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Abstract. In this article, we study stochastic homogenization of non-
homogeneous Gaussian free fields Ξg,a and bi-Laplacian fields Ξb,a. They
can be characterized as follows: for f = δ the solution u of ∇ · a∇u = f ,
a is a uniformly elliptic random environment, is the covariance of Ξg,a.
When f is the white noise, the field Ξb,a can be viewed as the distribu-
tional solution of the same elliptic equation. Our results characterize the
scaling limit of such fields on both, a sufficiently regular domain D ⊂ R

d,
or on the discrete torus. Based on stochastic homogenization techniques
applied to the eigenfunction basis of the Laplace operator Δ, we will
show that such families of fields converge to an appropriate multiple of
the GFF resp. bi-Laplacian. The limiting fields are determined by their
respective homogenized operator āΔ, with constant ā depending on the
law of the environment a. The proofs are based on the results found in
Armstrong et al. (in: Grundlehren der mathematischen Wissenschaften,
Springer International Publishing, Cham, 2019) and Gloria et al. (ESAIM
Math Model Numer Anal 48(2):325-346, 2014).
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1. Introduction

Heat flow through materials with randomly placed impurities (porous media)
is typically modelled using parabolic or elliptic equations in divergence form
and diffusion matrices a modelling the environment, [11,31,36].

The steady-state solution u of some corresponding parabolic PDE satis-
fies:

− ∇ · a(x)∇u(x) = f(x) (1.1)
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on D and u = 0 on ∂D, where a : Rd → R
d×d is a matrix valued function

of the random environment. Provided that certain hypotheses over a are true,
e.g. that a is stationary, there exists a matrix ā such that the solution u of
the equation above can be well approximated by the solution ū with constant
coefficients ā given by

− ∇ · ā∇ ū(x) = f(x) (1.2)

on D and ū = 0 on ∂D. In all cases that we consider in this article, ā = c Id,
where Id is the d×d identity matrix and c ∈ R+ is deterministic constant that
only depends on the law of the environment. We abuse notation by denoting
the constant c by the same symbol ā to simplify notation.

Stochastic homogenization aims at identifying ā and quantifying the con-
vergence of the solution u of the heterogeneous equation to the solution of an
appropriate deterministic constant-coefficient equation ū.

To define the approach formally, we fix the domain D and introduce a
parameter 0 < ε � 1 that represents the ratio of microscopic and macroscopic
scales. The physical intuition behind this approach is the assumption that the
coefficients modelling the porous medium vary on a microscopic scale, whereas
on a macroscale the random environment shows effective behaviour.

Then, we rescale the coefficient field a in Eq. (1.1) by defining

− ∇ · aε∇uε = f, (1.3)

where aε(·) = a(·/ε).
One can then prove that in fact, under certain conditions on the law of

the field a, uε converges to ū as ε → 0 in some appropriate functional space.
There is a rich mathematical theory developed on stochastic homogeni-

sation, [1,2,4,18,23,25,26,30,34] just to mention a few. In particular, in the
last few years, quantitative results about the convergences as ε → 0 were
developed.

In this article, we want to use tools of quantitative stochastic homoge-
nization in order to understand large-scale behaviour of the non-homogeneous
Gaussian free field (GFF) and bi-Laplacian field, whose covariance structure is
related to non-homogeneous differential operator ∇ · a∇, in a domain D ⊂ R

d

and on the discrete torus. Those fields appear as distributional solutions of
the equation (1.1) for different choices of f , i.e. f = δ Dirac delta resp. f = ξ
white noise.

Their homogeneous counterparts, that is, the (homogeneous) GFF Ξg
D

and bi-Laplacian field Ξb
D, are the two most prominent examples of the family

of fractional Gaussian fields, [29]. The GFF has a wide range of connections to,
for example, scaling limits of observables of interacting particle systems [24],
quantum field theory [3], and invariant measures of Allan–Cahn-type stochastic
partial differential equations [22]. The bi-Laplacian field or membrane model
is related to scaling limits of uniform spanning trees [32], odometer functions
of sandpile models [9,28] and general interface models [16].
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In our main result, Theorem 3.1 states that the non-homogeneous GFF
and bi-Laplacian field (see Definition 2.6 and 2.7) converge

Ξg,aε

D −→ ā−1/2 Ξg
D (1.4)

and

Ξb,aε

D −→ ā−1 Ξb
D (1.5)

as ε → 0, respectively, in some appropriate Sobolev space. In the second result,
Theorem 3.2, we will prove the equivalent of (1.4) and (1.5) starting in a
discretized torus.

To the best of the authors knowledge, the results presented in this work
are novel and have not been previously published in the literature. In particu-
lar, our work extends the techniques outlined in previous papers such as [1,18]
for the stochastic homogenization analysis of the bi-Laplacian. This extension
involves not only accounting for the randomness resulting from f = ξ, but
also accommodating the lack of a point-wise definition of the white-noise by
viewing it to be a fixed distribution with a predetermined negative Sobolev
regularity.

The reader familiar with the GFF and bi-Laplacian field will notice that
we prove convergence in a Sobolev space with regularity strictly weaker than
the optimal regularity of the GFF and the bi-Laplacian field, due to the exis-
tence of the random environment. In fact, we do not expect that convergence
of these fields would hold in such topologies, as analogue effects are also found
in [1,19].

The main novelty of our proof is a convenient expansion of Gε, the Green’s
function of the operator ∇ · aε∇, in terms of {φk}k∈N, the orthonormal eigen-
function basis of Δ. Using the fact that the operator ∇ · aε∇ in (1.3) is self-
adjoint, we have that

Gε(x, y) =
∞∑

k=1

φk(x)ϕε
k(y)

āλk
=

∞∑

k=1

ϕε
k(x)φk(y)
āλk

,

where ∇ · aε∇ ϕε
k = −λk āφk, λk is the eigenvalue of Δ associated with φk.

With this expansion, we are able to push results from quantitative stochastic
homogenization of continuous functions to convergence of the Green’s function,
resulting in the convergence of the non-homogeneous random fields.

The manuscript is organized as follows: In Sect. 2, we will introduce the
notation and define non-homogeneous Gaussian free fields and bi-Laplacian
fields in regular domains and on the torus. Our main results are presented
in Sect. 3, and their proofs are postponed to Sect. 4. Finally, in Sect. 5, we
discuss some possible extensions and cite-related results regarding large-scale
behaviour of Gaussian fields in random environments.
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2. Notation and Preliminaries

2.1. Function Spaces

2.1.1. Continuous Spaces. First, we need to define the types of domains for
which our results hold

Definition 2.1 (Regular domains). Let d ≥ 2 and D ⊂ R
d be a domain. We

say that D is a regular domain if it is bounded and at least one assumption of
the two holds:

• The domain D is convex; or
• Every point of ∂D (topological boundary of D) has a neighbourhood N

such that ∂D ∩ N can be represented, up to a change of variables, as the
graph of a C1,1(Rd−1).

We will always assume that a domain is regular, according to the above
definition. For a domain D, consider {φk}k∈N be an orthonormal basis of L2(D)
composed of eigenfunctions

{
Δφk = −λkφk in D

φk = 0 in ∂D,
(2.1)

which are enumerated so that λk is non-decreasing in k. Notice that by classical
regularity theory, we have that φk are all C∞

c (D). Remember that for all k ≥ 1,
λk > 0.

In the case of D = T
d, besides requiring periodicity, we also require∫

D
φk(x)dx = 0 rather than the boundary condition in (2.1). In this case, it will

be more convenient to index the eigenfunctions and eigenvalues by k ∈ Z
d\{0}.

This is because the Fourier basis given by {φk}k∈Zd , where φk := exp(2πιk ·x)
is also an orthonormal basis of eigenvectors of the Laplacian in T

d with periodic
boundary conditions. Again, because of the mean-zero condition, we exclude
the 0-th Fourier term and therefore λk > 0.

Due to this different indexing, in what follows, we will often write∑
k �=0(. . . ) to denote either

∑∞
k=1(. . . ) or

∑
k∈Zd\{0}(. . . ) depending on whether

we are working on a domain or in the torus.
We will denote by 〈f, g〉 the L2(D) inner product if f, g ∈ L2(D) and (by

abuse of notation) the pairing between a distribution f and a smooth function
g.

Definition 2.2. For every dimension d ≥ 1, and β > 0, consider
• For D ⊂ R

d a regular domain, we define the Hilbert space Hβ
0 (D) as the

closure of C∞
c (D) functions with the norm

||f ||2
Hβ

0 (D)
:=

∞∑

k=1

|〈f, φk〉|2λ2β
k . (2.2)

• For D = T
d, we define the Hilbert space Hβ

0 (Td) as

Hβ
0 (Td) :=

{
f ∈ L2(Td) :

∫

Td

f(x)dx = 0 and ||f ||Hβ
0 (Td) < ∞

}
(2.3)



Vol. 25 (2024) Stochastic Homogenization of Gaussian Fields 1873

where

||f ||2
Hβ

0 (Td)
:=

∑

k∈Zd\{0}
|〈f, φk〉|2λ2β

k . (2.4)

We can also easily characterize the dual space of Hβ
0 (D). For β > 0,

the space H−β
0 (D) is given by the continuous linear functionals on Hβ

0 (D).
The weak-∗ topology in this space induces the norm given by (2.2), but with
β substituted by −β. To highlight whether we are talking about a space of
functions or a space of distributions, unless stated otherwise, we take β to be
positive.

For strictly technical reasons, we will need to introduce another type of
fractional Sobolev spaces denoted by Wα,p(D). We will use these spaces in the
proof of Lemma 4.2 where we rely on the bounds provided by Theorem 4.1
from [1]. We refer to Remark 1 for a comment on the relation between the two
types of Sobolev spaces.

For m ∈ N0 := N ∪ {0} and p ≥ 1, we will consider the Sobolev space
Wm,p(D)

‖f‖W m,p(D) :=
∑

0≤|α|≤m

‖∂αf‖Lp(D),

where for a given multi-index α, we denote ∂αf = ∂α1 . . . ∂αdf and |α| =
α1 + · · · + αd. The general m ∈ R+ case will be defined as follows.

Definition 2.3. The fractional Sobolev space W β,p(D) for any β > 0, p ≥ 1
and d ≥ 2 is defined by

W β,p(D) := {f ∈ W �β�,p(D) : ‖f‖W β,p(D) < ∞}
where

‖f‖W β,p(D) := ‖f‖W �β�,p(D) +
∑

|α|=�β�
[∂αf ]W β−�β�,p(D), (2.5)

�·� stands for the floor function and

[f ]p
W δ,p(D)

:= (1 − δ)
∫

D

∫

D

|f(x) − f(y)|p
|x − y|d+δp

dxdy

is called the Gagliardo semi-norm for δ ∈ (0, 1).

Remark 1 (Comparison between Hβ
0 (D) and W β,p(D) spaces). For the pur-

pose of this article, we are interested in the W β,p(D) topology in order to apply
Theorem 4.1, for which the results are only valid for p > 2. Notice that in this
case W p,β(D) is not a Hilbert space, therefore, we will not directly compare
the topologies W β,p(D) and Hβ

0 (D).
However, the W β,2(D)-norm of a mean zero function f can be written in

terms of the L2(D)-norm of the singular integral definition of the fractional
Laplacian operator restricted to D. On the other hand, the Hβ

0 (D)-norm of f is
the L2(D)-norm of the spectral definition of fractional Laplacian. These spaces
do not coincide in for general domains, unless β ∈ N. For more information on
this matter, we suggest [15].
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Finally, for two nonnegative functions f, g we write

f(x) �γ1,γ2,...,γk
g(x)

if there exists a positive constant C = C(γ1, γ2, . . . , γk) > 0 and we want to
emphasize its dependence of the parameters such that for all x

f(x) ≤ C(γ1, γ2, . . . , γk)g(x).

If we do not want to emphasize the dependence we simply will write f � g.

2.1.2. Discrete Spaces. Let T
d
N := 1

N Z
d
N , where Z

d
N := [−N

2 , N
2 )d ∩ Z

d is to
be understood as a discretized torus, i.e. a graph with a periodic boundary. In
this context, we use Ed

N to denote the edges of the graph Z
d
N .

For a function f : Td
N −→ C, we will denote its restriction by T

d
N as fN =

f |
T

d
N

. Notice that {φN
k }k∈Z

d
N

is an orthonormal basis of the space �2(Td
N ) :=

C
T

d
N with respect to the inner product

(f, g) = (f, g)�2(Td
N ) :=

1
Nd

∑

x̂∈T
d
N

f(x̂)g(x̂).

When discussing scaling limits of discrete models, we will always use x, y to
denote points of Zd or Z

d
N , and use x̂, ŷ to denote points in T

d
N .

2.2. Gaussian Fields

In this section, we will introduce the Gaussian free field and bi-Laplacian
field in continuous domains, D ⊂ R

d. First we will consider the homogeneous
and then the non-homogeneous setting. Throughout this article, we distinguish
between two scenarios for D, in which we either take D to be a regular domain
(cf. Definition 2.1), or D = T

d.

2.2.1. Gaussian Fields in the Continuum.

Homogeneous Fields.

Definition 2.4. The Gaussian free field Ξg
D on D is a random distribution de-

fined by:

〈Ξg
D, f〉 ∼ N

(
0, ‖f‖2

H1
0 (D)

)

for f ∈ C∞
0 (Rd) with covariance given by

E[〈Ξg
D, f〉〈Ξg

D, g〉] =
∫

D

∫

D

f(x)g(x)GD(x, y)dxdy

where f, g ∈ C∞
0 (Rd). The Green’s function GD(x, y) is given by the distribu-

tional solution of{
− (ΔGD(x, ·)) (y) = δ(x − y) if y ∈ D

GD(x, y) = 0 if y ∈ ∂D,
(2.6)

where x ∈ D, Δ is the Laplacian operator and δ is the Dirac delta function.
For D = T

d, we substitute the assumption on the boundary condition in (2.6)
by

∫
Td GTd(x, y)dy = 0.
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A common representation of the Green’s function in spectral terms is the
following:

GD(x, y) :=
∞∑

k=1

φk(x)φk(y)
λk

and GTd(x, y) :=
∑

k∈Zd\{0}

φk(x)φk(y)
λk

.

(2.7)

Let us remark again that, in the case D = T
d, we can ignore the atom at 0-th

Fourier coefficient because we only consider mean-zero test functions. We will
use a similar representation for the non-homogeneous case, as it will allow to
quantify the distance between the fields we are interested in. Note that for any
given test function f , we can write

Ξg
D(f) =

∑

k �=0

Ξ̂g
D(k)〈f, φk〉,

where Ξ̂g
D(k) := 〈Ξg

D, φk〉. Therefore, we can reduce Ξg
D to the infinite-dimensional

Gaussian vector {Ξ̂g
D(k)}k≥1, which has the covariance function

E[Ξ̂g
D(k)Ξ̂g

D(k′)] =
δk,k′

λk
, (2.8)

with δk,k′ representing the Kronecker delta function, and k, k′ ∈ N. Let ξ
denote the (spatial) white noise in L2(Rd):

ξ : L2(Rd) −→ L2(Ω)

f �−→ 〈ξ, f〉 ∼ N
(
0, ‖f‖2

L2(Rd)

)
. (2.9)

In the following definition we follow the approach in [29].

Definition 2.5. The bi-Laplacian field Ξb
D in D ⊂ R

d is the random distribu-
tion, solution of

{
(−Δ)Ξb

D = ξ in D

Ξb
D = 0 in Dc,

(2.10)

where ξ denotes the white noise defined in (2.9).

The definition above can be related to the so-called eigenvalue bi-Laplacian
field, see [29]. In Sect. 5, we discuss the another definition of bi-Laplacian field
in a domain and how to obtain similar results.

Let us remark that, for ξ̂(k) := 〈ξ, φk〉, we have that

Ξb
D := GD ∗ ξ =

∑

k �=0

λ−1
k ξ̂(k)φk (2.11)

satisfies the distributional equation (2.10). Moreover, if D ⊂ R
d is a domain

due to Weyl’s law which states that λk �D,d k2/d (see [27, Appendix B] for
a proof), we have that Ξb

D belongs to Hβ
0 (D) for all β < −d

4 + 1. Similarly,
we can prove that Ξg

D belongs to Hβ
0 (D) for all β < −d

4 + 1
2 . Notice that

for sufficiently small dimensions, the fields can be interpreted as functions in
positive Sobolev spaces.
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Remark 2. Using the definition of the bi-Laplacian field above, one can show
that its covariance function is given by:

G̃D(x, y) = GD ∗ GD(x, y) :=
∫

D

GD(z, x)GD(z, y)dz

which, for each fixed x ∈ D, solves the equation
⎧
⎪⎨

⎪⎩

Δ2G̃D(x, y) = δ(x − y) if y ∈ D,

G̃D(x, y) = 0 if y ∈ ∂D,

ΔG̃D(x, y) = 0, if y ∈ ∂D.

Notice that, as Δ2 is a differential operator of order 4, we need to define ad-
ditional boundary conditions when compared to partial differential equations
driven by the Laplacian operator, in order to make GD well-defined. This is the
so-called Green’s function of the bi-Laplacian operator with Navier boundary
conditions. There are other sensible choices for the boundary conditions for
the bi-Laplacian operator on a regular domain D.

One can then define the bi-Laplacian field by setting its covariance to
be the Green’s function of a bi-Laplacian operator with a given boundary
condition (similar to Definition 2.8). However, one needs to consider that this
choice leads to different fields.

In contrast, on the torus, periodic boundary conditions are the only nat-
ural choice for the Green’s function of the bi-Laplacian field (and therefore for
associated field).

Gaussian Fields in Random Media
Let us introduce the random environment a and present some assumptions.
We will follow the approach in [1]. The probability space of the environment
will be denoted by (Ω(Λ), F̃ ,P), which we will define in the sequel.

Call Rd×d
sym the set of real valued symmetric matrices. We will be interested

in maps a : Rd → R
d×d
sym for which there is a constant Λ > 1 such that

‖v‖2 ≤ v · a(x)v ≤ Λ‖v‖2,∀v, x ∈ R
d. (2.12)

We then define the space

Ω(Λ) := {a ∈ R
d×d
sym : a Lebesgue measurable and satisfying (2.12)}.

(2.13)

Fix U ⊂ R
d, we will consider FU , the σ-algebra generated by the maps

a �−→
∫

U

aij(x)f(x)dx

for i, j ∈ {1, . . . , d} and f ∈ C∞
c (U) a test function. Moreover, we define

F̃ = FRd := σ
(⋃

U⊂Rd FU

)
. Let P be a probability distribution on (Ω(Λ), F̃)

with the following properties:
(A1) Translation invariance: For each z ∈ R

d, we have P ◦ (τz)−1 = P where
τza(x) := a(x + z) is a translation.

(A2) Unit range of dependence: FU and FV are P-independent for each pair
U, V ⊂ R

d such that d(U, V ) ≥ 1, d(·, ·) is the Hausdorff distance.
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(A3) Isotropic in law: For each I : Rd −→ R
d isometry such that I maps each

of the coordinate axes to another, we have that P ◦ I−1 = P.
Let us remark that Assumptions (A1) and (A2) are standard in [1], but (A2)
can be relaxed to sufficiently fast decaying covariances. Assumption (A3) is
a matter of convenience. In this case, the homogenized operator is given by
a multiple of the Laplacian (instead of ∇ · ā∇ where ā is a matrix). In this
case, the asymptotic behaviour of the Lp(Rd)-norms of the eigenvectors of the
limiting operator, φk’s, are well understood.

Definition 2.6. Let (Ω(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P), D ⊂ R
d a regular domain, and

a ∈ Ω(Λ) fixed. Furthermore, let Ga
D(·, ·) be the solution of

{
(−∇ · a∇ Ga

D(x, ·))(y) = δ(x − y) if y ∈ D

Ga
D(x, y) = 0 if y ∈ ∂D,

for each x ∈ D. We define Ξg,a
D a non-homogeneous Gaussian free field as the

Gaussian random field with mean 0 and covariance given by

E[〈Ξg,a
D , f〉〈Ξg,a

D , g〉] =
∫

D

∫

D

Ga
D(x, y)f(x)g(y)dxdy, (2.14)

where f, g ∈ C∞
c (Rd).

Definition 2.7. Let (Ω(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P), D ⊂ R
d a regular domain,

and a ∈ Ω(Λ) fixed. We define Ξb,a
D a non-homogeneous bi-Laplacian as the

distributional solution to⎧
⎨

⎩
−∇ · a∇Ξb,a

D = ξ in D.

Ξb,a
D = 0 in Dc.

(2.15)

For a given random environment a ∈ Ω(Λ), stochastic homogenization
techniques will allow determining limiting fields of Ξg,ε

D := Ξg,aε

D resp. Ξb,ε
D :=

Ξb,aε

D where aε(x) := a(x/ε) and x ∈ D.
The main idea of this article is to obtain a good representation for

the non-homogeneous fields not in terms of the eigenfunctions of ∇ · aε∇
but instead, in terms of the eigenfunctions of the liming operator. For this,
we will need to introduce a sequence of functions that we call the pseudo-
eigenfunctions {ϕε

k}k∈N, solutions of
{

−∇ · aε∇ ϕε
k = λk āφk in D

ϕε
k = 0 in ∂D.

(2.16)

The deterministic constant ā is positive and has a special meaning in stochastic
homogenization where it is referred to as effective/homogenized coefficient, see
Remark 3 for more details.

In particular, we will show that the non-homogeneous GFF Ξg,ε
D can be

written as a mean-zero infinite Gaussian vector

Ξg,ε
D =

∑

k �=0

Ξ̂g,ε
D (k)φk (2.17)
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where Ξ̂g,ε
D (k) := 〈Ξg

D, ϕε
k〉, and has covariance structure

E[Ξ̂g,ε
D (k)Ξ̂g,ε

D (k′)] =
〈φk, ϕε

k′〉
āλk′

, (2.18)

for k, k′ �= 0. Notice that as ∇ · aε∇ is self-adjoint, we have for all k, k′ �= 0

〈φk, ϕε
k′〉 =

λk′

λk
〈ϕε

k, φk′〉 and 〈∇ · aε∇ φk, ϕε
k′〉 = δk,k′ . (2.19)

Similarly, for the non-homogeneous bi-Laplacian field

Ξb,ε
D =

∑

k �=0

(āλk)−1ξ̂ε(k)φk (2.20)

where ξ̂ε(k) = 〈ξ, ϕε
k〉 and ϕε

k is defined in (2.16).

Remark 3. (The effective coefficient ā) The effective coefficient ā only depends
on the law of the environment P. In particular in [1, Equation 3.92], the authors
provide an explicit formula for ā in terms of the expected energy and flux of
the first-order correctors Φ. That is, for any unit vector e ∈ R

d:

ā = E

[∫

[0,1]d

1
2
(e + ∇Φe(x)) · a(e + ∇Φe(x))dx

]
(2.21)

and the first-order corrector Φe is the difference between the solution of the
Dirichlet problem and an affine function defined in [1, Section 3.4]. A similar
characterisation holds in the discrete setting (which we introduce in the next
section). For more information, see for instance [19].

2.2.2. Gaussian Fields in Discrete Spaces.

Homogeneous Fields. Let ΔN be the normalized graph Laplacian of Td
N (the

discrete torus defined in Sect. 2.1.2), that is

ΔNf(x̂) = N2
∑

ŷ;ŷ∼x̂

(f(ŷ) − f(x̂)), (2.22)

where ŷ ∼ x̂ denotes that x̂ and ŷ are nearest neighbours in T
d
N . Note that

we will use the same definition of the normalized discrete Laplacian as [18]. In
this case, we take the Green’s function as the solution of

{
(−ΔN )GN (x̂, ·)(ŷ) = δx̂,ŷ − 1

Nd in T
d
N∑

ŷ∈T
d
N

GN (x̂, ŷ) = 0.

It will be particularly useful for us that {φN
k }k∈Z

d
N

is also a basis of eigenfunc-
tions of ΔN , remember that fN := f |

T
d
N

. Moreover, we have that the Green’s
function of the discrete torus T

d
N can be written as

GN (x̂, ŷ) :=
1
2d

1
Nd

∑

k∈Z
d
N \{0}

φk(x̂ − ŷ)

λ
(N)
k

, (2.23)

where λ
(N)
k is the eigenvalue of ΔN associated with φN

k .
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Before defining the discrete versions of Gaussian fields in random envi-
ronments, we remind the reader of the definitions of the discrete GFF and the
discrete bi-Laplacian field in a discrete torus.

Definition 2.8. The discrete Gaussian free field on the torus is a multivariate
Gaussian vector (Ξg

N (x̂))x̂∈T
d
N

with mean zero and covariance E[Ξg
N (x̂)Ξg

N (ŷ)] =
GN (x̂, ŷ), where GN is defined in (2.23).

Definition 2.9. Let (ξN (x̂))x̂∈T
d
N

be a collection of i.i.d random variables with
distribution N(0, 1). The discrete bi-Laplacian field (Ξb

N (x̂))x̂∈T
d
N

is the solu-
tion of the finite difference equation

{
(−ΔN )Ξb

N (x̂) = ξN (x̂) − (ξ)N in T
d
N∑

x̂∈T
d
N

Ξb
N (x̂) = 0.

(2.24)

where (ξ)N := 1
Nd

∑
x̂∈T

d
N

ξN (x̂) is the spatial average of ξN on T
d
N .

Gaussian Fields with Random Conductances. In this context, we will use the
stochastic homogenization bounds from [18] instead of [1]. We will keep some
of the same notation used in the continuous case in order to make a clear
analogy between the two. The underlying probability space will be denoted by
(Ωdis(Λ), F̃ ,P).

Consider the Euclidean lattice graph given by (Zd, Ed), where {x, y} ∈ Ed

if ‖x − y‖1 = 1. Denote the measurable space given by (Ωdis(Λ), F̃), where

Ωdis(Λ) := {a = (ae)e∈Ed : 1 < ae ≤ Λ}
for some arbitrary constant Λ > 1, and F̃ is the product σ-field indexed by
the edges.

Remark 4. Notice that in this discrete context, we are associating the random
environment a to each individual edge e ∈ Ed, rather than defining a matrix-
valued function (as in the continuous case).

Given an element a ∈ Ωdis(Λ), we can recover a 2d × 2d matrix-valued
function that gives weights to each of the 2d discrete differences of a function
f . However, it is more convenient to simply index the environment a via the
edges, particularly when we want to define the projections ΠN below.

Notice that because edges e ∈ Ed are always parallel to the axes, we never
see mixed derivatives—which are allowed in continuous stochastic homogeniza-
tion. The hypothesis ae ∈ (1,Λ] is a discrete version of uniform ellipticity and
continuity assumption, cf. (2.12).

Product measures on Ωdis(Λ) should be seen as natural examples of mea-
sures satisfying assumptions (A1)-(A3) from the continuous case. In fact, we
believe our results should also hold when substituting the product measures
with measures which are invariant by translations and rotations, provided that
their covariances decay fast enough.

Similarly to the infinite case, we define (Ωdis
N (Λ), F̃N ) by substituting Z

d

with Z
d
N and Ed with EN . Let P be any product probability measure on

Ωdis(Λ).
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We define a projection operator ΠN : Ωdis(Λ) −→ Ωdis
N (Λ) by

(ΠNa)e :=

{
a{x,x+ei} if e = {x, x + ei} ∈ Ed

N , i ∈ {1, . . . , d}
a{x,x+ei} if e = {x, x − Nei} ∈ Ed

N , i ∈ {1, . . . , d},

where (ei)d
i=1 is the canonical basis of Rd, a ∈ Ωdis(Λ) and e ∈ Ed

N .
On the other hand, we define an extension operator from Ωdis

N (Λ) to
Ωdis(Λ) for a ∈ Ωdis

N (Λ) and e = {x, y} ∈ Ed as

(ExtN a)e := ae∗ ,

where e∗ is the only edge in Ed
N such that e∗ = {x∗, y∗} with x∗ ≡ x mod Z

d
N

and y∗ ≡ y mod Z
d
N . For a ∈ Ωdis(Λ), we write aN := ExtN ◦ΠN (a). Notice

that, ΠN ◦ ExtN is the identity in Ωdis
N (Λ) and ExtN ◦ΠN (a)e = ae for all

a ∈ Ωdis(Λ) whenever e = {x, y} with x, y ∈ Z
d
N . Let PN be an abbreviation

for P(Π−1
N ·), which is a product measure in Z

d
N .

Finally, for any f : Td
N −→ R and any a ∈ Ωdis(Λ), we can write

− ∇N · aN∇N f(x̂) := N2
∑

ŷ:ŷ∼x̂

aN,{x̂,ŷ}(f(x̂) − f(ŷ)). (2.25)

Definition 2.10. Let (Ωdis(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P). We define the discrete non-
homogeneous Gaussian free field to be the Gaussian vector (Ξg,a

N (x̂))x̂∈T
d
N

with
mean 0 and covariance

E[Ξg,a
N (x̂)Ξg,a

N (ŷ)] := GN,a(x̂, ŷ),

where GN,a : Td
N × T

d
N −→ R is the unique solution of

{
(−∇aN∇GN,a(·, ŷ))(x̂) = δN

x̂,ŷ − 1
Nd , x̂ ∈ T

d
N∑

x̂∈T
d
N

GN,a(x̂, ŷ) = 0,
(2.26)

and δN
x̂,ŷ =

∑
z∈Zd δNx̂,Nŷ+z, with δx̂,ŷ being the standard Kronecker delta

function.

Call (ξN (x̂))x̂∈T
d
N

the i.i.d collection of standard normal random variables.

Definition 2.11. Let (Ωdis(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P). The collection of Gaussian
random variables (Ξb,a

N (x̂))x̂∈T
d
N

satisfying
{

−∇N · aN∇N Ξb,a
N (x̂) = ξN (x̂) − (ξ)N , x ∈ T

d
N∑

x̂∈T
d
N

Ξb,a
N (x̂) = 0

(2.27)

is called discrete non-homogeneous bi-Laplacian field. Again, we are using the
notation (ξ)N := 1

Nd

∑
x̂∈T

d
N

ξN (x̂).

The formal field on D = T
d as for i ∈ {b, g} is defined by

Ξi,a
D,N :=

ci

Nd/2

∑

ẑ∈T
d
N

Ξi,a
N (ẑ)δẑ (2.28)

where Ξg,a
N is defined in Definition 2.10 and Ξb,a

N in Definition 2.11 and cg =
(2d)−1/2 resp. cb = (2d)−1.
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Figure 1. Heat map simulations of the discrete bi-Laplacian
fields for N = 150 samples with the same noise but different
environments aN . There is a significant change in local fea-
tures across the different simulations, even between (c) and
(d), which are sampled according to the same law. However,
the location of the maxima and minima is consistent through-
out all samples

Remark 5. In (2.28), there is a clear abuse of notation as we are using Ξi,a
N (·)

to denote both a random vector (which has well-defined values for every choice
of ẑ) and a distribution given by the sum of delta functions (and therefore has
no well-defined notion of value at a given point). We chose to do so to simplify
the notation.

3. Main Results

Theorem 3.1. Let D ⊂ R
d be a regular domain, (Ω(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P)

the underlying probability space, where P satisfies Assumptions (A1)–(A3).
Then, there exists a positive deterministic constant ā such that the following
statements hold.

(1) The non-homogeneous GFF defined in (2.17) converges

Ξg,ε
D

d−→ ā−1/2Ξg
D,

as ε → 0 in H−β
0 (D), with β > d

4 .
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(2) The non-homogeneous bi-Laplacian field defined in (2.20) converges

Ξb,ε
D

P⊗P−→ ā−1Ξb
D,

as ε → 0 in H−β
0 (D), with β > d

4 − 1
2 .

Theorem 3.2. Let (Ω(Λ) ⊗ Ω, F̃ ⊗ F ,P ⊗ P) where P is a product measure.
Then, there exists a positive deterministic constant ā such that (1) and (2)
hold.
(1) The discrete non-homogeneous GFF defined in (2.28) satisfies

Ξg,a
D,N

d−→ ā−1/2Ξg
Td

as N → ∞. The convergence holds in H−β
0 (D), β > d

4 .
(2) There exists a coupling between ξ and the sequence ξN , such that the

discrete non-homogeneous bi-Laplacian field defined in (2.28) satisfies

Ξb,a
D,N

P⊗P−→ ā−1Ξb
Td ,

as N → ∞. The convergence holds in H−β
0 (D), β > d

4 − 1
2 .

For more details on ā in both contexts, see Remark 3. Recall that, by
abuse of notation, we use ā simultaneously for ā = c Id, where Id is the d × d
identity matrix and c = ā ∈ R+ the deterministic constant that only depends
on the law of the environment.

Note that in Theorem 3.2 we only take the limit in N → ∞ to obtain
the homogenized limiting field. This is due to the translation invariant nature
of the environment a.

Finally, let us mention that one could easily prove that non-homogeneous
bi-Laplacian fields converge almost surely (in more irregular Sobolev spaces
than the ones stated above) to their homogeneous counterpart by a simple
Borel–Cantelli argument.

4. Proofs

4.1. Proof of Theorem 3.1

We start this section by stating some necessary results regarding stochastic
homogenization. Then, we proceed to prove some useful lemmata necessary to
recover our representation of the Green’s functions before finally proving the
main theorems.

Under the Assumptions (A1)–(A3), there are good bounds for stochastic
homogenization of the solutions of elliptic partial differential equations. Indeed,
one can prove that there is a positive constant ā (see Remark 3), such that for
u, any sufficiently regular function, we can estimate its L2(D) distance to the
function uε given by

{
−∇ · aε∇ uε = āΔu in D,

uε = 0 in ∂D.
(4.1)
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We will state a simplified version of a result from [1], which will be one of the
main ingredients for our proofs.

For this, we use the stochastic integrability notation Os(·) according to
the law P. Given a random variable X and parameters s, θ ∈ (0,∞), we say
that X = Os(θ) if

E[exp((θ−1X+)s)] ≤ 2, (4.2)

where a+ := max{0, a}.

Theorem 4.1. (Theorem 6.17 in [1]) Under Assumptions (A1) − −(A3), fix
s ∈ (0, 2), α ∈ (0, 1], p ∈ (2,∞], a regular domain D ⊆ R

d and ε ∈ (0, 1
2 ].

There exists δ = δ(d,Λ) ∈ (0,∞), C = C(s, α, p,D, d,Λ) ∈ (0,∞) and a
nonnegative random variable Xε satisfying the following estimate

Xε ≤
{

Os/2(Cεα(log(1/ε))) for d = 2
O1+δ(Cεα) for d ≥ 3

(4.3)

such that the following holds: for every u ∈ W 1+α,p(D), and uε ∈ H1
0 (D)

be the solution of (4.1) then we have that

‖uε − u‖L2(D) ≤ Xε‖u‖W 1+α,p(D). (4.4)

The theorem above implies that for each fixed k, as ε → 0, the function ϕε
k

defined in (2.16) converges to φk in L2(D) in probability. In the next lemma,
we will quantify such convergence in terms of k and ε.

Lemma 4.2. On (Ω,F ,P), we have that for all α ∈ (0, 1], and κ > 0

‖ϕε
k − φk‖L2(D) �D,α,κ Xελ

1+α
2 +κ

k (4.5)

where Xε satisfies the bound (4.3) for a suitable choice of parameters.

Proof. Fix α ∈ (0, 1], κ > 0 and let p = 2 + δ with δ > 0 to be defined later
to be sufficiently small. By applying Theorem 4.1 to u = φk, where φk is the
eigenfunction associated with λk the k-th eigenvalue of (−Δ) we have that for
p ∈ (2,∞),

‖ϕε
k − āφk‖L2(D) � Xε‖φk‖W 1+α,p(D). (4.6)

By [7, Theorem 6.4.5], for any given a function f ∈ C∞
c (Rd), s1, s2 ∈ R,

p1, p2 > 1 and θ ∈ (0, 1), we have

‖f‖W sθ,pθ (Rd) �p1,p2,s1,s2,θ,d ‖f‖1−θ
W s1,p1 (Rd)

‖f‖θ
W s2,p2 (Rd) (4.7)

as long as
1
pθ

=
1 − θ

p1
+

θ

p2
and sθ = (1 − θ)s1 + θs2. (4.8)

This can also be extended to any such function f ∈ W sθ,pθ (D). Now, if we
choose sθ = 1 + α, pθ = 2 + δ, s1 = p1 = 2 and s2 = 0, we have that
θ = (1 − α)/2 and

p2 = p2(δ) :=
2(2 + δ)(1 − α)

4 − (2 + δ)(1 + α)
.
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Notice that as δ −→ 0+, we have that p2 −→ 2+ for any α ∈ (0, 1]. Further-
more, by classical results any f ∈ C∞

c (D̄), such that f |∂D≡ 0 can be naturally
extended to

Ext f(x) :=

{
f(x), x ∈ D

0, x �∈ D,

so that ‖Ext f‖Lp2 (Rd) = ‖f‖Lp2 (D) and ‖Ext f‖W 2,2(Rd) = ‖f‖W 2,2(D).
As each of the φk are in C∞

c (D) ∩ H2,2
0 (D), we can use (4.7), and the

isometry properties above to get

‖φk‖W 1+α,p(D) ≤ ‖Ext φk‖W 1+α,p(Rd)

�α,p2,d ‖Ext φk‖
1+α
2

W 2,2(Rd)
‖Ext φk‖

1−α
2

Lp2 (Rd)

= ‖φk‖
1+α
2

W 2,2(D)‖φk‖
1−α
2

Lp2 (D)

�D,α,d ‖Δφk‖
1+α
2

L2(D)‖φk‖
1−α
2

Lp2 (D)

= λ
1+α
2

k ‖φk‖
1−α
2

Lp2 (D),

where in the last inequality we estimated the W 2,2(D)-norm of φk by the
L2(D)-norm of Δφk = −λkφk and that ||φk||L2(D) = 1. Now, we use [20,
Theorem 1], which states that

‖φk‖L∞(D) �D λ
d−1
4

k . (4.9)

Using the interpolation version of Hölder inequality, the bound (4.9), and the
fact that ‖φk‖L2(D) = 1, we have that

‖φk‖Lp2 (D) �D λ
(d−1)(1−2/p2)

4
k . (4.10)

The proof is completed by choosing δ small enough so that (1−α)(d−1)(1−2/p2)
8 ≤

κ. �

Consider Gε
D, the fundamental solution of ∇ · aε∇, that is
{

(−∇ · aε∇ Gε
D(x, ·))(y) = δ(x − y) if x, y ∈ D

Gε
D(x, ·) = 0 in ∂D.

(4.11)

Classical results of partial differential equations provide some useful properties
for Gε, for instance, the symmetry of Green’s function, that is GD(x, y) =
GD(y, x), see [21, Theorem 1.3] for the case d ≥ 3 and [14, Section 6] for the
case d = 2.

The following lemma provides a representation for Gε
D. It introduces a

natural way of comparing it to the Green’s function of āΔ and gives the main
intuition behind our results. Remark that this lemma justifies the representa-
tion (2.20) of the non-homogeneous bi-Laplacian fields.

Lemma 4.3. Let a ∈ Ω(Λ), and ε ∈ (0, 1]. Then, we have that the following
representation
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Gε
D(x, y) =

∞∑

k=1

φk(x)ϕε
k(y)

āλk
=

∞∑

k=1

ϕε
k(x)φk(y)
āλk

, (4.12)

where ā > 0 is the same constant defined in (2.21). For Lebesgue almost all
fixed x ∈ D, for each β > d

4 − 1
2 the series above converges P-a.s. in the space

H−β
0 (D).

Proof. Remember that for any a ∈ Ω(Λ), the Green’s function is point-wise
well-defined on D′ := D × D\{(x, x) : x ∈ D}. Call for simplicity Gε

x :=
Gε

D(x, ·) for some fixed x ∈ D. We have that for d ≥ 3, Gε
x ∈ W 1,1

0 (D) (see
[21]) and for d = 2 we have that Gε

x ∈ L1(D) (see [35]). In either case, we
can see Gε

x as a tempered distribution and since φk ∈ C∞
c (D), we get that

〈Gε
x, φk〉 is well-defined.

In order to calculate Ĝε
x(k) := 〈Gε

x, φk〉, note that as Gε is the Green’s
function of ∇ · aε∇ and the operator ∇ · aε∇ is self-adjoint. Therefore, we
have that

〈Gε
x, φk〉 =

1
āλk

〈Gε
x,∇ · aε∇ ϕε

k〉

=
ϕε

k(x)
āλk

.

Hence,

‖Gε
x‖2

H−β
0 (D)

=
∞∑

k=1

|Ĝε
x(k)|2λ−2β

k = ā−2
∞∑

k=1

‖ϕε
k(x)‖2λ−2β−2

k .

Finally, by integrating in x, we have that
∥∥∥‖Gε

x‖H−β
0 (D)

∥∥∥
2

L2(D)
≤

∞∑

k=1

‖ϕε
k‖2

L2(D)λ
−2β−2
k

≤
∞∑

k=1

(‖φε
k‖2

L2(D) + ‖ϕε
k − φε

k‖2
L2(D))λ

−2β−2
k

≤
∞∑

k=1

(1 + Xελ
1+α+2κ
k )λ−2β−2

k < ∞, P − a.s,

as long as β > d
4 − 1

2 , using that α and κ can be made arbitrarily small and
Weyl’s law. This also implies that P-a.s and almost all x according to the
Lebesgue measure, ‖Gε

x‖H−β
0 (D) is finite. �

Stochastic Homogenization of the GFF

For this proof, we will use a truncation argument and apply the following
theorem.

Theorem 4.4 (Theorem 3.2 in [6]). Let S be a metric space with metric ρ.
Suppose that (Xn,K ,Xn) are elements of S × S. If

lim
K→+∞

lim sup
n→+∞

μ(ρ(Xn,K ,Xn) ≥ τ) = 0 (4.13)
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for all τ > 0, and Xn,K
d−→n ZK

d−→K X, then Xn
d−→n X.

We will apply the theorem by choosing S = H−β
0 (D), X = Ξg

D, Xn = Ξg,ε
D

and μ = P⊗P. Define the following truncations Xn,K := Ξg,ε
K and ZK := Ξg

K ,
centred Gaussian fields such that

E[〈Ξg,ε
K , φk〉〈Ξg,ε

K , φk′〉] :=
〈φk, ϕε

k′〉
āλk

1{k,k′≤K}

and

E[〈Ξg
K , φk〉〈Ξg

K , φk′〉] :=
δk,k′

āλk
1{k,k′≤K} .

By truncating the covariance of ZK and Xn,K , we essentially reduce the prob-
lem to convergence of finite-dimensional Gaussian vectors. Since Ξg,ε

K and Ξg
K

are determined by their covariance structure, the convergence in distribution
result will follow from proving that their covariance matrices converge. This
will follow from Lemma 4.2 since we truncated for the k’s to be in the set
{1, . . . , K}.

In the remainder, we demonstrate that (4.13) holds. Define the error field
by

Ξg,ε
Err := Ξg,ε

D − Ξg,ε
K =

∞∑

k=K+1

〈Ξg,ε
D , φk〉φk. (4.14)

Using the definition of the norm H−β
0 (D) and the monotone convergence the-

orem, we have

E

[
‖Ξg,ε

Err‖2

H
−β
0 (D)

]
= E

[ ∞∑

k=K+1

|〈Ξg,ε
Err, φk〉|2λ−2β

k

]
=

∞∑

k=K+1

E
[|〈Ξg,ε

Err, φk〉|2]λ−2β
k .

Using the triangular inequality first and then Lemma 4.2, we get that the sum
above is bounded above (up to a multiplicative constant) by

∞∑

k=K+1

〈φk, ϕε
k〉λ−2β−1

k ≤
∞∑

k=K+1

(
1 + Xελ

1+α
2 +κ

k

)2

λ−2β−1
k

�
∞∑

k=K+1

λ−2β−1
k + X 2

ε

∞∑

k=K+1

λ−2β+α+κ
k ,

which is finite as long as β > d
4 , as we can choose κ, α to be arbitrarily

small together with Weyl’s law. We can then use Markov’s inequality with the
product measure P ⊗ P, to get that

lim
K→∞

lim sup
n→∞

P ⊗ P

[
‖Ξg,ε

Err‖2
H−β

0 (D)
≥ τ

]
= 0.

Applying Theorem 4.4, we conclude the proof.
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Stochastic Homogenization of the bi-Laplacian Field

Let β > d
4 − 1

2 , τ > 0, by Markov’s inequality

P

[
‖Ξb,ε

D − ā−1 Ξb
D‖H−β

0 (D) ≥ τ
]

≤
E

[
‖Ξb,ε

D − ā−1 Ξb
D‖2

H−β
0 (D)

]

τ2
. (4.15)

Let α, κ > 0 be small enough so that β− α+κ
2 > d

4 − 1
2 . From the representations

(2.11), (2.20), and Lemma 4.2, we conclude that

E

[
‖Ξb,ε

D − ā−1 Ξb
D‖2

H−β
0 (D)

]
=

1
ā2

∑

k≥1

E

[
|ξ̂ε(k) − ξ̂(k)|2

]
λ−2β−2

k

=
1
ā2

∑

k≥1

‖ϕε
k − φk‖2

L2(D)λ
−2β−2
k

�
∑

k≥1

X 2
ε λ−2β−1+α+κ

k

� X 2
ε (4.16)

where in the last inequality, we used Weyl’s law. Again by using Markov’s
inequality, we get

P ⊗ P

[
‖Ξb,ε

D − ā−1 Ξb
D‖H−2β

0 (D) ≥ τ
]

� E[X 2
ε ]

τ2
�

{
(εα| log(ε)|)2

τ2 , if d = 2
ε2α

τ2 , if d ≥ 3

(4.17)

taking ε → 0 concludes the proof.

4.2. Proof of Theorem 3.2

The strategy to prove the convergence result on the discrete torus will follow
similar ideas as in the continuum. Indeed, we can expand the Green’s function
for ∇N · aN∇N in terms of the eigenfunctions of the discrete Laplacian. The
advantage, in this case, is that the eigenfunctions are precisely the Fourier
basis of �2(Td

N ).
Discrete Fourier analysis was also the main tool of previous works on

scaling limits of odometer fields, see [8,10]. In the case of random environ-
ments, note that the Fourier basis ceases to be a basis of eigenfunctions for
the operator ∇N · aN∇N. Again, the key idea is to show that, for large N , the
Fourier basis will be close to the basis of eigenvectors.

Let gN ∈ �2(Td
N ) with

∑
x̂∈T

d
N

gN (x̂) = 0. Consider fN the solution of
the equation

⎧
⎨

⎩

−∇N · aN∇N fN (x̂) = gN (x̂), x̂ ∈ T
d
N∑

x̂∈T
d
N

fN (x̂) = 0. (4.18)
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The next theorem states good bounds for the difference between fN and f̃N ,
the function in �2(Td

N ) solving the finite difference equation
⎧
⎨

⎩

− āΔN f̃N (x̂) = gN (x̂), x̂ ∈ T
d
N∑

x̂∈T
d
N

fN (x̂) = 0, (4.19)

where ā is a positive constant that only depends on the law of a. The next
theorem is going to serve as the equivalent of Theorem 4.1 for the discrete
context and is a simple adaptation of [18, Corollary 1.2].

Theorem 4.5. (Corollary 1.2, [18]) There exists a deterministic positive con-
stant ā only depending on the law of a and d with the following property. Given
N ≥ 1 with f ∈ C∞(Td), let fN be the solution of (4.18) and f̃N be the solution
of (4.19). We have

E
[
‖fN − f̃N‖2

�2(Td
N )

]
� cd(N)N−2‖gN‖2

�2(Td
N ), (4.20)

where c2(N) = log(N) and equal to cd(N) = 1 for d ≥ 3.

We will be interested in the case gN = − āλ
(N)
k φN

k , where

λ
(N)
k := 4N2

d∑

i=1

sin2

(
πki

N

)
,

are the eigenvalues of the normalized discrete Laplacian operator. Very conve-
niently, in this case, f̃N = φN

k . In the following lemma, we will denote by ϕN
k

the solution to (4.18).
Now, let us state the representation of the Green’s functions GN,a defined

in (2.26).

Lemma 4.6. For all a ∈ Ω(Λ) and any N ≥ 1, we have

GN,a(x̂, ŷ) = GN,a(ŷ, x̂) =
1
2d

1
Nd

∑

k∈Z
d
N \{0}

φk(x̂)ϕN
k (ŷ)

āλ
(N)
k

, (4.21)

for all x̂, ŷ ∈ T
d
N .

This proof is similar to the proof of Lemma 4.3 and will be therefore
omitted. It is much simpler as the sum only has a finite number of terms. The
next lemma is just an application of Theorem 4.5.

Lemma 4.7. We have that

E[‖ϕN
k − φk‖2

�2(Td
N )] �d,Λ cd(N)

‖k‖4

N2
, (4.22)

where c2(N) := log(N) for d = 2 and cd(N) := 1 for d ≥ 3.
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Stochastic Homogenization of the Discrete Non-homogeneous GFF

The proof is very similar to the proof of Theorem 3.1 (1); hence, we will
point out the main differences. We use Theorem 4.4 with S = H−β

0 (Td), with
β > d/4 and X := Ξg

D, XN,K := Ξg,a
N,K and ZK := ā−1/2 Ξg

K , where

Ξg,a
N,K :=

∑

k∈Z
d
N∧K\{0}

〈Ξg,a
D,N , φk〉φk,

and a ∧ b := min{a, b}, Ξg,a
D,N was defined in (2.28) and

Ξg
D,K :=

∑

k∈Z
d
K\{0}

〈Ξg
D, φk〉φk. (4.23)

The proof of the argument follows similarly but using Lemma 4.7 instead of
Lemma 4.2 to prove the convergence of Ξg,a

N,K to ā−1/2 Ξg
D,K .

Stochastic Homogenization of the Discrete Non-homogeneous bi-Laplacian
Field

Let τ > 0, we want to prove that

lim
N→∞

P ⊗ P

[
‖Ξb,a

D,N − ā−1 Ξb
D‖H−β

0 (D) > τ
]

= 0.

Note the trivial identity

Ξb,a
D,N − ā−1 Ξb

D =
(
Ξb,a

D,N − ā−1 Ξb
D,N

)
+ ā−1(Ξb

D,N − Ξb
D).

For the discrete case, we compare the non-homogeneous field to a discrete
homogeneous one. That is, we will first show that Ξb

D,N (the homogeneous for-
mal field) converges to Ξb

D in probability according to an appropriate Sobolev
norm, as long as we choose a suitable coupling between ξ and ξN in (2.24).
For this, we will take ξN (x̂) = Nd/2ξ(1BN (x̂)), where ξ is the same sample
of the noise used in the definition of (2.10), 1A denotes the indicator func-
tion of the set A and BN (x̂) := x̂ + [− 1

2N ,− 1
2N ]d. Secondly, we prove that

Ξb,N
Err := Ξb,a

D,N − ā−1 Ξb
D vanishes in this same Sobolev space using estimates

given in [18].
We will prove the first point described above in the next proposition.

Proposition 4.8. For all β > d
4 − 1, D = T

d, we have that

E

[
‖Ξb

D,N − ā−1 Ξb
D‖2

H−β
0 (D)

]
� Nd−4−4β . (4.24)

Proof. Again, it will be convenient to study the action of the field on the basis
of eigenfunctions of the Laplacian. Remember that, as we are on the torus
(both in the discrete and the continuous cases), such basis of eigenfunctions
is given by the Fourier basis φk := exp(2πιk · x). Let us start by calculating
explicitly Ξb

N (φk) for k ∈ Z
d
N ,

Ξb
N (φk) =

1
2d

1
Nd/2

∑

ẑ∈T
d
N

∑

ŷ∈T
d
N

GN (ẑ, ŷ)ξ(Nd/2 1BN (ŷ))φk(ẑ)
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=
1
2d

1

λ
(N)
k

ξ

⎛

⎝
∑

ŷ∈T
d
N

φk(ŷ)1BN (ŷ)

⎞

⎠

=: (2dλ
(N)
k )−1ξ(φ̃N

k ) (4.25)

where in the first identity we used that
∑

ẑ∈T
d
N

GN (ẑ, ŷ) = 0 for any ŷ. A
simple computation shows that (see [9, Lemma 7])

1

λ
(N)
k

=
1
λk

+ O(N−2). (4.26)

On the other hand, using the expansion of the Green’s function GTd on
the torus, we get that Ξb

D(φk) = λk
−1ξ(φk). Notice that we can estimate

‖φk − φ̃N
k ‖2

L2(Td) � ‖k‖2

N2 . Therefore, for k ∈ Z
d
N\{0}, we have

E
[|〈Ξb

D,N − ā−1 Ξb
D, φk〉|2] � 1

‖k‖2N2
.

As Ξb
D,N (φk) = 0 if k �∈ Z

d
N , we get that for any β, we have

E

[
‖Ξb

D,N − ā−1 Ξb
D‖2

H−β
0 (D)

]
�β,d

∑

k∈Z
d
N \{0}

E[|Ξb
N (φk) − ā−1 Ξb

D(φk)|2]‖k‖−4β

+ ā−2
∑

k∈Zd\Zd
N

E[|Ξb
D(φk)|2]‖k‖−4β

�β,d,ā
Nd−2−4β

N2
+ Nd−4−4β ,

proving (4.24). �

We now proceed to show that Ξb,N
Err converges in probability to 0 in the

space H−β
0 (D) for β > d

4 − 1
2 .

Proposition 4.9. For d ≥ 2, as N −→ ∞, we have

E ⊗ E

[
‖Ξb,N

Err ‖2
H−β

0 (D)

]
�β,d,Λ cd(N)Nd−2−4β ,

where cd(N) = log(N) for d = 2 and cd(N) = 1 otherwise.

Proof. Define a Gaussian vector (Ξb,N
Err (x̂))x̂∈T

d
N

by

Ξb,N
Err (x̂) :=

∑

ŷ∈T
d
N

(GN (x̂, ŷ) − ā−1 GN,a(x̂, ŷ))ξN (x̂). (4.27)

Call

Ξb,N
Err =

1
2d

1
Nd/2

∑

ŷ∈T
d
N

Ξb,N
Err (ŷ)δŷ

and remark that here we are committing the same abuse of notation as de-
scribed in Remark 5.

Let us start by computing Ξb,N
Err (φk), for fixed k ∈ Z

d.
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E[|Ξb,N
Err (φk)|2] =

1

(2d)2
1

Nd

∑

x̂,ŷ∈T
d
N

φk(x̂ − ŷ)E[Ξb,N
Err (x̂)Ξb,N

Err (ŷ)].

Expanding the previous expression, we get
∑

x̂,ŷ∈T
d
N

φk(x̂ − ŷ)E[Ξb,N
Err (x̂)Ξb,N

Err (ŷ)]

=
1

N2d

∑

x̂,ŷ∈T
d
N

∑

k1,k2∈Z
d
N \{0}

φk−k1(x̂)φk−k2(ŷ)
∑

ẑ∈T
d
N

φk1(ẑ) − ϕN
k1(ẑ)

āλ
(N)
k1

φk2(ẑ) − ϕN
k2

(ẑ)

āλ
(N)
−k2

=
∑

k1,k2∈Z
d
N \{0}

δk,k1δk,k2

∑

ẑ∈T
d
N

φk1(ẑ) − ϕN
k1(ẑ)

āλ
(N)
k1

φk2(ẑ) − ϕN
k2

(ẑ)

āλ
(N)
−k2

=
∑

ẑ∈T
d
N

|φk(ẑ) − ϕN
k (ẑ)|2

(āλ
(N)
k )2

.

By using Lemma 4.7, we get

E ⊗ E

[
‖Ξb,N

Err ‖2

H
−β
0 (D)

]

= E

[
1

(2d)2Nd

∑

x̂,ŷ∈T
d
N

φk(x̂ − ŷ)E[Ξb,N
Err (x̂)Ξb,N

Err (ŷ)]

]
� cd(N)

N2
.

�

Finally, let β > d
4 − 1

2 and choose κ > 0 sufficiently small so that β >
d
4 − 1

2 + κ
2 , then we have

P ⊗ P

[
‖Ξb,a

D,N − ā−1 Ξb
D‖H−β

0 (D) > N−κ
]

≤ P ⊗ P

[
‖Ξb,a

D,N − ā−1 Ξb
D‖H−β

0 (D) >
N−κ

2

]

+ P ⊗ P

[
‖Ξb

D,N − Ξb
D‖H−β

0 (D) >
N−κ

2 ā

]

� cd(N)Nd−2−4β+2κ + Nd−4−4β+2κ,

which vanishes as N goes to infinity.

5. Discussion

In this section, we provide a few remarks regarding possible generalizations
and comparison to other results.
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Other Results on Large-Scale Behaviour of Gaussian Fields in Random Envi-
ronments

In this article, we focused on random environments that took the form of
random uniformly elliptic differential operators. Results regarding the maxima
of such fields inside of a percolation cluster in dimension 2 were obtained in
[33]. On the other hand, the thermodynamic limit and the height fluctuation of
(possibly Gaussian) random fields associated to Gibbs measures with random
masses are studied in [12,13].

Convergence in Probability of the Non-homogeneous GFF

A natural question is whether the convergence of the (non-homogeneous) GFF
can be improved to a convergence in probability. For this, we need a coupling
in terms of a elliptic PDE which allows us to employ stochastic homogenization
techniques. Indeed, there is a natural coupling by writing the desired fields as
the solution to PDEs similar to the one found in [17], in which the authors
define the notion of generalized Gaussian free field.

Unfortunately, to be able to extract results from such coupling, we would
need to obtain a bound similar to the one found in Lemma 4.2 but for the
quantity ‖bε∇ϕε

k − b̄∇φk‖L2(D) where bε :=
√
aε and b̄ :=

√
ā. This is not

expected to converge as ε vanishes. Indeed, one can see in [1,18] that ϕε
k needs

the so called first-order correctors in order to converge to its homogenized
counter part in H1

0 (D).

Discretized Domains

In this article, we derive scaling limits in the continuous setting in a domain
and for the discrete setting on a torus. However, we do believe that such results
could be extended to discretized domains. The proof would require both adapt-
ing the techniques of quantitative discrete stochastic homogenization near the
boundary. One would also need to account for the fact that the discretized
eigenfunctions of the Laplacian cease to be the same as the eigenfunctions of
the discretized Laplacian. One should be able to bound such deterministic er-
rors in such context, similarly to [5] where they bound such error for manifolds
without boundary.

General Fractional Fields

We focused in the case of the GFF and bi-Laplacian fields, one could wonder
what happens for general fractional Gaussian fields, see [29]. This seem much
harder, as one would need to deal with stochastic homogenization for non-local
operators, which seems far from the scope of the current available theory of
quantitative stochastic homogenization.

Restricted bi-Laplacian Field

In this article, we used the eigenvalue fractional field definition for the bi-
Laplacian field on a domain D. This was particularly important in order to
use stochastic homogenization techniques to couple both the homogenized and
non-homogeneous versions of the bi-Laplacian field.
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One can, however, wonder if it is possible to use the so-called zero-
boundary definition of fractional Gaussian fields which is more similar in spirit
to our definition of the GFF, i.e, based on covariance functions. However, in
this setting, the covariance of the bi-Laplacian field is the Green’s function of
the bi-Laplacian operator with Neumann instead of Navier boundary condi-
tions, see Remark 2.

We believe a notion of non-homogeneous bi-Laplacian field would also
converge in law (instead of in probability) to a homogeneous one via stochastic
homogenization techniques. To do so, one would just need to prove the results
we used from [1,18] in the context of differential operators of order 4.

Acknowledgements

The authors would like to thank Jean-Christophe Mourrat, Alessandra Cipri-
ani and Rajat Hazra for fruitful conversations and for providing useful refer-
ences for this article.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative stochastic homog-
enization and large-scale regularity. Grundlehren der mathematischen Wis-
senschaften, vol. 352. Springer International Publishing, Cham (2019)

[2] Braides, A., Defranceschi, A.: Homogenization of multiple integrals. Oxford Lec-
ture Series in Mathematics and its Applications, vol. 112. The Clarendon Press,
Oxford University Press, New York (1998)

[3] Berestycki, N.: Introduction to the gaussian free field and Liouville quantum
gravity. Lecture notes (2016)

[4] Bella, P., Fehrman, B.J., Fischer, J., Otto, F.: Stochastic homogenization of
linear elliptic equations: higher-order error estimates in weak norms via second-
order correctors. SIAM J. Math. Anal. 49, 4658–4703 (2017)

[5] Burago, D., Ivanov, S., Kurylev, Y.: A graph discretization of the Laplace–
Beltrami operator. J. Spectr. Theory 4(4), 675–714 (2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1894 L. Chiarini and W. M. Ruszel Ann. Henri Poincaré
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