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A B S T R A C T   

For the foreseeable future, automated vehicles (AVs) will coexist on the roads with human drivers. To avoid 
accidents, AVs will require knowledge on how human drivers typically make high-stakes and time-sensitive 
decisions (e.g., whether or not to brake). Providing such insights could be statistical models designed to 
explain human information processing and decision making. This paper attempts to address a roadblock that 
prevents one class of such "cognitive models", evidence accumulation models (EAMs), from being widely applied 
in the design of AV systems: their high demands for data. Specifically, we investigate whether Bayesian hier
archical modeling can be used to determine a person’s characteristics, if we only have limited data about their 
behavior but extensive data on other (comparable) people’s behaviors. Leveraging a simulation study and a 
reanalysis of experimental data, we find that most parameters of Decision Diffusion Models (a class of EAMs) – 
representing information processing components – can be adequately estimated with as few as 20 observations, if 
prior information regarding the decision-making processes of the population is incorporated. Subsequently, we 
discuss the implications of our findings for the modeling of traffic situations.   

1. Introduction 

Some life-changing decisions have to be made in less than a second, 
and making a wrong choice is costly. Every day, many drivers face such 
decisions when they choose between hitting their brakes or waiting a tad 
longer to observe. Whichever choice they make, if it is the wrong one for 
the situation, it can lead to serious consequences: The driver who braked 
when there was no need (e.g., because they thought they perceived 
something) can cause a rear-end collision with their sudden and un
predictable behavior; so can the driver who does not immediately brake 
when they have to. 

Human drivers differ in the skill with which they make these choices 
(i.e., their speed and accuracy in making such split-second decisions) as 
well as in their proclivities: Some drivers will err on the side of braking 
while others are hesitant to brake. If human and automated vehicles 
(AVs) are to coexist in traffic, (semi-)automated driving systems are 

confronted with such human decision making processes in at least two 
ways: Firstly, they need an accurate model of how human drivers make 
such choices – to anticipate and adjust to the behavior of human drivers 
that they encounter (e.g., drivers ahead of them that could brake, or 
drivers behind them that react to the AI system’s braking). Secondly, 
systems that share driving duties with a human driver (the likely highest 
achievable level of automation for the foreseeable future; Janssen et al., 
2022; Noy et al., 2018) need an accurate model of their (co-)driver’s 
driving attributes and likely behaviors. For example, for levels of auto
mation in which the AV is not constantly supervised by a human driver 
(e.g., levels 3-4 of SAE’s taxonomy for driving automation; SAE Inter
national, 2014), there might be situations in which the AI system makes 
higher quality decisions (in speed and accuracy) than its driver (e.g., 
braking while the driver is tired), while the driver outperforms it in 
other situations (e.g., braking in snow) and the AI system would need to 
be able to accurately “perceive” these performance discrepancies.1 
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1 While we will mostly stick with that example throughout our paper, braking is not the only part of driving for which a driving system would benefit from an 
understanding of how human drivers make time-sensitive high-stakes decisions on the road. For example, a driving system misjudging whether or when a human 
driver changes lanes (e.g., to overtake another car or to switch lanes on a multilane road) could similarly result in accidents. 
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From cognitive psychological research, it is well-known that these 
split-second decisions share a common information processing mecha
nism. That is, in less than a second, the cognitive system accrues evi
dence for viable courses of actions and commits to the action which it 
perceives to have the highest chance of success (see e.g., Boag et al., 
2022). These cognitive processes can be described by mathematical 
models. One class of such so-called cognitive models is especially 
well-suited for explaining and predicting human choices in 
time-sensitive situations (like split-second decisions about whether or 
not to brake). These so-called Evidence Accumulation Models (EAMs; 
Boag et al., 2022; Ratcliff et al., 2016) express individual differences in 
decision making aspects like speed, accuracy and decision tendencies (e. 
g., whether a particular driver is particularly “trigger-happy” with their 
brake). One way in which we could provide AI driving systems with an 
understanding of how human drivers make decisions could hence be to 
inform their assumptions about human drivers with insights stemming 
from evidence accumulation models. 

1.1. The problem of sample sizes 

While EAMs could provide a lot of insight about important facets of 
human (traffic) decision making, and have been employed amply to 
explain human traffic behaviors (Section 2.1), their application to the 
design of (semi-)autonomous driving systems has so far been limited. 
Integration (e.g., using insights from cognitive models to make auto
mated driving systems more adaptable; Janssen et al., 2022) remains a 
challenge, and to further enable it, one roadblock will have to be 
addressed first: To fit EAMs, one requires a lot of data – routinely re
searchers collect 100 or more observations of a type of decision to fit 
these models on participants’ choice behaviors. This severely limits the 
extent to which EAMs can be utilized to inform driving system about 
human decision making. Even if sophisticated driving systems are 
developed that can identify and analyze driving situations as they occur 
naturalistically during driving (e.g., overtaking, unexpected braking, 
dodging animals on the road), it would take months to years to gather 
sufficient data to adequately fit EAMs for some of these driving situa
tions. High-stakes split-second decisions are critical to model but each 
individual driver rarely encounters them in daily driving. 

The alternatives are also suboptimal: If data were collected upon the 
purchase of a car (e.g., to personalize human-system interactions before 
the buyer starts driving), drivers would need to spent hours performing 
(simulated) driving tasks, so that enough data can be collected to fit 
models for each relevant driving situation. Few drivers would be willing 
to endure such an ordeal, especially if calibration is only temporary and 
has to be repeated regularly (e.g., due to age-related changes in cogni
tive processing; Archambeau et al, 2020; Ratcliff & Vanunu, 2022). 
Another undesirable alternative is to neglect individual differences 
altogether when fitting EAMs (as do e.g., Pekkanen et al., 2022; Van 
Maanen et al., 2012; Zgonnikov et al., 2023). Then, AVs and driving 
system do not take into account different drivers’ strengths and weak
nesses but treat each driver as the amalgamated “average human 
driver”. This both neglects one of EAMs’ main strengths (i.e., accounting 
for individual differences) and can be dangerous in applied settings (e.g., 
if the driving system overestimates a human driver’s perceptual abilities 
by assuming that they are average). 

In this paper, we investigated a potential way in which individual 
differences could be modeled, without requiring so much data. Specif
ically, we perform a simulation study (Section 3) and reanalyze data 
from a perceptual study (Section 4) to assess the extent to which 
adequate model parameter values can be obtained with few trials, if we 
make use of Bayesian estimation techniques. 

2. Background 

Before describing our simulation study and reanalysis in more detail, 
this section provides necessary background information for 

understanding these. Specifically, we provide a short introduction into 
one class of Evidence Accumulation Models, Diffusion Decision Models 
(DDM; see Section 2.1) and discuss how it has been used to model 
driving behavior (Section 2.2). Subsequently, we describe Bayesian 
parameter estimation techniques (Section 2.3) which might decrease the 
amount of data that is required to fit Evidence Accumulation Models, 
before finally (Section 2.4) describing our contribution and setup. 

As subsections 2.1 and 2.3 are merely introductory, seasoned 
cognitive and Bayesian modelers may elect to skip one or both of them. 

2.1. Evidence Accumulation Models and the Diffusion Decision Model 

Evidence Accumulation Models (EAMs) are cognitive models that 
describe human decision making. They have been used to model 
decision-making in a variety of contexts (see e.g., Ratcliff et al., 2016), 
including driving (see e.g., Ratcliff, 2015; Ratcliff & Vanunu, 2022). 
Conceptually, EAMs assume that decisions are made based on a gradual 
accumulation of evidence relevant to a particular choice (e.g., to brake 
or not to brake), until enough evidence has been accrued to commit to a 
decision, at which point the decided-on action (e.g., braking) is irrevo
cably initiated. EAMs assume that individuals differ in decision-making 
attributes like the efficiency of the evidence accumulation process (how 
quickly and precisely they can analyze relevant information), and the 
amount of evidence they need to commit to a choice. Individual dif
ferences on EAM’s parameter values are assumed to reflect individual 
differences in cognitive processing and decision making attributes. 

While much of our conceptual discussion here (e.g., of how EAM’s 
insights are relevant to AV design) can be extended to other classes of 
EAMs, as EAMs model similar decision making processes (but e.g., focus 
on different types of decisions humans face), our discussion in this paper 
focuses on Diffusion Decision Models (DDMs; Ratcliff, 1978; Ratcliff & 
McKoon, 2008). We focus on this class of evidence accumulation 
models, because it is the seminal one, and because it has been used to 
model cognitive processes involved in several traffic situations that are 
relevant to AV systems design. DDMs are designed to explain situations 
in which humans make choices between two options (e.g., whether or 
not to brake). Like other EAMs, the model estimates unique values for 
each person on parameters that represent aspects of human decision 
making. In its simplest form (which we use in our reanalysis; Section 4), 
each person has unique values on four such parameters: The drift rate (v 
in Fig. 1) represents how efficiently people accumulate evidence (e.g., 
process information they perceive on the road) towards one of the two 
decision options (which are represented by the two dashed horizontal 
lines on the top and bottom of Fig. 1). Once the evidence that was 
accumulated meets one of the thresholds (i.e., touches either horizontal 
boundary line in Fig. 1), a decision has been made and the associated 
action (e.g., braking) is initiated. 

The parameter boundary separation (a in Fig. 1) represents the dis
tance between these two decision boundaries and hence expresses how 
much evidence people require to make decisions. Everything else being 
equal, people with smaller values for the boundary separation make 
rasher decisions, as they need to accumulate less evidence to decide on 
one of the two options. People with larger boundary separation values 
are less prone to errors, but also slower at making decisions. 

People can have proclivities for one response option over the other, 
before even starting to accumulate evidence towards either option. 
These a priori preferences are modeled by a parameter representing the 
starting position of evidence accumulation (z in Fig. 1). If the starting 
position is closer to the upper boundary, the person has an a priori 
inclination towards the option associated with this upper boundary, as 
they need to accumulate less evidence to commit to it. This would, for 
example, be the case for drivers that, when faced with a split-second 
decision about whether or not to brake, err on the side of braking. 

The non-decision time (t0) parameter represents all time that is not 
part of the cognitive decision-making process which passes between the 
onset of a choice situation and the execution of a response. It includes 
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processes such as identifying choice-relevant information (e.g., parsing a 
visual scene for information that is relevant towards making a choice 
between braking or not braking) and executing a behavioral response 
(like stepping on a brake) once it has been decided on. 

With these four parameters, DDMs can jointly predict a distribution 
of response times as well as a distribution of choices: Evidence (x) starts 
each trial at z*a and accumulates over time (t) as dx = v*dt + ε, with ε 
representing standard normally distributed noise. The model emits a 
response as soon as x ≤ 0or x ≥ a (i.e., the evidence exceeds either the 
lower or the upper boundary), at which point td represents the decision 
time (td in Fig. 1). The duration of a trial (or reaction time; RT) is the sum 
of its decision (td) and non-decision time (t0). Often, the non-decision 
time is sampled from a uniform distribution whose shape depends on 
a mean (t0) as well as a width parameter (st0). In this study, we simplified 
and just estimated a mean t0 (i.e., a constant that gets added to each 
participants’ reaction time), as it significantly sped up model fit. 

While these four parameters are the main ones driving behavior, 
there are several ways in which DDMs can be extended. For example, 
DDMs can model the consistency with which individuals analyze in
formation (i.e., the extent to which they show trial-by-trial drift rate 
variability; sv), and how variable they are trial-by-trial in their starting 
point position (sz; see also Fig. 1). Other examples of extensions of the 
DDM are models (discussed also in Section 2.2) which take into account 
how perceived stimuli change over time (e.g., how the speed and dis
tance of a nearby car changes across multiple seconds; Zgonnikov et al., 
2023) by allowing parameters (e.g., the drift rate) to change over time. 
Such DDMs are relevant especially to traffic decision-making which 
unfolds over multiple seconds (e.g., pedestrians choosing whether or not 
to cross a road; Pekkanen et al., 2022; or cars deciding whether or not to 
take a turn before another car; Zgonnikov et al., 2022) where road users 
continuously monitor (changes in) the relevant stimuli. 

For all parameters (and their underlying cognitive processes), there 
is substantial inter- and intrapersonal variability that is relevant to 
predicting people’s behavior on the road. As an example of systematic 
interpersonal differences, older adult drivers have been found to have 
lower drift rates (i.e., accumulate evidence less efficiently) than younger 
adult drivers, resulting in them making more mistakes on the road 
(Ratcliff & Vanunu, 2022). Additionally, a person’s parameters differ 
based on their state (e.g., whether or not they are tipsy; Van 

Ravenzwaaij et al., 2012; or whether or not they are sleep deprived; 
Ratcliff & Van Dongen, 2009). Besides such systematic differences, there 
are also nonsystematic differences on parameters that are relevant to 
predicting how people behave on the road. For example, some people 
generally need more time to move their foot to the brake pedal (a ten
dency that would be modeled with a larger value for their average 
nondecision time t0). In our view, one of the biggest conceptual strengths 
of Evidence Accumulation Models (like the DDM) is that they can ac
count for such individual differences. 

2.2. Using EAMs to model driving behavior 

In preventing road accidents, both the speed with which humans 
make choices as well as their accuracy in making these choices are 
important. If road users make the wrong choice (e.g., steering to the side 
in an attempt to dodge an animal when such a choice is dangerous) it can 
endanger their lives and the lives of others. Conversely, the right choice 
is worth little if the road user took too long to arrive at it (e.g., drivers 
realizing they should brake while they are already colliding). As EAMs 
(such as DDMs) model both the speed and the accuracy with which 
people make choices, they have been widely applied to modeling 
behavior and decision making in traffic situations. 

Research ranges from modeling general driving behaviors (e.g., 
braking and overtaking; Ratcliff, 2015; Ratcliff & Strayer, 2014) to 
modeling situations that might be particularly likely to result in acci
dents. For examples of the latter, several papers have used EAMs to 
investigate the effects of divided attention and cognitive load on driving 
(Castro et al., 2019; Engström et al., 2018; Tillman et al., 2017) or to 
investigate how drivers’ behaviors change if they feel speed-pressure 
(Vanunu & Ratcliff, 2022). Additionally, there is variability in the 
types of analyzed data, ranging from data of simulated driving experi
ments (e.g., Ratcliff & Strayer, 2014; Xue et al., 2018) to data and re
cordings from actual (near-)crashes (e.g., Engström et al., 2022; Svärd 
et al., 2021). While the former allows for more stringent experimental 
control and for testing rare or hypothetical scenarios (e.g., how human 
drivers interact at intersections with fully automatic driver-less cars; 
Zgonnikov et al., 2023), it is unclear to what extent their results 
generalize to real-world driving where there is no unambiguous "trial 
onset”, but drivers continuously observe the traffic until their 

Fig. 1. Parameters of the Decision Diffusion Model (DDM) 
Note. Figure adapted from Heathcote et al. (2019). Over time (from left to right) evidence is continuously accumulated towards one of two choice options (i.e., 
moving the line upwards or downwards). When sufficient evidence is accumulated (the line of evidence accumulation touches either the top or bottom horizontal 
line), a choice has been made. The nondecision time parameter (t0) models time that passes before and after a decision has been made (e.g., time necessary for 
executing a response). The boundary separation (a) represents the length of the vertical line (i.e., how much evidence needs to be accumulated to make a choice). The 
start point (z) parameter represents where (on average) on the vertical line the evidence accumulation begins (i.e., whether closer to the top or the bottom decision). 
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expectations (e.g., of other drivers’ behaviors; Engström et al., 2022) are 
violated and they must react. 

Recent work has focused on driving situations that unfold over 
multiple seconds. These include, for example, pedestrians choosing 
whether or when to cross the road (Giles et al., 2019; Markkula et al., 
2018; Pekkanen et al., 2022) or drivers interacting with each other at 
intersections (Zgonnikov et al., 2022, 2023). As such traffic situations 
involve continuous (re-)assessments of stimuli over time (e.g., while 
pedestrians accumulate evidence about whether to cross a road before or 
after an incoming car, changes in the car’s speed are relevant to that 
choice), these papers extend DDMs with kinematics-dependent compo
nents (e.g., have car acceleration-dependent drift rates; Zgonnikov et al., 
2023). Recent work on braking also reflects this shift towards 
kinematics-dependent EAMs. Especially visual looming (i.e., the 
expansion over time of a stimulus on a person’s retina; see e.g., Durrani 
& Lee, 2023; Xue et al., 2018) has received a lot of research attention, 
being part, for example, of models of drivers’ braking when cruise 
control fails (Bianchi et al., 2020) and of models that account for evi
dence accumulation during off-road glances (Svärd et al., 2021). 

As this study is meant as a proof of concept, we focus here on the 
conceptually simpler main parameterization of the DDM. While their 
kinematics-dependent extensions conceptually offer a lot of promise, we 
believe that the traditional (time-independent) DDMs still have a role to 
play when modelling traffic situations. The time-dependency of these 
kinematics-dependent models is particularly relevant for traffic situa
tions that play out over multiple seconds (e.g., the nonverbal commu
nication between a human driver that approaches an intersection and an 
AV decelerating to indicate that the driver’s priority is being respected; 
Zgonnikov et al., 2023). For decision making on smaller timescales (e.g., 
unanticipated split-second decisions about whether or not to brake), we 
believe that the increases in model fit will not always be sufficient to 
justify introducing the additional complexity (over base DDMs). Then 
the choice between kinematics-dependent and traditional DDMs should 
be made based on rigorous model comparison. 

The cost of additional model complexity is also evident from the fact 
that many studies utilizing such kinematics-dependent models (e.g., 
Pekkanen et al., 2022; Zgonnikov et al., 2023) neglect individual dif
ferences and pool data across participants (i.e., modeling the amal
gamated “average human driver”; see Section 1.1). In situations where 
fitting kinematics-dependent models might not be practically viable (e. 
g., if human drivers are unwilling to spend hours on driving tasks for the 
adjustment of AI co-drivers), fitting simpler traditional DDMs could be a 
viable alternative. This would be the case, especially so, if we can 
decrease the sample size demands of traditional DDMs, using Bayesian 
estimation techniques. 

Additionally, as we want to assess the effect of Bayesian estimation 
techniques (i.e., utilizing informative prior distributions; see next ses
sion), traditional DDMs were the obvious starting point. To the best of 
our knowledge, no Bayesian formulations of these novel kinematics- 
dependent models currently exist. We do believe that such Bayesian 
versions of the kinematics-dependent DDMs could be formulated; novel 
methods like amortized Bayesian inference (Radev et al., 2020) sub
stantially simplified Bayesian parameter estimation of complex models. 
However, before creating such versions and investigating how well their 
parameters could be recovered with small sample sizes and Bayesian 
estimation, we first need an indication of whether using Bayesian esti
mation methods and informative prior distributions to decrease sample 
size demands is a promising avenue of research, to begin with. The aim 
of this study is to provide this initial indication. 

2.3. Using Bayesian estimation techniques to reduce data demands 

An important advancement in the field of parameter estimation that 
may decrease EAMs’ data demands is the development of Bayesian 
parameter estimation techniques (see e.g., Lee & Wagenmakers, 2013). 
The general premise of Bayesian estimation is that the researcher first 

assumes a prior distribution (often abbreviated as “the prior”) of prob
able and possible parameter values (e.g., how high or low a drift rate 
usually is for a driver in a particular situation and how high or low it 
could possibly be in this situation). From this prior distribution of 
parameter values, sets of values for the parameters are iteratively 
sampled. After each round of sampling, the likelihood of data that has 
been observed is determined under a particular set of parameter values 
(e.g., how likely we are to observe a specific set of data, if the DDM’s 
parameters had the values that were sampled this round). Samples of 
parameter values that give high likelihoods to the data (i.e., that 
apparently explain the observed data well) are weighted more strongly 
in future rounds of sampling, increasing the probability that these 
samples will be drawn again. Repeated sampling in this way yields a 
posterior distribution for each parameter (e.g., one for the drift rate and 
one for boundary separation), which – in the ideal scenario – describes 
the optimal parameter values. 

Researchers differ in which prior distributions they pick for their 
parameters. Many choose distributions that are maximally uninforma
tive (i.e., priors that influence the sampling procedure as little as 
possible), reasoning that then any information in the resulting posterior 
distribution stems solely from the data. Recently, however, researchers 
have argued in favor of including prior information in the parameter 
estimation process (Lee & Vanpaemel, 2018; Tran et al., 2021; Van
paemel, 2011), for example when data from relevant comparable situ
ations (or experiments) is available. If we, for example, have no prior 
knowledge on how people make decisions while drunk driving, we could 
still make our sampling of parameter values more efficient (i.e., 
decreasing the proportion of iterations in which unreasonable parameter 
values are tested) by informing our priors with data from analogous 
situations (e.g., knowledge on the kinds of parameter values that are 
probable for drivers that are highly distracted). Even if no data from 
analogous situations exist, general knowledge about a particular model 
can be utilized: For example, relevant to our project, Tran et al. (2021) 
generated prior distributions for DDM parameters that summarize all 
parameter values that have been published in papers about DDMs. 

Utilizing such informative priors, the sampling for reasonable DDM 
parameters can be made much more efficient, by guiding the algorithm 
that samples parameter estimates towards reasonable parameter values 
(e.g., emphasizing values that were commonly observed for drift rates 
and heavily deemphasizing values that have never been observed). For 
our driving application this means that we might need much less data on 
how drivers make choices than is usually gathered for DDMs, if we have 
a lot of data from comparable drivers (e.g., in age and experience) for the 
same type of driving situation. 

2.4. This study 

While it is known that informative priors can be used to reduce the 
amount of required data, it is not clear how small sample sizes (i.e., 
numbers of recorded choices per person we wish to model) can be, if we 
want our estimates for the DDM parameters to still be reasonably ac
curate. We aim to answer this question through a simulation study 
(Section 3) and a reanalysis of experimental data (Section 4). The 
simulation study assesses how well DDM parameters can be recovered 
under ideal circumstances. Herewith we aim to identify the lowest 
possible sample sizes that would still enable reasonable parameter re
covery. With the reanalysis, we assess parameter recovery under more 
realistic circumstances, where the data is noisier and it is unclear how 
much the informative priors that we chose resemble people’s true 
parameter distributions. 

While several studies have assessed the effects of sample sizes on 
DDM parameter recovery (e.g., Lerche et al., 2017; Ratcliff & Childers, 
2015; White et al., 2018; Wiecki et al., 2013), our study is, to the best of 
our knowledge, the first to assess such small sample sizes and to assess 
the impact of prior choice on parameter recovery with such small sample 
size DDMs. As experimental trials are much more time-consuming for 
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(simulated) driving tasks (Pekkanen et al., 2022) than for laboratory 
tasks that are traditionally modeled with DDMs (e.g., people will not feel 
like they are really driving, if the simulation makes them encounter too 
many critical driving situation in short succession), assessing sample 
sizes as small as we assess here is important for the driving domain. This 
is especially true if we wish to model individual differences in cognitive 
parameters rather than pool data across participants. 

3. Simulation study to identify the lowest possible sample sizes 

With this simulation study we tested how small sample sizes could be 
in the ideal situation in which the prior distribution near-perfectly de
scribes the real distribution of parameters. The general setup of the 
simulation study was as follows: We simulated data for 100 individuals, 
assuming that the individuals’ DDM parameters are distributed ac
cording to the distributions reported in Tran et al. (2021). These dis
tributions are believed to reflect the true data-generating distributions 
across multiple tasks (including driving tasks), as they summarize values 
that were reported across the scientific DDM literature. 

Specifically, we randomly drew values for the boundary separation 
(a), drift rate (v), start point (z), nondecision time (t0), start point vari
ability (sz) and drift rate variability (sv) parameters separately for each 
simulated individual (see Table 1 and Fig. 2 for the priors from Tran 
et al., 2021). Based on these parameters, we simulated 200 trials of 
choices and reaction times (RTs) for each participant. Next, we esti
mated each person’s parameters to understand whether we could reli
ably recover these data-generating parameters. Imitating a realistic user 
modeling scenario, where data of individuals are sequentially acquired, 
the parameter estimation was also performed independently (i.e., not 
making use of the hierarchical structure in the data). As we did in the 
reanalysis of data (Section 4), we fit all DDMs with Dynamic Models of 
Choice (DMC; Heathcote et al., 2019), a package for Bayesian estimation 
of EAMs in R.2 

We vary two aspects of the simulation: the number of observations 
per individual (5, 10, 20, 30, 50, 100, or 200) that is used to fit the DDMs 
and the type of priors that are used for the parameter estimations. The 
first aspect is the central question of the paper, namely what can be 
concluded when only a limited number of observations is acquired. For 
reference, we also include the total number of observations that we 
analyzed per person in our later reanalysis of experimental data (100) as 

well as a common number of trials in a psychological choice experiments 
that is often believed to suffice to reliably recover DDM parameters (200 
trials; see e.g., Lerche et al., 2017). 

The second aspect addresses the role of prior shape in estimating 
parameters for small samples. Accurate informative priors (“empirical 
priors”) reflect knowledge of the population from which the individual 
stems that is being evaluated. Since knowledge about a person’s popu
lation is relevant for that person, empirical priors may assist in esti
mating parameters for small samples. However, if the individual’s true 
parameters are dissimilar to the ones favored by the prior, informative 
priors might bias parameter estimates. To assess the risk of choosing a 
wrong informative prior, we contrasted three different priors: Accurate 
empirical priors (i.e., the priors from Tran et al., 2021, which resemble 
the individuals’ parameters, as those parameters were initially sampled 
from the same distribution), wide uniform (and hence uninformative) 
priors, and informative prior distributions that are misaligned with the 
actual distributions of parameters. Our misaligned “mismatch” priors 
were identical to the empirical ones, except that we added 20% to their 
central tendency parameters (compare the blue with the black distri
butions in Fig. 2). This way, these priors are shifted by 20% relative to 
the population distribution with which the data was generated (i.e., the 
correct distribution of parameters). 

3.1. Parameter recovery in the simulation study 

As an initial inspection of our data, we plotted posterior means of the 
individual DDMs’ parameter estimates against participants’ true 
parameter values. Unsurprisingly, sample size heavily influenced the 
success of the parameter recovery. For example, Fig. 3 depicts the pos
terior means of the boundary separation parameter, for the lowest (left) 
and highest (right) sample size in the simulation and for all three prior 
distributions. Data points that are close to the dotted diagonal line were 
recovered well (points on the line indicate perfect recovery), which in
dicates that the cognitive processes that generated the data of the in
dividuals could be identified (e.g., Miletić et al., 2017; Van Maanen & 
Miletić, 2021). It is clear from the figure that the parameters can be 
recovered when a large number of datapoints (i.e., 200) is collected. 
Similarly evident is that an extremely low sample size yields too little 
information to reliably recover the boundary separation parameter (see 
the left panel of the figure). However, when the distribution of in
dividuals is known (i.e., when an accurate empirical prior is used; black 
dots), the estimated parameter values are at least close to the diagonal 
line (i.e., close to good recovery). 

In our view more meaningful than estimating the exact parameter 
values of an individual (e.g., proximity to the line in Fig. 3) is the 
ordering of individuals along the dimension of interest. For example, if 
the goal of our modeling is to identify the level of cautiousness of 
drivers, what matters most is whether a cautious driver is indeed esti
mated to be more cautious than a non-cautious one (for a similar line of 
argumentation, see Ratcliff & Childers, 2015). This is why we assessed 
the extent to which parameter recovery was successful by computing 
Spearman’s rank order correlation coefficients between the medians of a 
parameter’s posterior distributions (each stemming from an individual 
participant’s DDM) and the individuals’ true parameter values. In 
graphing these correlation coefficients, Fig. 4 generalizes our conclusion 
from Fig. 3 to all parameters and sample sizes: The correlation between 
ground truth (i.e., people’s correct parameter values) and people’s 
median parameter estimates increases with sample size (i.e., recovery 
improves). However, Fig. 4 also reveals that specifying an appropriate 
prior distribution helps in the recovery, especially for the boundary 
separation parameter – a parameter important for driving as it indicates 
how much information (and hence time) human drivers require to come 
to a decision. 

For the between-trial variability parameters (sv and sz), recovery is 
poor (i.e., even for DDMs with 30 observations, the correlation co
efficients were < .4), independently of the prior shape. This finding is 

Table 1 
Parameters of the empirical prior distributions, adapted from Tran et al. (2021)  

Parameter Distribution Mean  Scale df Lower & 
Upper bounds 

a gamma  11.69 0.12 0.11 7.47 
v truncated 

normal 
1.76 1.51  0.01 8.51 

z truncated t 0.5 0.05 1.85 0.04 0.96 
sv truncated 

normal 
1.36 0.69  0 3.45 

sz truncated 
normal 

0.33 0.22  0.01 0.85 

t0 truncated t 0.44 0.08 1.32 0 3.69 

Note. The parameters of the “mismatch prior” are identical to the ones of the 
here-reported “empirical prior” distribution, except that z’s mean value is 0.75 
and that all other mean values are doubled (e.g., the mean value for the 
mismatch prior of t0 is 0.88). All uninformative prior distributions were uniform 
distributions with the lower and upper bound values depicted here. 

2 We modified the DMC package to support truncated t-distributions, as some 
of Tran et al.’s (2021) priors have that shape. To ensure reproducibility, our 
modified version of the DMC package (alongside our analysis scripts) are 
available on https://osf.io/9y6ze . 
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unsurprising, given results from previous studies that found poor re
covery of these parameters (e.g., Boehm et al., 2018), even for large 
sample sizes (e.g., correlations of < .5 for DDMs with 5000 trials; Lerche 
et al., 2017). 

A sensible strategy in user modeling is to identify groups of in
dividuals like “very cautious drivers” (e.g., so that one of several default 

options of a driver-assistance system can be chosen for a driver), rather 
than addressing all possible values on a continuum (e.g., of cautious
ness). Therefore, we also analyzed the extent to which models based on 
few observations can faithfully recover which tertile of parameter values 
a simulated individual belongs to. To this end, we drew 50,000 samples 
from the posterior distributions of each parameter, and categorized the 

Fig. 2. Prior distributions for four of the parameters 
Note. The colored lines show the different prior distributions that are used in our simulation study. The bars indicate the frequency with which the simulated in
dividuals have parameters of that value. Note that the 100 simulated individuals were initially based on population distributions of parameters that are identical to 
the empirical prior distributions (i.e., while there is substantial individual variation, their overall parameter distributions closely resemble the empirical priors). 

Fig. 3. Parameter recovery for the boundary separation parameter (a) with 5 and 200 observations 
Note. Parameter recovery for the boundary separation parameter (a) was assessed using three different prior distributions (correct empirical prior, mismatched 
informative prior and uninformative uniform prior). Left shows recovery with small sample size of only 5 observations per participant; right shows a large sample size 
of 200 observations per participant. 
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parameter values as either low, medium, or high. Next, we determined a 
confusion matrix from which we extracted the proportion of samples 
that the models (based on different sample sizes) classify correctly 
(compared to the ground truth distribution). Effectively, this analysis 
determines whether we can, with only limited observations, correctly 
categorize (simulated) individuals’ values on a parameter as either low, 
medium, or high. 

Our results revealed that specifying an appropriate prior distribution 
helps with the recovery of the drift rate and boundary separation pa
rameters, in particular for models that are based on small sample sizes 
(Fig. 5). For example, the top left panel of Fig. 5 reveals that with as little 
as 5 observations, the correct classification of the drift rate (v) occurs on 
average in about .7 of cases; 95% confidence interval: [0.60, 0.79]. 
Similarly, the boundary separation parameter a (top middle panel) is 
correctly classified in .45 [CI: 0.35-0.55] of cases, and this accuracy 
increases to .60 [CI: 0.50-0.70] for models of 10 observations. 

However, Fig. 5 also illustrates that it is of critical importance to 
specify an appropriate prior distribution: The Mismatch prior distribu
tion of boundary separation, that is shifted relative to the population 
distribution from which individuals were sampled, yields a substantially 
lower classification accuracy, as compared to the other two prior con
ditions. This is mostly visible for a traditional sample size of 200 ob
servations, where the 95% confidence intervals of the classifications do 
not even overlap across conditions. When the mismatch prior was used, 
the classification accuracy of the boundary separation (a) did not exceed 
chance performance for any of the small sample sizes that we consid
ered. For the use case of categorizing participants’ boundary separation 
parameters, it will hence be especially important to have an accurate 
prior distribution. While not to the same extent, the mismatch prior also 

underperforms the other priors in the classification of the drift rate. 
To categorize other parameters, the nature of the prior distribution 

has little influence. For non-decision time (t0) and start point (z) the 
recovery is reasonable for all priors. For the between-trial variability 
parameters (sv and sz), recovery was again poor and prior type did not 
impact recovery meaningfully. 

3.2. Discussion of the simulation study 

The results from the simulation study reveal that parameter recovery 
based on small sample sizes is, in principle, possible. Accurate infor
mative priors improve the parameter recovery for all parameters and 
sample sizes and especially so for small numbers of observations. The 
influence of inaccurate informative priors compared to using uninfor
mative priors was highly context-dependent: For the ordering of par
ticipants’ parameter estimates (as indexed by rank-order correlations), 
the mismatch prior did not perform markedly worse than the uninfor
mative prior (if anything, it outperformed the uninformative prior for 
some of the parameters, see e.g., drift rate and boundary separation in 
Fig. 4). For categorizing participants’ parameters, however, the biasing 
influence of the mismatch prior could be observed clearly for the 
boundary separation and drift rate. There it seems to be particularly 
important for informative priors to be accurate. We note that these 
conclusions about incorrect informative priors might only hold for the 
type of mismatch we investigated here (i.e., a shift in the distributions’ 
central tendency in the positive direction). 

A severe limitation of our simulation study is that the conditions for 
the parameter recovery are unrealistically ideal. For example, in our 
simulation study each accurate informative prior near-perfectly 

Fig. 4. Correlation coefficients between true and estimated DDM parameters 
Note. Colors indicate different prior distributions (correct informative “empirical” prior, mismatched informative prior and uninformative uniform prior), y-axes 
depict the correlation coefficient and x-axes the number of observations (in log scale) used to fit the DDMs. 
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describes the distribution of participants’ true parameter values (as their 
values were sampled from the same distribution) – a degree of precision 
we cannot expect in real-life applications. Additionally, variability in 
non-decision time (st0) exists for real participants’ data – the amount of 
nondecision time fluctuates trial-by-trial. This complicates the estima
tion of t0 for real data, but not the simulation (where st0 does not exist). 
Consequently, we reanalyzed experimental data to test whether the 
findings of our simulation study replicate under more realistic 
circumstances. 

4. Data reanalysis to assess parameter recovery under realistic 
circumstances 

The reanalysis of experimental data followed a similar structure to 
the simulation study with two notable differences: Firstly, we did not 
compare different prior distributions. As we cannot know to what extent 
our informative prior distributions are mismatched (i.e., differ from the 
true data-generating parameter distributions), a comparison between 
accurate informative, mismatched informative and uninformative dis
tribution was not possible. Consequently, we merely assessed whether 
informative priors (which we hope to be accurate) led to good parameter 
recovery. 

Secondly, unlike in the simulation study, we do not know partici
pants’ true parameter values. To have a benchmark by which we could 
evaluate the small sample size models’ parameter recovery, we hence 
estimated parameter values based on all included trials with a Bayesian 
hierarchical model, a process we outline in Section 4.1.2. 

4.1. Methods of the reanalysis 

4.1.1. Dataset 
The analyzed dataset stems from Ratcliff and Vanunu (2022) who 

made their data freely accessible on OSF. We chose this dataset, because 
its participants provided their responses in a simulated driving envi
ronment (although the task was perceptual) and because the dataset 
contained enough data to fit individual DDMs (i.e., at least 100 obser
vations per participant). 

In their experiment, Ratcliff and Vanunu (2022) tested whether and 
how adults of two different age groups (i.e., younger vs older adults) 
differed in their responses across three different tasks. The number of 
recorded observations differed per participant. We chose to model the 
data from Ratcliff and Vanunu’s “two-choice clear task”, as for that task 
participants had the highest minimum number of observations. In the 
“two-choice clear task” participants had to (via steering wheel, as well as 
gas and brake pedals) follow a simulated leading car on a computer 
screen until they were shown a color patch. Upon seeing the patch, 
participants had to overtake the leading car, either on the left or right, 
depending on whether the patch was blacker or whiter (e.g., consisted of 
53% white or 53% black pixels). 

Within the task, there were more or less ambiguous color patches (i. 
e., 53% or 57% of the pixels were of the dominant color) which influ
enced the difficulty of the trial. We chose to model the more ambiguous 
and hence harder trials (where the color patch was either 53% white and 
47% black or the reverse), as we expected that participants would make 
more mistakes during this task. In addition, we limited our analysis to 
the group of younger adults. As the majority of participants in psycho
logical experiments are young adults (e.g., psychology students), we 
assumed that the here-utilized Tran et al. (2021) priors are based on a 

Fig. 5. Proportion of parameters that were correctly classified as either low, medium or high. 
Note. Chance performance is indicated by the dotted line. 95%-confidence intervals are indicated by the shaded areas. 
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population that more closely resembles adults of Ratcliff and Vanunu’s 
(2022) younger participant group (i.e., 19 to 29-year-olds) than their 
older group (i.e., 58 to 82-year-olds). As participants had inconsistent 
numbers of hard trials (ranging from 113 to 226 such trials), we 
randomly selected per participant a subset of 100 randomly-ordered 
hard trials. Initial inspection of the responses from the 30 young adult 
drivers revealed that two adults seemed to have acted randomly on the 
task or misunderstood it (i.e., on this task with two possible response 
options, they had accuracies of 27% and 46%, respectively). We 
excluded these participants from the analysis. 

4.1.2. Establishing the ground truth 
To obtain precise estimates for participants’ individual parameters 

which can serve as performance benchmarks (“ground truths”) for the 
small sample size DDMs, we fit a Bayesian hierarchical diffusion deci
sion model (hDDM) on all included observations (i.e., 100 decisions per 
participant). Bayesian hierarchical models simultaneously estimate the 
parameters of all people whose data is included to fit the model. They do 
so by assuming that each individual level parameter (e.g., a person’s v or 
t0) stems from a distribution of parameters that is defined by a mean and 
a standard deviation. These mean and standard deviation hyper
parameters are themselves modeled and estimated by the Bayesian hi
erarchical model with the help of prior distributions (i.e., so-called 
hyperprior distributions). We chose Tran et al.’s (2021) distributions as 
hyperprior distributions for the means and uninformative uniform priors 
as hyperpriors of the standard deviations. In estimating the parameters 
of a participant (e.g., the drift rate of the first participant), hierarchical 
models tend to be more accurate than nonhierarchical ones, because 
they do not only take into consideration data from the participant whose 
parameters they estimate, but additionally consider data from all other 
participants (Lee & Wagenmakers, 2013). 

In fitting the “ground truth” model as in fitting any of the models in 
the following steps, we estimated four parameters: the drift rate (v), the 
response boundary separation (a), the start point (z) and the mean non- 
decision time (t0). Initially, we also wanted to estimate the standard 
deviations of drift rate and start point (sv and sz) – as we had done in the 
simulation study. However, convergence of DDMs with these 6 param
eters was too poor and too slow to be scalable (in light of the large 
number of models we wanted to fit in the following steps). With the 
Bayesian hierarchical DDM, we adjusted Tran et al.’s (2021) priors to 
arrive at 1000 converged chains of the posterior per parameter of the 28 
participants. These chains serve as our approximations of the “true” 
posterior distribution of DDM parameters for each participant. 

4.1.3. Fitting the models 
To be able to fit individual DDMs (independently, as we had done in 

the simulation study), we first had to create appropriate informative 
priors; priors that contain information about a modeled participant’s 
population without containing information about the participant 
themself. To that end, we fit a Bayesian hierarchical DDM (hDDM) for 
each participant in the same way as we had done to estimate the “ground 
truth” parameters (Section 4.1.2). Now we however fit these models 
without observations from the person whose driving attributes we 
wanted to subsequently model. 

We obtained the means, standard deviations, minima and maxima 
across all samples of all hierarchical parameter estimates of the 
remaining participants to parameterize these priors; using them to 
define truncated normal (prior) distributions (after confirming with 
histograms and QQ-plots that the estimates from the samples were 
indeed approximately normally distributed). For example, to obtain a 
prior for the drift rate of the first participant, we fit a hDDM based on the 
experimental data of all participants but the first. We then obtained the 
mean, standard deviation, minimum and maximum of the 27×800 
samples that the hDDM drew for the drift rates of these 27 participants. 
These four values defined the truncated normal distribution that we 
used as our informative prior for the drift rate of the first participant. 

For the following reason, all our estimates about participants’ pa
rameters are based on the last 800 samples that our model drew: For 
each DDM that we fit (be they hierarchical or nonhierarchical), we 
sampled until the model converged3 (i.e., until the convergence statistic 
Gelman-Rubin R̂ was below 1.05). As for some participants the model 
needed to sample additional times before converging, the number of 
drawn samples differed between participants. Only considering partic
ipants’ last 800 samples to draw conclusions about parameters (e.g., to 
describe a prior distribution for drift rates) ensured that we considered 
the same number of samples per participant and that those samples 
stemmed from converged models. 

After obtaining prior distributions for each participant’s parameters, 
we used them to fit (nonhierarchical) DDMs for each of the 28 partici
pants. We varied the number of observations from the modeled partic
ipant, fitting DDMs with 5, 10 or 20 of their observations. Whenever we 
fit a model, we randomly selected which of a participant’s 100 obser
vations to include. This random selection of trials and fitting of DDMs 
was repeated across 100 random seeds (see Section 4.2) to ensure that 
our conclusions are robust. We evaluated the individual models by the 
extent to which their estimated parameters were consistent with the 
ones that the (“ground truth”) hDDM estimated. 

4.2. Parameter recovery in the reanalysis 

To evaluate the precision of a DDM’s parameter estimate, we 
computed the Spearman correlation between the median of its posterior 
samples and the median of the ground truth samples for that partici
pant’s parameter. For example, to evaluate how well the boundary 
separation is estimated based on 5 observations, we obtained 28 me
dians – the medians of the last 800 samples for the boundary separation 
of the 28 participants’ 5-observation DDMs. We correlated these me
dians with 28 medians from the (“ground truth”) hDDM’s last 800 
samples for each of the participants’ boundary separations (as the hDDM 
has samples for each parameter of each participant). A high positive 
correlation indicates good parameter recovery (i.e., high agreement 
between the DDMs’ assessment of the participants’ attributes and the 
“ground truth”). We tested whether these correlations are reliable by 
fitting small sample DDMs and correlating 100 times across different 
random seeds (thereby varying which observations are included, when 
fitting the models). 

To test whether the few (5, 10 or 20) included observations mean
ingfully updated the priors towards the ground truth, we also checked 
what correlation coefficients are obtained when one randomly samples 
from the informative prior distributions. Specifically, we drew a 
parameter estimate per participant from their (truncated normal) prior 
distribution. We then correlated these 28 estimates with the ground 
truth estimates for that parameter. This process was repeated across 
1000 random seeds. If the correlation coefficients from the small sample 
DDMs are not larger than the 95th percentile of correlation coefficients 
from these random draws, the few observations from a driver did not 
meaningfully update the prior distribution towards the ground truth of 
that driver. 

Results revealed that nondecision time (t0) was not modeled well 
with any of the models that were based on small samples. Even for the 
20-observation models did the mean correlation (.2993) only barely 
exceed the 95th percentile of the control correlations based on the un
changed priors (.2737). Presumably, a larger number of observations is 
required to adequately estimate nondecision time. 

The other three parameters could be estimated relatively well with 

3 Convergence means that the model consistently draws samples (of parameter 
values) from the same distribution, which likely is the (posterior) distribution of 
the correct parameter values. Interested readers can find more details on 
sampling for example in Lee and Wagenmakers’s (2013) book on Bayesian 
estimation. 
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small sample size models. On average the 20 observation DDMs’ esti
mates were moderately highly correlated with the estimates of the 
ground truth, Mr_v = .5536, Mr_z = .6047. The average recovery from 10 
observation DDMs’ estimates (Mr_v = .3605, Mr_z = .4637) was also 
better than the 95th percentile of random correlations (rv_95 = .2677, rz_95 
= .2835), but given the high frequency of low correlations (see orange 
distributions in Fig. 6), we believe that 20 observations DDMs are 
preferable in practice. 

With small sample sizes, the boundary separation could be estimated 
much better than the other parameters. Remarkably, estimates for that 
parameter already outperformed the control correlations for models that 
were based on only 5 observations, rminimum_a = .3305, Mr_a_5 = .6056 
compared to the random ra_95 = .2978. For the 20 observations DDMs, 
this mean correlation rose to Mr_a_20 = .7300. 

Overall, with the exception of nondecision time, all parameters could 
be estimated well with 20 observations. That is markedly fewer than are 
usually obtained in psychological experiments and opens the door to 
applying EAMs for user modeling. For a more detailed breakdown of the 
distributions of observed correlations across models and random seeds, 
see Fig. 6. The figure demonstrates that parameters (with the exception 
of t0) are estimated well with only 20 observations: The distributions of 
observed correlations based on 20 observation models (blue lines) have 
little overlap with the distributions of correlations that are observed 
randomly (i.e., the correlations between “ground truth” and random 
draws from the priors; black lines). 

5. Discussion 

For (semi-)autonomous driving systems to be able to coexist with 
human road users, they need a decent model for how humans make 
decisions. If they mis-anticipate a person’s behavior, they could cause an 

accident or at least fail to prevent one. Similarly, a system that shares 
driving duties with a human driver needs an accurate model of how that 
person makes decisions on the road; what their strengths, weaknesses, 
and proclivities are (e.g., when in doubt, whether or not they err on the 
side of braking). Even in a future in which humans leave all driving to 
AI, driving systems will need to anticipate human traffic decision 
making (e.g., when an AV interacts with pedestrians at a crossing; 
Pekkanen et al., 2022). 

Cognitive models seem like the perfect source for insights about such 
human decision-making. After all, these models were designed to 
explain how humans make decisions and how they perceive and analyze 
their surroundings. Additionally, cognitive models can predict how 
human drivers will behave under circumstances that are better simu
lated than tested. For example, evidence across several experimental 
paradigms indicates that drift rates decrease with less perceptual dis
criminability of task-relevant stimuli (see e.g., Donkin & Van Maanen, 
2014; Palmer et al., 2005; Philiastides et al., 2006). Instead of gathering 
driving data from dangerous situations of low perceptual discrimina
bility (e.g., when it is too foggy or snowy for human drivers to fully 
perceive all relevant information), driving systems could be informed 
with EAMs’ predictions about what would change if the driver had a 
lower drift rate. Despite all this conceptual promise, several roadblocks 
present themselves to applying cognitive models to the driving domain, 
and cognitive models have not yet realized their potential for informing 
the design of AVs (Janssen et al., 2022). 

One of the roadblocks of applying specifically evidence accumula
tion models in practice is that they require a lot of data. After all, we 
cannot expect even highly motivated drivers – which want their AI co- 
drivers to be well-informed about their driving tendencies – to sit 
through hours of driving simulations per type of high-stakes driving 
decision (e.g., braking, overtaking, etc.). This requirement becomes 

Fig. 6. Density distributions of correlation coefficients between ground truth and small sample size models’ parameter estimates across random seeds  
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even more daunting, if we assume that assessments have to be repeated 
across conditions (e.g., to test drivers’ behavior when stressed or sleepy) 
and time (e.g., due to age-related changes in the driver’s cognitive 
processing; Ratcliff & Vanunu, 2022). Asking drivers to partake in such 
assessments of their driving attributes would be a lot more reasonable, if 
they took less time. In this paper, we consequently made a first attempt 
towards finding out how small sample sizes could be, if we want our 
model’s parameter estimates to still be reasonably accurate. 

5.1. Takeaways from our studies 

The key takeaway of our simulation study is that little data is 
necessary to receive reasonable parameter estimates, if the prior dis
tribution closely resembles the true distribution to which an individual 
belongs. In traffic situations in which this type of DDM is appropriate (e. 
g., split-second decisions, like whether or not to brake in response to 
suddenly perceiving a car one had previously overlooked), we can likely 
draw valid inferences about a driver’s behavior with as few as 10 data 
points – if we have data on how other drivers that cognitively resemble 
our driver acted in such situations. More observations were required 
when an uninformative prior was used or when the informative prior 
distribution for a parameter was mismatched. This implies that obtain
ing accurate informative prior distributions will be very important for 
the applied setting, in which few observations can be obtained per 
driver. 

Overall, the mismatched informative prior performed similarly to the 
uninformative one, in the recovery of parameters. At least for testing 
individual differences, informative priors (when mismatched as they 
were here) hence appear to be relatively save to choose over uninfor
mative ones.4 The situation is different for classifications: As an initial 
classification of the prior distributions determines which values are 
labeled as low, medium, or high, informative prior distributions that are 
as misaligned as ours lead to many misclassifications. For such appli
cations of cognitive models, it will hence be very important to obtain 
accurate prior distributions, as mismatched priors can substantially bias 
our classifications. 

Following our simulation study, we reanalyzed data from a percep
tual task to test the effect of sample sizes on parameter recovery under 
more realistic situations. Similarly to our findings in the simulation 
study, we found that (with the help of informative prior distributions) 
most model parameters could be estimated well with few observations. 
We did however find notable differences between model parameters: 
While the boundary separation could be estimated with as few as 5 
observations, drift rate and bias required 20, and nondecision time could 
not be estimated to a satisfactory level even with 20 observations. The 
latter finding stands in contrast to the results of our simulation study, 
where boundary separation was recovered well already with 10 obser
vations (see Fig. 4). We suspect that the discrepancy between these re
sults arises from the realistic (reanalyzed) data being noisier than the 
simulated data. Our DDM did not model variability in nondecision time 
(st0). While no such variability exists in our simulated data, it does exist 
in real data and (as we do not model it) complicates recovery of the 
nondecision time constant (t0). Nondecision time variability (st0) might 
be especially high in the dataset that we reanalyzed, considering that 
participants had to multi-task (i.e., focus on their driving, while per
forming the perceptual task) and were not under immediate time pres
sure. As we only reanalyzed one dataset, it could also be the case that our 
prior distribution for the nondecision time was much more mismatched 
than the other priors (while the prior for t0 was very accurate in the 

simulation study). 

5.2. Future directions 

There are several ways in which our work can be extended: First and 
foremost, future studies should investigate whether the observed dif
ferences in how well parameters recover (with small sample size DDMs) 
replicate or instead represent artifacts stemming from the data we 
analyzed. Such replications would ideally involve critical (simulated) 
driving situations (e.g., the sudden appearance of a car in one’s lane or 
on the opposite side of the road) to ensure that the idiosyncrasies of 
driving situations (e.g., having to focus on keeping a lane and an 
appropriate speed, while observing the road) are taken into account, 
when estimating the minimum sample sizes. Simultaneously, such 
studies can also provide more on-task informative parameter distribu
tions. In our study, the prior distributions were determined based on a 
wide array of decision-making paradigms (Tran et al., 2021), yielding 
relatively wide priors. More specific priors could improve precision of 
the estimates, decreasing the sample size requirements even further. 

If differential trends for parameters prove reliable, the driving situ
ation we want to model could inform the amount of data that is 
collected. For example, in some situations the choice of action is very 
obvious and drivers will immediately understand how they should act. 
Accurately estimating the nondecision time will be of crucial importance 
in such situations, as individual differences in motor response speed (i. 
e., how fast people can physically react) primarily determine the situ
ations’ outcomes. If t0 continues to prove hard to estimate with small 
sample sizes, we would need to collect many observations for such 
driving situations. Conversely, if boundary separation’s ease of recovery 
proves reliable, driving systems could be developed that actively 
monitor changes in a driver’s cognitive states (e.g., to nudge the driver 
when they are prone to fast errors). 

A second crucial extension of our work will be to assess the extent to 
which the parameters of kinematics-dependent DDMs can be recovered 
with small sample sizes. Many critical driving situations develop 
dynamically over multiple seconds (e.g., another car we were already 
aware of might suddenly force us to adjust our behavior by acting in 
ways we did not anticipate; Engström et al., 2022) – situations that the 
simpler DDM parameterizations we assessed here cannot account for. 
Kinematics-dependent models contain parameters that react to changes 
in observed stimuli (e.g., changes in the speed of another vehicle) and 
therefore hold substantial conceptual promise for modeling traffic sit
uations that unfold over multiple seconds (see e.g., Giles et al., 2019; 
Zgonnikov et al., 2022; 2023). However, even for larger sample sizes 
(see e.g., Evans et al., 2020; White et al., 2018), successful parameter 
recovery – which is important to demonstrate that models are identifi
able and specific (see e.g., Van der Velde et al., 2022; Van Maanen et al., 
2021; Wilson & Collins, 2019) – can be tricky for EAMs with 
time-varying parameters (e.g., requiring additional model constraint; 
Evans et al., 2020). Consequently, the parameter recovery of more novel 
kinematics-dependent models should be established, before assessing 
the extent to which their parameters can be recovered with small sample 
sizes. 

Additionally, Bayesian formulations of these new models will need to 
be developed, before we can hope to decrease their sample size demands 
with informative prior distributions. We believe that such Bayesian 
formulations hold substantial promise (and that they are achievable in 
light of successful Bayesian parameter recoveries for other time-varying 
DDMs, like those with collapsing boundaries; Evans et al., 2020). Pek
kanen et al. (2022) point out that reaching a large number of experi
mental trials is hard for (simulated) driving studies, as trials often take 
30 or more seconds. Additionally, we believe that having many trials 
occur in relatively short succession – compared to how much time passes 
between identical (critical) driving decisions in real life – is undesirable, 
as drivers will anticipate trials and train the (artificial) driving decision 
instead of (re-)acting naturally. Here, we believe, Bayesian parameter 

4 Our mismatched prior distributions were relatively starkly misaligned with 
the actual distribution of parameter values (Fig. 2); in most applied cases the 
misalignment will be smaller. That being said, we only assessed one type of 
misalignment and others might be more biasing compared to uninformative 
priors. 
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estimation techniques could play a crucial role, as they could decrease 
the sample size demands for modelling individual drivers’ parameters. 
We note that Bayesian formulations of the kinematics-dependent models 
would suffice; Bayesian hierarchical models (while, in our view, likely 
leading to better priors) are not required to obtain informative prior 
distributions that improve parameter estimation. 

Potentially interesting to assess could also be the effect of experi
mental conditions on parameter recovery with small sample sizes. For 
example, in the perceptual study from Ratcliff and Vanunu (2022) that 
we reanalyzed, participants had to react to more or less ambiguous 
stimuli with the type of stimuli likely influencing the drift rate. We chose 
against modeling these within-participant differences in stimulus am
biguity, as we believe that the influence of different decision conditions 
(if different decisions, in practice, can even be unambiguously assigned 
to one condition or another) on model parameters would be difficult to 
pinpoint, in practice. If the effect of different conditions could be defined 
clearly for a relevant traffic situation, assessing the impact of conditions 
on (small sample size) parameter estimation would be interesting, 
though: On the one hand, conditions could aid parameter recovery, as 
they introduce additional model constraint and make the model easier to 
identify. On the other hand (all else being equal), the lower sample size 
per condition (e.g., splitting 20 observations into 2 conditions of 10 
observations, each) could hurt recovery, especially since our sample 
sizes are so small. Thus, more research is needed to address this potential 
trade-off. 

5.3. Sensitivity of parameter estimates 

Finally, it would be interesting to assess how well small sample size 
DDMs recover participants’ parameter values in absolute terms (e.g., to 
assess the width of the credibility interval, or the amount of error that is 
introduced by having too few observations). In this paper, we instead 
focused on the successful recovery of individual differences relative to 
each other (in the simulation study and reanalysis) and the recovery of 
classifications of participants as low, medium or high on a parameter (in 
the simulation study). In our view, these relative differences are more 
important for the design of driving systems: Categories of different 
default options (e.g., an AV’s standard reaction to a person with a 
relatively large boundary separation or a co-driver system’s default 
ways of supporting drivers with such attributes) will be easier to design 
and quality control than AV behaviours that change continuously along 
multiple dimensions (e.g., along different EAM parameters). That being 
said, accurate parameter recovery will be important, if the exact pre
diction of an individual’s reaction time and choice is most important. 

Bayesian hierarchical modelling interacts with these evaluation 
metrics in different ways: Shrinkage (e.g., that each individual’s drift 
rate estimate within a hierarchical model is adjusted towards the mean 
drift rate, with larger adjustments, the further the estimate is from the 
mean) affects absolute values more than relative ones. Consider, for 
example, a driver that made decisions so cautiously that they received 
the highest boundary separation estimate among the assessed drivers. 
Shrinkage will not impact their rank much, as it similarly affects other 
drivers with extreme boundary separation estimates. It will also not 
impact their classification, as they will be classified as “high on 
boundary separation”, in either case. It will, however, heavily impact 
their exact parameter estimate for the boundary separation, as the es
timate is substantially shrunk towards the group mean. In most cases, 
shrinkage will make the driver’s parameter estimate more accurate (and 
is, in our view, desired) – extreme values, especially if they are based on 
few observations, are more likely to be outliers than fully representative 
of the driver. However, in cases where the driver is part of a different 
population than the other drivers (e.g., a sole beginner amongst a group 
of experienced drivers) adjustments to this driver’s values can be highly 
biasing. If we have reasons to believe that a particular driver is highly 
dissimilar to other drivers, it might thus be wise to assess their param
eter values with non-hierarchical models. Here, too, vague but 

informative priors (e.g., the ones from Tran et al., 2021) can be used to 
aid parameter estimation. 

5.4. Concluding remarks 

Conceptually, evidence accumulation models hold a lot of promise 
for modelling traffic situations. After all, they model choices and the 
time required to make them, express choice-relevant individual differ
ences (e.g., in how much evidence people need to commit to a choice) 
and can be used to predict changes in decision making, based on tem
porary states (e.g., being sleep-deprived; Ratcliff & Van Dongen, 2009). 
Several other traffic-relevant applications (e.g., the live-monitoring of a 
driver’s cognitive state, or easier assessments of individual differences 
with kinematics-dependent DDMs) would be possible, if EAMs could be 
fit with less data. Here, we present a step towards decreasing EAMs’ 
sample size demands. We hope that future such works will open the 
doors to many exciting applications of EAMs to the domain of (semi-) 
autonomous driving. 
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