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Abstract: Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to
diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from
the systemic circulation by proximal tubule cells through the concerted action of plasma membrane
transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed
with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests
that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD
with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells
characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis
by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs
in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that
could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in
kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the
involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some
suggestions for future therapeutic options for CKD while targeting senescence are given.

Keywords: chronic kidney disease; uremic toxins; renal tubular transport; extracellular matrix
remodeling; apoptosis resistance; inflammatory response; senescence-associated secretory phenotype
factors

1. Introduction

Kidney fibrosis leads to organ failure by an excessive accumulation of extracellular
matrix (ECM), which is the common endpoint for a variety of progressive chronic kidney
diseases (CKD) [1]. Senescence is a special form of permanent cell cycle arrest, which limits
proliferation and is highly related to inflammation and fibrosis. Senescent cells exacerbate
these processes by releasing senescence-associated secretory phenotype (SASP) factors,
which are of pro-inflammatory and profibrotic nature [2]. Uremic toxins are metabolites
that accumulate during kidney disease. Protein-bound uremic toxins (PBUTs) are mostly
less than 500 Da but are poorly removed with kidney dysfunction, as they are tightly
bound to plasma proteins and can also hardly cross dialyzer membranes [3,4]. PBUTs, such
as indoxyl sulfate (IS) and p-cresol sulfate (PCS), accumulate in CKD, maintaining and
reinforcing CKD and kidney fibrosis [5,6]. Recent studies reported that IS and PCS activate
the renal RAAS/TGF-β pathway and induce epithelial mesenchymal transition (EMT) [6].
EMT is a common process during fibrosis and concerns the loss of a differentiated epithelial-
like state of cells (e.g., cell-to-cell junctions) to acquire a more mesenchymal-like phenotype
(e.g., enhanced ECM expression) [7]. Senescence and EMT are both characterized by
cell dedifferentiation, loss of epithelial phenotype, cell cycle arrest, and negative effects
on surrounding cells [8]. IS triggers senescence [9] and induces EMT with ECM (i.e.,
α-SMA) deposition in vitro [10], which suggests that PBUTs may induce kidney fibrosis
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by propagating senescence. However, the crosstalk between PBUT-related fibrosis and
senescence-related fibrosis remains unclear. It is worth noting that EMT can be induced by
toxins, such as IS, in vitro in epithelial cells, but such an EMT mechanism in vivo in renal
fibrosis is still questionable, as pericytes, endothelial cells, and bone marrow-derived stem
cells may be sources of myofibroblasts [11–13]. Here, we provide some mechanistic insight
into how PBUTs could promote kidney fibrosis by accelerating senescence both in vitro
and in vivo.

2. The Mechanisms of Kidney Fibrosis

Kidney fibrosis is induced by the abnormal accumulation of ECM, which often initiates
as the result of a wound healing response. The response is orchestrated by complex activities
of different cells, including macrophages and T cells, epithelial cells, myofibroblasts, and
endothelial cells. Four major phases are involved in this process: (1) primary injury
that initiates a fibrotic response; (2) the activation of effector cells, triggering the fibrosis
signaling (e.g., TGF-β signaling); (3) production of ECM; and (4) deposition of ECM that
promotes tissue fibrosis and eventually leads to kidney failure [1].

2.1. Main Signaling of Fibrosis

Three main signaling pathways are involved in fibrosis: transforming growth factor
(TGF)-β, wingless/Int (WNT), and yes-associated protein (YAP)/transcriptional coactivator
with PDZ-binding motif (TAZ) signaling pathways [14]. TGF-β signals through both
canonical (Smad-based) and non-canonical (non-Smad-based) pathways; Smad-based TGF-
β signaling plays a central role in the development of renal fibrosis; non-Smad-based
profibrotic actions of TGF-β signaling are regulated by interactions with other signaling
pathways (e.g., MAPK/ERK and PI3K/AKT pathways signaling) [15]. The WNT signaling
pathway is activated by secreted lipid-modified proteins of the WNT family. Activation
of WNT signaling stabilizes β-catenin; the nuclear translocation of β-catenin initiates the
transcription of fibrotic genes, such as collagen and fibronectin [16,17]. YAP and TAZ are
major players of the Hippo pathway, which is involved in organ development, epithelial
homeostasis, tissue regeneration, wound healing, and immune modulation; ECM stiffening
promotes the nuclear activity of YAP/TAZ, which in turn promotes the development
of a fibrotic cellular phenotype, including increasing the expressions of the connective
tissue growth factor (CTGF) and plasminogen activator inhibitor 1 (PAI-1) [18–20]. These
three signaling pathways show a cross-talk during fibrosis. Their mechanisms range from
modulating the availability of growth factors and the availability of membrane-bound
receptors to nuclear entry and activation of transcription factors [14]. Recent studies
revealed that TGF-β and WNT signaling are also related to senescence [21,22].

2.2. ECM in Kidney Fibrosis

The ECM is a non-cellular component of tissue that provides essential structural
support for cellular constituents and acts as an active component in cell signaling. It is
composed of water, proteins, and polysaccharides and is responsible for cell–cell com-
munication, cell adhesion, and cell proliferation [23,24]. There are two main types of
ECMs: interstitial connective tissue matrix (e.g., collagen I and fibronectin) and the base-
ment membrane (e.g., collagen IV and laminins) [25]. The interstitial connective tissue
matrix is responsible for tissue structure, while the basement membrane underlies or sur-
rounds most tissues, including epithelial and endothelial tissues, and interacts with cells
(Figure 1) [25,26]. Three histologically distinct compartments with a variety of ECMs are
affected in kidney fibrosis: the glomeruli, tubulointerstitium, and vasculature (Table 1) [27].
As a result of ECM remodeling, the deposition of matrix proteins is observed in kidney
fibrosis (Table 1).
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Figure 1. Composition of ECM (reproduced with permission from [28]). (A) The basic subdivision 
of the ECM into the (B) basement membrane and (C) interstitial matrix is shown along with major 
structural components (collagen and elastin), as well as the background matrix made up of proteo-
glycans and hyaluronan [28]. 

Table 1. ECM in kidney fibrosis (adapted from [27]). 

Compartment ECM in Healthy Kidney Increased ECM in Kidney Fibrosis 

Glomeruli 

Mesangial Matrix: collagen IV, V, fibronectin, 
nidogen, laminin. 

Nodular mesangial sclerosis: collagen I, III, IV, V, 
fibronectin, nidogen, laminin, decorin, biglycan. 

Glomerular basement membrane: collagen I, 
III, VI, IV, VII, XV, XVII, agrin, perlecan, 

nidogen, laminin. 

Focal segmental glomerulosclerosis: collagen III, 
IV, heparan sulfate proteoglycans. 

Bowman’s capsule: collagen IV, laminins, 
nidogen, heparan sulfate proteoglycans. 

Thickening of glomerular basement membrane: 
collagen I, III, VI, IV, VII, XV, XVII, perlecan, 

nidogen, laminin. 
Bowman’s capsule: collagen IV and heparan sulfate 

proteoglycans. 

Tubulointerstitiu
m 

Tubular basement membrane: collagen IV, 
agrin, 

perlecan, laminin. 

Thickening of tubular basement membrane: 
collagen IV, perlecan; 

Interstitium: collagen I, II, III, V, VI, VII, XV, 
fibronectin, biglycan, decorin, versican. 

Interstitial fibrosis: collagen I, II, III, V, VI, VII, XV, 
fibronectin, biglycan, decorin, versican. 

Capillary basement membrane: N/A. Thickening and multilayering of capillary basement 
membrane: N/A. 

Vasculature 

Intima with internal elastic lamina: elastin, 
perlecan, agrin, collagen XVIII, versican, 

biglycan, decorin. 

Neointima: versican, collagen XVIII, agrin, 
perlecan. 

Media with external elastic lamina: collagen I, 
III, XVII, elastin, agrin, perlecan, decorin, 

versican. 

Intima with internal elastic lamina: elastin, 
perlecan, agrin, collagen XVIII, versican. 

Adventitia: collagen I, III, fibronectin, elastin. 
Media with external elastic lamina: elastin, 

collagen XVII, agrin, perlecan, versican. 
Perivascular fibrosis (thickening of adventitia): N/A. 

Figure 1. Composition of ECM (reproduced with permission from [28]). (A) The basic subdivision of
the ECM into the (B) basement membrane and (C) interstitial matrix is shown along with major struc-
tural components (collagen and elastin), as well as the background matrix made up of proteoglycans
and hyaluronan [28].

Table 1. ECM in kidney fibrosis (adapted from [27]).

Compartment ECM in Healthy Kidney Increased ECM in Kidney Fibrosis

Glomeruli

Mesangial Matrix: collagen IV, V, fibronectin, nidogen,
laminin.

Nodular mesangial sclerosis: collagen I, III, IV, V,
fibronectin, nidogen, laminin, decorin, biglycan.

Glomerular basement membrane: collagen I, III, VI, IV,
VII, XV, XVII, agrin, perlecan, nidogen, laminin.

Focal segmental glomerulosclerosis: collagen III, IV,
heparan sulfate proteoglycans.

Bowman’s capsule: collagen IV, laminins, nidogen,
heparan sulfate proteoglycans.

Thickening of glomerular basement membrane: collagen
I, III, VI, IV, VII, XV, XVII, perlecan, nidogen, laminin.

Bowman’s capsule: collagen IV and heparan sulfate
proteoglycans.

Tubulointerstitium

Tubular basement membrane: collagen IV, agrin,
perlecan, laminin.

Thickening of tubular basement membrane: collagen IV,
perlecan;

Interstitium: collagen I, II, III, V, VI, VII, XV, fibronectin,
biglycan, decorin, versican.

Interstitial fibrosis: collagen I, II, III, V, VI, VII, XV,
fibronectin, biglycan, decorin, versican.

Capillary basement membrane: N/A. Thickening and multilayering of capillary basement
membrane: N/A.

Vasculature

Intima with internal elastic lamina: elastin, perlecan,
agrin, collagen XVIII, versican, biglycan, decorin. Neointima: versican, collagen XVIII, agrin, perlecan.

Media with external elastic lamina: collagen I, III, XVII,
elastin, agrin, perlecan, decorin, versican.

Intima with internal elastic lamina: elastin, perlecan,
agrin, collagen XVIII, versican.

Adventitia: collagen I, III, fibronectin, elastin.
Media with external elastic lamina: elastin, collagen XVII,

agrin, perlecan, versican.

Perivascular fibrosis (thickening of adventitia): N/A.

2.3. ECM Remodeling

ECM remodeling is referred to as a balance between degradation and production of
ECM. When the balance is disrupted [27], a positive feedback loop resulting in increased
ECM production drives the development of fibrosis [29]. The cleavage of ECM by different
proteases is the main process during the remodeling and includes matrix metalloproteinases
(MMPs), adamalysins, meprins, and metalloproteinase inhibitors (reviewed in [25]). MMPs



Biomedicines 2023, 11, 2408 4 of 16

are the main enzymes involved in ECM degradation and remodeling. MMPs can cleave
ECM components and activate other MMPs and proteins. Various cytokines (interleukin
[IL] and tumor necrosis factor [TNF]) and growth factors (epidermal growth factor [EGF]
and transforming growth factor [TGF]) may be involved in the gene expression of MMPs at
the transcription level [30]. Adamalysins include disintegrin, metalloproteinases (ADAMs),
and ADAMs with a thrombospondin motif (ADAMTS); adamalysins contain twenty-one
ADAMs and nineteen ADAMTS proteins; shedding of various substrates, including adhe-
sion ligands, growth factors, and their receptors; and cytokines [31]. Meprins are the only
astacin proteinases that can be bound to membranes or secreted as soluble factors; meprin
subunits cleave a variety of biologically active peptides, many cytokines, and chemokines,
leading to an alteration in the biological functions/activities of those factors/proteins [32].
The tissue inhibitors of metalloproteinases (TIMP) are endogenous inhibitors of MMPs and
adamalysins. Each TIMP specifically binds to their target MMPs or adamalysins, regulating
the production/deposition of various ECM components, such as collagens, fibronectins,
and laminins [33].

3. Senescence

Senescence is a special form of permanent cell cycle arrest, which limits cellular
proliferation. It was first reported as a loss of replicative capacity in cultured human
fibroblasts in 1961 [34]. Senescent cells are currently regarded as a potentially important
contributor to different types of diseases [35], including aging-related diseases [36], kidney
disease [37], and pulmonary disease [38]. Some senescent cells can be cleared by immune
cells through the chemo-attracting of immune cells, followed by tissue regeneration, which
is called acute (short-term) senescence, while chronic (long-term) senescent cells accumulate
and create a lesion, aggravating the pathology [39,40]. Major types of senescence are
highlighted as replicative senescence (RS), oncogene-induced senescence (OIS), and stress-
induced (premature) senescence (SIS) (Figure 2). RS is linked to telomere shortening that is
associated with cell division. This type of senescence is a consequence of activating a DNA
damage response (DDR), which is induced by short telomeres through the induction of the
cell cycle inhibitor p21, arresting proliferation [41–44].
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Figure 2. Major types of senescence. Three main types of senescence are identified. Replicative
senescence links to telomere shortening that is associated with cell division. Oncogene-induced
senescence refers to cell cycle arrest by the aberrant activation of oncogenic signaling, which promotes
the initiation and development of cancer. Stress-induced (premature) senescence appears after
exposing cells to chemical or physical stresses. Accumulation of long-term senescent cells leads to
chronic senescence.
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Oncogene-induced senescence refers to cell cycle arrest by the aberrant activation
of oncogenic signaling, which promotes the initiation and development of cancer [45].
This can be caused by numerous oncogenes, including constitutively active variants in the
RAS/MAPK pathway (RAS-induced senescence), as well as in the PI3K/AKT pathway
(AKT-induced senescence). The former undergoes a DDR, while the latter is independent of
DDR [46]. Stress-induced (premature) senescence appears after exposing cells to chemical
or physical stresses, including radiation waves, hydrogen peroxide, and chemotherapeutic
agents [47], leading to cellular stress, increased reactive oxygen species (ROS) generation,
and subsequent DNA damage, eventually contributing to senescence [40,47].

3.1. Mechanisms of Senescence

As discussed, senescence is triggered by various stressors, including DNA damage,
mitochondrial dysfunction, metabolism, and cell stress [2,48,49]. Most of them accompany
the DDR outcomes, followed by activation of the cell cycle arrest and the release of SASP
factors [50,51].

3.1.1. Cell Cycle Arrest

Cell cycle arrest in senescence is largely mediated via the p53/p21CIP1/WAF1 (p21) and
p16Ink4a (p16)/pRb checkpoint pathways controlled by DDR [52,53], which are independent
processes in senescence induction. p53/p21 is activated when DDR occurs, promoting
a p21-dependent G0/G1 cell cycle arrest [54,55]. p16 suppresses retinoblastoma 1 (pRb)
and prevents the actions of the cyclin-dependent kinases, which induces a G1 cell cycle
arrest [56]. Acute DNA damage drives cell cycle arrest via the p53/p21 pathway, while
chronic DNA damage followed by the induction of the p16/pRB pathway maintains cell
cycle arrest and senescence [57]. As a key mediator of cell cycle arrest, some studies
also demonstrated that p21 can be upregulated via a p53-independent mechanism [58,59].
Checkpoint signaling pathways are associated with p53-mediated apoptosis [60]. During
DDR, the abnormal expression of p53 may further lead to apoptosis resistance.

3.1.2. Apoptosis Resistance

Senescent cells are resistant to apoptosis [61] via intrinsic and extrinsic pathways. The
intrinsic pathway refers to the mitochondrial pathway of apoptosis, related to mitochondrial
outer membrane permeabilization (MOMP) [62]. In this pathway, MOMP and the release
of cytochrome c are required to trigger apoptosis, and it involves Bcl-2 and caspase family
proteins [63,64]. The Bcl-2 family is divided into three main groups: anti-apoptotic (Bcl-2,
Bcl-xl, and Mcl-1), pro-apoptotic (Bax and Bak), and pro-apoptotic BH3-only (Bim, Bid,
Bad, and Puma) proteins [65]. The balance between pro-apoptotic and anti-apoptotic Bcl-2
family members determines the threshold in MOMP for apoptosis. Caspase proteins are
downstream players of MOMP in the intrinsic apoptosis pathway [66]. After the activation
of Bax–Bak-dependent MOMP, cytochrome c is released from the mitochondria, stimulating
the activation of caspase-9 and its downstream executioners, caspases-3 and -7, to initiate
apoptosis [64]. The extrinsic pathway is initiated via death receptors that bind death ligands
secreted by other cells (e.g., macrophages and natural killer cells), activating caspase-8
and its downstream executioner, caspases-3, to initiate apoptosis [62]. Natural ligands,
including TNF, Fas-L, and TRAIL, are known to bind to their receptors, TNFR1, TNFR2,
Fas, and TRAIL-R, to activate caspase-8 [67]. Caspase-8 activation can lead to the cleavage
of Bid to tBid and initiates the mitochondria-mediated intrinsic apoptosis pathway [62].
Accumulation of dysfunctional mitochondria in senescent cells has been reported [68].
Senescent cells are in a primed apoptotic state, triggered by the abnormal regulation of
anti-apoptotic and pro-apoptotic Bcl-2 family proteins, keeping cells alive without under-
going proliferation or apoptosis [69]. SASP factors, such as TNF-α [70,71], released from
senescent cells also play a role in the extrinsic apoptosis pathway. This kind of regulation
finally inhibits the activation of executioner caspase-3, leading to apoptosis resistance and
chronic senescence.
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3.1.3. SASP Factors

SASP factors are related to a DDR and are generally proinflammatory and/or profi-
brotic compounds, including numerous cytokines, chemokines, growth factors, and matrix-
metalloproteinases (MMPs) [2,72]. Several reports described that SASP factors are not
only responsible for the maintenance and reinforcement of senescence but also key players
during its transmission [73]. Cytokines, such as IL-6 and IL-8, are well-proven to play
such critical roles in stress-induced senescence [74–76]. IL-6 maintains senescence through
the p53/p21 pathway [77,78]. This role of IL-6 in senescence is shared by IL-8, which
is expressed as a function of IL-6 [75]. Both cytokines are regulated by IL-1α [79]. The
nucleotide-binding oligomerization domain (NOD)-like receptor 3 (NLRP3) inflammasome
is upregulated in senescence, which leads to expressions of IL-1α and IL-1β, resulting
in the upregulation of SASP factors and the reinforcement of senescence in a paracrine
manner [80]. Chemokine signaling is also reported as being responsible for reinforcing
growth arrest by the CXCR2 receptor and CXCR2-binding chemokines [74]. Chemokines,
including CCLs and CXCLs, are involved in stress (radiation)-induced senescence, thus
leading to fibrosis [81]. Chemokine signaling also plays a role in OIS; senescent cells in-
crease the survival of cancer cells via CXCL12/CXCR4 signaling, leading the collective
invasion in thyroid cancer [82]. Growth factors such as CTGF and TGF-β induce senescence
and are accompanied by the upregulations of IL-6 and IL-8, thus reinforcing paracrine
senescence [83,84]. TGF-β induces CTGF expression through the activation of Smad3 and
p53 [85,86], inducing cell cycle arrest and contributing to senescence [87]. Accumulation of
MMPs is also observed in senescence [88]. MMPs shed ectodomains of cell surface receptors
and activate other SASP factors, hence promoting senescence via paracrine signaling [89].

3.2. Senescence and Fibrosis

Senescence contributes to fibrosis in multiple organs [90–92] and is considered to be a
result of the release of SASP factors and the pathways triggered by them (Figure 3). TGF-β
signaling controls cell proliferation and survival, regulating apoptosis and senescence [87],
and initiates fibrosis through the canonical Smad signaling and Smad-independent sig-
naling pathways, with subsequent ECM deposition [93]. CTGF is the effector molecule of
TGF-β in the kidney [94,95] and has been shown to contribute to TGF-β signaling through
the extracellular signal-regulated kinase (ERK), ADAM17, ribosomal S6 kinase 1 (RSK1),
and the CCAAT/enhancer-binding protein β (C/EBPβ) signaling pathway in human ep-
ithelial cells [85,96]. CTGF is necessary for the TGF-β-induced phosphorylation of Smad1
and Erk1/2, but it is not needed for the activation of the Smad3 pathway [97].

Proinflammatory mediators such as IL-1β and IL-6 are also involved in fibrosis. IL-1β
augments TGF-β1-induced EMT through MAPK signaling pathways [98], which may be
dependent on IL-17A [99]. IL-6 shifts acute inflammation into a chronic fibrosis state by
regulating MMPs and the TGF-β pathway [100,101]. MMPs release ectodomains of cell
surface receptors and activate other SASP factors [89], thus regulating ECM production
and promoting EMT and kidney fibrosis [25]. For example, in fibroblasts, IL-6 promotes the
expression of collagen I and stimulates the activation of TGF-β in signal transducers and
activators in a transcription 3 (STAT3)-dependent manner, thus regulating MMP1, TIMP-1,
and the production of collagen I; on the other hand, TGF-β promotes IL-6 production
through phosphoinositide 3-kinase (PI3K) and MAPK signaling pathways [102]. Other
SASP factors such as CCL2 and PAI-1 are also important players in fibrosis, exerting their
effects through chemokine and TGF-β signaling, respectively [103,104].
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stimulations (e.g., ionizing radiation, exposure to toxins, and heat stress), which triggers DDR. This,
on the one hand, induces mitochondrial dysfunction, resulting in the abnormal expression of Bcl-2
family proteins, eventually leading to apoptosis resistance and the promotion of senescence. On
the other hand, DDR mediates cell cycle arrest via p53/p21 and p16/pRb checkpoint pathways,
which also results in senescence. Senescent cells show a downregulation of LaminB1 and SA-β-gal.
SASP factors, including profibrotic cytokines (TGF-β and CTGF), proinflammatory cytokines (IL-6
and IL-1β), and ECM-remodeling proteases (MMPs) expressed by senescent cells promote ECM
deposition (α-SMA, fibronectins, and collagens), finally leading to kidney fibrosis.

4. Protein-Bound Uremic Toxins Promote Fibrosis by Accelerating Senescence

Uremic toxins are endogenous metabolites that are excreted into the urine through
glomerular filtration and active transport by the proximal epithelial cells [105]. In kidney
disease, uremic toxins management is compromised, which leads to the systemic accumula-
tion of the toxins and activation of inflammation and oxidative stress. Furthermore, uremic
toxins can induce profibrotic effects, promoting the progression of kidney damage [106].
Uremic toxins are divided into three distinct groups: (1) small water-soluble compounds
(molecular weight <500 Da, e.g., creatinine, urea, and uric acid); (2) middle molecules (pep-
tides with molecular weight >500 Da, e.g., IL-6, IL-8 and TNF-α); and (3) protein-bound
uremic toxins (PBUTs; molecular weight mostly <500 Da, e.g., indoxyl sulfate, p-cresyl
sulfate, and p-cresol) [105,107]. Small water-soluble compounds are hydrophilic, which
pass through the glomerular barrier and can be removed easily by dialysis [108,109]. Most
of middle molecules are peptides and difficult to remove in the process of dialysis unless
the dialyzer pore size is large enough [110]. PBUTs are removed by proximal tubule cells
in healthy kidneys through active secretion involving transporter proteins but poorly re-
moved with kidney dysfunction [111]. Current dialysis therapy is limited because of the
high binding to plasma proteins, with albumin being the primary carrier protein, and only
a small free fraction is available for transfer across dialyzer membranes [3,4].

PBUTs accumulate systemically but also in kidney tissue, where they can induce oxida-
tive stress and stimulate the production of inflammatory factors, which might be a trigger
for fibrosis [112]. PBUTs induce ROS production and enhance oxidative stress and IL-1β
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(SASP) expression in kidney proximal tubule cells [113]. Furthermore, it has been reported
that PBUTs induce TGF-β and WNT signaling, which promote ECM remodeling [114,115].
IS and PCS induce EMT by activating the renal TGF-β signaling [6] and contribute to ECM
remodeling by upregulating MMP2 and MMP9 in an EGF receptor-dependent manner [116].
As discussed, TGF-β and WNT signaling are also related to senescence [21,22], which might
suggest that PBUTs can be drivers of senescence and kidney fibrosis.

The accumulation of PBUTs occurs in a time- and stage-dependent manner during
CKD. As the loss of kidney function in CKD is progressive and irreversible, advanced
CKD has more severe uremic toxin plasma levels [5] that potentially can induce senes-
cence [9,117]. Chronic senescence promoted by external factors (e.g., ionizing radiation,
exposure to toxins, or heat stress) may develop in a time-dependent manner [118–120].
This suggests that PBUTs may also promote senescence time dependently during CKD,
progressing the disease and reinforcing fibrosis (Figure 4). In CKD animal models, it was
shown that the accumulation of PBUTs correlated with fibrosis outcome and/or senescence
phenotype (Table 2). We, therefore, hypothesize that PBUTs may promote kidney fibrosis
by accelerating senescence, possibly via mitochondrial dysfunction, cell cycle arrest, and
the production of SASP factors.

Table 2. Overview of CKD animal models that reported PBUT accumulation, fibrosis outcome, or
senescence phenotype.

CKD Model Species PBUTs Fibrosis/EMT Markers Senescence
Markers/SASP Factors

Involved Path-
ways/Mechanism Reference

Aristolochic
acids-induced Mouse PCS, IS α-SMA, collagen I, α-1

and IV NR TGF-β signaling [121]

Adenine-induced Mouse NR Collagen (Masson
staining) p21, Il-6, and Il-1β chronic

inflammation [122]

5/6 nephrectomy Rat NR Collagen (Masson
staining) TNF-α, IL1β, and IL-6 p38 MAPK/NF-κB

signaling pathway [123]

Ischemia-
reperfusion

injury
Mouse NR

Collagen (Masson
staining), fibronectin,

and α-SMA

SA–β-gal, p16, p19, p53,
p21, MMP-7, PAI-1, and

TGF-β1

WNT and TGF-β
signaling [21]

Adenine-induced Mouse PCS, IS, and
hippuric acid

Collagen (Masson
staining) and α-SMA NR gut microbiota [124]

IS-injected mouse
and unilateral
nephrectomy

Mouse IS ZO-1, occludin,
claudin-1, and claudin-2 TNF-α, IL-1β, and IL-6

mitochondrial
dysfunction and

mitophagy
impairment

[125]

Adenine-induced Mouse IS α-SMA, E-cadherin, and
collagen I TNF-α and IL-6 mTOR activation [126]

Adenine-induced Rat IS
fibronectin, collagen I,
α-SMA, vimentin, and

E-cadherin
NR EMT [127]

Unilateral ureteral
obstruction (UUO) Mouse IS

Collagen (Masson
staining), α-SMA, and
collagen I, fibronectin,

vimentin, and
E-cadherin

TGF-β1 EMT [128]

Adenine-induced Rat

PCS, IS, hippuric
acid, p-cresyl

glucuronide, and
indol-3-acetic acid

NR TGF-β1 TGF-β signaling [129]

Adenine-induced Mouse PCS NR TNF-α and IL-6
NLRP3

inflammasome
pathway

[130]

Adenine-induced Mouse PCS, IS and p-cresyl
glucuronide collagen α-1 type 1 TGF-β1, TNF-α, MCP-1

and IL-6

production of
uremic toxins and

inflammation
[131]

Unilateral
nephrectomy Mouse PCS NR p38 and IL-1β Oxidative stress and

inflammation [132]

5/6 nephrectomy Rat Hippuric acid α-SMA, vimentin, and
collagen I MMP9 and TIMP1 Oxidative stress and

TGF-β signaling [114]

NR—Not Reported.
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4.1. PBUTs Accelerate Senescence via Mitochondrial Dysfunction

Different types of senescence have been reported to increase ROS and mitochondrial
dysfunction [68], which influences the intrinsic apoptosis pathway by the abnormal ex-
pression of Bcl-2 family and caspase family markers, which in turn maintain and reinforce
senescence [133]. Overproduction of ROS during cell stress leads to mitochondrial dysfunc-
tion after kidney injury [134], which is promoted by PBUT accumulation [135]. A cocktail
of PBUTs, consisting of IS, PCS, indoxyl-β-glucuronide, p-cresyl glucuronide, indol-3-acetic
acid, hippuric acid, kynurenic acid, and l-kynurenine, have been shown to promote ROS
production and to upregulate IL-6 in proximal tubule epithelial cells [113,136]. In addition,
ROS-induced senescence was shown to require the mammalian target of rapamycin (mTOR)
activation [137], and accumulated IS promoted renal fibrosis via mTOR under CKD con-
ditions [126]. Furthermore, the class I PI3K signaling regulates and activates mTOR [138].
PCS activates NADPH oxidase through a mechanism that involves PI3K signaling, induc-
ing ROS production and TGF-β1 secretion [139]. Interestingly, the activation of mTOR is
related to renal autophagy, which is a special process for eliminating abnormal cells [140].
Dysregulated autophagy is known to be a major factor in the pathogenesis of renal fibrosis
and related kidney diseases [140], involving both the tubulointerstitial compartment and
glomeruli, and may also contribute to the accumulation of chronic senescent cells. PBUTs,
such as IS, PCS, and hippuric acid, influence apoptosis by causing imbalances in caspase-3,
caspase-9, Bcl-2, and Bax in hepatocytes, with marked ROS generation and mitochondrial
damage [141]. Although there is a lack of evidence showing that PBUTs inhibit apoptosis,
IS and PCS increase the expression of the anti-apoptotic genes Bcl-2, Bcl-xl and Bax in
proximal tubule cells [142], which is also observed in senescent cells [61,120].

4.2. PBUTs Accelerate Senescence via Cell Cycle Arrest

Cell cycle arrest is necessary for the repair of DNA damage after injury [143], which
generally occurs in senescence and is a critical factor for fibrosis development [144]. DDR
is a cause of cell cycle arrest mediated by the p53/p21 and p16/pRb pathways [51]. ROS
triggers DDR, and DDR promotes ROS production by activating its downstream effectors,
including p53 and p21 [145]. Recent research has suggested that PBUTs may accelerate
senescence via cell cycle arrest and inhibition of cell proliferation [146,147]. Others have
suggested that PCS and IS upregulate p21 and increase the number of cells positive for
senescence-associated beta-galactosidase [9]. IS also promotes p53 expression, stimulating
the expression of TGF-β1 and ECM deposition [148].

4.3. PBUTs Accelerate Senescence via SASP Factors

During CKD progression, the released inflammatory (SASP) factors activate different
pathways and initiate various processes, including senescence and EMT, in tubular epithe-
lial cells [146,149]. As discussed, PBUT accumulation-induced inflammation might be one
reason for senescence development. SASP factors such as IL-6, TGF-β1, and CXCL10 were
reported to be increased in proximal tubule cells after the treatment with the PBUTs IS
and PCS [142]. Furthermore, ROS overproduction can activate the NLRP3 inflammasome,
which cleaves pro-caspase-1 and pro-interleukin-1β (IL-1β) into the proinflammatory fac-
tors caspase-1 and IL-1β, thus promoting fibrosis [150]. A cocktail of PBUTs (IS, PCS,
indoxyl-β-glucuronide, p-cresyl glucuronide, indol-3-acetic acid, hippuric acid, kynurenic
acid, and l-kynurenine) has been shown to promote the NLRP3 inflammasome-mediated
IL-1β production via oxidative stress and NF-κB signaling [113]. Interestingly, the NLRP3
inflammasome/IL-1β also promotes cellular senescence [151]. SASP factors reinforce senes-
cence and induce senescence transmission or paracrine senescence, which is regulated
by the inflammasome [80]. Therefore, PBUTs may play an important role during CKD to
promote paracrine senescence and senescence transmission.
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expressed by senescent cells promote ECM deposition, leading to kidney fibrosis.

5. Conclusions and Future Therapeutic Perspectives

PBUTs may promote senescence in CKD through the release of SASP factors (e.g., IL-6
and IL-1β) and common senescence markers (e.g., p21 and Laminb1) and trigger oxidative
stress, possibly causing mitochondrial dysfunction, promoting an inflammatory response
and increased resistance to cell death. As SASP factors are typically profibrotic and proin-
flammatory mediators, a novel treatment strategy of CKD could be inhibiting the related
signaling, thus suppressing SASP expression. Potential novel agents already exist for this,
including anti-fibrotic agents (e.g., TGF-β inhibitor and pirfenidone) and anti-inflammatory
agents (e.g., the anti-TNF-α monoclonal antibody and infliximab) [152]. Moreover, the
mTOR inhibitor rapamycin is also recognized as an SASP inhibitor (called senomorphic),
reducing the development of cellular senescence [153], which could represent possibilities
for CKD treatment as well [154]. In addition, strategies to inhibit senescence phenotypes
by promoting cell cycle process and cell death signaling, such as an inhibitor of p21 and/or
promoter of caspase proteins, could be treatment options. Considering that chronic senes-
cent cells cannot be cleared by the immune cells, strengthening the immune system by
increasing the binding affinity of the involved membrane receptors is another approach to
more efficiently clear senescent cells [8]. Advanced cell therapy may be employed to specif-
ically target senescent cells by recognizing appropriate antigens [39]. Finally, identifying
and targeting most relevant and specific senescence-associated markers by means of gene
therapy could be a valid approach to be investigated in the future for ameliorating kidney
senescence [155].
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