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Fluidic iontronics is emerging as a distinctive platform for implementing neuromorphic circuits, characterized
by its reliance on the same aqueous medium and ionic signal carriers as the brain. Drawing upon recent theoret-
ical advancements in both iontronic spiking circuits and in dynamic transport of aqueous electrolytes through
conical ion channels, which form fluidic memristors, we expand the repertoire of proposed neuronal spiking
dynamics in iontronic circuits. Through a modelled circuit containing channels that carry a bipolar surface
charge, we extract phasic bursting, mixed-mode spiking, tonic bursting, and threshold variability, all with spike
voltages and frequencies within the typical range for mammalian neurons. These features are possible due to the
strong dependence of the typical conductance memory retention time on the channel length, enabling timescales
varying from individual spikes to bursts of multiple spikes within a single circuit. These advanced forms of
neuronal-like spiking support the exploration of aqueous iontronics as an interesting platform for neuromorphic
circuits.
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1 Introduction

In the pursuit of brain-inspired circuits the focus is often
on the synaptic properties of neuromorphic devices, where
synapses are considered as primary computational units in
neuromorphic computing [1]. Consequently, due to their anal-
ogous behaviour to synapses, memristors have significantly
shaped and driven research in this domain, where the time-
and history-dependent conductance of memristors offers a
versatile platform for emulating features of synaptic plastic-
ity [2–4]. However, synapses are not the only components in
the brain which can be emulated with memristors. The biolog-
ical ion channels responsible for generating action potentials
also exhibit memristive behavior [5]. This is underscored by
the seminal Hodgkin-Huxley (HH) model [6], which mathe-
matically describes the axonal membrane potential by treating
the membrane as an equivalent electric circuit in which the
ion channels embedded in the axonal membrane are modelled
as circuit components. The mathematical models for these
ion channels were later recognised as descriptions of memris-
tors [7]. Although both synapses and axonal ion channels are
neuronal components that can be described and emulated by
memristors, they are explicitly distinct biological structures
which carry out different tasks. This biological nuance some-
times leads to confusion and inaccurate descriptions of mem-
ristive devices in the brain, such as incorrectly associating the
HH model with descriptions of synapses [8]. Nevertheless, the
intriguing connection between memristors and the HH model
has also sparked considerable interest [5, 9] and neuronal sig-
nalling has inspired various circuits that capture various fea-
tures of neuronal spiking [10, 11].

Biological neurons feature a wealth of different spiking
modes, which can be clearly categorised and used to judge
the quality of neuron models [12]. Typically the most basic
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features to consider are tonic spiking, a regular train of volt-
age spikes with constant frequency, and phasic spiking, a sin-
gle isolated voltage spike. In the case of phasic spiking, the
neuron model should also obey the all-or-none law [4, 13],
i.e. a voltage spike is either fully generated upon a sufficiently
strong impulse, or the voltage fails to spike, with no interme-
diate transition in between. However, many more neuronal
firing modes are recognised and this signalling behaviour of
neurons has inspired various circuits that can emulate a wide
array of different modes of neuronal spiking [10, 11]. Exam-
ples, that will also feature in the present study, include pha-
sic bursting, mixed mode spiking, tonic bursting (otherwise
known as chattering [14]), and threshold variability [12]. In
phasic bursting, a single burst of several spikes emerges upon
applying a sustained stimulus, after which the system again
settles to a steady state, despite the constant and sustained
current stimulus. Mixed mode spiking consists of an initial
burst of spikes upon a sustained stimulus, followed by tonic
spiking. In tonic bursting, short periods of spiking, i.e. bursts,
are interchanged by short periods of no spiking at all. Lastly,
threshold variability indicates that the threshold for a neuron
to spike can depend on the prior activity of the neuron.

The vast majority of neuromorphic devices, including the
aforementioned spiking circuits [10, 11], consist (at least par-
tially) of solid-state components [2, 3], which results in fun-
damental differences with biological neurons. For instance,
while solid-state devices typically rely on a single informa-
tion carrier, such as electrons or holes, driven only by elec-
tric forces, neurons employ the transport of various ions and
molecules in parallel, while combining electrical en chemi-
cal regulation, both for signalling [16] and for synaptic trans-
mission [17–19]. Additionally, the fast dynamics of solid
state components can be a disadvantage when temporal in-
puts are natural or biological signals as the typical timescales
of those inputs can be significantly slower than those of solid-
state devices, therefore requiring complicated virtual clocks
for synchronisation [20, 21]. Recent work tries to address
and overcome these limitations through electrochemical cou-
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FIG. 1. (a) Schematic representation of the proposed fluidic iontronic circuit featuring four channels of three different types. Two short
channels of equal length L± = 1 µm with fast dynamics on a typical timescale τ± ≈ 0.042 ms and conductances g±(t), a longer channel of
length Ls = 15 µm with slower dynamics on a typical timescale τs ≈ 9.4 ms and conductance gs(t), and an even longer channel of length
Lss = 90 µm with conductance gss(t) and the slowest dynamics over a typical timescale τss ≈ 338 ms. These channels are connected in series
with batteries with potential E± =±114 mV and Es = Ess =−180 mV respectively, and in parallel to a capacitor of capacitance C = 0.05 pF.
A time-dependent stimulus current I(t) can be imposed through the circuit and a potential Vm(t) forms over the circuit that is equivalent to the
neuronal membrane potential [6]. Schematic adapted from Ref. [15]. (b) Schematic of an individual bipolar channel of length Li, with base
radius Ri,b and tip radius Ri,t, connecting two aqueous 1:1 electrolyte reservoirs of concentration ρb = 2 mM. The wall of all four channels
carries an inhomogeneous surface charge that linearly decreases from 0.1 enm−2 at the base to −0.05 enm−2 at the tip.

pling of solid-state components to ionic systems, both in the
context of synaptic devices [22, 23] and for spiking circuits
[24–26]. However, a newly emerging direction proposes to
omit solid-state components altogether, and hence the need
for any chemical or ionic coupling, by implementing neuro-
morphic features in an aqueous electrolyte medium [27–34].
These (fluidic) iontronic devices have recently garnered sig-
nificant interest, offering the promise of multiple informa-
tion carriers, chemical regulation, and bio-integrability [35],
although sacrificing on the high speeds obtainable by solid
state devices. Unlike traditional solid-state neuromorphic cir-
cuits, fluidic iontronic circuits leverage the dynamic interplay
of ions within an aqueous electrolyte, mirroring the conduc-
tive and fluidic characteristics inherent in biological neuronal
environments. This departure from solid-state components in-
troduces a novel dimension to neuromorphic computing, of-
fering the potential for closer emulation of the brain’s aque-
ous dynamics. Recent advances include chemical regulation
[30, 31] and initial demonstrations of iontronic neuromorphic
computing [36]. However, the development of neuromorphic
iontronic devices is still in its infancy, requiring further theo-
retical explorations and experimental investigations to estab-
lish their capabilities in emulating complex neuronal function-
alities [28, 34, 35].

In the recent rise of interest in iontronic neuromorphics,
spiking circuits also received some attention in the form of
theoretical studies, where HH-inspired iontronic circuits are
modelled and shown to exhibit features of neuronal spiking
[15, 29]. These proposals feature a circuit composed of an
aqueous electrolyte medium, akin to the neuronal medium
that the HH model describes, and rely on fluidic iontronic
memristors to induce neuronal spiking. Initially, tonic spik-
ing was shown to emerge from a circuit containing angstrom-
scale slits [29], shortly after which an alternative iontronic

circuit exploiting conical ion channels was proposed that ex-
hibits both the characteristic all-or-none phasic spiking and
tonic spiking [15]. Thus, the two modes that are typically con-
sidered first [11, 12] have been theoretically predicted to also
emerge from fluidic iontronic circuits. However, no proposals
yet exist to also include other spiking modes.

In this work we expand upon the previously reported fea-
tures of neuronal spiking in fluidic iontronics [15, 29]. By
building upon a previously reported iontronic circuit [15] and
a physical description of the dynamical conductance of con-
ical channels with a bipolar surface charge [37], i.e. positive
at the base and negative at the tip, we can unlock various new
forms of spiking dynamics. Due to the strong dependence of
the typical conductance memory retention time on the chan-
nel length, we can implement timescales varying from indi-
vidual spikes to bursts of multiple spikes within a single cir-
cuit, thereby enabling new spiking modes. Specifically these
spiking modes are the aforementioned phasic bursting, mixed
mode spiking, tonic bursting, and threshold variability [12].

2 Iontronic circuit and bipolar channels

Conical fluidic ion channels act as iontronic volatile mem-
ristors [38] and are being investigated as possible candidates
for synaptic devices [39] and spiking circuits [15, 37]. Using
theoretical models that quantitatively explain the memristive
behaviour of conical channels, we showed that HH-inspired
fluidic circuits containing three conical channels and a capac-
itor exhibit tonic and phasic spiking [15, 37]. This modelled
circuit was originally composed of conical ion channels with a
homogeneous unipolar (UP) surface charge [15] and was later
modified by replacing the UP channels with conical channels
carrying a bipolar (BP) inhomogeneous surface charge [37],
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positive at the base and negative at the tip. This modifica-
tion from a UP to a BP surface charge led, for an individual
conical channel, to a much more pronounced current-voltage
hysteresis loop upon applying an AC voltage, i.e. a stronger
conductance memory effect. Here we consider a circuit con-
taining several of these conical BP channels, with different
lengths Li. An important feature of these BP channel mem-
ristors is that their typical conductance memory timescale is
dictated by the channel lengths Li according to

τi =
L2

i
12D

, (1)

with D= 2 µm2ms−1 the diffusion coefficient of the ions [37],
which we assume to be identical for all ionic species for con-
venience. As we will discuss later on, the combination of
channels of various lengths in a single circuit gives rise to dy-
namics on the timescale of individual spikes and of bursts of
spikes in the same circuit.

To unlock additional features of neuronal firing, beyond
tonic and phasic spiking, we introduce the circuit schemati-
cally depicted in Fig. 1(a), containing a capacitor with capac-
itance C = 0.05 pF, a typical capacitance for a mammalian
neuronal membrane with an area of order ∼ 0.1 µm2 [40, 41],
i.e. of the same order as the cross-sectional area of a channel.
This capacitor is connected in parallel with four BP conical
channels with conductances g+(t), g−(t), gs(t), and gss(t),
and four batteries each in series with the conical channels.
The channels are taken to be of varying lengths L± = 1 µm,
Ls = 15 µm, and Lss = 90 µm. Through Eq. (1) this translates
to timescales τ± ≈ 0.042 ms for the two fast channels, τs ≈
9.4 ms for the slow channel, and τss ≈ 338 ms for the super
slow channel. The batteries, with which the BP conical chan-
nels are connected in series, have potentials E± = ±114 mV
for the two fast channels, and Es = Ess = −180 mV for the
slow and super slow channel. These batteries, which mimic
the Nernst potential caused by ionic concentration differences
inside and outside the neuron in the original HH circuit [6],
are considered to be actual batteries in the microfluidic circuit
of interest here, but their potentials are comparable to their
biological Nernst potential counterparts [42].

In Fig. 1(b) we show a schematic depiction of a BP channel,
implemented in the circuit in Fig. 1(a), with base- and tip radii
Ri,b and Ri,t = Ri,b −∆Ri, respectively, and thus with radius
Ri(x) = Ri,b − x∆Ri/Li for positions x ∈ [0,Li] in the channel.
The channel of length Li connects two 1:1 aqueous electrolyte
reservoirs with the viscosity η = 1.01 mPa · s and the electric
permittivity ε = 0.71 nF ·m−1 of water. The cationic and an-
ionic bulk concentrations are given by ρb = 2 mM, compara-
ble to the extracellular potassium concentration in biological
neurons [42], which gives rise to a Debye length λD ≈ 6.8 nm.
The channels carry a surface charge that linearly decreases
from eσ0 = 0.1 enm−2 at the broad base to −0.05 enm−2 at
the narrow tip, thereby changing by σ ′ = −3σ0/2 over the
channel length and forming a bipolar surface charge profile.
On the basis of the Gouy-Chapman relation, these charge den-
sities correspond to zeta potentials that vary between 92 mV
and −61 mV. For the short fast channels and the slow channel
we fix Ri,b = 200 nm and Ri,t = 50 nm, while the super slow

channel is narrower with Rss,b = 120 nm and Rss,t = 30 nm.
Thus, in all cases the channel radii are substantially larger than
the Debye length, such that overlap of electric double layers
is not prominent.

To fully resolve the dynamics of the circuit depicted in
Fig. 1(a), we have to know how the conductances gi(t) of the
BP channels evolve. For this we use an analytical model that
quantitatively describes the steady-state and dynamical con-
ductance properties of BP channels [37]. Each of the four BP
channels exhibits voltage-dependent salt concentration polar-
isation in steady-state described by

ρ i,s(x,Vi) = 2ρb −
1

Pei(Vi)/Vi

2e(σ0∆Ri +σ ′Ri,b)

kBT R2
i,t


Ri,b(1− x/Li)

Ri(x)
− e

−Pei(Vi)
(1−x/Li)Ri,t

Ri(x) −1

e
−Pei(Vi)

Ri,t
Ri,b −1


 ,

(2)

with Pei(Vi) = Qi(Vi)Li/(πDR2
i,t) the Péclet number at the

narrow end and Qi(Vi) =−πRi,tRi,bεψeffVi/(ηLi) the volume
flow through the channel. The system is considered to be at
a temperature of 293.15 K and the effective surface potential
ψeff = −25 mV is taken to be the same as in Ref. [37] as we
consider the same surface charge distributions here. The ac-
cumulation or depletion of salt affects the conductance of the
channel according to

gi,∞(Vi) =gi,0
Li

2ρb
∫ Li

0

(
ρ i,s(x,Vi)

)−1 dx
, (3)

with gi,0 = (πRi,tRi,b/Li)(2ρbe2D/kBT ) the homogeneous
channel conductance. In the numerical evaluation of Eq. (3)
we replace ρ i,s(x,Vi) by Max

[
0.2ρb,ρ i,s(x,Vi)

]
to avoid non-

physical negative concentrations that can emerge due to the
strong voltage-dependent salt depletion of BP channels [37].
This approach does induce a sharper drop in conductance,
compared to full finite-element simulations, when concentra-
tions start to approach the imposed minimum of 0.2ρb, dis-
cussed in more detail in the Supplemental Material. This arte-
fact complicates the circuit equations we introduce below. To
help smooth over this sharper drop we employ a third-order in-
terpolation to evaluate Eq. (3) between voltages spaced at in-
tervals of 0.025 V, ranging from -0.3125 to 0.3125 V. A more
sophisticated theoretical model of individual channels in the
future should obviate the need for such an ad hoc approach,
but for now this effective method suffices.

Since it takes a typical time τi as per Eq. (1) for salt to
accumulate or deplete, the channel exhibits a (volatile) mem-
ory conductance with typical memory retention time τi. The
resulting dynamic conductance gi(t) was found to be well de-
scribed by

dgi(t)
dt

=
gi,∞(Vi(t))−gi(t)

τi
, (4)

where Vi(t) is the potential difference between base and tip
of the channel, gi,∞(Vi) is the voltage-dependent steady-state
conductance of the channel as per Eq. (3), and τi is the typical
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FIG. 2. Various modes of voltage spiking (blue curves) extracted by modeling one and the same iontronic circuit driven by different time-
dependent currents (red curves), with (a) tonic spiking [15, 29] and (b) phasic spiking [15] reported before in iontronic circuits. The newly
introduced modes of iontronic spiking dynamics include (c) phasic bursting, i.e. a burst of spikes followed by a return to a steady state upon a
sustained stimulus, (d) mixed-mode spiking, i.e. an initial high-frequency burst of spikes followed by a transition into lower frequency tonic
spiking, (e) tonic bursting, i.e. a short burst of spiking alternating with periods of quiescence, and (f) threshold variability, with variations
in the firing threshold influenced by prior activity. The negative and positive current stimuli are of the same magnitude but with different
time intervals between the negative and the subsequent positive pulse. The firing threshold is temporarily lowered by the negative pulse and
therefore the positive pulse only surpasses the (variable) firing threshold when the time between the current pulses is sufficiently short.

conductance memory retention timescale of the channel given
by Eq. (1) [37].

With differential equations for each of the dynamic con-
ductances gi(t), we only need one additional equation to close
the set that describes the time-evolution of the “membrane”
potential Vm(t), here the potential over the capacitor. This ad-
ditional equation is provided by Kirchhoff’s law

C
dVm(t)

dt
= I(t)−∑

i
gi(t)(Vm(t)−Ei) , (5)

where i ∈ {+,−,s,ss} and the conductances gi(t) each evolve
according to Eq. (4) with their corresponding gi,∞(Vi(t)) and
τi. The voltage arguments Vi(t) over the channels are given by
V−(t) =Vm(t)−E−, V+(t) =−Vm(t)+E+, Vs(t) =−Vm(t)+
Es, and Vss(t) = −Vm(t)+Ess, with the different signs of the
potentials corresponding to the different orientations of the
channels as depicted in Fig. 1(a). Using the initial conditions
V (0) = −70 mV and gi(0) = gi,0, with gi,0 as defined below
Eq. (3), we numerically solve the closed set of Eqs. (1), (4)
and (5) for various current stimuli I(t).

3 Advanced iontronic spiking modes

Upon numerically evaluating the membrane potential Vm(t)
that emerges from the proposed fluidic iontronic circuit intro-
duced in Sec. 2 for various stimuli, we reveal the remarkable
diversity of typical neuronal firing modes [12] shown in Fig. 2,
which we will discuss individually below. We stress that all
spiking modes discussed below originate from one and the
same iontronic circuit, with the stimulus current I(t) the only
difference between the spiking modes. Additionally, we note
that all spikes exhibit voltage amplitudes and spiking frequen-
cies that are typical for mammalian neurons [13].

3.1 Tonic Spiking and Phasic Spiking

The earlier reported foundational tonic [15, 29] and pha-
sic spiking [15] also emerge from the circuit we consider
here. Tonic spiking, characterized by a regular train of voltage
spikes as shown in Fig. 2(a), and phasic spiking, featuring a
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single isolated voltage spike as shown in Fig. 2(b), appear for
the present system parameters under sustained current stimuli
of 18.90 pA and 19.05 pA, respectively. The sustained current
of Fig. 2(b) does give rise, after the single voltage pulse, to a
steady voltage that differs from the initial voltage. An all-or-
none spike can also appear upon a pulse stimulus, after which
the voltage settles back to its initial steady-state [37].

The dynamics here are governed by the typical RC-like
time of the circuit that determines the time it takes for the
(de)polarisation of Vm(t), while the timescale τs dictates the
typical width of a spike; the short channels respond on such
fast timescales that their dynamics can actually be assumed to
be instantaneous [15, 43]. Although the timescale τss does not
play a role in these spiking modes as these also appear with-
out the super slow channel [37], a small influence of the super
slow channel is still visible in the case of tonic spiking. The
spiking frequency initially is slightly higher immediately after
the stimulus is applied and then gradually settles into a lower
frequency over a time ∼ τss. This actually corresponds to the
spiking mode of spike frequency adaptation [12], but since
this effect is so minor in our results, we choose not to explic-
itly distinguish it as an additional emerging spiking mode.

3.2 Phasic Bursting

Imposing a sustained current stimulus to the circuit of 19.01
pA elicits phasic bursting, a spiking mode where a burst of
spikes occurs, followed by a return to a (new) steady state,
despite the sustained stimulus. This mode is made possible by
the super slow channel. The initial burst has a duration of the
typical timescale ∼ τss of the super slow channel, after which
this channel has had sufficient time to increase its conductance
to return the system to a steady state.

3.3 Mixed Mode

Under a sustained stimulus of 19.02 pA we find mixed
mode spiking, i.e. the iontronic circuit transitions from an ini-
tial high-frequency burst of spikes with a duration of ∼ τss,
into a lower frequency tonic spiking, with the individual
spikes now separated by ∼ τss, as shown in Fig. 2(d). In this
case the initial burst is a transient, of typical time ∼ τss, as the
system settles into the periodic solution of the tonic spiking.

3.4 Tonic Bursting

Tonic bursting entails short bursts of spiking interspersed
with periods of quiescence. When imposing a sustained stim-
ulus of 19.04 pA we find that the circuit exhibits a periodic
behaviour of high frequency burst as shown in Fig. 2(e). The
durations of the bursts and periods of quiescence are dictated
by the slow dynamics of longest channel, as the super slow
channel periodically increases and decreases in conductance,
visible by the fact that each burst has a duration of order
∼ τss ≈ 338 ms.

3.5 Threshold Variability

Our findings also unveil threshold variability, wherein the
firing threshold of the neuron is influenced by prior activity.
As shown in Fig. 2(f), when imposing a negative and posi-
tive stimulus pulse of magnitude ±18.3 pA of duration 0.02
s, separated by 0.18 s (between the end of the first pulse and
the beginning of the second) no spike occurs. However, when
we impose precisely the same pulses but now separated by
0.01 s we find that a full spike occurs. Thus in the first set of
pulses, the threshold for spiking was not reached, but in the
second instance it was reached with exactly the same pulses,
showing that the prior activity of the circuit can influence the
threshold for spiking. This is a result of the slow channel with
timescale τs decreasing in conductance as a result of the nega-
tive pulse, while the super slow channel actually plays no role
in this spiking mode as it is also observed without the super
slow channel. If the interval is much larger than τs ≈ 9.4 ms,
as it is for the first set of pulses, then the slow channel re-
verts to its steady-state before the second pulse. However, if
the interval between the stimuli is of the order of τs = 9.4 ms
(or smaller), as is the case in the second set of pulses where
the interval is 10 ms, then the slow channel still has a low-
ered conductance when the second pulse arrives, making the
system more susceptible to stimuli and thereby lowering the
firing threshold.

4 Discussion and conclusion

Previously reported fluidic iontronic circuits have demon-
strated tonic spiking [15, 29] and phasic spiking [15]. In this
study, we extend the repertoire of emergent spiking modes by
introducing a new HH-like fluidic iontronic circuit, consisting
of a capacitor and four iontronic memristors, that exhibits pha-
sic bursting, mixed-mode spiking, tonic bursting, and thresh-
old variability [12], as well as the earlier reported tonic and
phasic spiking [15, 29]. The spikes in our proposed modes ex-
hibit voltages and frequencies that align with those observed
in mammalian neurons [13]. Moreover, the capacitance, bat-
tery potentials and salt concentration in the circuit are com-
parable to their biological counterparts [42]. Our theoretical
framework builds upon a previously proposed iontronic cir-
cuit that exhibits tonic and phasic spiking [15] and a physi-
cal model for conical ion channels with a bipolar (rather than
unipolar) surface charge [37]. These channels are memristive
[37] and their typical conductance memory retention time is
dependent on the channel length. By varying the lengths of
the four channels we can incorporate timescales on the order
of a single spike and of entire bursts in a single circuit, al-
lowing for the individual spiking and bursting processes that
emerge from one and the same circuit.

While our theoretical framework in principle is fully phys-
ical, a limitation is the parameter sensitivity of the system, at
least for the system parameters we considered. The stimuli
strengths that induce different spiking modes are only sepa-
rated by ∼ 0.01− 0.1 pA on the scale of about 20 pA. Ad-
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ditionally, small changes in other circuit parameters such as
the battery potential can also strongly affect the emergent be-
haviour of the circuit. The implementation of the batteries
in series with channels was remarked to likely be an experi-
mental challenge in and of itself [44]. While the sensitivity
of the system can offer some advantages in terms of how re-
sponsive the system is to inputs, it could also complicate the
experimental feasability of the circuit. This sensitivity could
possibly be reduced in the future by implementing memristors
with a wider range of available conductances, as the bipolar
channels we currently model only offer a current rectification
of around ≈ 21 [37]. Channels with higher current rectifi-
cation ratios, and therefore larger ranges of attainable con-
ductances, do exist [45, 46] and some of these are already
shown to be memristive and can even be described by similar
theoretical models as we use here [36]. This suggestion for
future improvements is supported by the fact that the results
presented here are already an expansion on results we derived
earlier for simpler unipolar conical channels carrying a homo-
geneous surface charge. Tonic bursting also emerges from a
similar circuit with unipolar channels, but with circuit param-
eters (i.e. higher battery potentials, lower salt concentration,
lower capacitance) and spiking voltages that are further re-
moved from their biological analogs. The specific parameters
for the unipolar channel circuit are laid out in the Supplemen-
tal Material. The emergence of tonic bursting in a different
circuit with different fluidic memristors than the bipolar chan-
nels we use here shows that the bursting spiking modes we
present are not inherently dependent on a single specific type
of memristor. Therefore, possible further improvements can
be achieved by considering fluidic iontronic memristors with
an even wider range of attainable conductances. However, this
is an issue of individual device physics and here we mostly fo-

cused on the overall circuit architecture and the spiking modes
it enables.

In summary, we have considerably expanded the range
of spiking modes proposed to emerge from iontronic fluidic
circuits based on bipolar conical channels, entailing phasic
bursting, mixed-mode spiking, tonic bursting, and threshold
variability. The alignment of the spikes in our results with
typical mammalian neuronal voltages and frequencies, com-
bined with various circuit parameters that are comparable to
their biological counterparts, further supports the potential
that fluidic iontronics carry for neuromorphic spiking circuits.
Furthermore, since these biologically realistic spikes emerge
from a circuit that is based upon the same aqueous electrolyte
medium as in neurons, a unique perspective is the future possi-
ble integration with biological systems. However, the present
system is rather sensitive to stimulus strengths and other cir-
cuit parameters, a limitation that may be mitigated by imple-
menting memristors with a broader range of available conduc-
tances. Nevertheless, we showed that the multiscale diffusive
timescales of fluidic iontronic memristors of different lengths
facilitate a relatively simple circuit that exhibits various ad-
vanced modes of neuronal spiking. Consequently, this work
contributes to the ongoing exploration of fluidic iontronics
as a promising platform for neuromorphic circuits, providing
theoretical insights and proposed applications, thereby paving
the way for future advancements in this burgeoning field.
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1 Bipolar channel steady-state conductance

In Fig. S1 we compare the steady-state conductance pre-
dicted by our analytical approximation (AA, red) of Eq. (3)
from the main text with finite-element (FE, blue) calculations
of the full Poisson-Nernst-Planck-Stokes equations. The pre-
cise details of these FE calculations are detailed in Ref. [1].
When compared to finite-element calculations we see that the
analytical approximation of Eq. (3), directly derived from the
underlying Poisson-Nernst-Planck-Stokes equations, yields
reasonable agreement, however it underestimates the increase
in conductance for negative voltages while it overestimates
the decrease in conductance for positive voltages. Eq. (3) also
predicts a relatively sharp conductance drop when concentra-
tions start to approach the imposed minimum salt concentra-
tion of 0.2ρb at around 0.15 V in Fig.S1, which complicates
the numerical solutions of the Kirchhoff equations of the main
text. With a third-order interpolation of Eq. (3) this sharp
drop can be somewhat smoothed over by choosing intervals
≳ 0.025 V, in our case in the regime from -0.3125 to 0.3125 V.
In the future, a more sophisticated theoretical model of indi-
vidual channels should address the physics that underlies this
detail, which involves a surface contribution to the channel
conductance.
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Figure S1. The voltage dependence of the steady-state conductance
g∞(V ) as predicted by our analytic approximation of Eq. (3) (red)
and by finite-element calculations of the full Poisson-Nernst-Planck-
Stokes equations (blue), as detailed in Ref. [1], for a bipolar channel
of length L = 10 µm, base radius Rb = 200 nm, tip radius Rt = 50
nm, and salt concentration ρb = 2 mM.

2 Unipolar surface charge conical channel

The tonic bursting described in the main text was also found
to emerge from an iontronic circuit containing unipolar (UP)
conical channels with a homogeneous surface charge, rather
than bipolar (BP) surface charge channels as considered in the
main text. These UP channels were found to be memristors
that facilitated tonic and phasic spiking upon coupling them in
an iontronic circuit containing three UP channels and a capaci-
tor [2]. Here we use essentially the same parameters and theo-
retical model used for tonic and phasic spiking in Ref. [2] as a
basis to also find tonic bursting. That is, all UP channels have
base and tip radii Rb = 200 nm and Rt = Rb−∆R = 50 nm, re-
spectively, such that the channel radius is described by Ri(x)=
Rb − x∆R/Li for positions x ∈ [0,Li] in the channel. Here Li
represents the channel length, which varies for different chan-
nels in the circuit. The channel connects two reservoirs con-
taining an aqueous 1:1 electrolyte with ionic bulk concentra-
tion ρb = 0.1 mM (so substantially lower than considered in
the main text) and with the viscosity η = 1.01 mPa · s and the
electric permittivity ε = 0.71 nF ·m−1 of water. We assume a
uniform surface charge density eσ = −0.0015 enm−2 on the
channel walls, resulting in a surface potential ψ0 ≈ −10 mV
and an electric double layer that screens the surface charge
with Debye length λD ≈ 30 nm. At the tip the Debye length is
not much smaller than the channel radius, which does not fully
satisfy the assumption of a small Debye length compared to
the channel radius made in the theoretical framework we use
to model the channel conductance [3]. However, it was shown
that the dynamic conductance properties are still reasonably
well described by the theoretical model we lay out below [2].
The ions in this instance are assumed to all have diffusion
coefficients D = 1.75 µm2ms−1. The electro-osmotic volu-
metric fluid flow rate Qi(Vi) that is driven by an applied volt-
age Vi over the channel is accurately represented by its linear-
response approximation Qi(Vi)=−πRtRbεψ0Vi/(ηLi), and is
conveniently characterised by the Péclet number at the narrow
end Pei(Vi) = Qi(Vi)Li/(DπR2

t ) [2].
Our predictions of the dynamic conductance of UP chan-

nels is based on an analytical model that describes their
steady-state [4] and dynamic [2] conductance properties. UP
channels exhibit a voltage-dependent concentration polarisa-
tion that can reasonably accurately be described analytically
by a slab-averaged salt concentration profile

ρ i,s(x,Vi)

= 2ρb +2ρb∆g


 x

Li

Rt

Ri(x)
− e

Pei(Vi)
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RbRi(x) −1
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Figure S2. Two modes of voltage spiking extracted by modeling one and the same iontronic circuit with UP channels driven by different
time-dependent currents, with (a) tonic spiking, i.e. regular spiking, for a stimulus of 1.495 pA, and (b) tonic bursting, i.e. a short burst of
spiking alternating with periods of quiescence, for a stimulus of 1.485 pA. System parameters are given in the text.

where ∆g ≡ −2w(∆R/Rb)Du with w = eDη/(kBT εψ0) the
ratio of ionic to electro-osmotic mobility [5] and the tip
Dukhin number Du = σ/(2ρbRt). The temperature is set at
T = 293.15 K throughout. For the negative surface charge we
consider here on the channel walls, Eq. (S1) describes an en-
hancement of the steady-state salt concentration in the channel
at Vi < 0, and a decrease at Vi > 0.

Following Ref.[2], we approximate the static conductance
gi,∞(Vi) to follow from the salt concentration profile according
to

gi,∞(V )

gi,0
=
∫ Li

0
ρ i,s(x,Vi)dx/(2ρbLi). (S2)

This is a simplification compared to the more accurate depen-
dence on Li/

∫ Li
0 (ρ i,s(x,Vi))

−1dx used in Eq. (3) in the main
text, although Eq.(S2) was also found to still work reasonably
well [2, 4]. Here gi,0 = (πRtRb/L)(2ρbe2D/kBT ) is the con-
ductance of the UP channel in equilibrium. Eq. (S2) combined
with Eq. (S1) predicts that the conical UP channel is a cur-
rent rectifier since, for surface charge σ < 0, a negative volt-
age Vi < 0 increases gi,∞(V ) while a positive applied voltage
Vi > 0 decreases gi,∞(V ), with respect to gi,0. The difference
is caused by salt accumulation and depletion in the channel
for Vi < 0 and Vi > 0, respectively.

The typical time it takes for salt to accumulate or deplete,
and hence the typical conductance memory retention time of
the channel, is independent of the surface charge [2] and iden-
tical to the time scale of the BP channels of the main text given
by

τi =
L2

i
12D

. (S3)

The dynamic conductance gi(t) of channels of type i is, simi-
lar to BP channels, well-described by the differential equation

dgi(t)
dt

=
gi,∞(Vi(t))−gi(t)

τi
, (S4)

where Vi(t) is the time-dependent voltage drop between base
and tip of the channel.

3 Tonic bursting with unipolar channels

To investigate the emergence of bursting behaviour we
consider the same circuit as in the main text, but with UP
channels, different circuit parameters and three super slow
channels (each connected in series to individual batteries)
connected in parallel, which is mathematically equivalent to
tripling the conductance of a single super slow channel. The
two fastest and shortest channels have an individual battery in
series with potential E± =±0.975 V, and are of length L± = 8

9
µm ≈ 0.89 µm, hence with timescale τ± ≈ 0.038 ms. The
slow channel is connected in series to a battery with poten-
tial Es =−0.5 V, with the channel length Ls = 27.75 µm and
thus a timescale τs ≈ 37 ms. Finally, the three super slow
(and even longer) channels that are placed parallel of each
other each have an individual battery in series with potential
Ess =−0.5 V and a channel length of Lss = 277.5 µm, result-
ing in a timescale of τss ≈ 3.7 s. From now on, these three
channels are denoted as a single super slow channel with base
conductance 3g0,ss, which is mathematically equivalent since
they are described by identical equations. The only additive
value of three channels rather than one is their increased to-
tal conductance that is necessary for a chattering spiking pat-
tern to emerge in this instance. The capacitor has capacitance
C = 4 fF and a stimulus current I(t) can be imposed through
the circuit. Via Kirchhoff’s law we find the following equa-
tion to describe the time-evolution of the voltage Vm(t) over
the capacitor,

C
dVm(t)

dt
= I(t)−∑

i
gi(t)(Vm(t)−Ei) , (S5)
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where i ∈ {+,−,s,ss} and with the voltage arguments Vi(t)
over the channels given by V−(t) = Vm(t)− E−, V+(t) =
−Vm(t)+E+, Vs(t) =−Vm(t)+Es, and Vss(t) =−Vm(t)+Ess.

By numerically solving for Vm(t) for sustained current stim-
uli that undergo a step from 0 pA to 1.495 pA and from
0 pA to 1.485 pA, we find the voltage responses shown in
Fig. S2(a) and Fig. S2(b), respectively. In Fig. S2(a) we see
after a transient has passed upon applying the stimulus that the
circuit settles into tonic spiking. In Fig. S2(b) we show that
tonic bursting appears after a similar transient as in Fig. S2(a).
Therefore we can also produce the additional spiking mode of
tonic bursting with UP channels. However, the typical poten-
tials during spiking are further removed from typical voltages

in neurons [6] compared to the results in the main text. Ad-
ditionally, the higher battery potentials and lower salt concen-
tration and capacitance in this instance are not as similar to
their biological counterparts [7–9] as the values used in the
BP channel circuit discussed in the main text. Lastly, while
the approach of connecting three super slow channels in par-
allel is in principle physical, it further complicates the circuit
design. Nevertheless, the existence of tonic bursting in a sim-
ilar circuit with different fluidic memristors does show that
bursting spiking modes can be achieved using multiple types
of iontronic devices, suggesting that further improvements can
be achieved by using even more desirable devices than the BP
channels used in the main text.
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