of denaturation at 95°C for 10 s and annealing extension at 60°C 

for 15 s. Relative gene expression was quantified with the standard curve method, using a 

standard curve generated from a serial dilution of pooled sample cDNA, and subsequently 

normalized to the housekeeping gene RPL27. Primer sequences were taken from the 

Harvard PrimerBank and ordered from Eurogentec (Liège, Belgium) and are presented 

in Table 1. Statistical differences were assessed by performing a one-way ANOVA followed 

by Dunnett’s multiple comparison test on the normalized data (fold-change compared 
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to the solvent control) using Graphpad Prism 9.3.1, considering a p value < 0.05 as being 

statistically significant. The concentration–response data were used for the QIVIVE and 

consequent benchmark dose (BMD) analysis as described below.

TABLE 1 Primer sequences used for RT-qPCR.

Primer Sequence

Name Forward Reverse

CYP7A1 TGATGATCTGGAGAAGGCCAAGA AGAAAGTCGCTGGAATGGTGTTT

CYP8B1 CTTGTTCGGCTACACGAAGGA GCAGGGAGTAGACAAACCTTG

SREBP2 GGCTGGTTTGACTGGATGAT CACAAAGACGCTCAGGACAA

LDLR GACGTGGCGTGAACATCTG CTGGCAGGCAATGCTTTGG

RPL27 ATCGCCAAGAGATCAAAGATAA TCTGAAGACATCCTTATTGACG

PBK model-based reverse dosimetry approach

General outline
The  PBK model-based reverse dosimetry approach consists of the extrapolation of short 

term (24 hours) in vitro concentrations to the corresponding chronic human dietary 

exposure. This approach starts with the definition of the in vitro Point of Departure (PoD). 

In this manuscript  two PoD options were considered:  the PFASs nominally added in 

vitro concentrations (scenarios 1 and 2) or the cell-associated concentrations (scenario 3; 

considered as intracellular concentrations). As PFOA, PFNA, PFHxS and PFOS have long 

elimination half-lives (in the range of years) and (dietary) human exposure lasts chronically, 

an AUC approach was applied. As such, the aforementioned in vitro PoDs were converted 

into 24 hour Area Under the Curve values (AUC
24hr

) (see below for more information). 

Thereafter, PBK modelling was applied for the calculation of the corresponding chronic 

human dietary exposure which (over time) would lead to the same AUC value  in the target 

organ of interest, in this case the human liver. As an exposure scenario the 50 years (i.e. 

AUC
50yr

) were used,  since it was considered to represent the lifetime exposure to PFASs, in 

accordance with EFSA (EFSA CONTAM Panel 2020b). In other words, the approach contains 

the underlying assumption that AUC
24hr

  in vitro and AUC
50yr

 in vivo are equipotent in inducing 

gene expression changes and/or TG accumulation. In this way for each of the in vitro tested 

concentrations a corresponding chronic human exposure was obtained. Finally, the latter 

were analysed with BMD modelling to obtain the exposure levels corresponding with a 

benchmark response (BMR) of 20% for lipid accumulation and 50% for gene expression 

(oral equivalent effect dose). The selected BMRs were here a practical choice since it  is 

currently not clear whether such changes (%) are associated with an adverse outcome. 

The 20% BMR for lipid accumulation was chosen as a level just above the normal variation 

in the control data and therefore, can be considered a minimally measurable effect size. 

The 50% BMR for gene expression was chosen given the large variation in gene expression 

responses per concentration tested. 



7

N
A

M
s:

 A
 Q

IV
IV

E 
ca

se
 s

tu
dy

 w
ith

 P
FA

Ss

257

Exploration of NAMs for the perfluoroalkyl substances

Finally, the calculated oral equivalent effect doses were compared to the mean current 

European dietary exposure.

Selection of the in vitro Point of Departure: three possible scenarios 

Since liver cells (HepaRG) are used in vitro either one of the following three extrapolation 

scenarios was  applied: 

Scenario 1: The nominal PFAS concentration in the medium added to the HepaRG cells 

equals to the PFAS concentration in the liver.

Scenario 2: The nominal PFAS concentration in the medium added to the HepaRG cells equals 

the PFAS concentration in blood flowing to the liver tissue. As such, the PFAS concentration 

in the liver equals the nominal PFAS concentration in the medium multiplied by the 

liver:blood partition coefficient. 

Scenario 3: The cell-associated concentration measured in HepaRG cells equals to the PFAS 

liver concentration. To ensure the same concentration metric of both concentrations, 

the cell-associated concentration expressed in mol/g protein was converted into a liver 

concentration (in mol/kg liver) (see Supplementary Table 2)   

For the details on the calculations see Supplementary Material (Table 2).

Application of the PBK models (QIVIVE)

For both PFOA and PFOS the existing human PBK models of Loccisano et al. (2011) were 

used, with the modified Berkeley Madonna (BM) code of EFSA (EFSA CONTAM Panel 

2018b). To our knowledge, no PBK models are available for PFNA and PFHxS. Therefore, the 

PFOA and PFOS PBK models were re-scaled with respect to the PBK transporter maximum 

capacity for renal tubular reabsorption in order to reach the reported human elimination 

half-lives of PFNA and PFHxS.

Mean elimination half-lives of 3.2 and 8.2 years were applied for PFNA and PFHxS, (Olsen 

et al. 2007; Zhang et al. 2013b). Prior to the renal reabsorption, tissue: blood partition 

coefficients were adapted for the liver and kidney for both chemicals (see for data 

Supplementary Table 3). By applying the PBK model reverse dosimetry approach the in 

vitro concentration-response TG accumulation and gene expression data were translated 

into their corresponding oral human equivalent in vivo dose-response data for all three 

scenarios mentioned above. As mentioned above, due to the long elimination half-lives 

(in the range of years) and chronic human exposure, an AUC approach was applied. The 

concentration-response data from the HepaRG cells were translated to AUC-response data 

(AUC
24hr

) by multiplying the target concentration (separately for the three scenarios) with 

the assay duration (24 hours) (Daston et al. 2010). As such, the liver AUC to be reached with 

the PBK modelling (irrespective of the exposure scenario applied) equals to:

Scenario 1: the nominal in vitro concentration * 24 hrs.
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Scenario 2: the nominal in vitro concentration * the liver:blood partition coefficient* 24 hrs.

Scenario 3: the cell-associated concentration * 24 hrs.

Derivation of human oral equivalent doses 

As mentioned above the in vitro concentration-response gene expression data as well as the 

TG accumulation data were translated via PBK modelling into their corresponding oral 

human equivalent in vivo dose-response data. The original in vitro data for TG accumulation 

and gene expression (of the 10 genes) are presented in Louisse et al. (2023, in press). 

BMD modelling was applied on the estimated human oral equivalent dose-response data 

resulting from the reverse-dosimetry approach, using the PROAST software (version 70.6) 

(Slob 2002). The data were analysed as continuous and benchmark doses (BMD) were 

determined for a benchmark response (BMR) of 20% for TG accumulation and 50% for 

gene expression. The applied benchmark responses were here a pragmatic choice, but it 

is currently not clear whether such changes (%) are associated with an adverse outcome.

Dose-response modelling was applied using the exponential model:

( )( )1 /
*

dexp x b
y a c

− −
=

with parameters a, b and d describing the response at dose 0 (background value), the 

potency of the chemical, maximum fold change in response compared with background 

response (upper or lower plateau), and steepness of the curve (on a log-dose scale), 

respectively. The models were fitted to the data of all PFASs simultaneously by using 

covariate analysis (EFSA 2017) to ensure parallel curves (on a log dose scale). The model 

was fitted with and without estimating parameter c, and the fit with the lowest Akaike 

information criterion (AIC) was selected. Some datasets do not provide information on 

the maximum fold change in response, and do not allow the estimation of parameter c.

As such the BMD
20

 and BMD
50

 and their underlying 90% confidence interval (lower bound: 

BMDL, upper bound: BMDU) were estimated for TG accumulation and for each of the 

selected genes, respectively, and represent the oral equivalent effect doses based on these 

in vitro data.

Comparison with reference values for dietary exposure

The resulting oral equivalent effect dose confidence intervals (CI) were compared with 

the chronic dietary intake as recently evaluated by EFSA for the four chemicals (EFSA 

CONTAM Panel 2020b). In its evaluation EFSA (see EFSA report Table 10) provides the 

following summary statistics of the mean and 95th percentile lower bound (LB) and upper 

bound (UB) chronic dietary exposure for PFOA, PFNA, PFHxS and PFOS for adults across 

European countries. For the comparisons with the calculated oral equivalent effect doses 

the mean median LB and UB exposures were used here (Table 2).
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TABLE 2 Dietary exposure of adults to the four PFASs as presented by EFSA (EFSA CONTAM Panel 2020b).

PFAS

Range of mean dietary exposure in adults (LB-UB)(ng/kg bw per day)

Mean LB dietary exposure Mean UB dietary exposure

Minimum Median Maximum Minimum Median Maximum

PFOA 0.13 0.18 0.28 3.60 4.18 5.71

PFNA 0.02 0.04 0.07 3.08 3.68 5.25

PFHxS 0.06 0.08 0.11 2.86 3.45 5.06

PFOS 0.29 0.58 0.93 3.82 4.47 5.94

PFAS

Range of P95 percentile dietary exposure in adults (LB-UB)(ng/kg bw per day)

95th percentile LB dietary exposure 95th percentile UB dietary exposure

Minimum Median Maximum Minimum Median Maximum

PFOA 0.32 0.40 0.59 7.76 8.37 15.92

PFNA 0.06 0.10 0.18 5.80 7.46 15.42

PFHxS 0.15 0.18 0.24 5.36 7.13 15.22

PFOS 0.84 1.71 4.79 7.53 9.31 16.31

Comparison with clinical trial with administration of high PFOA doses

An additional QIVIVE was performed only for PFOA in order to compare in vitro based 

equivalent effect dose for changes in gene expression of cholesterol-related genes with 

doses shown to decrease serum cholesterol in cancer patients (Convertino et al. 2018). 

In accordance with the Convertino clinical study, a different exposure scenario was used 

here, i.e. administration of PFOA for 6 weeks (one exposure per week). The same procedure 

as described above was applied, but in this case only for scenario 3, since it was considered 

to be the most relevant dose metric.

Results

In vitro biokinetic assays

The time-dependent cellular uptake was determined for 6.25 µM PFOS and 6.25 µM PFOA, 

and the concentration-dependent uptake was determined upon 24 hours exposure for all 

PFASs tested in this study. In these biokinetic studies, protein concentrations of cell lysates 

were determined and cellular PFAS content was normalized to total measured cellular 

protein (expressed as amount PFAS per mg protein). Total protein content appeared stable 

across the different treatments for all PFASs, except for the highest concentration level 

for PFNA (100 µM; Supplementary Figure 1 & 2). In the experiment on time-dependency, 

HepaRG cells were exposed to a single concentration (6.25 µM) of PFOA or PFOS for 5, 

15, 60 minutes or 6 or 24 hours, to identify the time-point at which steady-state cellular 

concentrations are reached. Maximum cellular concentrations were achieved already at 

around 1 hour of exposure, which remains to be stable up to the final time point assessed 

(24 hours), suggesting that a steady-state concentration is reached rather quickly (Figure 
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1A). As expected based on PFAS-physicochemical properties, these data clearly illustrate 

the stability of the chemicals in the in vitro system over time. Based on these results a 24-

hour exposure was considered relevant for the continuation of the experiments, as the in 

vitro effects studies used for QIVIVE were also performed upon a 24-hour exposure.  

HepaRG cells were exposed for 24 hours to increasing concentrations (0, 6.25, 12.5, 25, 

50, and 100 µM) of the four PFASs: PFOA, PFNA, PFHxS, PFOS and their cellular levels 

were determined. The results demonstrate that at equal nominal concentrations, 

different cellular exposure occurs depending on the PFAS, suggesting the importance 

of determining the cellular levels of such compounds (Figure 1B). Overall, the highest 

cellular concentrations over the concentration-range were reached by PFOS, followed 

by PFNA that also achieved an equally high cellular level when applied at the maximum 

nominal concentration (100 µM). Nevertheless, given the observed low protein content 

(Supplementary Figure 1) this concentration level was excluded from the QIVIVE 

analysis, as this may indicate a possible cytotoxic effect at this condition, even though this 

concentration was not considered to be cytotoxic based on data obtained from the WST-1 

assay in our previous study (Louisse et al. 2023, in press).

FIGURE 1 Biokinetic assays in the HepaRG cells. A. Time-dependent cell-associated concentrations upon exposure to 6.25 µM 

of PFOA or PFOS. B. Cell-associated concentrations upon 24-hour exposure to different concentrations (6.25, 12.5, 25, 50, and 

100 µM) of PFOA, PFNA, PFHxS or PFOS. Data presented as mean and SD (data from three individual experiments with three 

replicates each).

The PFASs fraction taken up by the liver cells was estimated as the measured cell-associated 

mass divided by the initial total mass applied nominally to the culture medium (Table 3). 

In general, PFOS showed the highest uptake amongst the four chemicals, followed by PFNA. 

PFOA and PFHxS had lower uptake compared to the other two PFASs and their uptake was 

almost equivalent.
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TABLE 3 Cellular uptake (%) of the four PFASs upon increasing concentrations after a 24-hour exposure. Mean values of three 

individual experiments (three replicates each) are presented per substance and for each concentration.

HepaRG uptake (%) of PFASs

Nominal concentration (µM) 6.25 12.5 25 50 100
PFOA 0.55 0.84 1.23 1.34 1.55
PFNA 1.12 2.34 2.65 3.46 5.00
PFHxS 0.40 1.23 1.33 1.49 1.64
PFOS 3.87 4.52 5.91 11.22 10.94

FIGURE 2 Concentration-dependent effects induced by PFASs on the expression of genes related to cholesterol homeostasis: 

HMGCR (rate-limiting enzyme cholesterol biosynthesis), LSS (cholesterol biosynthesis pathway), CYP7A1 (rate-limiting enzyme 

bile acid synthesis from cholesterol), CYP8B1 (bile acid synthesis from cholesterol), SREBFP2 (transcription factor cholesterol 

biosynthesis and clearance from the blood), LDLR (main receptor cholesterol uptake from the blood to the liver). Gene expression 

was normalized to the housekeeping gene RPL27, and subsequently normalized to the solvent control (set at 1). Data represent the 

mean ± SD of three independent experiments. Gene expression of the solvent control was set at 1. Statistically significant differences 

in effects compared to the solvent control are shown with * (p≤0.05), ** (p≤0.01), *** (p≤0.001), **** (p≤0.0001) (one way ANOVA, 

Dunnett’s multiple comparison test (GraphPad Prism 9.3.1). 
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RT-qPCR analysis for the genes related to cholesterol homeostasis

Six genes that have been earlier identified to play a functional role in cholesterol 

homeostasis (Fragki et al. 2021) and showing clear concentration-response curves for 

PFOS (PFOS microarray analysis-Louisse et al. 2023, in press) were selected as relevant 

gene expression readouts that may play a role in cholesterol perturbations in vivo: 

HMGCR, LSS, CYP7A1, CYP8B, LDLR, SREBF2. The results of the RT-qPCR analysis of the 

concentration-dependent effects for all four PFASs (PFOA, PFNA, PFHxS, PFOS) and for all 

selected cholesterol key genes are shown in Figure 2Concentration-dependent decreases 

in the expression of HMGCR, LSS, CYP7A1 and CYP8B1 were recorded for the four PFASs, 

although not statistically significant for CYP7A1. Effects on SREBP2 and LDLR were limited 

and appeared  to be chemical-specific; still, there is no consistency with regard to dose 

response of these findings. For these reasons, these two genes were excluded from the 

QIVIVE analysis.

Estimation of oral equivalent doses with PBK model based reverse dosimetry 

To quantitatively predict in vivo effects based on previously measured in vitro TG changes 

(Louisse et al. 2023, in press) and gene expression changes measured in HepaRG cells, 

three scenarios were explored with different dose metrics representing the concentration 

at target tissue (see details Supplementary Table 2). In scenario 1 the nominal concentration 

applied in the culture medium was considered to equal the PFASs liver concentration. 

In scenario 2 the PFASs liver concentration was determined by the liver:blood partition 

coefficient. Lastly, in scenario 3 the experimentally measured cell-associated concentrations 

were used. Figure 3 shows the related concentration-response data for the four PFASs for 

the liver based on these three scenarios, using the LSS gene as an example. Details on the 

conversion of nominal concentrations to oral equivalent doses using the three scenarios 

are presented in Supplementary Table 2.

Daily, continuous oral exposure
The in vitro concentration-response data for gene expression and TG changes upon PFASs 

exposure were translated into the corresponding in vivo oral equivalent dose response-

data. As a starting point for corresponding liver tissue concentration the three scenarios 

were applied (Figure 3). For each scenario, toxicity was related to the AUC, considering the 

chronic, low exposure of humans to PFASs as well as their accumulation within the body. 

The resulting in vivo dose response curves were analysed with a BMD analysis and the BMD, 

as well as the corresponding lower (BMDL) and upper (BMDU) bounds were defined for the 

two readouts TG accumulation and up- or down-regulation of the selected genes.

The calculated oral equivalent effect doses are shown separately for the three scenarios 

in Figures 4 and 5, while results of scenario 3 are presented in more detail in Table 4 

(for scenarios 1 and 2 see Supplementary Table 4). The BMD analysis is reported in the 

Supplementary Material. The bars in the Figures illustrate the confidence intervals (CIs); 

in Figure 4 these are BMDU
50

-BMDL
50

, while in Figure 5 this is BMDU
20

-BMDL
20

. These 
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are here referred to as oral equivalent effect doses, resulting from the in vitro data for a 

50% benchmark response on gene expression or a 20% benchmark response on TG level, 

respectively. For PFNA, PFHxS and PFOS (but not PFOA) scenario 3 leads to higher  oral 

equivalent effect doses, compared to the other two scenarios.

FIGURE 3 Concentration-response data of PFOA, PFNA, PFHxS and PFOS- induced effect on the expression of the LSS gene from 

the cholesterol biosynthesis pathway, in HepaRG cells. Gene expression was quantified with RT-qPCR. Nominal concentrations 

were converted to liver concentrations using the three scenarios as described in the text.

In the case of PFOA, values resulting from scenarios 2 and 3 are comparable. Differences 

between oral equivalent effect doses based on scenarios 1 and 2 are marginal, with scenario 

2 resulting in slightly higher values in the case of PFOA, PFOS and PFNA and slightly lower 

values in the case of PFHxS. 
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FIGURE 4 Predicted human oral equivalent effect doses 

obtained with PBK model-based reverse dosimetry for gene 

expression changes of the following genes (rank ordered 

from bottom up):   HMGCR, LSS, CYP7A1, CYP8B1 (four 

genes on cholesterol homeostasis), and CXCL10, ATF4, 

SLC7A11, YARS1, THRSP, PKD4, ANGPTL4, OAT5 

(other genes shown to be affected by PFASs in HepaRG 

cells (Louisse et al. 2023, in press) based on (A) scenario 

1; (B) scenario 2; and (C) scenario 3. The bars for the 

different PFASs illustrate the respective BMDL-BMDU 90% 

confidence interval for a benchmark response of 50% for 

changes in gene expression. For the PFHxS-induced effect 

on CYP8B1, the upper bar bound represents the BMD50, 

because the BMDL50 was infinitely small. The red bars 

(EFSA exposure estimates) represent the lower bound (LB) 

and the upper bound (UB) of the mean dietary exposure in 

adults (EFSA CONTAM Panel 2020b). 

It is important to note that the oral equivalent effect doses derived based on TG 

accumulation data appear to be in the same range as the oral equivalent effect doses based 

on gene expression changes, for PFOA, PFHxS and PFOS. However, this is not the case for 

PFNA, where TG-based values seem overall higher than these based on gene expression  

The in vitro-PBK model based oral equivalent effect doses were compared to the mean 

chronic dietary exposure data estimated by EFSA (EFSA CONTAM Panel 2020b).When 

exposure is based on the lower bound (LB), gene expression changes may be expected with 

scenarios 1 and 2. In the case of scenario 3 mean LB exposure exceeds the gene expression-

based oral equivalent effect doses  for PFOA and PFOS, but not for PFNA and PFHxS. With 

regards to TG accumulation,  LB dietary exposure of PFNA and PFHxS is lower than the 

calculated effect doses, irrespective of the applied scenario. For PFOA and PFOS this is the 

case only with scenario 3. Comparison with the mean upper bound (UB) exposure values 
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shows that dietary PFAS levels, may interfere with gene expression and hepatic lipid 

homeostasis.

FIGURE 5 Predicted human oral equivalent effect doses obtained with PBK model-based reverse dosimetry for data on TG 

increase in the HepaRG cells based on (A) scenario 1; (B) scenario 2; and (C) scenario 3. The bars for PFASs illustrate the respective 

BMDL-BMDU 90% confidence interval for a benchmark response of 20% for triglyceride increase. LB: lower bound and UB: upper 

bound of the mean dietary exposure in adults (EFSA CONTAM Panel 2020b).

TABLE 4 Predicted human oral equivalent effect doses (ng/kg bw/d) (BMD
50

s for gene expression, BMD
20

s for TG accumulation, 

and underlying CI) with PBK model-based reverse dosimetry for the 12 selected genes, applying scenario 3. Exposure conditions: 

continuous oral exposure, 50 years.

PFOA PFNA PFHxS PFOS

HMGCR 0.7 1.2 3.6 1.2

0.52-0.85 0.91-1.76 2.92-4.53 0.89-1.45

LSS 0.1 0.8 2.4 0.3

0.03-0.29 0.47-1.4 0.99-6.9 0.09-0.9

CYP7A1 0.8 0.8 3.5 1.4

0.69-0.94 0.77-0.92 3.27-3.51 1.18-1.52

CYP8B1 0.4 1.0 5.2 1.7

0.28-0.55 0.77-1.31 3.18-inf. 1.13-2.33

CXCL10 0.2 0.7 1.0 1.1

0.14-0.33 0.51-0.97 0.74-1.37 0.71-1.74

PKD4 0.06 0.4 0.5 2.0

0.04-0.1 0.31-0.56 0.39-0.75 1.01-3.22

ANGPTL4 0.09 0.7 1.1 2.2

0.04-0.25 0.43-0.94 0.79-1.62 1.17-3.62
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PFOA PFNA PFHxS PFOS

OAT5 0.08 0.2 0.7 0.2

0.04-0.13 0.12-0.3 0.5-1.04 0.08-0.33

ATF4 0.6 1.4 4.2 1.9

0.46-0.81 1.03-2.12 3.29-6.13 1.54-2.25

SLC7A11 0.5 0.9 3.4 1.3

0.41-0.61 0.77-1.42 2.92-3.35 1.08-1.44

YARS1 0.5 1.2 3.8 1.9

0.38-0.72 0.92-2.03 3.15-4.99 1.35-2.45

THRSP 0.5 0.7 3.0 1.0

0.42-0.67 0.63-0.73 2.65-3.45 0.72-1.18

Triglyceride 0.8 3.2 3.0 1.5

accumulation 0.66-0.97 2.06-8.35 2.53-3.49 1.05-2.21

Subacute oral exposure
An additional simulation was performed for PFOA in order to simulate the exposure 

conditions as applied in the Convertino et al. study (2018) (6 weeks, once per week). In this 

phase 1 clinical trial, PFOA was administered to cancer patients (50-1200 mg), once per week, 

for six consecutive weeks. A decline in total blood cholesterol was reported at plasma PFOA 

levels starting at 420-565 µM (approximately 175,000-230,000 ng/mL) and corresponding to 

administered doses of 450 mg and above. The modelled plasma concentrations of PFOA over 

time and for the different dose groups is shown in Figure 6. Comparisons with the in vivo data 

from Convertino et al. (2018) (see Figure 2 of original paper) demonstrate a good PBK model 

prediction, supporting the use of the model for this QIVIVE.

FIGURE 6 PBK model predicted blood concentrations of PFOA over time when administered orally at different doses, once per 

week, for six consecutive weeks (simulating exposure used in Convertino et al. (2018)).

Similarly as for the earlier simulations for a continuous exposure the in vitro concentration-

response data of the cholesterol homeostasis genes were translated into in vivo oral 

equivalent dose response-data by PBK model-based reverse dosimetry, but this time 

based on the Convertino et al. (2018) exposure conditions. As a starting point for the 

extrapolations the measured PFASs cell-associated concentrations were used (scenario 3), 
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since this was considered to be the most relevant in vitro dose metric. Since the Convertino 

et al. (2018) measured effects on cholesterol levels in the patients, only the four genes 

directly relevant for cholesterol homeostasis were used. Subsequently, the results were 

processed with a BMD analysis. Again here, toxicity was related to the AUC, considering the 

toxicokinetic profile of PFASs and their accumulation within the body. This is considered 

justified given the PFOA blood level trajectory during the 6-week period, where a Cmax 

cannot be identified (Figure 6). Table 5 depicts the predicted in vivo human oral equivalent 

doses for PFOA, which appear to be considerably lower (40- to 60-fold) compared to the 

starting dose (450 mg) at which decreased cholesterol was reported in the clinical trial 

(Convertino et al. 2018).

TABLE 5 Predicted human oral equivalent effect doses (in mg) (BMD
50

s and the underlying CI) with the PBK model-based reverse 

dosimetry for the cholesterol-related  genes. Exposure conditions: oral repeated dose, once per week, for six weeks.

Gene HMGCR LSS CYP7A1 CYP8B1

BMD
50

7.1 11.0 7.4 7.3

BMDL-BMDU 4.3-9.9 8.8-13.2 5.6-9.5 6.1-8.7

Discussion

The aim of this study was to assess the feasibility of determining human oral equivalent 

effect doses of PFAS-induced lipid perturbations and hepatotoxicity, for the four 

PFASs: PFOA, PFNA, PFHxS and PFOS, by a combined in vitro-in silico approach. In vitro 

concentration-response data (TG accumulation and gene expression changes of 12 selected 

genes) measured in HepaRG cells were translated into equivalent human dose-response 

curves, with PBK model-facilitated reverse dosimetry. An exposure scenario of 50 years 

was considered in order to represent the lifetime chronic exposure to PFASs. For reverse 

dosimetry, cellular PFAS levels were determined in the HepaRG cells to link in vitro exposure 

to in vivo internal exposure in the liver. A BMD analysis of the obtained dose-response data 

resulted in oral equivalent effect doses, i.e. the chronic human dietary exposure, which 

may be indicative of hepatic lipid perturbation and liver toxicity. Finally the oral equivalent 

effect doses were compared with the human dietary exposure as recently determined 

by EFSA for the European population. For the case of PFOA, oral equivalent effect doses 

were also compared to serum levels found to induce blood cholesterol decrease in cancer 

patients, with an exposure scenario of 6 weeks. Oral equivalent effect doses were found 

to be in the same range as estimated human exposure levels, in particular when the UB 

estimates were considered. Effect doses of PFOA on expression of cholesterol-related genes 

were estimated to be 40- to 60-fold lower than the doses causing effects on cholesterol in 

cancer patients. This approach used in this study may be used to obtain points of departure 

(PODs) for screening, hazard identification and prioritization of other PFASs for which 

data are lacking.
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Applied QIVIVE starting point scenarios 

For the present QIVIVE three different types of in vitro dose metrics were used to relate 

to the observed responses, as potential surrogates for the PBK liver concentration: the 

nominal assay concentration (scenario 1), the nominal concentration corrected for in vivo 

liver:blood partitioning (scenario 2), and the measured cell-associated concentration scaled 

to the whole liver (scenario 3). The results of the three scenarios were compared with each 

other. A priori, it has been suggested that the most appropriate dose metric to relate to an in 

vitro response would be the concentration at the site of action (Escher and Hermens 2004; 

Groothuis et al. 2015), so here the PFASs concentration within the HepaRG cells or else, 

the cell-associated concentration (scenario 3). The results of the present study demonstrate 

oral equivalent effect doses based on scenario 3 to be the least conservative, i.e. resulting in 

higher effect doses,  followed by scenario 2, and scenario 1, for PFNA, PFHxS and PFOS (but 

not for PFOA). Differences between scenarios 1 and 2 were marginal, as expected here, 

since the applied liver:blood PCs do not deviate much from 1 (SM Table 3, range 0.85 – 

3.73). However, for other chemicals with larger PCs scenario 1 and 2 would deviate more 

from each other. Findings were different for PFOA, where oral equivalent effect doses for 

scenarios 2 and 3 were overall comparable, whereas scenario 1 gave lower values. Assuming 

that scenario 3, as applied here, represents by theoretical considerations the best QIVIVE 

dose metric (Groothuis et al. 2015), and seeing clearly that it makes a difference for three 

out of the four chemicals, we favor the use of experimentally measured in vitro intracellular 

concentrations for the PFASs. Nevertheless, due to practical difficulties intracellular 

concentrations are seldomly measured in in vitro toxicity assays (Groothuis et al. 2015). In 

that case, scenario 2 may be used as a proxy, applying in vivo measured organ:blood partition 

coefficients or, when unavailable, partition coefficients estimated based on chemical 

characteristics like LogP and pKa. 

HepaRG cell uptake and in vivo organ:blood partitioning 

In most in vitro studies with PFASs, only the concentrations applied to the medium are 

presented, whereas actual intracellular concentrations are not considered. An important 

contribution of this study is the reporting of actual PFAS cell-associated concentrations in 

the in vitro system, by measuring the fraction retained in the cells 24 hours after exposure. 

The data demonstrate differences between the four PFASs with regard to cellular uptake. 

Cell-associated concentration increased with increasing treatment concentrations, 

whereas it appears to level off at higher levels, suggesting saturation of binding sites. The 

levelling off is more profound for the two sulfonates. At the same concentration (50 µM) 

PFOS cell-associated concentration was shown to be ~ 11% of the applied amount, whereas 

this was 7-fold lower for PFOA and PFHxS. For PFNA cell-associated concentration was 

around 3% at the same concentration (PFOS > PFNA > PFOA ~ PFHxS). This result is in line 

with in vivo data on liver:plasma partitioning for PFASs in rats from recent NTP studies 

(NTP 2019a; 2019b), where PFOS shows the highest distribution/accumulation within the 

liver, compared to the other three compounds. This is probably due to differential binding 
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to hepatic proteins, like for example, the human liver fatty acid binding protein (L-FABP), 

which has as main function the transport and uptake of fatty acids (Thumser and Wilton 

1996). All four PFASs are reported to bind to L-FABP (Luebker et al. 2002b; Sheng et al. 

2016; Woodcroft et al. 2010; Zhang et al. 2013a); however, with PFOS and PFNA showing 

the highest affinity (Zhang et al. 2013a). Possibly, simple binding studies with PFASs and 

such proteins can provide insight into which members of the group are expected to show 

higher partitioning into tissues in vivo. Next to this, organic cation transporters OATP1B1, 

OATP1B3, and OATP2B1, as well as Na+/taurocholate co-transporting polypeptide (NTCP), 

which are expressed in the liver, are known to transfer PFAS across the cell membrane 

in the cytosol (Ruggiero et al. 2021; Zhao et al. 2015a; Zhao et al. 2017b). Again here, 

transporter affinity and transport efficiency differ between PFASs, with PFOS showing the 

most efficient transport.

It is interesting to note that in another study with human hepatocarcinoma HepG2 cell 

line, PFOS cellular uptake was  significantly lower compared to the other three chemicals 

(Rosenmai et al. 2018). Next to this, for the four PFASs the percentage uptake was much lower 

(0.04-0.33%) in the HepG2 cells compared to our study. This difference might stem from 

the fact that HepaRG cell line possesses unique characteristics in transporter expression 

(Kotani et al. 2012; Le Vee et al. 2006), whereas HepG2 cells show very low expression 

of these uptake transporters (Cui et al. 2003; Le Vee et al. 2006). Another explanation 

could be different used serum concentrations (2 vs 10%) that have probably resulted in 

less bioavailable PFASs for uptake in the cell medium. The latter seems a reasonable 

hypothesis, considering the known high binding to the medium serum proteins, of these 

chemicals (Beesoon and Martin 2015; Ehresman et al. 2007; Han et al. 2012) 

Applied QIVIVE dose metric: exposure metric

From an exposure perspective, the toxicity of a chemical can be linked to different internal 

dose metrics, like the peak concentration (Cmax), or the AUC. The parameter to use for 

relating exposure to toxicity depends on the mode of action of the chemical (Groothuis et 

al. 2015; Louisse et al. 2017), its toxicokinetic properties, but also the exposure conditions 

(Groothuis et al. 2015). In the current literature, QIVIVE with reverse dosimetry is often 

based on the Cmax (Chen et al. 2018b; Fragki et al. 2022; Li et al. 2017a) and less commonly 

on the AUC (Louisse et al. 2015). Here, the assumption was made that the toxic effect is best 

related to a time-dependent dose metric, since exposure of humans to PFASs is chronic and 

their elimination half-lives are rather long (in the range of years). In addition, the effects 

per se, i.e. the PFAS-induced increases in serum cholesterol (and occasionally TG), but also 

in serum ALT (for PFOA) as reported in epidemiological studies, are a result of continuous 

exposure, supporting further the choice of a cumulative metric, in this case the AUC. 

This approach for extrapolating from a single 24-hour exposure occurring in vitro to a life-

time in vivo exposure is uncertain, but can serve at least as a first tier in human health risk 

assessment provided the appropriate in vitro data are available. For a wider application of 

QIVIVE in risk assessment, well-defined criteria for selecting the most appropriate dose 
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metric have to be put forward, in order to extrapolate short-term in vitro data to chronic 

toxicity (Macko et al. 2021). 

Applied PBK models

For PFOA and PFOS the existing human PBK models (Loccisano et al. 2011) were used 

as adapted by EFSA (EFSA CONTAM Panel 2018b). Given the lack of available models for 

PFNA and PFHxS, the models of PFOA and PFOS, respectively, were used after adaptations. 

These changes pertain to adaptation in substance specific liver: and kidney:blood partition 

coefficients, but also to the transporter capacity for renal tubular re-absorption (Tmc). 

As such the transporter capacity was modified for each substance in order to achieve the 

correct half-life for PFNA (3.2 years) and PFHxS (8.2 years) (Olsen et al. 2007; Zhang et al. 

2013b). However,  due to the absence of suitable human biomonitoring data, the PFNA and 

PFHxS models could not be verified directly on such data, as it has been done for PFOA and 

PFOS (EFSA CONTAM Panel 2018b; Loccisano et al. 2011). It is of interest to note, though, 

that the fitted values for renal tubular re-absorption (Tmc) are in line with recently 

reported in vitro Vmax values for OAT4-mediated reabsorption of PFASs, i.e. showing the 

highest Vmax and Tmc for PFNA, followed by PFHxS, PFOA and PFOS (Louisse et al. 2022). 

This suggests that, in the absence of in vivo kinetic data, in vitro kinetic data may be of use to 

extend the PFOA/PFOS/PFNA/PFHxS PBK model for even more PFASs. 

As a general remark, it is highlighted that the PBK models (for all four PFASs) and also the 

reverse dosimetry approach applied for the translation of in vitro concentrations to external 

doses use a deterministic approach, with all parameters fixed and as such, it does not 

accommodate for any uncertainty. It is acknowledged that parameter value uncertainty 

shall be taken into consideration when using such models for QIVIVE, although this was 

considered beyond the scope of the present paper.

Toxicological relevance of in vitro effects and comparison with dietary exposure

In the current approach, the BMRs 20 and 50% were selected, for cellular TG accumulation 

and gene expression changes, respectively. This was a pragmatic approach, considering 

that the degree of change associated with adversity for these in vitro readouts, in particular 

with regard to gene expression, is not clearly known at the moment. TG accumulation in 

HepaRG cells was selected since PFASs are positively associated with blood TG levels in 

humans (for example Frisbee et al. 2010; Olsen et al. 2003a; Steenland et al. 2009) and are 

known to cause hepatotoxicity and liver steatosis in animals (Das et al. 2017; NTP 2019a; 

2019b; Wan et al. 2012), although it remains unclear whether the latter effect is relevant for 

humans (Fragki et al. 2021). All four PFASs induced a concentration-dependent increase 

in TG accumulation in the hepatic cells (Louisse et al. 2023, in press). TG accumulation 

within the HepaRG cells has been suggested to be a biomarker for liver steatosis and 

hepatoxicity (Lichtenstein et al. 2020). Comparison of the TG accumulation-based 

oral equivalent effect doses with the chronic dietary exposure data known for the adult 

European population (EFSA CONTAM Panel 2020b), suggests a possible interference with 



7

N
A

M
s:

 A
 Q

IV
IV

E 
ca

se
 s

tu
dy

 w
ith

 P
FA

Ss

271

Exploration of NAMs for the perfluoroalkyl substances

hepatic lipid homeostasis, for the case of PFOA and PFOS, when the most conservative 

scenarios 1 and 2 are applied. It shall be noted that this result is very much dependent on the 

critical effect size selected, here being 20%.

Another read-out was the transcriptional changes for six genes that are known to play a 

key role in cholesterol homeostasis. These genes were selected to mechanistically relate 

changes in gene expression to the known changes in serum total cholesterol that have been 

repeatedly associated with PFASs blood levels (for example Eriksen et al. 2013; Nelson et 

al. 2010; Steenland et al. 2009). The RT-qPCR results showed a concentration-dependent 

decrease in four (HMGCR, LSS from Louisse et al-in preparation; CYP7A1, CYP8B1) out of the 

six genes induced by all chemicals. This is in agreement with other in vitro studies, where 

exposure of HepaRG cells (Behr et al. 2020a; Louisse et al. 2020c), but also human primary 

hepatocyte spheroids (Rowan-Carroll et al. 2021), to various PFASs was shown to induce 

a downregulation of several genes in the cholesterol biosynthetic pathway. Additionally,  

PFOS and PFOA were reported to strongly decrease bile acid synthesis, the main 

catabolic product of cholesterol, in HepaRG cells, both at a protein and transcriptional 

level (Behr et al. 2020a), like it is shown here with the downregulation of CYP7A1 and 

CYP8B1. CYP7A1 catalyzes the rate-limiting step for the classic bile acid synthesis from 

cholesterol. These results were not corroborated by intracellular changes in cholesterol 

levels, since these appeared to be hardly affected upon exposure to PFOS, PFOA (Behr 

et al. 2020a; Louisse et al. 2020c) or PFNA (Louisse et al. 2020c). This outcome suggests 

the presence of mechanisms balancing cholesterol levels in the HepaRG cells after PFAS-

induced perturbations, as expected considering its known tight regulation within the liver 

(Dietschy et al. 1993; Kwiterovich 2000; Trapani et al. 2012). Consequently, measuring 

actual cholesterol changes (if any) within the cell system may require a more specific 

experimental design that would allow for the quantification of small modifications in 

cholesterol levels (e.g. measuring effects on de novo cholesterol synthesis, using labelled 

precursors). For the genes SREBP2 and LDLR limited effects were observed after exposure 

to all four PFASs, in contrast to what has been reported earlier in another study (Behr et 

al. 2020a). It would be interesting to speculate on a potential mechanism occurring in the 

liver and ultimately leading to increases in serum cholesterol based on these findings. As 

suggested earlier by Behr and colleagues (2020a) the inhibitory effect of PFASs on CYP7A1 

could serve as the molecular initiating or key event, leading to bile acid metabolism and 

cholesterol perturbations. We therefore consider perturbation of CYP7A1 expression as a 

sensitive biomarker for perturbed cholesterol metabolism.

Next to the cholesterol homeostasis genes, up- or downregulation of eight other genes was 

included as in vitro read-out for the QIVIVE. These genes cover diverse biological processes 

and they were identified in an earlier study as potential markers for liver toxicity, based 

on a whole genome microarray analysis performed for PFOS (Louisse et al. 2023, in press). 

In the presented calculations, oral equivalent effect doses for gene expression, given 

the currently selected effect size (50%), are lower than the UB chronic dietary exposure 
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estimates. When comparing to the LB values, exceedance of the effect levels occurs with 

scenarios 1 and 2 for the four PFASs, and with scenario 3 only for PFOA and PFOS. In other 

words, the current dietary PFASs exposure may lead to interference with gene expression 

in the liver, considering the continuous, lifetime exposure to these chemicals. Linking 

altered expression of genes to actual measures of adversity has of course to be done with 

caution (Buesen et al. 2017; Sauer et al. 2017). Ideally, these genes would have been described 

as molecular initiating events or other key events in Adverse Outcome Pathways (AOPs), 

but this information is currently lacking. However, it is important to note that two of the 

cholesterol-related genes (HMGCR and CYP7A1) are encoding for the rate-limiting enzymes 

in the biosynthesis and catabolism of cholesterol, respectively . In other words, they have 

been assigned a pivotal biological function in these pathways and any modification of their 

expression could have major implications for the respective phenotype (Buesen et al. 2017). 

As such, we speculate that interference with the expression of these genes could ultimately 

result in perturbed in vivo cholesterol homeostasis, and consequently, in perturbed levels 

of blood cholesterol. Nevertheless, this should be studied in more detail, and not only at 

the gene expression level, but also by measurements of the activities of corresponding 

enzymes in the cholesterol pathway and the net effect on the cholesterol levels. Next to 

this, studies that assess the impact of time of exposure in the in vitro systems would be of 

interest to assess whether the extrapolation from a 24-hr exposure in vitro to a  chronic 

exposure in vivo can be justified.

Comparison to the data from the human clinical trial

In the present QIVIVE, the exposure scenario as applied in a phase 1 clinical trial (Convertino 

et al. 2018) was also simulated for the cholesterol-homeostasis genes, given the observed 

decreased cholesterol seen in the patients, only for scenario 3. However, here the predicted 

oral equivalent effect doses for PFOA, were considerably lower (between 40- to 60-fold),  

compared to the starting dose (450 mg) at which decreased cholesterol was reported in 

the patients of the clinical trial (Convertino et al. 2018). Perhaps these gene expression 

biomarkers measured in the in vitro system are more sensitive as readouts compared to an 

in vivo change in blood cholesterol. In general, gene expression alterations in a biological 

system upon exposure to xenobiotics may serve as early indicators of eventual toxicity, 

and as such they may start at lower exposure levels prior to manifestation of the respective 

toxicity phenotype that may occur at higher doses (Gatzidou et al. 2007; Joseph 2017; Smith 

et al. 2020). As mentioned earlier, interpretation of changes in gene expression with 

regards to eventual adverse effects shall be done with caution. On the other hand, this 

difference could also relate to the fact that the patients exposed to these large dose of PFOA 

in the clinical trial, were a small population of late-stage cancer patients, perhaps with a 

compromised metabolic activity. Consequently, it could be that the results of the Convertino 

et al. (2018) study are not of relevance for the general population. Ideally, the in vitro-based 

equivalent effect doses (for the cholesterol homeostasis genes) would be compared with 

dose-response data from epidemiological studies that associate exposure to PFASs with 
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increased serum cholesterol (e.g. Eriksen et al. 2013; Frisbee et al. 2010; Steenland et al. 

2009). Unfortunately, data in these publications are insufficiently reported and do not 

allow for a proper dose-response analysis (Minutes on the Expert Meeting;EFSA CONTAM 

Panel 2018c) and hence, this comparison was not considered further in our study.

Altogether, the present combined  in vitro  PBK modelling-facilitated QIVIVE illustrates 

that suitable PFASs in vitro concentration-response data can be highly valuable for the 

screening, prioritization and potentially risk assessment of these chemicals. This shall be 

done after careful consideration of the in vitro dose metric to be used for the extrapolations. 

Acknowledgements

This work was funded by the European Unions´ Horizon 2020 Research and Innovation 

Programme under grant agreement No 733032 HBM4EU and by the Dutch Ministry of 

Agriculture, Nature and Food Quality (project KB-37-002-009/010).

Conflict of interest statement

The authors declare that they have no conflict of interest.



7

C
H

A
PTER 7

SECTION III

274

References

ATSDR. 2018. Toxicological profile for perfluoroalkyls. Draft for public comment june 2018. Https://www.Atsdr.Cdc.

Gov/toxprofiles/tp200.Pdf, 2018-11-10.

Ball N, Bars R, Botham PA, Cuciureanu A, Cronin MTD, Doe JE, Dudzina T, Gant TW, Leist M, van Ravenzwaay B. 2022. 

A framework for chemical safety assessment incorporating new approach methodologies within reach. Archives 

of toxicology. 96(3):743-766.

Bartell SM, Calafat AM, Lyu C, Kato K, Ryan PB, Steenland K. 2010. Rate of decline in serum pfoa concentrations 

after granular activated carbon filtration at two public water systems in ohio and west virginia. Environ Health 

Perspect. 118(2):222-228.

Beesoon S, Martin JW. 2015. Isomer-specific binding affinity of perfluorooctanesulfonate (pfos) and perfluorooctanoate 

(pfoa) to serum proteins. Environmental science & technology. 49(9):5722-5731.

Behr AC, Kwiatkowski A, Ståhlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T. 2020. Impairment of bile 

acid metabolism by perfluorooctanoic acid (pfoa) and perfluorooctanesulfonic acid (pfos) in human heparg 

hepatoma cells. Arch Toxicol. 94(5):1673-1686.

Bil W, Zeilmaker M, Fragki S, Lijzen J, Verbruggen E, Bokkers B. 2021. Risk assessment of per- and polyfluoroalkyl 

substance mixtures: A relative potency factor approach. Environ Toxicol Chem. 40(3):859-870.

Brown MS, Goldstein JL. 1997. The srebp pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-

bound transcription factor. Cell. 89(3):331-340.

Buesen R, Chorley BN, da Silva Lima B, Daston G, Deferme L, Ebbels T, Gant TW, Goetz A, Greally J, Gribaldo L et al. 

2017. Applying ‘omics technologies in chemicals risk assessment: Report of an ecetoc workshop. Regul Toxicol 

Pharmacol. 91 Suppl 1(Suppl 1):S3-s13.

Carmichael PL, Baltazar MT, Cable S, Cochrane S, Dent M, Li H, Middleton A, Muller I, Reynolds G, Westmoreland C et 

al. 2022. Ready for regulatory use: Nams and ngra for chemical safety assurance. Altex.

Chen L, Ning J, Louisse J, Wesseling S, Rietjens IMCM. 2018. Use of physiologically based kinetic modelling-facilitated 

reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine and 

riddelliine in rat. Food and Chemical Toxicology. 116:216-226.

Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, Barnett AL, Samuel LM, MacPherson IR, Evans 

TRJ. 2018. Stochastic pharmacokinetic-pharmacodynamic modeling for assessing the systemic health risk of 

perfluorooctanoate (pfoa). Toxicol Sci. 163(1):293-306.

Cui Y, König J, Nies AT, Pfannschmidt M, Hergt M, Franke WW, Alt W, Moll R, Keppler D. 2003. Detection of the human 

organic anion transporters slc21a6 (oatp2) and slc21a8 (oatp8) in liver and hepatocellular carcinoma. Lab Invest. 

83(4):527-538.

Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, Corton JC, Abbott BD. 2017. Perfluoroalkyl acids-induced 

liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology. 378:37-52.

Daston GP, Chapin RE, Scialli AR, Piersma AH, Carney EW, Rogers JM, Friedman JM. 2010. A different approach to 

validating screening assays for developmental toxicity. Birth Defects Res B Dev Reprod Toxicol. 89(6):526-530.

DeBose-Boyd RA. 2008. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and 

degradation of hmg coa reductase. Cell Res. 18(6):609-621.

DeBose-Boyd RA, Ye J. 2018. Srebps in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 43(5):358-

368.

Dent MP, Vaillancourt E, Thomas RS, Carmichael PL, Ouedraogo G, Kojima H, Barroso J, Ansell J, Barton-Maclaren TS, 

Bennekou SH et al. 2021. Paving the way for application of next generation risk assessment to safety decision-

making for cosmetic ingredients. Regul Toxicol Pharmacol. 125:105026.

Dietschy JM, Turley SD, Spady DK. 1993. Role of liver in the maintenance of cholesterol and low density lipoprotein 

homeostasis in different animal species, including humans. J Lipid Res. 34(10):1637-1659.

EFSA. 2017. Update: Guidance on the use of the benchmark dose approach in risk assessment. Efsa journal 

2017;15(1):4658.

EFSA CONTAM Panel. 2018a. Knutsen hk, alexander j, barregard l, bignami m, bruschweiler b, ceccatelli s, cottrill b, 

dinovi m, edler l, grasl-kraupp b, hogstrand c, hoogenboom lr, nebbia cs, oswald ip, petersen a, rose m, roudot 

a-c, vleminckx c, vollmer g, wallace h, bodin l, cravedi j-p, halldorsson ti, haug ls, johansson n, van loveren h, 

gergelova p, mackay k, levorato s, van manen m and schwerdtle t, 2018. Scientific opinion on the risk to human 

health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. Efsa journal 

2018;16(12):5194, 284 pp.Https://doi.Org/10.2903/j.Efsa.2018.5194 



7

N
A

M
s:

 A
 Q

IV
IV

E 
ca

se
 s

tu
dy

 w
ith

 P
FA

Ss

275

Exploration of NAMs for the perfluoroalkyl substances

. Minutes of the expert meeting on perfluooroctane sulfonic acid and perfluorooctanoic acid in food assessment. 

2018b.

EFSA CONTAM Panel. 2020. Schrenk d, bignami m, bodin l, chipman jk, del mazo j, grasl-kraupp b, hogstrand 

c, hoogenboom lr, leblanc j-c, nebbia cs, nielsen e, ntzani e, petersen a, sand s, vleminckx c, wallace h, 

barregard l, ceccatelli s, cravedi j-p, halldorsson ti, haug ls, johansson n, knutsen hk, rose m, roudot a-c, 

van loveren h, vollmer g, mackay k, riolo f and schwerdtle t, 2020. Scientific opinion on the risk to human 

health related to the presence of perfluoroalkyl substances in food. Efsa journal 2020;18(9):6223, 391 pp. 

Https://doi.Org/10.2903/j.Efsa.2020.6223 

Ehresman DJ, Froehlich JW, Olsen GW, Chang SC, Butenhoff JL. 2007. Comparison of human whole blood, 

plasma, and serum matrices for the determination of perfluorooctanesulfonate (pfos), perfluorooctanoate 

(pfoa), and other fluorochemicals. Environmental research. 103(2):176-184.

Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L, Tjønneland A, Overvad K, Sørensen M. 2013. 

Association between plasma pfoa and pfos levels and total cholesterol in a middle-aged danish population. 

PloS one. 8(2):e56969-e56969.

Escher BI, Hermens JL. 2004. Internal exposure: Linking bioavailability to effects. Environ Sci Technol. 

38(23):455a-462a.

Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, 

Louisse J, Peijnenburg A et al. 2021. Systemic pfos and pfoa exposure and disturbed lipid homeostasis in 

humans: What do we know and what not? Crit Rev Toxicol. 51(2):141-164.

Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. 2022. Integrating in vitro 

chemical transplacental passage into a generic pbk model: A qivive approach. Toxicology. 465:153060.

Fragki S, Piersma AH, Rorije E, Zeilmaker MJ. 2017. In vitro to in vivo extrapolation of effective dosimetry in 

developmental toxicity testing: Application of a generic pbk modelling approach. Toxicol Appl Pharmacol. 

332:109-120.

Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, Ducatman AM. 2010. Perfluorooctanoic 

acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: Results from the c8 health 

project. Archives of pediatrics & adolescent medicine. 164(9):860-869.

Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, Ducatman AM, Fletcher T. 2012. 

Serum perfluorooctanoate (pfoa) and perfluorooctane sulfonate (pfos) concentrations and liver function 

biomarkers in a population with elevated pfoa exposure. Environ Health Perspect. 120(5):655-660.

Gatzidou ET, Zira AN, Theocharis SE. 2007. Toxicogenomics: A pivotal piece in the puzzle of toxicological research. 

J Appl Toxicol. 27(4):302-309.

Groothuis FA, Heringa MB, Nicol B, Hermens JL, Blaauboer BJ, Kramer NI. 2015. Dose metric considerations in in 

vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology. 332:30-40.

Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M et al. 2013. 

Er-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nature Cell 

Biology. 15(5):481-490.

Han X, Nabb DL, Russell MH, Kennedy GL, Rickard RW. 2012. Renal elimination of perfluorocarboxylates (pfcas). 

Chemical research in toxicology. 25(1):35-46.

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R et al. 2003. An 

integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 

11(3):619-633.

Hato T, Tabata M, Oike Y. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends 

Cardiovasc Med. 18(1):6-14.

Horton JD, Goldstein JL, Brown MS. 2002. Srebps: Activators of the complete program of cholesterol and fatty acid 

synthesis in the liver. J Clin Invest. 109(9):1125-1131.

Joseph P. 2017. Transcriptomics in toxicology. Food Chem Toxicol. 109(Pt 1):650-662.

Kotani N, Maeda K, Debori Y, Camus S, Li R, Chesne C, Sugiyama Y. 2012. Expression and transport function of 

drug uptake transporters in differentiated heparg cells. Mol Pharm. 9(12):3434-3441.

Krokowski D, Han J, Saikia M, Majumder M, Yuan CL, Guan BJ, Bevilacqua E, Bussolati O, Bröer S, Arvan P et al. 

2013. A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced 

diabetes via regulation of amino acid flux. J Biol Chem. 288(24):17202-17213.



7

C
H

A
PTER 7

SECTION III

276

Kuemmerle NB, Kinlaw WB. 2011. Thrsp (thyroid hormone responsive). Atlas Genet Cytogenet Oncol Haematol. 

15(6):480-482.

Kwiterovich PO, Jr. 2000. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and 

triglycerides: A current review. Am J Cardiol. 86(12a):5l-10l.

La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. 2017. Potential role of angptl4 in the cross 

talk between metabolism and cancer through ppar signaling pathway. PPAR Res. 2017:8187235.

Le Vee M, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O. 2006. Functional expression of sinusoidal 

and canalicular hepatic drug transporters in the differentiated human hepatoma heparg cell line. Eur J 

Pharm Sci. 28(1-2):109-117.

Li H, Zhang M, Vervoort J, Rietjens IM, van Ravenzwaay B, Louisse J. 2017. Use of physiologically based kinetic 

modeling-facilitated reverse dosimetry of in vitro toxicity data for prediction of in vivo developmental 

toxicity of tebuconazole in rats. Toxicology letters. 266:85-93.

Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, 

Milani ES, Peijnenburg A et al. 2020. An adverse outcome pathway-based approach to assess steatotic 

mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol. 139:111283.

Loccisano AE, Campbell JL, Jr., Andersen ME, Clewell HJ, 3rd. 2011. Evaluation and prediction of pharmacokinetics 

of pfoa and pfos in the monkey and human using a pbpk model. Regulatory toxicology and pharmacology 

: RTP. 59(1):157-175.

Louisse J, Beekmann K, Rietjens IM. 2017. Use of physiologically based kinetic modeling-based reverse dosimetry 

to predict in vivo toxicity from in vitro data. Chem Res Toxicol. 30(1):114-125.

Louisse J, Bosgra S, Blaauboer BJ, Rietjens IM, Verwei M. 2015. Prediction of in vivo developmental toxicity of 

all-trans-retinoic acid based on in vitro toxicity data and in silico physiologically based kinetic modeling. 

Archives of toxicology. 89(7):1135-1148.

Louisse J, Rijkers D, Stoopen G, Janssen A, Staats M, Hoogenboom R, Kersten S, Peijnenburg A. 2020. 

Perfluorooctanoic acid (pfoa), perfluorooctane sulfonic acid (pfos), and perfluorononanoic acid (pfna) 

increase triglyceride levels and decrease cholesterogenic gene expression in human heparg liver cells. Arch 

Toxicol.

Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM. 2002. Interactions of flurochemicals with rat liver 

fatty acid-binding protein. Toxicology. 176(3):175-185.

Macko P, Palosaari T, Whelan M. 2021. Extrapolating from acute to chronic toxicity in vitro. Toxicology in vitro. 

76:105206.

Martin L, Gardner LB. 2015. Stress-induced inhibition of nonsense-mediated rna decay regulates intracellular 

cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger 

slc7a11. Oncogene. 34(32):4211-4218.

Nelson JW, Hatch EE, Webster TF. 2010. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and 

insulin resistance in the general u.S. Population. Environmental health perspectives. 118(2):197-202.

Neville LF, Mathiak G, Bagasra O. 1997. The immunobiology of interferon-gamma inducible protein 10 kd (ip-10): 

A novel, pleiotropic member of the c-x-c chemokine superfamily. Cytokine Growth Factor Rev. 8(3):207-

219.

NTP. 2019a. Ntp technical report on the toxicity studies of perfluoroalkyl sulfonates (perfluorobutane sulfonic 

acid, perfluorohexane sulfonate potassium salt, and perfluorooctane sulfonic acid) administered by 

gavage to sprague dawley (hsd:Sprague dawley sd) rats. Research triangle park, nc: National toxicology 

program. Toxicity report 96.

NTP. 2019b. Ntp technical report on the toxicity studies of perfluoroalkyl carboxylates (perfluorohexanoic acid, 

perfluorooctanoic acid, perfluorononanoic acid, and perfluorodecanoic acid) administered by gavage to 

sprague dawley (hsd:Sprague dawley sd) rats. Research triangle park, nc: National toxicology program. 

Toxicity report 97.

OECD. 2018. Toward a new comprehensive global database of per- and polyfluoroalkyl substances (pfass): 

Summary on updating the oecd 2007 list of per-and polyfluoroalkyl substances (pfass). .

Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003. Epidemiologic assessment of worker serum 

perfluorooctanesulfonate (pfos) and perfluorooctanoate (pfoa) concentrations and medical surveillance 

examinations. J Occup Environ Med. 45(3):260-270.



7

N
A

M
s:

 A
 Q

IV
IV

E 
ca

se
 s

tu
dy

 w
ith

 P
FA

Ss

277

Exploration of NAMs for the perfluoroalkyl substances

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR. 2007. Half-life of serum 

elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired 

fluorochemical production workers. Environ Health Perspect. 115(9):1298-1305.

Punt A, Bouwmeester H, Blaauboer BJ, Coecke S, Hakkert B, Hendriks DFG, Jennings P, Kramer NI, Neuhoff 

S, Masereeuw R et al. 2020. New approach methodologies (nams) for human-relevant biokinetics 

predictions. Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. 

Altex. 37(4):607-622.

Rosenmai AK, Ahrens L, le Godec T, Lundqvist J, Oskarsson A. 2018. Relationship between peroxisome 

proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in 

hepg2 cells. J Appl Toxicol. 38(2):219-226.

Rowan-Carroll A, Reardon A, Leingartner K, Gagné R, Williams A, Meier MJ, Kuo B, Bourdon-Lacombe J, Moffat 

I, Carrier R et al. 2021. High-throughput transcriptomic analysis of human primary hepatocyte spheroids 

exposed to per- and polyfluoroalkyl substances as a platform for relative potency characterization. Toxicol 

Sci. 181(2):199-214.

Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. 2016. The role of the perk/eif2α/atf4/chop 

signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 16(6):533-

544.

Ruggiero MJ, Miller H, Idowu JY, Zitzow JD, Chang S-C, Hagenbuch B. 2021. Perfluoroalkyl carboxylic acids 

interact with the human bile acid transporter ntcp. Livers. 1(4):221-229.

Sauer UG, Deferme L, Gribaldo L, Hackermüller J, Tralau T, van Ravenzwaay B, Yauk C, Poole A, Tong W, Gant 

TW. 2017. The challenge of the application of ‘omics technologies in chemicals risk assessment: Background 

and outlook. Regulatory Toxicology and Pharmacology. 91:S14-S26.

Shao W, Espenshade PJ. 2012. Expanding roles for srebp in metabolism. Cell Metab. 16(4):414-419.

Sheng N, Li J, Liu H, Zhang A, Dai J. 2016. Interaction of perfluoroalkyl acids with human liver fatty acid-binding 

protein. Arch Toxicol. 90(1):217-227.

Slob W. 2002. Dose-response modeling of continuous endpoints. Toxicological Sciences. 66(2):298-312.

Smith BP, Auvil LS, Welge M, Bushell CB, Bhargava R, Elango N, Johnson K, Madak-Erdogan Z. 2020. Identification 

of early liver toxicity gene biomarkers using comparative supervised machine learning. Scientific Reports. 

10(1):19128.

Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. 2009. Association of perfluorooctanoic acid and 

perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 

170(10):1268-1278.

Tavares-Sanchez OL, Rodriguez C, Gortares-Moroyoqui P, Estrada MI. 2015. Hepatocyte nuclear factor-4α, a 

multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism. Int J 

Environ Health Res. 25(2):126-139.

Thumser AE, Wilton DC. 1996. The binding of cholesterol and bile salts to recombinant rat liver fatty acid-binding 

protein. Biochem J. 320 ( Pt 3)(Pt 3):729-733.

Trapani L, Segatto M, Pallottini V. 2012. Regulation and deregulation of cholesterol homeostasis: The liver as a 

metabolic “power station”. World J Hepatol. 4(6):184-190.

UNEP/POPS/COP.4/17 SC. 2009. Recommendations of the persistent organic pollutants review committee of 

the stockholm convention to amend annexes a, b or c of the convention. Conference of the Parties of the 

Stockholm, Convention on Persistent Organic Pollutants. Fourth meeting, Geneva, 4–8 May 2009.

Wada Y, Kikuchi A, Kaga A, Shimizu N, Ito J, Onuma R, Fujishima F, Totsune E, Sato R, Niihori T et al. 

2020. Metabolic and pathologic profiles of human lss deficiency recapitulated in mice. PLoS Genet. 

16(2):e1008628-e1008628.

Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. 2012. Pfos-induced hepatic steatosis, the mechanistic 

actions on β-oxidation and lipid transport. Biochim Biophys Acta. 1820(7):1092-1101.

Wigger L, Casals-Casas C, Baruchet M, Trang KB, Pradervand S, Naldi A, Desvergne B. 2019. System analysis 

of cross-talk between nuclear receptors reveals an opposite regulation of the cell cycle by lxr and fxr in 

human heparg liver cells. PLoS One. 14(8):e0220894.

Woodcroft MW, Ellis DA, Rafferty SP, Burns DC, March RE, Stock NL, Trumpour KS, Yee J, Munro K. 

2010. Experimental characterization of the mechanism of perfluorocarboxylic acids’ liver protein 

bioaccumulation: The key role of the neutral species. Environ Toxicol Chem. 29(8):1669-1677.



7

C
H

A
PTER 7

SECTION III

278

Zhang L, Ren XM, Guo LH. 2013a. Structure-based investigation on the interaction of perfluorinated compounds 

with human liver fatty acid binding protein. Environ Sci Technol. 47(19):11293-11301.

Zhang Y, Beesoon S, Zhu L, Martin JW. 2013b. Biomonitoring of perfluoroalkyl acids in human urine and estimates 

of biological half-life. Environ Sci Technol. 47(18):10619-10627.

Zhao W, Zitzow JD, Ehresman DJ, Chang S-C, Butenhoff JL, Forster J, Hagenbuch B. 2015. Na+/taurocholate 

cotransporting polypeptide and apical sodium-dependent bile acid transporter are involved in the 

disposition of perfluoroalkyl sulfonates in humans and rats. Toxicological sciences : an official journal of 

the Society of Toxicology. 146(2):363-373.

Zhao W, Zitzow JD, Weaver Y, Ehresman DJ, Chang SC, Butenhoff JL, Hagenbuch B. 2017. Organic anion 

transporting polypeptides contribute to the disposition of perfluoroalkyl acids in humans and rats. Toxicol 

Sci. 156(1):84-95.



7

N
A

M
s:

 A
 Q

IV
IV

E 
ca

se
 s

tu
dy

 w
ith

 P
FA

Ss

279

Exploration of NAMs for the perfluoroalkyl substances

Supplementary Material 

Biokinetic studies in HepaRG cells

SUPPLEMENTARY TABLE 1 MRM transitions of the PFASs tested in the present study.

Name Q1 Mass Da Q3 Mass Da Dwell (msec) DP EP CE CXP
13C

4
-PFOA 416.9 371.9 4.0 -40 -15 -24 -19

13C
5
-PFNA 468.0 423.0 4.0 -75 -10 -16 -27

18O
2
-PFHxS 403.0 84.0 4.0 -30 -10 -40 -8

13C
4
-PFOS 502.9 99.0 4.0 -80 -5 -34 -7

PFOA 412.9 369.1 4.0 -40 -10 -14 -11

PFOA 412.9 169.0 4.0 -40 -15 -24 -19

PFNA 462.9 419.1 4.0 -75 -10 -16 -27

PFNA 462.9 169.0 4.0 -75 -10 -26 -11

PFHxS 398.9 80.0 4.0 -110 -10 -104 -17

PFHxS 398.9 98.9 4.0 -110 -10 -42 -15

PFOS 498.9 99.0 4.0 -80 -5 -94 -7

PFOS 498.9 80.0 4.0 -80 -5 -100 -11

SUPPLEMENTARY FIGURE 1 Total protein 

content (mg/mL) upon 24-hours exposure to the four 

PFASs at concentrations of 6.25, 12.5, 25, 50, and 100 

µM. Data presented as mean and SD (three individual 

experiments with three replicates each).

SUPPLEMENTARY FIGURE 2 Total protein 

content (mg/mL) upon various exposure 

durations (5, 15, 60, 360 minutes, 6 or 24 hours) 

to PFOS or PFOA at a single concentrations of 

6.25 µM. Data presented as mean and SD (three 

individual experiments with three replicates 

each).
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For scenario 3, the in vitro measured cell-associated concentrations were expressed per 

mg protein in the culture. To scale this to a whole liver a  value of 126 mg total protein/g 

liver was used as reported in the literature (Vasilogianni et al. 2021). The two highest 

concentrations (200 and 400 µM) were linearly extrapolated based on the experimental 

measurements (0-100 µM).  

SUPPLEMENTARY TABLE 3 Parameters as used for the four compounds for the PBK model based reverse dosimetry approach.

PFOA PFNA PFHxS PFOS

liver:blood PC 2.20a 1.46b 0.85b 3.72a

kidney:blood PC 1.05a 0.60b 0.30b 0.80a

maximum resorption rate (Tmc) 6000c 7900d 7000d 3500c

a taken from Loccisano et al. (2011);  bc taken from NTP (2019 a,b); c corresponding to a half-life of 3 years for PFOA, 

and 6 years for PFOS (based on the EFSA’s model code); d calibrated to result in half-lives of 3.2 years (range: 0.34-

20) for PFNA and 8.2 years (95% CI 6.4-10.6) for PFHxS (Olsen et al. 2007; Zhang et al. 2013b). 
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FIGURE 3 Simulation of blood concentrations (µg/L) of A. PFOA, B. PFNA, C. PFHxS, and D. PFOS by the PBK 

models. Chronic daily constant exposure (PFOA: 0.85, PFNA: 0.85, PFHxS: 1.85, PFOS: 1.85 ng/kg bw/day).

PBK Model code

Model Code for PFOA
METHOD Stiff

STARTTIME = 0

STOPTIME=438000  ;end of simulation (h), 50 years

DT = 0.01

TOLERANCE = 0.01

DTMAX = 10.0

DTMIN = 0.000001

year= TIME/(24*365)

C

D
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;Physiological parameters (from Brown, et al 1997)

; fractional blood flows

QCC = 12.5   ; Cardiac blood output (L/h/kg^0.75)

QFC = 0.052  ; Fraction cardiac output going to fat

QLC = 0.069  ; Fraction cardiac output going to liver, throµgh hepatic artery

QKC = 0.175  ; Fraction cardiac output going to kidney

QSkC = 0.058  ; Fraction cardiac output going to skin

QGC = 0.181  ; Fraction of cardiac output going to gut and in the liver via portal artery

; Not used ;QfilC = 0.035 ; Fraction cardiac output to the filtrate compartment (20% of kidney blood flow)

; BW = 70 ; Body weight (kg) for men; 58 kg for women

; weight algorithm based on french survey (French total Diet Study)

BW=3.68+4.47*year-0.093*year^2+0.00061*year^3

fractional tissue volumes

VLC = 0.026  ; Fraction liver volume

VFC = 0.214  ; Fraction fat volume

VKC = 0.004  ; Fraction kidney volume

VfilC = 0.0004  ; Fraction filtrate compartment volume (10% of kidney volume)

VGC = 0.0171  ; Fraction gut volume

VPlasC = 0.0428  ; Fraction plasma volume (58% of blood)

Htc = 0.44   ; hematocrit

for dermal exposure

SkinTarea = 9.1*((BW*1000)**0.666)  ; Total area of skin (cm^2)

Skinthickness = 0.1    ; Skin thickness (cm)

; Chemical-specific parameters for PFOA

Tmc = 6000  ; Maximum resorption rate (µg/h/kg0.75), changed from 6 in the original Loccisano 2011 

model and expressed in µg, to be consistent with other parameters

Kt = 55.0   ; Resorption affinity (µg/L), changed from 0.055 in the original Loccisano 2011 model and 

expressed in µg, to be consistent with other parameters

Free = 0.02  ; Free fraction of PFOA in plasma

PL = 2.2   ; Liver/plasma partition coefficient

PF = 0.04   ; Fat/ plasma partition coefficient

PK = 1.05   ; Kidney/ plasma partition coefficient

PSk = 0.1   ; Skin/ plasma partition coefficient

PR = 0.12   ; Rest of the body/ plasma partition coefficient

PG = 0.05   ; Gut/ plasma partition coeff.

kurinec = 0.0003  ; urinary elimination rate constant (/h/kg^-0.25); estimated from Harada, et al 2005

kurine = kurinec*BW**(-0.25)

Free fraction of chemical in tissues

FreeL = Free/PL   ; liver

FreeF = Free/PF   ; fat

FreeK = Free/PK   ; kidney

FreeSk = Free/PSk   ; skin

FreeR = Free/PR   ; rest of tissues

FreeG = Free/PG   ; gut
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; Exposure parameters

tchng =438000   ; Duration of exposure (h); 50 years

; turn dose on/off

DoseOn = IF time<tchng THEN 1.0 else 0.0

; Dermal exposure

Dermconc = 0.0   ; Dermal concentration (µg/mL)

Dermvol = 0.0   ; Dermal exposure volume (mL)

Dermdose = Dermconc*Dermvol*1000   ; (µg)

Skinarea = 5   ; Exposed area on skin (cm^2)

; Oral exposure

Oralconc =0.00085   ; Oral uptake (µg/kg/day)

Oraldose = Oralconc*BW   ; (µg/day)

;Drinking water exposure

Drinkconc = 0.0     ; Drinking water concentration (µg/L or ppb)

Drinkrate = 13     ; Drinking water rate (mL/kg/day)

Drinkdose = (Drinkconc*Drinkrate/1000)*BW  ; (µg/day)

; Inhalation exposure

Inhalation = 0.0   ; Inhalation dose (ppm)

Tinput = 24.0   ; duration of dose (h), the CONTAM Panel increased the Tinput to 24h (instead 

of 0.6) considering continuous exposure from food

;oral dose

Input1 = IF MOD(time,24) <=Tinput THEN Oraldose/Tinput ELSE 0.0

;drinking water

Input2 = IF MOD(time,24) <= Tinput THEN Drinkdose/Tinput ELSE 0.0

; Scaling parameters

QC = QCC*BW**0.75    ; Cardiac output (L/h)

QCP = QC*(1-Htc)   ; adjust for plasma flow

QL = QLC*QCP   ; Plasma flow to liver (L/h)

QF = QFC*QCP   ; Plasma flow to fat (L/h)

QK = QKC*QCP  ; Plasma flow to kidney (L/h)

Qfil = 0.2*QK  ; Plasma flow to filtrate compartment (L/h); 20% of QK

QG = QGC*QCP  ; Plasma flow to gut (L/h)

QSk = IF Dermconc >0.0 THEN QSkC*QCP*(Skinarea/SkinTarea) else 0.0  ;plasma flow to skin

QR = QCP - QL - QF - QK - QG -QSk      ; Plasma flow to rest 

of the body (L/h)

Qbal = QCP - (QR+QL+QF+QK+QG+QSk) ; balance check--better be 0

VL = VLC*BW     ; Liver volume (L)

VF = VFC*BW     ; Fat volume (L)

VK = VKC*BW     ; Kidney volume (L)

Vfil = VfilC*BW     ; Fitrate compartment volume (L)

VG = VGC*BW     ; Gut volume (L)

VPlas = VPlasC*BW     ; Plasma volume (L)
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VSk = (Skinarea*Skinthickness)/1000  ; Skin volume (L)

VR = 0.84*BW - VL - VF - VK - Vfil - VG - VPlas - VSk   ; Rest of the body volume (L)

Vbal = (0.84*BW)-(VL+VF+VK+VFil+VG+VPlas+VSk)   ; Balance check--better be 0

Tm = Tmc*BW**0.75     ; transporter maximum

>>>>>>>>>>>>>>>>>>>> Model equations <<<<<<<<<<<<<<<<<<<<<<<<<<<<

; Plasma compartment

APlas’ = QF*CF*FreeF+(QL+QG)*CL*FreeL+QR*CR*FreeR+QSk*CSk*FreeSk+QK*CK*FreeK -

QCP*CA*Free - Qfil*CA*Free

init APlas = 0.0

CAFree = APlas/VPlas    ; free concentration of PFOA in plasma in µg/L (ng/mL)

CA = CAfree/Free     ; total concentration in plasma

; Gut compartment

AG’ = QG*(CA*Free-CG*FreeG) + Input1*DoseOn + Input2*DoseOn

init AG = 0.0

CG = AG/VG    ; Concentration in gut (µg/L)

CVG = CG/PG    ; Concentration leaving gut (µg/L)

; Liver compartment

AL’ = (QL*(CA*Free))+(QG*CG*FreeG) - ((QL+QG)*CL*FreeL)  ;Rate of change in liver (µg/h)

init AL = 0.0

CL = AL/VL    ; Concentration in liver (µg/L)

CVL = CL/PL    ; Concentration leaving liver (µg/L)

; Fat compartment

AF’ = QF*(CA*Free-CF*FreeF)  ; Rate of change in fat (µg/h)

init AF = 0.0

CF = AF/VF     ; Concentration in fat (µg/L)

CVF = CF/PF    ; Concentration leaving fat (µg/L)

; Fat compartment

; Kidney compartment

AK’ = QK*(CA*Free-CK*FreeK) + Tm*Cfil/(Kt+Cfil)   ; Rate of change in kidneys (µg/h)

init AK = 0.0

CK = AK/VK    ; Concentration in kidneys (µg/L)

CVK = CK/PK    ; Concentration leaving kidneys (µg/L)

; Filtrate compartment

Afil’ = Qfil*(CA*Free-Cfil) - Tm*Cfil/(Kt+Cfil)  ; Rate of change in filtrate compartment (µg/h)

init Afil = 0.0

Cfil = Afil/Vfil     ; Concentration in filtrate compartment (µg/L)

; Storage compartment for urine

; Adelay’ = Qfil*Cfil-kurine*Adelay

; init Adelay = 0.0

; Urine

;Aurine’ = kurine*Adelay

Aurine’ = Qfil*Cfil - kurine*Aurine

init Aurine = 0.0
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; Skin compartment

ASk’ = QSk*(CA*Free-CSk*FreeSk)  ; Rate of change in skin (µg/h)

init ASk = DermDose

CSk = ASk/VSk     ; Concentration in skin compartment (µg/L)

CVSk = CSk/PSk     ; Concentration leaving skin compartment (µg/L)

; Rest of the body

AR’ = QR*(CA*Free-CR*FreeR)    ; Rate of change in rest of the body (µg/h)

init AR = 0.0

CR = AR/VR    ; Concentration in rest of the body (µg/L)

CVR = CR/PR    ; Concentration leaving rest of the body (µg/L)

Display Drinkconc, Dermconc, Oralconc, Inhalation, TInput, Tmc, Kt, Free, PL,PK,PF,PR,PSK,PG,

tchng,input1,input2,drinkrate,BW,QCC,QFC,QLC,QKC,QSkC,QGC,VLC,VFC,VKC,VFilC,VGC,VPlasC,kurinec, 

year , APlas, AG, AL, AF, AF, AK, ASK, AR    ; for parameters window

Display CA, CG, CL, CF, CR, CK, CAFREE, Qbal , year, FreeL  ; for plotting

Model Code for PFNA adapted from code on PFOA
METHOD Stiff

STARTTIME = 0

STOPTIME=438000  ;end of simulation (h), 50 years

DT = 0.01

TOLERANCE = 0.01

DTMAX = 10.0

DTMIN = 0.000001

year= TIME/(24*365)

;Physiological parameters (from Brown, et al 1997)

; fractional blood flows

QCC = 12.5   ; Cardiac blood output (L/h/kg^0.75)

QFC = 0.052  ; Fraction cardiac output going to fat

QLC = 0.069  ; Fraction cardiac output going to liver, throµgh hepatic artery

QKC = 0.175  ; Fraction cardiac output going to kidney

QSkC = 0.058  ; Fraction cardiac output going to skin

QGC = 0.181  ; Fraction of cardiac output going to gut and in the liver via portal artery

; Not used ;QfilC = 0.035 ; Fraction cardiac output to the filtrate compartment (20% of kidney blood flow)

; BW = 70 ; Body weight (kg) for men; 58 kg for women

; weight algorithm based on french survey (French total Diet Study)

BW=3.68+4.47*year-0.093*year^2+0.00061*year^3

fractional tissue volumes

VLC = 0.026  ; Fraction liver volume

VFC = 0.214  ; Fraction fat volume

VKC = 0.004  ; Fraction kidney volume

VfilC = 0.0004  ; Fraction filtrate compartment volume (10% of kidney volume)

VGC = 0.0171  ; Fraction gut volume

VPlasC = 0.0428  ; Fraction plasma volume (58% of blood)

Htc = 0.44   ; hematocrit

for dermal exposure

SkinTarea = 9.1*((BW*1000)**0.666)  ; Total area of skin (cm^2)

Skinthickness = 0.1     ; Skin thickness (cm)
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; Chemical-specific parameters for PFNA

Tmc = 7900  ; Maximum resorption rate (µg/h/kg0.75), changed from original 6000 (EFSA, 2018) for 

PFOA, fitted in order to achieve a half-life of 3.2 years

Kt = 55.0   ; Resorption affinity (µg/L)

Free = 0.02  ; Free fraction of PFNA (PFOA) in plasma

PL = 1.46   ; Liver/plasma partition coefficient (NTP study, 2019a)

PF = 0.04   ; Fat/ plasma partition coefficient (based on PFOA)

PK = 0.6   ; Kidney/ plasma partition coefficient (NTP study, 2019a)

PSk = 0.1   ; Skin/ plasma partition coefficient (based on PFOA)

PR = 0.12   ; Rest of the body/ plasma partition coefficient

PG = 0.05   ; Gut/ plasma partition coeff.

kurinec = 0.0003  ; urinary elimination rate constant (/h/kg^-0.25); estimated from Harada, et al 2005

kurine = kurinec*BW**(-0.25)

Free fraction of chemical in tissues

FreeL = Free/PL   ; liver

FreeF = Free/PF   ; fat

FreeK = Free/PK   ; kidney

FreeSk = Free/PSk   ; skin

FreeR = Free/PR   ; rest of tissues

FreeG = Free/PG   ; gut

; Exposure parameters

tchng =438000   ; Duration of exposure (h); 50 years

; turn dose on/off

DoseOn = IF time<tchng THEN 1.0 else 0.0

; Dermal exposure

Dermconc = 0.0  ; Dermal concentration (µg/mL)

Dermvol = 0.0  ; Dermal exposure volume (mL)

Dermdose = Dermconc*Dermvol*1000   ; (µg)

Skinarea = 5  ; Exposed area on skin (cm^2)

; Oral exposure

Oralconc =0.00085   ; Oral uptake (µg/kg/day)

Oraldose = Oralconc*BW  ; (µg/day)

;Drinking water exposure

Drinkconc = 0.0     ; Drinking water concentration (µg/L or ppb)

Drinkrate = 13     ; Drinking water rate (mL/kg/day)

Drinkdose = (Drinkconc*Drinkrate/1000)*BW  ; (µg/day)

; Inhalation exposure

Inhalation = 0.0   ; Inhalation dose (ppm)

Tinput = 24.0   ; duration of dose (h), the CONTAM Panel increased the Tinput to 24h (instead 

of 0.6) considering continuous exposure from food

;oral dose

Input1 = IF MOD(time,24) <=Tinput THEN Oraldose/Tinput ELSE 0.0
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;drinking water

Input2 = IF MOD(time,24) <= Tinput THEN Drinkdose/Tinput ELSE 0.0

; Scaling parameters

QC = QCC*BW**0.75   ; Cardiac output (L/h)

QCP = QC*(1-Htc)   ; adjust for plasma flow

QL = QLC*QCP   ; Plasma flow to liver (L/h)

QF = QFC*QCP   ; Plasma flow to fat (L/h)

QK = QKC*QCP   ; Plasma flow to kidney (L/h)

Qfil = 0.2*QK   ; Plasma flow to filtrate compartment (L/h); 20% of QK

QG = QGC*QCP   ; Plasma flow to gut (L/h)

QSk = IF Dermconc >0.0 THEN QSkC*QCP*(Skinarea/SkinTarea) else 0.0  ;plasma flow to skin

QR = QCP - QL - QF - QK - QG -QSk    ; Plasma flow to rest of the body (L/h)

Qbal = QCP - (QR+QL+QF+QK+QG+QSk) ; balance check--better be 0

VL = VLC*BW     ; Liver volume (L)

VF = VFC*BW     ; Fat volume (L)

VK = VKC*BW     ; Kidney volume (L)

Vfil = VfilC*BW     ; Fitrate compartment volume (L)

VG = VGC*BW     ; Gut volume (L)

VPlas = VPlasC*BW     ; Plasma volume (L)

VSk = (Skinarea*Skinthickness)/1000  ; Skin volume (L)

VR = 0.84*BW - VL - VF - VK - Vfil - VG - VPlas - VSk   ; Rest of the body volume (L)

Vbal = (0.84*BW)-(VL+VF+VK+VFil+VG+VPlas+VSk)   ; Balance check--better be 0

Tm = Tmc*BW**0.75      ; transporter maximum

>>>>>>>>>>>>>>>>>>>> Model equations <<<<<<<<<<<<<<<<<<<<<<<<<<<<

; Plasma compartment

APlas’ = QF*CF*FreeF+(QL+QG)*CL*FreeL+QR*CR*FreeR+QSk*CSk*FreeSk+QK*CK*FreeK -

QCP*CA*Free - Qfil*CA*Free

init APlas = 0.0

CAFree = APlas/VPlas    ; free concentration in plasma in µg/L (ng/mL)

CA = CAfree/Free     ; total concentration in plasma

; Gut compartment

AG’ = QG*(CA*Free-CG*FreeG) + Input1*DoseOn + Input2*DoseOn

init AG = 0.0

CG = AG/VG    ; Concentration in gut (µg/L)

CVG = CG/PG    ; Concentration leaving gut (µg/L)

; Liver compartment

AL’ = (QL*(CA*Free))+(QG*CG*FreeG) - ((QL+QG)*CL*FreeL)  ;Rate of change in liver (µg/h)

init AL = 0.0

CL = AL/VL    ; Concentration in liver (µg/L)

CVL = CL/PL    ; Concentration leaving liver (µg/L)

; Fat compartment

AF’ = QF*(CA*Free-CF*FreeF)  ; Rate of change in fat (µg/h)

init AF = 0.0
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CF = AF/VF     ; Concentration in fat (µg/L)

CVF = CF/PF    ; Concentration leaving fat (µg/L)

; Fat compartment

; Kidney compartment

AK’ = QK*(CA*Free-CK*FreeK) + Tm*Cfil/(Kt+Cfil)   ; Rate of change in kidneys (µg/h)

init AK = 0.0

CK = AK/VK    ; Concentration in kidneys (µg/L)

CVK = CK/PK    ; Concentration leaving kidneys (µg/L)

; Filtrate compartment

Afil’ = Qfil*(CA*Free-Cfil) - Tm*Cfil/(Kt+Cfil)  ; Rate of change in filtrate compartment (µg/h)

init Afil = 0.0

Cfil = Afil/Vfil     ; Concentration in filtrate compartment (µg/L)

; Storage compartment for urine

; Adelay’ = Qfil*Cfil-kurine*Adelay

; init Adelay = 0.0

; Urine

;Aurine’ = kurine*Adelay

Aurine’ = Qfil*Cfil - kurine*Aurine

init Aurine = 0.0

; Skin compartment

ASk’ = QSk*(CA*Free-CSk*FreeSk)  ; Rate of change in skin (µg/h)

init ASk = DermDose

CSk = ASk/VSk   ; Concentration in skin compartment (µg/L)

CVSk = CSk/PSk   ; Concentration leaving skin compartment (µg/L)

; Rest of the body

AR’ = QR*(CA*Free-CR*FreeR)  ; Rate of change in rest of the body (µg/h)

init AR = 0.0

CR = AR/VR    ; Concentration in rest of the body (µg/L)

CVR = CR/PR    ; Concentration leaving rest of the body (µg/L)

Display Drinkconc, Dermconc, Oralconc, Inhalation, TInput, Tmc, Kt, Free, PL,PK,PF,PR,PSK,PG,

tchng,input1,input2,drinkrate,BW,QCC,QFC,QLC,QKC,QSkC,QGC,VLC,VFC,VKC,VFilC,VGC,VPlasC,kurinec, 

year , APlas, AG, AL, AF, AF, AK, ASK, AR    ; for parameters window

Display CA, CG, CL, CF, CR, CK, CAFREE, Qbal , year, FreeL  ; for plotting

Model Code for PFHxS adapted from code on PFOS 
METHOD Stiff

STARTTIME = 0

STOPTIME=438000     ;end of simulation (h); 50 years

DT = 0.01

TOLERANCE = 0.01  ;default tolerance

DTMAX = 10.0

DTMIN = 0.000001

year= TIME/(24*365)

; Physiological parameters (from Brown et al., 1997) start
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;fractional blood flows

QCC = 12.5   ; Cardiac blood output (L/h/kg^0.75)

QFC = 0.052   ; Fraction cardiac output going to fat

QLC = 0.069   ; Fraction cardiac output going to liver, throµgh hepatic artery

QKC = 0.175   ; Fraction cardiac output going to kidney

QSkC = 0.058   ; Fraction cardiac output going to skin

QGC = 0.181   ; Fraction of cardiac output going to gut and in the liver via portal artery

; Not used ;QfilC = 0.035  ; Fraction cardiac output to the filtrate compartment (20% of kidney blood 

flow)

;BW = 70    ; Body weight (kg) for men; 58 kg for women

;weight algorithm based on french survey (French total Diet Study)

BW=3.68+4.47*year-0.093*year^2+0.00061*year^3

;fractional tissue volumes

VLC = 0.026   ; Fraction liver volume

VFC = 0.214   ; Fraction fat volume

VKC = 0.004   ; Fraction kidney volume

VfilC = 0.0004   ; Fraction filtrate compartment volume (10% of kidney volume)

VGC = 0.0171   ; Fraction gut volume

VPlasC = 0.0428  ; Fraction plasma volume (58% of blood)

Htc = 0.44   ; hematocrit

;for dermal exposure

SkinTarea = 9.1*((BW*1000)**0.666)   ; Total area of skin (cm^2)

Skinthickness = 0.1     ; Skin thickness (cm)

; Chemical-specific parameters (PFHxS)

Tmc =7000  ; Maximum resorption rate (µg/h/kg0.75), changed from original 3500 (EFSA, 2018) for 

PFOS, fitted in order to achieve a half-life of 8.2 years

Kt = 23.0   ; Resorption affinity (µg/L)

Free = 0.025  ; Free fraction of PFHxS in plasma (based on PFOS)

PL = 0.85   ; Liver/plasma partition coefficient (NTP study, 2019b)

PF = 0.14                   ; Fat/ plasma partition coefficient (based on PFOS)

PK = 0.30   ; Kidney/ plasma partition coefficient (based on NTP study, 2019, in rats)

PSk = 0.29   ; Skin/ plasma partition coefficient (based on PFOS)

PR = 0.2   ; Rest of the body/ plasma partition coefficient (based on PFOS)

PG = 0.57   ; Gut/ plasma partition coeff. (based on PFOS)

kurinec = 0.001  ; urinary elimination rate constant (/h/kg^-0.25); estimated from Harada, et al 2005, 

(based on PFOS)

kurine = kurinec*BW**(-0.25)

; Free fraction of chemical in tissues

FreeL = Free/PL  ;liver

FreeF = Free/PF  ;fat

FreeK = Free/PK  ;kidney

FreeSk = Free/PSk  ;skin

FreeR = Free/PR  ;rest of tissues

FreeG = Free/PG  ;gut
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Exploration of NAMs for the perfluoroalkyl substances

; Exposure parameters

tchng =438000  ;Duration of exposure (h); 50 years

;turn dose on/off

DoseOn = IF time<tchng THEN 1.0 else 0.0

; Dermal exposure

Dermconc = 0.0  ; Dermal concentration (µg/mL)

Dermvol = 0.0  ; Dermal exposure volume (mL)

Dermdose = Dermconc*Dermvol*1000  ; (µg)

Skinarea = 5 ; Exposed area on skin (cm^2)

; Oral exposure

Oralconc =0.00185   ; Oral uptake (µg/kg/day)

Oraldose = Oralconc*BW  ; (µg/day)

; Drinking water exposure

Drinkconc = 0.0     ; Drinking water concentration (µg/L or ppb)

Drinkrate = 13     ; Drinking water rate (mL/kg/day)

Drinkdose = (Drinkconc*Drinkrate/1000)*BW  ; (µg/day)

; Inhalation exposure

Inhalation = 0.0 ; Inhalation dose (ppm)

Tinput = 24 ; duration of dose (h) the CONTAM Panel increased the Tinput to 24h (instead of 0.6) considering 

continuous exposure from food.

;oral dose

Input1 = IF MOD(time,24) <=Tinput THEN Oraldose/Tinput ELSE 0.0

;drinking water

Input2 = IF MOD(time,24) <= Tinput THEN Drinkdose/Tinput ELSE 0.0

; Scaling parameters

QC = QCC*BW**0.75   ; Cardiac output (L/h)

QCP = QC*(1-Htc)   ; adjust for plasma flow

QL = QLC*QCP   ; Plasma flow to liver (L/h)

QF = QFC*QCP   ; Plasma flow to fat (L/h)

QK = QKC*QCP   ; Plasma flow to kidney (L/h)

Qfil = 0.2*QK   ; Plasma flow to filtrate compartment (L/h); 20% of QK

QG = QGC*QCP   ; Plasma flow to gut (L/h)

QSk = IF Dermconc >0.0 THEN QSkC*QCP*(Skinarea/SkinTarea) else 0.0 ;plasma flow to skin

QR = QCP - QL - QF - QK - QG -QSk ; Plasma flow to rest of the body (L/h)

Qbal = QCP - (QR+QL+QF+QK+QG+QSk) ; balance check--better be 0

VL = VLC*BW   ; Liver volume (L)

VF = VFC*BW   ; Fat volume (L)

VK = VKC*BW   ; Kidney volume (L)

Vfil = VfilC*BW   ; Fitrate compartment volume (L)

VG = VGC*BW   ; Gut volume (L)

VPlas = VPlasC*BW  ; Plasma volume (L)

VSk = (Skinarea*Skinthickness)/1000    ; Skin volume (L)



7

C
H

A
PTER 7

SECTION III

292

VR = 0.84*BW - VL - VF - VK - Vfil - VG - VPlas - VSk  ; Rest of the body volume (L)

Vbal = (0.84*BW)-(VL+VF+VK+VFil+VG+VPlas+VSk)  ; Balance check--better be 0

Tm = Tmc*BW**0.75 ;transporter maximum

;>>>>>>>>>>>>>>>>>>>> Model equations <<<<<<<<<<<<<<<<<<<<<<<<<<<<

; Plasma compartment

APlas’ = QF*CF*FreeF+(QL+QG)*CL*FreeL+QR*CR*FreeR+QSk*CSk*FreeSk+QK*CK*FreeK -

QCP*CA*Free - Qfil*CA*Free

init APlas = 0.0

CAFree = APlas/VPlas    ; free concentration of PFOS in plasma in µg/L (ng/mL)

CA = CAfree/Free    ; total concentration in plasma

; Gut compartment

AG’ = QG*(CA*Free-CG*FreeG) + Input1*DoseOn + Input2*DoseOn

init AG = 0.0

CG = AG/VG     ; Concentration in gut (µg/L)

CVG = CG/PG     ; Concentration leaving gut (µg/L)

; Liver compartment

AL’ = (QL*(CA*Free))+(QG*CG*Freeg) - ((QL+QG)*CL*FreeL)  ;Rate of change in liver (µg/h)

init AL = 0.0

CL = AL/VL      ; Concentration in liver (µg/L)

CVL = CL/PL      ; Concentration leaving liver (µg/L)

; Fat compartment

AF’ = QF*(CA*Free-CF*FreeF)   ; Rate of change in fat (µg/h)

init AF = 0.0

CF = AF/VF     ; Concentration in fat (µg/L)

CVF = CF/PF ; Concentration leaving fat (µg/L)

; Kidney compartment

AK’ = QK*(CA*Free-CK*FreeK) + Tm*Cfil/(Kt+Cfil)   ; Rate of change in kidneys (µg/h)

init AK = 0.0

CK = AK/VK      ; Concentration in kidneys (µg/L)

CVK = CK/PK      ; Concentration leaving kidneys (µg/L)

; Filtrate compartment

Afil’ = Qfil*(CA*Free-Cfil) - Tm*Cfil/(Kt+Cfil)  ; Rate of change in filtrate compartment (µg/h)

init Afil = 0.0

Cfil = Afil/Vfil     ; Concentration in filtrate compartment (µg/L)

; Storage compartment for urine

;Adelay’ = Qfil*Cfil-kurine*Adelay

;init Adelay = 0.0

; Urine

;Aurine’ = kurine*Adelay

Aurine’ = Qfil*Cfil - kurine*Aurine

init Aurine = 0.0

; Skin compartment

ASk’ = QSk*(CA*Free-CSk*FreeSk)    ; Rate of change in skin (µg/h)

init ASk = DermDose
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Exploration of NAMs for the perfluoroalkyl substances

CSk = ASk/VSk     ; Concentration in skin compartment (µg/L)

CVSk = CSk/PSk     ; Concentration leaving skin compartment (µg/L)

; Rest of the body

AR’ = QR*(CA*Free-CR*FreeR)    ; Rate of change in rest of the body (µg/h)

init AR = 0.0

CR = AR/VR     ; Concentration in rest of the body (µg/L)

CVR = CR/PR     ; Concentration leaving rest of the body (µg/L)

Display Drinkconc, Dermconc, Oralconc, Inhalation, TInput, Tmc, Kt, Free, PL,PK,PF,PR,PSK,PG,

tchng,

input1,input2,drinkrate,BW,QCC,QFC,QLC,QKC,QSkC,QGC,VLC,VFC,VKC,VFilC,VGC,VPlasC,kurinec, year , 

APlas, AG, AL, AF, AF, AK, ASK, AR   ;for parameters window

Display CA, CG, CL, CF, CR, CK, CAFREE, Qbal , year    ;for plotting

Model Code for PFOS 
METHOD Stiff

STARTTIME = 0

STOPTIME=438000     ;end of simulation (h); 50 years

DT = 0.01

TOLERANCE = 0.01  ;default tolerance

DTMAX = 10.0

DTMIN = 0.000001

year= TIME/(24*365)

; Physiological parameters (from Brown et al., 1997) start

;fractional blood flows

QCC = 12.5   ; Cardiac blood output (L/h/kg^0.75)

QFC = 0.052  ; Fraction cardiac output going to fat

QLC = 0.069  ; Fraction cardiac output going to liver, throµgh hepatic artery

QKC = 0.175  ; Fraction cardiac output going to kidney

QSkC = 0.058  ; Fraction cardiac output going to skin

QGC = 0.181  ; Fraction of cardiac output going to gut and in the liver via portal artery

; Not used ;QfilC = 0.035 ; Fraction cardiac output to the filtrate compartment (20% of kidney blood flow)

;BW = 70   ; Body weight (kg) for men; 58 kg for women

;weight algorithm based on french survey (French total Diet Study)

BW=3.68+4.47*year-0.093*year^2+0.00061*year^3

;fractional tissue volumes

VLC = 0.026  ; Fraction liver volume

VFC = 0.214  ; Fraction fat volume

VKC = 0.004  ; Fraction kidney volume

VfilC = 0.0004  ; Fraction filtrate compartment volume (10% of kidney volume)

VGC = 0.0171  ; Fraction gut volume

VPlasC = 0.0428  ; Fraction plasma volume (58% of blood)

Htc = 0.44   ; hematocrit

;for dermal exposure
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SkinTarea = 9.1*((BW*1000)**0.666)  ; Total area of skin (cm^2)

Skinthickness = 0.1    ; Skin thickness (cm)

; Chemical-specific parameters (PFOS)

Tmc =3500   ; Maximum resorption rate (µg/h/kg0.75); changed from 3.5 in the original 

Loccisano 2011 model and expressed in µg, to be consistent with other parameters

Kt = 23.0   ; Resorption affinity (µg/L); changed from 0.023 in the original Loccisano 2011 model and 

expressed in µg, to be consistent with other parameters

Free = 0.025  ; Free fraction of PFOS in plasma

PL = 3.72   ; Liver/plasma partition coefficient

PF = 0.14   ; Fat/ plasma partition coefficient

PK = 0.8   ; Kidney/ plasma partition coefficient

PSk = 0.29   ; Skin/ plasma partition coefficient

PR = 0.2   ; Rest of the body/ plasma partition coefficient

PG = 0.57   ; Gut/ plasma partition coeff.

kurinec = 0.001  ; urinary elimination rate constant (/h/kg^-0.25); estimated from Harada, et al 2005

kurine = kurinec*BW**(-0.25)

; Free fraction of chemical in tissues

FreeL = Free/PL  ;liver

FreeF = Free/PF  ;fat

FreeK = Free/PK  ;kidney

FreeSk = Free/PSk  ;skin

FreeR = Free/PR  ;rest of tissues

FreeG = Free/PG  ;gut

; Exposure parameters

tchng =438000  ;Duration of exposure (h); 50 years

;turn dose on/off

DoseOn = IF time<tchng THEN 1.0 else 0.0

; Dermal exposure

Dermconc = 0.0    ; Dermal concentration (µg/mL)

Dermvol = 0.0    ; Dermal exposure volume (mL)

Dermdose = Dermconc*Dermvol*1000  ; (µg)

Skinarea = 5 ; Exposed area on skin (cm^2)

; Oral exposure

Oralconc =0.00185    ; Oral uptake (µg/kg/day)

Oraldose = Oralconc*BW   ; (µg/day)

; Drinking water exposure

Drinkconc = 0.0     ; Drinking water concentration (µg/L or ppb)

Drinkrate = 13     ; Drinking water rate (mL/kg/day)

Drinkdose = (Drinkconc*Drinkrate/1000)*BW  ; (µg/day)

; Inhalation exposure

Inhalation = 0.0 ; Inhalation dose (ppm)

Tinput = 24 ; duration of dose (h) the CONTAM Panel increased the Tinput to 24h (instead of 0.6) considering 

continuous exposure from food.
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Exploration of NAMs for the perfluoroalkyl substances

;oral dose

Input1 = IF MOD(time,24) <=Tinput THEN Oraldose/Tinput ELSE 0.0

;drinking water

Input2 = IF MOD(time,24) <= Tinput THEN Drinkdose/Tinput ELSE 0.0

; Scaling parameters

QC = QCC*BW**0.75   ; Cardiac output (L/h)

QCP = QC*(1-Htc)   ; adjust for plasma flow

QL = QLC*QCP   ; Plasma flow to liver (L/h)

QF = QFC*QCP   ; Plasma flow to fat (L/h)

QK = QKC*QCP   ; Plasma flow to kidney (L/h)

Qfil = 0.2*QK   ; Plasma flow to filtrate compartment (L/h); 20% of QK

QG = QGC*QCP   ; Plasma flow to gut (L/h)

QSk = IF Dermconc >0.0 THEN QSkC*QCP*(Skinarea/SkinTarea) else 0.0 ;plasma flow to skin

QR = QCP - QL - QF - QK - QG -QSk ; Plasma flow to rest of the body (L/h)

Qbal = QCP - (QR+QL+QF+QK+QG+QSk) ; balance check--better be 0

VL = VLC*BW   ; Liver volume (L)

VF = VFC*BW   ; Fat volume (L)

VK = VKC*BW   ; Kidney volume (L)

Vfil = VfilC*BW   ; Fitrate compartment volume (L)

VG = VGC*BW   ; Gut volume (L)

VPlas = VPlasC*BW  ; Plasma volume (L)

VSk = (Skinarea*Skinthickness)/1000   ; Skin volume (L)

VR = 0.84*BW - VL - VF - VK - Vfil - VG - VPlas - VSk  ; Rest of the body volume (L)

Vbal = (0.84*BW)-(VL+VF+VK+VFil+VG+VPlas+VSk)  ; Balance check--better be 0

Tm = Tmc*BW**0.75 ;transporter maximum

;>>>>>>>>>>>>>>>>>>>> Model equations <<<<<<<<<<<<<<<<<<<<<<<<<<<<

; Plasma compartment

APlas’ = QF*CF*FreeF+(QL+QG)*CL*FreeL+QR*CR*FreeR+QSk*CSk*FreeSk+QK*CK*FreeK -

QCP*CA*Free - Qfil*CA*Free

init APlas = 0.0

CAFree = APlas/VPlas    ; free concentration of PFOS in plasma in µg/L (ng/mL)

CA = CAfree/Free    ; total concentration in plasma

; Gut compartment

AG’ = QG*(CA*Free-CG*FreeG) + Input1*DoseOn + Input2*DoseOn

init AG = 0.0

CG = AG/VG     ; Concentration in gut (µg/L)

CVG = CG/PG     ; Concentration leaving gut (µg/L)

; Liver compartment

AL’ = (QL*(CA*Free))+(QG*CG*Freeg) - ((QL+QG)*CL*FreeL)  ;Rate of change in liver (µg/h)

init AL = 0.0

CL = AL/VL      ; Concentration in liver (µg/L)

CVL = CL/PL      ; Concentration leaving liver (µg/L)

; Fat compartment
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AF’ = QF*(CA*Free-CF*FreeF)    ; Rate of change in fat (µg/h)

init AF = 0.0

CF = AF/VF      ; Concentration in fat (µg/L)

CVF = CF/PF ; Concentration leaving fat (µg/L)

; Kidney compartment

AK’ = QK*(CA*Free-CK*FreeK) + Tm*Cfil/(Kt+Cfil)   ; Rate of change in kidneys (µg/h)

init AK = 0.0

CK = AK/VK      ; Concentration in kidneys (µg/L)

CVK = CK/PK      ; Concentration leaving kidneys (µg/L)

; Filtrate compartment

Afil’ = Qfil*(CA*Free-Cfil) - Tm*Cfil/(Kt+Cfil)   ; Rate of change in filtrate compartment (µg/h)

init Afil = 0.0

Cfil = Afil/Vfil     ; Concentration in filtrate compartment (µg/L)

; Storage compartment for urine

;Adelay’ = Qfil*Cfil-kurine*Adelay

;init Adelay = 0.0

; Urine

;Aurine’ = kurine*Adelay

Aurine’ = Qfil*Cfil - kurine*Aurine

init Aurine = 0.0

; Skin compartment

ASk’ = QSk*(CA*Free-CSk*FreeSk)    ; Rate of change in skin (µg/h)

init ASk = DermDose

CSk = ASk/VSk     ; Concentration in skin compartment (µg/L)

CVSk = CSk/PSk     ; Concentration leaving skin compartment (µg/L)

; Rest of the body

AR’ = QR*(CA*Free-CR*FreeR)    ; Rate of change in rest of the body (µg/h)

init AR = 0.0

CR = AR/VR     ; Concentration in rest of the body (µg/L)

CVR = CR/PR     ; Concentration leaving rest of the body (µg/L)

Display Drinkconc, Dermconc, Oralconc, Inhalation, TInput, Tmc, Kt, Free, PL,PK,PF,PR,PSK,PG,

tchng,

input1,input2,drinkrate,BW,QCC,QFC,QLC,QKC,QSkC,QGC,VLC,VFC,VKC,VFilC,VGC,VPlasC,kurinec, year , 

APlas, AG, AL, AF, AF, AK, ASK, AR   ;for parameters window

Display CA, CG, CL, CF, CR, CK, CAFREE, Qbal , year    ;for plotting
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Exploration of NAMs for the perfluoroalkyl substances

Triglycerides- BMD Analysis Scenario 3
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BMD Analysis- gene expression data, example for individual experiment 
analysis, Scenario 3

ATF4  (individual experiments) 
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Exploration of NAMs for the perfluoroalkyl substances

BMD Analysis-gene expression data, all genes

Scenario 1
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Exploration of NAMs for the perfluoroalkyl substances

Scenario 2
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Exploration of NAMs for the perfluoroalkyl substances

Scenario 3
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SUPPLEMENTARY FIGURE 4 Predicted human oral equivalent dose-response curves for the up- or down-

regulation of the 12 genes as induced by PFASs. The ‘response’ represents the expression of each gene in the HepaRG 

cells (normalized to housekeeping gene RPL27)  exposed to the individual PFASs. A covariate on substance and 

experiment was applied on the background response (parameter a) to account for possible differences between 

substances and experiments. A covariate on substance was applied on the potency parameter (b) and the residual 

variance. Oral equivalent doses are in ng/kg bw/d. The curves were obtained from the in vitro concentration-

response data based on Scenarios 1, 2 and 3 with PBK model-based reverse dosimetry and a subsequent BMD 

analysis. The BMD
50

s and the underlying 95% CIs are presented.
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Exploration of NAMs for the perfluoroalkyl substances

SUPPLEMENTARY TABLE 4 Predicted BMD50s and BMDL-BMDU confidence intervals for the 12 selected genes for the three 

scenarios.

Genes
Scenario 1

PFOA PFNA PFHxS PFOS
HMGCR 0.065 0.087 0.448 0.028
  0.034-0.107 0.0627-0.128 0.26-0.825 0.0128-0.0544
LSS 0.044 0.069 0.441 0.026
  0.02- 0.09 0.048-0.105 0.21-1.08 0.01- 0.056
CYP7A1 0.027 0.042 0.413 0.011
  0.015- 0.051  0.03550- 0.0517 0.276-0.686 0.00579- 0.0257
CYP8B1 0.113 0.083 0.928 0.088
  0.0741- 0.150 0.0673- 0.112 0.5510-Inf 0.0559-0.121
CXCL10 0.073 0.061 0.196 0.072
  0.0483-0.104 0.0471-0.0811 0.145-0.255 0.0469-0.108
PKD4 0.024 0.044 0.108 0.134
  0.017-0.034 0.03-0.06 0.08-0.15 0.033-0.214
ANGPTL4 0.031 0.062 0.204 0.13
  0.017-0.07 0.043-0.084 0.148-0.28 0.07-0.212
OAT5 0.025 0.018 0.137 0.012
  0.0149-0.0387 0.0122-0.0253 0.0976-0.185 0.00618-0.02
ATF4 0.18 0.13 0.73 0.1
  0.13-0.23 0.09-0.2 0.58-1.07 0..09-0.13
SLC7A11 0.15 0.09 0.59 0.07
  0.12-0.18 0.07-0.14 0.51-0.59 0.06-0.08
YARS1 0.16 0.11 0.67 0.1
  0.11-0.21 0.08-0.2 0.55-0.87 0.08-0.13
THRSP 0.147 0.063 0.517 0.049
  0.11-0.186 0.0533-0.0757 0.444-0.595 0.0353-0.0625

Genes
Scenario 2

PFOA PFNA PFHxS PFOS
HMGCR 0.143 0.127 0.379 0.104
  0.0746- 0.237 0.0915-0.186 0.22-0.701 0.047-0.201
LSS 0.097 0.101 0.373 0.094
  0.041-0.2 0.069- 0.15 0.18-0.92 0.038- 0.21
CYP7A1 0.058 0.061 0.349 0.041
  0.0336- 0.1070 0.0516- 0.0745 0.2320 -0.584 0.021 -0.09
CYP8B1 0.256 0.122 0.78 0.338
  0.394-0.516 0.11-0.139 0.514-0.891 0.298-0.405
CXCL10 0.161 0.089 0.165 0.265
  0.105-0.229 0.0683-0.118 0.122-0.215 0.171-0.397
PKD4 0.1416 0.04674 0.07057 0.3043
  0.0681-0.268 0.0254-0.112 0.0372 0.119 0.171-0.507
ANGPTL4 0.06897 0.0898 0.1733 0.4803
  0.0366-0.151 0.0639-0.122 0.126-0.238 0.243-0.79
OAT5 0.055 0.026 0.115 0.042
  0.0324-0.0852 0.0176 -0.0368 0.0818-0.1570 0.0223-0.0736
ATF4 0.3969 0.1856 0.6244 0.3861
  0.293-0.521 0.135-0.293 0.489-0.909 0.317-0.464
SLC7A11 0.3284 0.1251 0.4986 0.2612
  0.269-0.409 0.103-0.2 0.435-0.499 0.224-0.298
YARS1 0.3492 0.1581 0.5684 0.3864
  0.248-0.469 0.122-0.302 0.471-0.737 0.281-0.512
THRSP 0.339 0.093 0.445 0.188
  0.257-0.424 0.0792-0.111 0.385-0.509 0.138-0.237
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Genes
Scenario 3

PFOA PFNA PFHxS PFOS
HMGCR 0.68 1.17 3.57 1.18
  0.52-0.85 0.91-1.76 2.92-4.53 0.89-1.45
LSS 0.12 0.78 2.44 0.32
  0.03-0.29 0.47-1.4 0.99-6.9 0.09-0.9
CYP7A1 0.82 0.83 3.51 1.36
  0.692-0.935 0.772-0.921 3.27-3.51 1.18-1.52
CYP8B1 0.42 0.96 5.16 1.73
  0.28-0.55 0.77-1.31 3.18-inf. 1.13-2.33
CXCL10 0.22 0.69 1.03 1.13
  0.14-0.33 0.51-0.97 0.74-1.37 0.71-1.74
PKD4 0.06 0.42 0.54 1.98
  0.04-0.1 0.31-0.56 0.39-0.75 1.01-3.22
ANGPTL4 0.09 0.65 1.13 2.16
  0.04-0.25 0.43-0.94 0.79-1.62 1.17-3.62
OAT5 0.08 0.19 0.74 0.18
  0.04-0.13 0.12-0.3 0.5-1.04 0.08-0.33
ATF4 0.61 1.4 4.2 1.88
  0.46-0.81 1.03-2.12 3.29-6.13 1.54-2.25
SLC7A11 0.5 0.94 3.35 1.26
  0.41-0.61 0.77-1.42 2.92-3.35 1.08-1.44
YARS1 0.53 1.18 3.82 1.85
  0.38-0.72 0.92-2.03 3.15-4.99 1.35-2.45
THRSP 0.54 0.73 3.03 0.95
  0.42-0.67 0.63-0.73 2.65-3.45 0.72-1.18
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Exploration of NAMs for the perfluoroalkyl substances

PBK Model code for Convertino et al. (2018) simulation

Model Code for PFOA
METHOD Stiff

STARTTIME = 0

STOPTIME=1008  ;end of simulation (h), 6 weeks 

DT = 0.01

TOLERANCE = 0.01

DTMAX = 10.0

DTMIN = 0.000001

year= TIME/(24*365)

;Physiological parameters (from Brown, et al 1997)

; fractional blood flows

QCC = 12.5   ; Cardiac blood output (L/h/kg^0.75)

QFC = 0.052   ; Fraction cardiac output going to fat

QLC = 0.069   ; Fraction cardiac output going to liver, throµgh hepatic artery

QKC = 0.175   ; Fraction cardiac output going to kidney

QSkC = 0.058   ; Fraction cardiac output going to skin

QGC = 0.181   ; Fraction of cardiac output going to gut and in the liver via portal artery

; Not used ;QfilC = 0.035 ; Fraction cardiac output to the filtrate compartment (20% of kidney blood flow)

; BW = 70 ; Body weight (kg) for men; 58 kg for women

; weight algorithm based on french survey (French total Diet Study)

BW=3.68+4.47*year-0.093*year^2+0.00061*year^3

fractional tissue volumes

VLC = 0.026   ; Fraction liver volume

VFC = 0.214   ; Fraction fat volume

VKC = 0.004   ; Fraction kidney volume

VfilC = 0.0004         ; Fraction filtrate compartment volume (10% of kidney volume)

VGC = 0.0171   ; Fraction gut volume

VPlasC = 0.0428   ; Fraction plasma volume (58% of blood)

Htc = 0.44   ; hematocrit

for dermal exposure

SkinTarea = 9.1*((BW*1000)**0.666)              ; Total area of skin (cm^2)

Skinthickness = 0.1               ; Skin thickness (cm)

; Chemical-specific parameters for PFOA

Tmc = 6000   ; Maximum resorption rate (µg/h/kg0.75), changed from 6 in the original 

Loccisano 2011 model and expressed in µg, to be consistent with other parameters

Kt = 55.0   ; Resorption affinity (µg/L), changed from 0.055 in the original Loccisano 2011 model and 

expressed in µg, to be consistent with other parameters

Free = 0.02   ; Free fraction of PFOA in plasma

PL = 2.2    ; Liver/plasma partition coefficient

PF = 0.04   ; Fat/ plasma partition coefficient

PK = 1.05   ; Kidney/ plasma partition coefficient

PSk = 0.1    ; Skin/ plasma partition coefficient
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PR = 0.12   ; Rest of the body/ plasma partition coefficient

PG = 0.05   ; Gut/ plasma partition coeff.

kurinec = 0.0003  ; urinary elimination rate constant (/h/kg^-0.25) ; estimated from Harada, et al 

2005

kurine = kurinec*BW**(-0.25)

Free fraction of chemical in tissues

FreeL = Free/PL   ; liver

FreeF = Free/PF   ; fat

FreeK = Free/PK   ; kidney

FreeSk = Free/PSk   ; skin

FreeR = Free/PR   ; rest of tissues

FreeG = Free/PG   ; gut

; Exposure parameters

tchng =1008   ; Duration of exposure (h); 6 weeks

; turn dose on/off

DoseOn = IF time<tchng THEN 1.0 else 0.0

; Dermal exposure

Dermconc = 0.0     ; Dermal concentration (µg/mL)

Dermvol = 0.0                  ; Dermal exposure volume (mL)

Dermdose = Dermconc*Dermvol*1000  ; (µg)

Skinarea = 5     ; Exposed area on skin (cm^2)

; Oral exposure

Oralconc =0.00085   ; Oral uptake (µg/kg/day)

Oraldose = Oralconc*BW   ; (µg/day)

;Drinking water exposure

Drinkconc = 0.0     ; Drinking water concentration (µg/L or ppb)

Drinkrate = 13     ; Drinking water rate (mL/kg/day)

Drinkdose = (Drinkconc*Drinkrate/1000)*BW ; (µg/day)

; Inhalation exposure

Inhalation = 0.0   ; Inhalation dose (ppm)

Tinput = 24.0   ; duration of dose (h), the CONTAM Panel increased the Tinput to 24h (instead 

of 0.6) considering continuous exposure from food

;oral dose

Input1 = IF MOD(time,168) <=Tinput THEN Oraldose/Tinput ELSE 0.0 ;exposure once per week (once 

per 168 h)

;drinking water

Input2 = IF MOD(time,168) <= Tinput THEN Drinkdose/Tinput ELSE 0.0

; Scaling parameters

QC = QCC*BW**0.75   ; Cardiac output (L/h)

QCP = QC*(1-Htc)    ; adjust for plasma flow
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Exploration of NAMs for the perfluoroalkyl substances

QL = QLC*QCP    ; Plasma flow to liver (L/h)

QF = QFC*QCP    ; Plasma flow to fat (L/h)

QK = QKC*QCP    ; Plasma flow to kidney (L/h)

Qfil = 0.2*QK    ; Plasma flow to filtrate compartment (L/h); 20% of QK

QG = QGC*QCP    ; Plasma flow to gut (L/h)

QSk = IF Dermconc >0.0 THEN QSkC*QCP*(Skinarea/SkinTarea) else 0.0  ;plasma flow to skin

QR = QCP - QL - QF - QK - QG -QSk      ; Plasma flow to rest 

of the body (L/h)

Qbal = QCP - (QR+QL+QF+QK+QG+QSk) ; balance check--better be 0

VL = VLC*BW     ; Liver volume (L)

VF = VFC*BW     ; Fat volume (L)

VK = VKC*BW     ; Kidney volume (L)

Vfil = VfilC*BW     ; Fitrate compartment volume (L)

VG = VGC*BW     ; Gut volume (L)

VPlas = VPlasC*BW    ; Plasma volume (L)

VSk = (Skinarea*Skinthickness)/1000  ; Skin volume (L)

VR = 0.84*BW - VL - VF - VK - Vfil - VG - VPlas - VSk  ; Rest of the body volume (L)

Vbal = (0.84*BW)-(VL+VF+VK+VFil+VG+VPlas+VSk)  ; Balance check--better be 0

Tm = Tmc*BW**0.75     ; transporter maximum

>>>>>>>>>>>>>>>>>>>> Model equations <<<<<<<<<<<<<<<<<<<<<<<<<<<<

; Plasma compartment

APlas’ = QF*CF*FreeF+(QL+QG)*CL*FreeL+QR*CR*FreeR+QSk*CSk*FreeSk+QK*CK*FreeK -

QCP*CA*Free - Qfil*CA*Free

init APlas = 0.0

CAFree = APlas/VPlas  ; free concentration of PFOA in plasma in µg/L (ng/mL)

CA = CAfree/Free   ; total concentration in plasma

; Gut compartment

AG’ = QG*(CA*Free-CG*FreeG) + Input1*DoseOn + Input2*DoseOn

init AG = 0.0

CG = AG/VG    ; Concentration in gut (µg/L)

CVG = CG/PG     ; Concentration leaving gut (µg/L)

; Liver compartment

AL’ = (QL*(CA*Free))+(QG*CG*FreeG) - ((QL+QG)*CL*FreeL)  ;Rate of change in liver (µg/h)

init AL = 0.0

CL = AL/VL    ; Concentration in liver (µg/L)

CVL = CL/PL    ; Concentration leaving liver (µg/L)

; Fat compartment

AF’ = QF*(CA*Free-CF*FreeF)  ; Rate of change in fat (µg/h)

init AF = 0.0

CF = AF/VF    ; Concentration in fat (µg/L)

CVF = CF/PF    ; Concentration leaving fat (µg/L)

; Fat compartment
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; Kidney compartment

AK’ = QK*(CA*Free-CK*FreeK) + Tm*Cfil/(Kt+Cfil)   ; Rate of change in kidneys (µg/h)

init AK = 0.0

CK = AK/VK     ; Concentration in kidneys (µg/L)

CVK = CK/PK     ; Concentration leaving kidneys (µg/L)

; Filtrate compartment

Afil’ = Qfil*(CA*Free-Cfil) - Tm*Cfil/(Kt+Cfil)  ; Rate of change in filtrate compartment (µg/h)

init Afil = 0.0

Cfil = Afil/Vfil    ; Concentration in filtrate compartment (µg/L)

; Storage compartment for urine

; Adelay’ = Qfil*Cfil-kurine*Adelay

; init Adelay = 0.0

; Urine

;Aurine’ = kurine*Adelay

Aurine’ = Qfil*Cfil - kurine*Aurine

init Aurine = 0.0

; Skin compartment

ASk’ = QSk*(CA*Free-CSk*FreeSk)  ; Rate of change in skin (µg/h)

init ASk = DermDose

CSk = ASk/VSk    ; Concentration in skin compartment (µg/L)

CVSk = CSk/PSk    ; Concentration leaving skin compartment (µg/L)

; Rest of the body

AR’ = QR*(CA*Free-CR*FreeR)  ; Rate of change in rest of the body (µg/h)

init AR = 0.0

CR = AR/VR    ; Concentration in rest of the body (µg/L)

CVR = CR/PR     ; Concentration leaving rest of the body (µg/L)

Display Drinkconc, Dermconc, Oralconc, Inhalation, TInput, Tmc, Kt, Free, PL,PK,PF,PR,PSK,PG,

tchng,input1,input2,drinkrate,BW,QCC,QFC,QLC,QKC,QSkC,QGC,VLC,VFC,VKC,VFilC,VGC,VPlasC,kurinec, 

year , APlas, AG, AL, AF, AF, AK, ASK, AR    ; for parameters window

Display CA, CG, CL, CF, CR, CK, CAFREE, Qbal , year, FreeL  ; for plotting
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In order to protect the environment and people from detrimental effects of chemicals 

a universal tool has been employed, the so-called risk assessment. Traditionally, risk 

assessment relied upon data derived from animal studies. However, these tests are 

subject to several ethical considerations, they are expensive and time consuming. As such, 

generating safety information for the thousands of commercial chemicals is unrealistic, 

not only due to the high demand in animal sacrifice, but also due to practical reasons. 

Additionally, a lot of data suggest that toxicity testing in experimental animals may not 

always predict toxic effects pertinent to humans. As such, the scientific premise behind 

animal models being the golden standard for assessing chemical safety appears flawed. 

The field of toxicology is moving towards the next generation risk assessment that will use 

the New Approach Methodologies (NAMs). Novel approaches to hazard characterization  

will be driven by well-designed in vitro assays and the development of mechanism-based 

biomarkers. These assays will help establish the underlying biological mechanisms that 

can likely result in an in vivo adverse outcome, thereby facilitating the shift from apical 

endpoints at an organism level to mechanistically-anchored endpoints. Relying on these 

methodologies for predicting toxicity presupposes to quantitatively relate in vitro readouts 

to in vivo responses, the so-called Quantitative In vitro to In vivo Extrapolation(QIVIVE). 

An effective framework for performing QIVIVE is provided with the application of 

physiologically based kinetic (PBK) modelling with reverse dosimetry. These models 

can be used for predicting the in vivo external exposure that would produce chemical 

concentrations in the target tissue equivalent to the concentrations at which effects were 

observed with in vitro assays. Parameterization of the models is facilitated with the use of 

in vitro- and in silico-derived substance-specific characteristics. This thesis explores the 

implementation of PBK models in a number of QIVIVE approaches. Different examples of 

QIVIVE are described ranging from approaches using generic PBK models to approaches 

employing substance-specific models.  

Summary

This thesis consists of three different parts. In the first part (Section I), the performance of 

two generic PBK models with incorporated QSAR model parameterization was evaluated, 

in terms of their capacity to predict toxicokinetics of a wide span of chemicals, regarding 

certain physicochemical and biological properties (Chapter 2). In essence, in this Chapter, 

a previous evaluation of the applicability domain of the generic PBK model IndusChemFate 

was extended (Fragki et al. 2017). Thereafter, the model was compared to its more 

complex biological complement (“TNO Model”). The TNO model incorporates more 

detailed organ:blood partition, liver metabolism and absorption kinetics. Both models 

run with incorporated organ:blood and renal excretion QSARs and require minimum 

parameterization. The results revealed that the “simpler” performed best, illustrating that 

IndusChemFate can be a useful first-tier for simulating toxicokinetics based on QSARs and 

in vitro parameters. 
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In Section II, IndusChemFate was selected for performing QIVIVE for the endpoint of 

developmental toxicity, with the use of data from alternative embryotoxicity assays. 

This required the scaling of in vitro observed dose-response characteristics to in vivo 

fetal exposure. In Chapter 3, three different classes of developmentally toxic chemicals 

were chosen as model compounds: triazoles, glycol ethers’ alkoxyacetic acid metabolites 

and phthalate primary metabolites. These compounds were previously tested in three 

alternative assays: the whole- embryo culture (WEC), the zebrafish embryo test (ZET), and 

the mouse embryonic stem cell test (EST).  Here chemical maternal blood concentrations 

were used as a proxy for fetal exposure and the model required specific input per each 

class of compounds. The IndusChemFate model  was capable of describing the in vivo 

kinetics of the three classes of developmental toxicants employed, though at the expense 

of several chemical specific adaptations. Furthermore,  comparisons were performed 

of the PBK-simulated blood levels at toxic in vivo doses to the respective in vitro effective 

concentrations, with the three different assays. The results indicated that a combination of 

tests is preferable for predicting the endpoint of developmental toxicity. 

In Chapter 4 (Section II), the approach was extended with the adaptation of the PBK 

model, by incorporating physiological alterations in the maternal body during gestation, 

placental transfer, and fetal growth. Placental transfer was studied in vitro with the 

BeWo cell assay for six model compounds with embryotoxic potential. The BeWo results 

illustrated different transport profiles of the chemicals across the BeWo monolayer, 

allocating the substances into two distinct groups: the ‘quickly-transported’ and the 

‘slowly-transported’. These results were incorporated in the IndusChemFate PBK model 

extended for the rat pregnancy. Exposure PBK-simulations during gestation demonstrated 

satisfactory kinetic predictions, when compared to experimentally measured maternal 

blood and fetal concentrations. A PBK modelling reverse dosimetry approach was applied 

to translate embryotoxicity in vitro concentrations-response curves of the chosen chemicals 

into equivalent in vivo dose-response curves. Here, the fetal  Cmax was taken as the internal 

dose metric for the  induction of developmental toxicity. Selected in vitro tests were the WEC 

and the EST (cardiac:ESTc and neural:ESTn). The in vitro-based predictions were compared 

to rat developmental toxicity data. This comparison illustrated a fairly good prediction for 

the WEC, followed by the ESTc (for three out of the five compounds), with differences of 

the selected dose metric standing within the same order of magnitude (<10-fold). Overall 

the in vitro to in vivo comparisons suggest a promising future for the application of such 

approaches in the chemical safety assessment of developmental toxicity, at least  for 

screening and prioritization purposes, although the clear need for further optimizations is 

acknowledged for a wider application such as in risk assessment.

In the last part (Section III), a NAMs case study is presented for per- and polyfluoroalkyl 

substances (PFASs). The number of existing PFASs is estimated to be around a few thousands, 

and for many of these in vivo toxicity data are lacking. For this reason, application of NAMs can 

be useful for the screening of PFASs and the identification of compounds to be prioritized for a 

more comprehensive hazard characterization. The endpoint selected here was hepatotoxicity 
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and perturbations in lipid homeostasis. In Chapter 5 the main issues related to modulation 

of lipid homeostasis by the two most common congeners PFOA and PFOS were discussed, 

with emphasis on the underlying mechanisms relevant for humans. Several population 

studies have repeatedly found correlations between increased blood levels of PFOS/PFOA and 

elevated blood total cholesterol and LDL-C, (and to a lesser extent TGs). Nevertheless, these 

findings have not been linked to a corresponding adverse health effect  and are inconsistent 

with toxicological animal studies, where high doses of PFOS/PFOA were found to lower 

serum cholesterol and TGs, and increase liver lipids.  These apparent divergent findings 

thus present health risk assessors a conundrum. Overall, this contrast between human and 

animal data may be an artefact of dose, or a result of interspecies differences in physiology 

regarding lipid homeostasis, and/or PFAS-species differences in toxicokinetics, as well as 

basic nutrition. No simple mechanistic explanation could be given. This study highlighted 

the need for future studies with human-relevant test systems that would assist in getting 

more insight into the mechanistic pathways pertinent for humans. 

In Chapter 6, the effects of 18 PFASs on cellular triglyceride accumulation (AdipoRed 

assay) and gene expression (DNA microarray for PFOS and RT-qPCR for all 18 PFASs) was 

studied in human HepaRG cells. BMDExpress analysis of the PFOS microarray data was 

used as a guide for selecting ten genes to assess the concentration-effect relationship of 

all 18 PFASs with qRT-PCR analysis. The AdipoRed data and the qRT-PCR data were used 

for the derivation of in vitro relative potencies. In vitro relative potency factors (RPFs) could 

be obtained for 8 PFASs based on the AdipoRed data, whereas for the selected genes in 

vitro RPFs could be obtained for 11-18 PFASs. For the readout OAT5 expression, in vitro RPFs 

were obtained for all PFASs, suggesting that OAT5 gene expression, together with some 

of the other genes, may be a suitable readout to determine relative in vitro liver toxicity 

potencies of PFASs. For  7 of the 10 chosen genes the in vitro-based RPFs were in line with 

data reported for PFAS-induced liver toxicity in rats. When combined with information 

on the toxicokinetics of the PFASs in humans, these in vitro data may be used to estimate 

potency differences of PFASs in humans in vivo.

As a next step in Chapter 7, a PFASs QIVIVE case study is presented PFASs: PFOA, PFNA, 

PFHxS and PFOS. In vitro concentration-response data (TG accumulation and gene 

expression changes of 12 selected genes)  obtained in HepaRG cells were converted into 

dose-response curves, with PBK model-facilitated reverse dosimetry. For this study, 

cellular PFAS levels were determined in the HepaRG cells to link in vitro exposure to in vivo 

internal exposure in the liver. An exposure scenario of 50 years was considered in order 

to represent the lifetime chronic exposure to PFASs. Finally the predicted oral equivalent 

effect doses were compared with the human dietary exposure for the European population. 

Oral equivalent effect doses predicted in this QIVIVE analysis were found to be in the same 

range as estimated human exposure levels, in particular when the upper bound exposure 

estimates were considered. This QIVIVE  case study, illustrates how in vitro assay data can 

be used for determining points of departure (PODs) for screening, hazard identification 

and prioritization of other PFASs for which in vivo data are lacking.
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General discussion

The procedure for QIVIVE with PBK model reverse dosimetry

QIVIVE is the process of converting an in vitro concentration (or concentration-response) 

to an external exposure level (or dose-response relationship). Figure 1 illustrates a basic 

workflow of a QIVIVE analysis. For the QIVIVE extrapolation an implicit assumption is 

made: equal concentrations at the target site in vitro and in vivo will result in equal effects. 

As a first step, an in vitro system that will provide the concentration-response curves of 

a test chemical for a selected readout is required. A toxicologically meaningful in vitro 

biomarker has to be selected, i.e. a biomarker being a relevant surrogate for an in vivo 

adverse effect. BMD modelling can be applied to the in vitro results for the derivation of a 

benchmark concentration (BMC), i.e. the effect concentration above which the substance 

is considered to perturb the in vitro system. The BMC is the starting point for the PBK model 

reverse dosimetry, where it is translated into the equivalent human in vivo effect dose 

(BMD). Alternatively, the entire in vitro concentration-response curve can be transformed 

into the corresponding in vivo dose response curve. BMD modelling can then be applied to 

the extrapolated in vivo dose response relationship, in order to obtain a benchmark dose 

level (BMD). Either of the two ways, the predicted effect doses (BMDs) have been commonly 

referenced as equivalent administered dose (EAD), administered equivalent dose (AED), 

or for the case of oral exposure oral equivalent dose (Chang et al. 2022). They serve as the 

point of departure (POD) for the hazard characterization and risk assessment.

Predicted 
equivalent dose-
response for in 

vivo effect

In vitro data: GI 
absorption, metabolism 
etc.

Phys-chem properties 
(QSARs or 
experimental)

Exposure scenarios

In vitro assay

Concentration-response curve

PBK model based reverse dosimetry

P

P

FIGURE 1 Schematic overview of the QIVIVE analysis 

with PBK model based reverse dosimetry (Created with 

Biorender.com).
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In vitro test system and biomarkers: what is a meaningful readout?

Shifting to cell or tissue-based testing, signifies that the traditional apical endpoints 

commonly measured in the animal studies will be substituted by in vitro effect biomarkers. 

One of the challenges here is to establish a link between the in vitro measurements and a 

hazardous outcome in an intact living organism.  Ideally, the in vitro measured readout 

to be used for the QIVIVE will provide quantitative information predictive of adverse 

outcomes in vivo (Blaauboer et al. 2012; Zhang et al. 2018c). 

For the work of this thesis on QIVIVE for developmental toxicity, as laid down in Chapters 

3 and 4, a number of alternative (some not completely animal-free) tests were selected: 

the rodent post-implantation Whole- Embryo Culture method (WEC) (Chapin et al. 2008; 

Piersma et al. 2004), the zebrafish embryo test (ZET) (Brannen et al. 2010; Hill et al. 2005), 

and the mouse embryonic stem cell test (EST) (Seiler et al. 2004; Seiler and Spielmann 

2011). The EST completely eliminates the sacrifice of animals by utilizing a permanent 

murine cell line (Scholz et al. 1999; Seiler and Spielmann 2011) and the assay’s readouts 

used here were physiological (e.g. beating of cardiomyocytes in the ESTc), rather than 

mechanism-based. Since these readouts are only surrogates for in vivo adverse effects (e.g. 

decreased fetal weight, skeletal malformations etc.) a lot of research is currently focused on 

understanding better the underlying mechanisms, and formulating AOPs that can result 

in embryotoxicity (Piersma et al. 2022). On the other hand, the WEC and ZET involve the 

development of whole embryos, either after explantation from a pregnant rat or using zebra 

fish eggs, respectively (Chapin et al. 2008; Piersma 2006). The advantage of both tests is that 

they mirror general morphogenesis, at least within a given developmental time window, 

due to their use of the whole embryo, rather than a plain cell-line (Chapin et al., 2008). It 

shall be noted that, the EST cardiac and WEC have already been scientifically validated by 

the European Centre for Validation of Alternative Methods (ECVAM) for over two decades, 

with respect to their capacity to distinguish different classes of embryotoxicants (Brown 

2002; Genschow et al. 2002). Although these methods may not represent at the moment 

complete replacements for current animal tests, they can be used either as part of an in 

vitro testing battery approach or for screening and prioritization (RIVM 2009; Spielmann 

2009) and hence, they were selected for our QIVIVE for developmental toxicity.

In the case of the PFAS QIVIVE (Chapter 7), the adverse effects to be captured in vitro were 

hepatotoxicity and perturbations in lipid homeostasis. Here, a more mechanism-based 

approach was followed. Initially, available information on the underlying mechanisms, 

through which PFASs might induce lipide perturbations, were reviewed (Chapter 5). This 

review (Fragki et al. 2021) highlighted the need for new studies with human hepatocytes 

in order to clarify the mechanism of action of these chemicals. For this purpose, in vitro 

studies were performed using the hepatic stem cell line HepaRG, a human progenitor cell 

line that can differentiate into two different phenotypes (hepatocytes and biliary cells) 

(McGill et al. 2011). Hepatocytes play an important role in lipid metabolism and cholesterol 

homeostasis, indicating the relevance of hepatocytes as model in this study. HepaRG cells 
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are claimed to share important characteristics and properties with adult hepatocytes, and 

are considered a valuable surrogate for primary human hepatocytes (McGill et al. 2011; 

Szabo et al. 2013). 

One of the in vitro readouts measured in the HepaRG system  was triglyceride (TG) 

accumulation, since it has been suggested to constitute a biomarker for liver steatosis and 

hepatoxicity (Lichtenstein et al. 2020). Another readout was the transcriptional changes 

for six genes that are known to play a key role in cholesterol homeostasis. These genes were 

chosen in an attempt to mechanistically relate changes in gene expression to the known 

changes in serum total cholesterol that have been repeatedly associated with PFASs blood 

levels. Nevertheless, it shall be highlighted that it is currently not clear on how to link 

altered expression of genes to actual measures of adversity (Buesen et al. 2017; Sauer et 

al. 2017). Next to the cholesterol homeostasis genes, up- or downregulation of eight other 

genes was included as in vitro readout for the QIVIVE. These genes cover diverse biological 

processes and were considered potential markers for liver toxicity. Ideally, these genes 

would have been described as molecular initiating events or other key events in Adverse 

Outcome Pathways (AOPs), but this information is currently lacking. 

To conclude, prior to the application of QIVIVE models a toxicologically meaningful assay 

and or/readout has to be considered. As such, it has to be given thought whether an observed 

cellular perturbation will ultimately result in a pathology or if it shall be seen as an adaptive, 

non-adverse response. The elucidation of AOPs will assist in understanding the relevance 

of these observations and establishing the relationship between: the in vitro readouts at the 

biochemical or cellular level and the in vivo health effects at an organism level.

Consideration of in vitro biokinetics

One challenge associated with QIVIVE pertains to the proper definition of an in vitro 

metric to be the starting point for the extrapolations. Traditionally, nominally applied 

in vitro concentrations to which the system is directly exposed are used as the basis for 

concentration-effect relationships (Fischer et al. 2017; Groothuis et al. 2015). Accordingly, 

in many of published QIVIVE examples the nominal effect concentration is seen as the 

proxy for blood or target tissue concentrations (Forsby and Blaauboer 2007; Fragki et al. 

2022; Fragki et al. 2017; Henneberger et al. 2021; Louisse et al. 2010; Martin et al. 2015; 

Proença et al. 2021; Strikwold et al. 2013; Zhao et al. 2019). Nominal concentrations are 

easily accessible and hence this approach, represents the simplest QIVIVE. Nevertheless, 

the use of the nominal concentration  may not always be appropriate as it ignores any 

partitioning or loss processes that may affect the effective concentration of a substance 

(Henneberger et al. 2021; Proença et al. 2021). Given that it is the free (unbound) fraction of 

a chemical that is expected to induce any toxic effect (Groothuis et al. 2015) correcting the 

nominal concentration prior to its use for QIVIVE definitely requires some consideration 

(Henneberger et al. 2021). 
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There are several factors that may influence the free concentration of a substance in the in 

vitro system, such as binding to the protein or other medium components, binding to the 

plastic culture vessel or evaporation etc. (Groothuis et al. 2015; Kramer et al. 2012). In the in 

vitro assays, a fundamental factor reducing the bioavailability of a compound is the presence 

of serum protein (mainly albumin) in the medium (Gülden and Seibert 2003; 2005; Kramer 

et al. 2012; Smith et al. 2010). For this purpose, corrections for protein binding (in vitro vs in 

vivo) have been used in several QIVIVE papers (for example Fabian et al. 2019; Louisse et al. 

2015; Wetmore et al. 2013; Wetmore et al. 2012; Zhang et al. 2018b). On the other hand, the 

overall in vitro distribution kinetics are often ignored (Proença et al. 2021). 

In Chapters 3 and 4 of this thesis, QIVIVE for developmental toxicity were presented for 

a number of chemicals. Here, for the sake of simplicity, the nominal concentrations were 

used, representing the sum of free and bound chemical. In Chapter 3, the assumption 

was that in vitro nominal effect concentrations are equivalent to the maternal blood 

concentrations. Here, maternal blood was seen as a surrogate for embryonic exposure. 

In Chapter 4, where the PBK model was specifically fit for pregnancy, nominally 

applied concentrations from the alternative assays were considered equal to the in vivo 

fetal concentration. In other words, this approach presumes that the nominal in vitro 

concentration equals the total in vivo effect concentration, which was a practical choice. 

Instead, the free concentration may be a better metric for QIVIVE, as it accounts for 

differences in the bioavailability between the in vitro and in vivo systems (Fischer et al. 

2017; Henneberger et al. 2021; Heringa et al. 2004; Proença et al. 2021). Nevertheless, for 

practical reasons, QIVIVE based on the nominally applied concentrations may be used, as 

the simplest, first-tier approach, for example for screening and prioritization purposes. 

In fact, it has been demonstrated that such QIVIVE models are precautionary and do 

not underestimate the health risk (Henneberger et al. 2019). For higher tiers, further 

refinement of the QIVIVE models is necessary by determination of the free (unbound) 

concentration, in particular for chemicals that show high binding to proteins in the 

medium and blood plasma. Determination of the free concentration shall ideally be done 

experimentally, whereas in the absence of experimental data in silico distribution models 

(Armitage et al. 2014; Fischer et al. 2017; Fisher et al. 2019; Kramer et al. 2012; Paini et 

al. 2017) can be used. Application of such models shall be done with caution, since they 

may not give good predictions in the case the free concentration changes over time, for 

example due to saturation of binding to the medium proteins (Henneberger et al. 2021). 

To enable their wider application in risk assessment, they need to be harmonized and 

their applicability domain has to be clearly defined, so as to facilitate the selection of the 

appropriate model by the general scientific public.

Several of these in silico models can also predict, next to the free (unbound) concentration, 

the cell-associated concentration, i.e. the chemical’s concentration accumulated in 

the cells. It has been suggested that the cell-associated concentration (or else assumed 

intracellular concentration)  may provide an even more refined metric for QIVIVE (Escher 
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and Hermens 2004; Groothuis et al. 2015; Kisitu et al. 2019; Proença et al. 2021). As for the 

free concentration in the medium, cell-associated concentrations,  are seldomly reported 

in in vitro assays due to practical difficulties, and consequently, distribution models can be of 

assistance here. Nevertheless, as mentioned above they come with quite some uncertainties 

and their domain of applicability still has to be clarified. In the case of PFASs, in Chapter 7, 

cell-associated concentrations were experimentally measured in the HepaRG cell system. 

This was particularly important, considering that these chemicals are transported across 

cell membranes via specific transporters and not via passive diffusion.  Published in vitro 

distribution models do not include, so far, these processes for chemical transport into the 

cells (Proença et al. 2021). As such, for substances like PFASs, the experimentally measured 

in vitro cell-associated concentrations may be the most meaningful metric for QIVIVE. 

In conclusion, careful selection of the in vitro metric to be used for each QIVIVE model is 

fundamental. In order to achieve more accurate estimations of in vivo toxic dose levels 

based on in vitro-measured readouts, sufficient guidance shall be provided to scientists and 

risk assessors on which approach to follow, based on the chemical of interest.

Exposure dose metrics and dependency on time

Another important element to be considered for the QIVIVE analysis pertains to the 

selection of an appropriate exposure metric (Li et al. 2021). Typical parameters linked to 

the toxicity of a chemical are the peak concentration (Cmax), or the AUC. The parameter 

to use for relating exposure to toxicity depends on the mode of action of the chemical and 

the endpoint of interest (Groothuis et al. 2015; Louisse et al. 2017; Rietjens et al. 2019), its 

toxicokinetic properties,  but also the exposure conditions (Groothuis et al. 2015). 

In the published literature, QIVIVE with reverse dosimetry is often based on the Cmax 

(Chen et al. 2018b; Fragki et al. 2022; Li et al. 2017a) and less commonly on the AUC 

(Louisse et al. 2015). Peak concentrations are often a very important metric (Daston et al. 

2010). For instance, the Cmax is of importance when a peak exposure leads to saturation of 

detoxification. Another example is the toxicity to the developing fetus, which can be caused 

by as little as a single exposure at a critical time window of gestation, and consequently, 

it is more likely dependent on the Cmax. In Chapter 4, we embraced this assumption 

and we used the Cmax for QIVIVE. Nevertheless, it cannot be excluded that in some cases 

embryotoxicity may also be related to a more sustained exposure, i.e. a substantial part or 

even the total duration of pregnancy. As such, in some cases it may be better captured with 

time-dependent parameters, such as the AUC or a time-weighted average concentration 

(Groothuis et al. 2015; Louisse et al. 2017). In Chapter 3, we applied both the Cmax and a 

time-weighted average concentration. Knowledge of the underlying mechanism and the 

chemical toxicokinetics will assist in picking up the best exposure metric. 

Although very relevant for the endpoint of developmental toxicity, the peak concentrations 

do not account for damage accumulation over time, such as occurring after long-term 

exposure to accumulating compounds. For example, in the case of PFASs having elimination 
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half-lives in the range of years, it is questionable whether a peak exposure metric would 

be meaningful for the PFAS-induced increases in serum cholesterol (and TG), but also in 

serum ALT (for PFOA), being a result of continuous exposure, throughout lifetime. Also, 

their elimination half-lives are rather long (in the range of years).  Therefore, in the PFAS 

QIVIVE (Chapter 7), it was hypothesized that the toxic effect is best related to a time-

dependent cumulative dose metric, in this case the AUC (Gaylor 2000). It is acknowledged 

that the applied extrapolation from a single 24-hour exposure occurring in vitro to a life-

time in vivo exposure contains may be questioned, but it is claimed here that this approach 

can serve at least as a first tier in human health risk assessment provided the appropriate 

in vitro data are available. 

For a wider application of QIVIVE in risk assessment, well-defined criteria for selecting the 

most appropriate exposure metric have to be agreed upon. Next to this, more attention has 

to be put on how to interpret and convincingly extrapolate short-term in vitro assay findings 

to chronic toxicity, i.e. by extrapolating the in vitro established AUC time dependency 

across exposure duration. (Macko et al. 2021). 

How is the appropriate PBK model selected?

In an animal-free human health risk assessment, it is apparent that PBK models combined 

with in vitro and in silico data will be the translation tool for the quantitative interpretation 

of in vitro assay readouts. PBK models may be of a generic nature or chemical-specific, 

depending on the substance of interest and the information available that would allow 

for the toxicokinetic modeling. In general, it is advised  that a PBK model to be used 

for regulatory applications shall be as complex as needed on a case-by-case basis, in 

accordance with the principle of parsimony (OECD 2021b). As such, simpler models 

may be preferred when sufficient, whereas increasing model complexity for improving 

predictive performance shall be added only when essential (Cohen Hubal et al. 2019; Najjar 

et al. 2022). In such a tiered-approach system, for start, minimal generic PBK models 

may suffice  as a first-tier tool to simulate toxicokinetics. For chemicals with non-generic 

characteristics, where other chemical-specific physiological processes (for example 

enterohepatic circulation or active-transport uptake mechanisms) play a fundamental 

role, more elaborate or chemical-specific tailored-made models may be employed (Breen 

et al. 2021; Najjar et al. 2022). This can only be performed when biologically plausible and 

if experimental data allow the numeric identification of such processes. Generic PBK 

model testing may initially be based on the average kinetics, integrating inter-individual 

variability at a later stage.

Generic PBK models in support for QIVIVE
In the case of generic PBK models, a pre-defined compartmental structure is in place, 

which contains the essential anatomical and physiological parameters, whereas chemical-

specific input has to be provided. Enclosed QSARs predict model parameters based on 

the molecular structure and physicochemical properties of the compounds (Peyret et al. 
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2010; Rodgers and Rowland 2007), overcoming the issue of in vivo kinetic data paucity for 

parameterization. Considering the thousands of data-poor chemicals in the environment, 

the employment of generic PBK models will facilitate QIVIVE for the broader category of 

environmental chemicals. As their application in chemical risk assessment will become 

crucial, there is a clear need for their standardization, in order to ensure regulatory 

acceptance. Some of the major challenges pertaining to their acceptance are discussed below.

Challenge #1: Defining the applicability domain 
One primary bottle-neck for the acceptance of generic PBK models relates to the lack 

of a clearly defined applicability domain. Evaluation of a model’s applicability domain 

requires the comparison of the model’ predictions for a number of compounds to in 

vivo toxicokinetic data (Bell et al. 2018). Despite the fact that, a considerable number 

of platforms have emerged that can perform such simulations (Hack et al. 2020; OECD 

2021b), their applicability domain has not yet been comprehensively assessed (Najjar 

et al. 2022). A number of these models/platforms have been evaluated for their ability 

to describe in vivo kinetics of a diverse set of chemicals in the rat (Kamiya et al. 2021; 

Kamiya et al. 2019; Kamiya et al. 2020; Punt et al. 2022; Wambaugh et al. 2015). These 

studies provide important insight into the predictive performance of these models, which 

will assist in defining their underlying chemical space. However, a more systematic 

comparison of the various generic PBK model concepts is necessary in order to streamline 

the further application of such modelling approaches in risk assessment. Next to this, 

modelling evaluations were done primarily based on animal data, whereas the modelling 

of human kinetics was only presented in Wambaugh et al. (2015) for a very limited amount 

of compounds. This stresses the need for additional analyses using human kinetic data as 

proposed by Breen et al. (2021) and (Sayre et al. 2020), with the available PBK models. 

In Chapter 2 of this thesis, the two generic PBK models selected were evaluated on 

simulating human kinetics over a wide span of chemicals, regarding physicochemical 

and biological properties. In particular, substances selected for the simulations had a 

broad span in lipophilicity, blood ionization and blood protein binding, and were in 

parallel eliminated primarily via the liver.  This was done with the purpose of identifying 

specific properties that could determine the models’ predictivity. Although the amount of 

chemicals applied was limited, this study provides an example on how to evaluate further 

more substances so as to define better their ‘prediction space’. Ideally, physicochemical 

and biological properties of a chemical will form the basis for determining a priori whether 

a generic PBK model can (or cannot) predict their toxicokinetics. 

Challenge #2: Evaluation of model predictions
While a vast amount of animal studies and clinical trials exist for pharmaceuticals, 

and animal studies exist for certain chemical categories, such as pesticides, the human 

population is exposed indirectly to many of the commercially produced chemicals, for 

which limited toxicokinetic data are available (Judson et al. 2009; Najjar et al. 2022; Sayre 

et al. 2020). As an illustrative example, within the EU REACH Regulation implemented 
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for industrial chemicals, which resulted in a huge number of newly performed animal 

studies since 2007, a toxicokinetic assessment is not a formal requirement. This is also the 

case for several other chemical categories, such as food contact materials, food additives, 

and food contaminants (Punt et al. 2017). Next to this, controlled human toxicokinetic 

data for environmental and industrial chemicals are scarce (Judson et al. 2011; Wambaugh 

et al. 2015). This lack of structured databases for these chemicals makes the systematic 

evaluation of PBK model performance cumbersome, at least with the traditional way of 

benchmarking against measured experimental data. Even more so, within the NGRA 

animal testing will be severely reduced or even eliminated and consequently, comparison 

of model predictions to in vivo data will be restricted. Consequently, it is essential to 

find other ways to evaluate these models. As mentioned in the previous section robust 

consideration of chemical domain of applicability of the models is required, so that it can 

be predetermined whether a chemical would fit a model’s purpose. It is key to identify 

which chemical characteristics have a major influence on the quality of the predictions 

(Wambaugh et al. 2015).

Next to this, in the absence of in vivo kinetic data, the predictive ability of a PBK model for 

a certain chemical (‘target chemical’) can also be determined with the use of structural 

analogues (‘source chemicals’), i.e. the read-across approach. In other words, when a 

model can predict the kinetics of the analogues, it can be applied for simulating the kinetics 

of the chemical of interest (OECD 2021b; Paini et al. 2021a; Paini et al. 2021c).

Challenge #3: What is a satisfactory prediction for generic models?
A crucial issue that needs to be addressed is the expected accuracy of the generic PBK model 

predictions (Shebley et al. 2018), an issue currently without consensus. The goodness-

of-fit criterion that is commonly applied for PBK models (WHO 2010) dictates that the 

model simulations should be on average within a factor of 2 from the experimental data. 

This precision is prescribed for specific PBK models designed for a single or small group 

of chemicals, usually in a data-rich environment, where they can be properly evaluated 

and calibrated to fit the in vivo kinetics. Employing an evaluation threshold of the same 

accuracy for generic models, with a much broader applicability domain, is unrealistic 

(Cohen Hubal et al. 2019; Najjar et al. 2022).  At first, biological variability is nowhere 

near the WHO threshold. For example, several meta-analyses of in vivo data have shown 

that repeating guideline-based mammalian toxicity studies with the same chemical may 

result in NOAELs/LOAELs differing between 5- to 10-fold (Janer et al. 2007a; Janer et al. 

2007b; Janer et al. 2008a; Knudsen et al. 2009; Ly Pham et al. 2020). In another example, a 

recent analysis of TK data of 389 chemicals performed by US EPA illustrated that replicate 

in vivo measurements are ~ 80% of the time within a factor of two of themselves (Cook et al. 

2022). Generic PBK-estimated dose metrics were very frequently seen to be within 10-fold 

of the empirical data (Abdullah et al. 2016; Breen et al. 2021; Lautz et al. 2020; Pletz et al. 

2020; Punt et al. 2021b; Zhang et al. 2018a). In many cases even better predictions were 

recorded: 70% within 3-fold (Lautz et al. 2020), 50% within 5-fold (Punt et al. 2022), 50% 
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within 3-fold (Breen et al. 2021). Accordingly, model predictions with IndusChemFate, 

were within a factor of 5 for 19 out of the 24 compounds tested (Chapters 2 and 3).In fact, 

these results demonstrate that prediction of generic models are often within accepted 

variability of data underlying current chemical safety assessment. As such, understanding 

the quantitative variability of traditional mammalian studies is pivotal before putting an 

acceptability threshold for these generic models. Overall, it seems that a more flexible 

threshold or range needs to be considered.

For example, in a recent paper Punt et al. (2022) proposes a quantitative criterion for the 

Cmax parameter determined by generic PBK modelling: a 5-fold difference (predicted vs 

observed) is considered adequate, whereas a 10-fold difference, although less precise, is 

still seen as relevant. Following this proposal, it is concluded that IndusChemFate gives 

adequate predictions; still, additional analyses are needed to confirm this result, as well 

as to define the specific modifications needed to satisfactorily describe the kinetics of 

compounds that are not well predicted.  

PBK model parameterization with in vitro and in silico data

For a truly animal-free testing paradigm, physicochemical and toxicokinetic data for the 

PBK model parametrization should also be derived from in vitro/alternative and/or in silico 

methods (Louisse et al. 2020a; Paini et al. 2019). To date, several in vitro and in silico methods 

for predictions of the ADME processes have been developed and used for PBK models; still, 

they remain non-validated in their vast majority. One good example, pertains to the in vitro 

determination of hepatic clearance. Intrinsic clearance can be determined with primary 

hepatocytes, S9, or microsomes. Despite several methods being  available, guidance 

for performing such studies is lagging behind, hampering as such their systematic 

characterization and harmonization (Gouliarmou et al. 2018). Intrinsic clearance values 

for the same chemical, determined in different hepatocyte studies, were recently found to 

have a very high variation, ranging by more than one order of magnitude for most substances 

included in that study (Louisse et al. 2020a). Parameterization with high variation would 

substantially affect the toxicokinetics’ predictions of the PBK models. Accordingly, this 

is important for other PBK input parameters, like the distribution partition coefficients, 

often calculated in silico and for which several methods exist (DeJongh et al. 1997; Peyret et 

al. 2010; Poulin and Krishnan 1995a; 1996; Rodgers et al. 2005; Rodgers and Rowland 2006; 

Schmitt 2008a). Obviously, the choice of input parameters that will feed the PBK model 

will affect its outcome, underpinning the importance for the standardization of the in vitro 

and in silico assays, but also for clear guidance on which method to use.

Predicted equivalent effect doses

With the application of QIVIVE analysis equivalent effect doses are estimated, which 

may be used as PoDs for risk assessment or for screening and prioritization, thereby 

substituting the classical NOAELs (or BMD10s/ BMD05s). The question that arises is 

how these NAM-based PoDs can be validated in terms of their credibility and accuracy 
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(Andersen 2010). This is definitely a key element for building confidence in NAMs and 

for convincing the regulators and other stakeholders towards the shift to NGRA (Ball et 

al. 2022). The conservative approach prescribes a 1:1 comparison to traditional methods, 

i.e. animal studies (Ball et al. 2022; Leist et al. 2012) as shown in many published QIVIVE 

examples (Chen et al. 2018a; Fragki et al. 2022; Fragki et al. 2017; Li et al. 2017a; Louisse 

et al. 2015; Louisse et al. 2010; Ning et al. 2019b; Strikwold et al. 2017; Strikwold et al. 

2013). Accordingly, in Chapters 3 and 4, we benchmarked our developmental toxicity 

QIVIVE results against effect doses from in vivo animal studies. This may be valid as a first 

comparison; however, the limitations of such comparisons shall be acknowledged. First, 

in an animal-free risk assessment framework animal toxicity studies will not be available 

for such comparisons. Second, the alternative assay readouts are very different than the 

apical endpoints and consequently, they will not necessarily match the rat NOAELs. Third, 

the aim of NAMs is to assess safety for humans rather than reproducing the results of 

experimental animal studies. As such, mechanism-based assays, measuring perturbations 

in signaling pathways, will be eventually performed in cells/tissues of human origin, and 

hence, such comparisons are not necessarily meaningful. 

Currently, new approaches for establishing confidence in NAMs are under development, 

which are using underlying toxicity mechanisms and human biology (Parish et al. 2020). 

It shall be remembered, that the foremost goal to be ensured is that the NAMs-based PoDs 

provide limits that are protective (Carmichael et al. 2022a). Thus, despite the historical 

risk assessment approach that is hazard-driven, it has been proposed that NGRA shall be 

driven by exposure (Berggren et al. 2017; Dent et al. 2018). In an exposure-led approach 

the exposure assessment will determine the data needed for the hazard assessment and 

will drive the testing thereon (Dent et al. 2018). 

In the QIVIVE for PFASs (Chapter 7), in order to make a first assessment of the predicted 

equivalent effect doses we compared them to PFAS dietary exposure estimates of the EU 

population. The result suggested that current exposure may interfere with hepatic lipid 

homeostasis and gene expression, suggesting the need for better hazard characterization.

Final remarks and conclusions 

Animal use in chemical safety assessment continues to be the norm under many regulatory 

frameworks within the EU, despite the tremendous advances in non-animal safety science 

over the last 20 years. Nevertheless, a scientific consensus seems to be at the rise dictating 

that a tiered in vitro-in silico-in vivo exposure-led approach shall substitute the current 

regulatory testing paradigm (Cronin et al. 2021). 

Application of NAMs in chemical risk assessment presupposes the interpretation of in vitro 

assay findings for quantitative hazard characterization. PBK models are considered an 

indispensable component of these quantifications. QIVIVE with the implementation of PBK 

modelling is essential for the dose-response assessment of in vitro data and consequently, 

their use by risk assessors and toxicologists shall be encouraged and facilitated. 
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Regulatory acceptance of QIVIVE is unfortunately still limited and in order to promote this 

a number of critical steps have to be undertaken. Consequently, concrete guidance has 

to be laid down for their performance, and specific criteria have to be defined  for their 

evaluation and validation. These pertain for example to the selection of appropriate in vitro 

readouts and dose metrics to be use as starting point for the extrapolations, but also to the 

selection of the PBK modeling approach and to the evaluation of model performance. This 

dissertation presents case studies of QIVIVE with the implementation of PBK modeling 

with the aim of exploring their ‘know-how’ and with the hope of contributing in building 

confidence in their application for regulatory purposes.
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Appendix

Nederlandse samenvatting

Dit proefschrift bestaat uit drie verschillende onderdelen. Het eerste deel (Sectie I) 

evalueert  twee generieke PBK-modellen met ingebouwde QSAR-modelparameterisering 

wat betreft de beschrijving van de toxicokinetiek van een breed scala aan chemicaliën met 

onderling sterk verschillende fysisch-chemische en biologische eigenschappen (Hoofdstuk 

2). Dit hoofdstuk bouwt voort op een eerdere evaluatie van het toepassingsbereik 

(“applicability domain”) van het generieke PBK-model IndusChemFate (Fragki et al. 2017). 

Concreet is het IndusChemFate model vergeleken met een biologisch meer complex PBK 

model  (“TNO Model”). Het TNO-model omvat meer gedetailleerde orgaan:bloedpartitie, 

levermetabolisme en absorptiekinetiek. Beide modellen werken met ingebouwde 

QSAR’s voor orgaan: bloed verdeling, uitschieding via de nieren en vereisen minimale 

parametrering. Het “eenvoudiger” IndusChemFate bleek beter  te voldoen, illustrerend 

dat dit model geschikt is als screeningsmethode (“first tier”) voor het simuleren van 

toxicokinetiek op basis van QSAR’s en in vitro metabolisme parameters.

In sectie II werd IndusChemFate geselecteerd voor het uitvoeren van een “Quantitative 

in vitro to in vivo extrapolation” (QIVIVE) voor het eindpunt van ontwikkelingstoxiciteit, 

op basis van beschikbare in vitro embryotoxiciteitstesten. Dit vereiste de schaling van in 

vitro waargenomen dosis-responskarakteristieken naar de in vivo foetale blootstelling. In 

Hoofdstuk 3 werden als modelverbindingen drie verschillende klassen van reproductie 

toxische chemicaliën gekozen: triazolen, alkoxyazijnzuur metabolieten van glycolethers 

en primaire ftalaatmetabolieten. Deze verbindingen werden eerder getest in drie in 

vitro toxiciteitsassays: embryocultuur (“Whole Embryo Culture”, WEC), de zebravis-

embryotest (ZET) en de muizenembryonale stamceltest (EST). Als in vivo proxy voor 

foetale blootstelling werden hierbij PBK maternale bloedconcentraties gebruikt . Het 

IndusChemFate-model  bleek in staat om de in vivo kinetiek van de drie gebruikte 

klassen van reproductie toxische stoffen te beschrijven, zij het ten koste van verschillende 

chemische specifieke aanpassingen. Verder werden voor alle drie assays vergelijkingen 

gemaakt van de PBK-gesimuleerde bloedspiegels bij toxische in vivo doses met de effectieve 

in vitro concentraties. De resultaten gaven aan dat een combinatie van testen de voorkeur 

heeft voor het voorspellen van het eindpunt van in vivo reproductietoxiciteit.

In Hoofdstuk 4 (Sectie II) werd de QIVIVE methode verfijnd  door het PBK-model aan 

te passen met de  fysiologische veranderingen in het lichaam van de moeder tijdens de 

zwangerschap, inclusief de hiermee overeenkomende placenta-overdracht en foetale 

groei. Placenta-overdracht werd in vitro  nagebootst  met  behulp van de BeWo-cell assay 

voor selectief transplacentaal transport.  In deze assay zijn zes reproductie toxische stoffen 

experimenteel onderzocht. De BeWo-resultaten lieten verschillende transplacentale  

transportprofielen zien, waarbij de stoffen in twee afzonderlijke groepen  ingedeeld 



A

A
PPEN

D
IX

358

konden worden: de ‘snel getransporteerden’ en de ‘langzaam getransporteerden’. De 

verschillende transportprofielen werden  in het IndusChemFate PBK-model opgenomen. 

In de rat toonden PBK-simulaties  waarin experimenteel gemeten maternale bloed- 

en foetale concentraties vergeleken werden bevredigende kinetische voorspellingen.  

Vervolgens werd PBK-modellering (“reverse dosimetry”) toegepast om in vitro concentratie-

responscurven naar equivalente in vivo dosis-responscurven te schalen. Hier werd de 

foetale Cmax genomen als de interne dosismaat voor de inductie van reproductietoxiciteit. 

Geselecteerde in vitro testen waren de WEC en de EST (cardiaal:ESTc en neuraal:ESTn). 

De op in vitro gebaseerde in vivo dosimetrie voorspellingen werden vergeleken met in 

vivo gegevens over reproductietoxiciteit bij de rat. Deze vergelijking resulteerde in  een 

tamelijk goede voorspelling voor de WEC, gevolgd door de ESTc (voor drie van de vijf 

verbindingen), met onderlinge verschillen  die binnen dezelfde orde van grootte liggen 

(<10-voudig). Hoewel er een duidelijk behoefte blijft aan verder validatie/optimalisatie  

van de toegepaste QIVIVE methodologie geven de in vitro met in vivo vergelijkingen aan dat 

deze methodologie van duidelijke meerwaarde kan zijn bij de  screening/prioritering en 

veiligheidsbeoordeling van reproductietoxische stoffen.

In het laatste deel (Sectie III) wordt een “New Approach Methodology” (NAM)–case 

study gepresenteerd voor per- en polyfluoralkylstoffen (PFAS’s). Het aantal bestaande 

PFAS’s wordt geschat op enkele duizenden, waarvoor voor velen  in vivo toxiciteit 

ontbreken gegevens. Om deze reden kan de toepassing van NAM’s nuttig zijn voor de 

screening van PFAS’s en de identificatie van verbindingen die prioriteit moeten krijgen 

voor een uitgebreidere risicokarakterisering. Het hier geselecteerde eindpunt was 

hepatotoxiciteit en verstoringen in de homeostase van lipiden. In Hoofdstuk 5 wordt op 

basis van literatuuronderzoek de huidige stand van zaken besproken met betrekking tot 

verstoring van de homeostase van lipiden door de twee meest voorkomende congeneren 

PFOA en PFOS, met de nadruk op voor de mens relevante onderliggende mechanismen. 

Verschillende bevolkingsonderzoeken hebben herhaaldelijk correlaties gevonden tussen 

verhoogde bloedspiegels van PFOS/PFOA en verhoogd totaal cholesterol en LDL-C in het 

bloed (en in mindere mate TG’s). Desalniettemin zijn deze bevindingen niet in verband 

gebracht met een overeenkomstig nadelig gezondheidseffect en zijn ze niet consistent met 

toxicologische dierstudies, waar hoge doses PFOS/PFOA het serumcholesterol en TG’s juist 

verlagen en leverlipiden verhogen. Deze ogenschijnlijk uiteenlopende bevindingen stellen 

gezondheidsrisicobeoordelaars voor een raadsel. Deze tegenstrijdigheid kan een gevolg 

zijn van verschillen in de blootstelling van de mens en die in dierstudies, of voortkomen 

uit wezenlijke verschillen in toxicodynamie tussen mens en dier  met betrekking tot 

lipidehomeostase, en/of PFAS-soortverschillen in toxicokinetiek, als ook verschillen 

in voedingspatroon. Op basis van de literatuur kon er geen eenduidige mechanistische 

verklaring voor het genoemde interspecies verschil  gegeven worden. Deze studie 

benadrukt derhalve de behoefte aan studies met humane in vitro testsystemen die een goed 

beeld geven van voor de mens relevante  mechanistische PFAS toxiciteit routes.



A

A
PP

EN
D

IX

359

In Hoofdstuk 6 werden de effecten van 18 PFAS’s op cellulaire triglyceridenaccumulatie 

(AdipoRed assay) en genexpressie (DNA microarray voor PFOS en RT-qPCR voor alle 18 

PFAS’s)  in humane HepaRG-cellen bestudeerd.. BMDExpress-analyse van de PFOS-

microarraygegevens werd gebruikt als leidraad voor het selecteren van tien genen om 

de concentratie-effect relatie van alle 18 PFAS’s met qRT-PCR-analyse te beoordelen. De 

AdipoRed-gegevens en de qRT-PCR-gegevens werden gebruikt voor het afleiden van 

in vitro relatieve potenties. In vitro relatieve potentiefactoren (RPF’s) konden worden 

verkregen voor 8 PFAS’s op basis van de AdipoRed-gegevens, terwijl voor de geselecteerde 

genen in vitro RPF’s konden worden verkregen voor 11-18 PFAS’s. Voor de uitlezing van 

OAT5-expressie werden in vitro RPF’s verkregen voor alle PFAS’s, wat suggereert dat OAT5-

genexpressie, samen met enkele van de andere genen, een geschikte uitlezing kan zijn om 

de relatieve in vitro levertoxiciteitspotentie van PFAS’s te bepalen. Voor 7 van de 10 gekozen 

genen waren de in vitro gebaseerde RPF’s in overeenstemming met de gerapporteerde 

gegevens voor PFAS-geïnduceerde levertoxiciteit bij ratten. In combinatie met informatie 

over de toxicokinetiek van de PFAS’s bij mensen, kunnen deze in vitro gegevens worden 

gebruikt om potentieverschillen van PFAS’s bij mensen in vivo te schatten.

Als  vervolgstap  laat Hoofdstuk 7 een PFAS QIVIVE case studie voor PFOA, PFNA, 

PFHxS en PFOS zien. In vitro concentratie-responsgegevens (TG-accumulatie en 

genexpressieveranderingen van 12 geselecteerde genen) verkregen in HepaRG-cellen 

werden met PBK-model-gefaciliteerde omgekeerde dosimetrie omgezet in in vivo dosis-

responscurven. Voor deze studie werden in vitro cellulaire PFAS-niveaus bepaald in de 

HepaRG-cellen om in vitro blootstelling te koppelen aan in vivo  blootstelling in de lever. 

Daarbij is rekening gehouden met een blootstellingsscenario van 50 jaar om de levenslange 

chronische humane blootstelling aan PFAS weer te geven. Ten slotte werden de voorspelde 

orale equivalente effect doses vergeleken met de chronische humane  blootstelling via 

de voeding zoals recent door EFSA voor de Europese bevolking is vastgesteld. De orale 

equivalente effectdoses die in deze QIVIVE-analyse werden voorspeld, bleken binnen het 

bereik te liggen van de  humane blootstelling. Deze case study  illustreert hoe gegevens 

uit humane in vitro assays gebruikt kunnen worden  voor het bepalen van uitgangspunten 

(POD’s) voor screening, risico-identificatie en prioritering van PFAS’s waarvoor in op dit 

moment vivo toxiciteitsgegevens ontbreken.
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