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Genus 5 curves can be hyperelliptic, trigonal, or non-hyperelliptic non-trigonal, 
whose model is a complete intersection of three quadrics in P4. We present and 
explain algorithms we used to determine, up to isomorphism over F2, all genus 5 
curves defined over F2, and we do that separately for each of the three mentioned 
types. We consider these curves in terms of isogeny classes over F2 of their Jacobians 
or their Newton polygons, and for each of the three types, we compute the number 
of curves over F2 weighted by the size of their F2-automorphism groups.
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1. Introduction

A standard result is that the smooth curves of genus 5 are either hyperelliptic, trigonal, or complete 
intersections of three quadric hypersurfaces in P 4; see [8, Section IV.5]. Therefore, to understand the moduli 
space M5 of smooth curves of genus 5, we should consider the subvarieties parametrizing these three kinds 
of smooth curves. Denote with H5 the subvariety of M5 parametrizing hyperelliptic curves of genus 5, with 
T5 the subvariety parametrizing trigonal curves of genus 5, and lastly, let U5 be the subvariety parametrizing 
non-hyperelliptic non-trigonal curves, whose canonical model in P 4 is a complete intersection of three quadric 
hypersurfaces. Moreover, let us write Hyp5(F2), Trig5(F2), and CompInt5(F2), respectively, for the sets of 
hyperelliptic, trigonal, and non-hyperelliptic nontrigonal (smooth) curves of genus 5 defined over F2, up to 
F2-isomorphisms.

This paper aims to give algorithms for computing all the F2-isomorphism classes of smooth curves of 
genus 5 defined over F2 and the sizes of their F2-automorphism groups, present the obtained results, and 
discuss some relevant questions, such as describing the isogeny types or Newton polygons of Jacobians of 
dimension 5 over F2; see [5, Sections 2.3, 2.4, and 3.3] for more details on computing the mentioned invariants 
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over finite fields. We do that separately for curves in Hyp5(F2), Trig5(F2), and CompInt5(F2). The sizes of 
the F2-automorphism groups that we obtain lead us to find the stack count |M5(F2)| and consequently to 
get a piece of information about the cohomology of M5.

In [12], Xarles determined all curves of genus 4 defined over F2. His approach to computing the hyper-
elliptic curves is a universal one. We follow it closely in Section 2 and apply it to genus 5 hyperelliptic 
curves.

Our algorithm for computing the representatives of the isomorphism classes of trigonal curves is based 
on the explicit description of their models in P 2 and the idea of the exhaustion of all eligible equations 
respecting the isomorphism; we present it in Section 3.

Lastly, for the non-hyperelliptic non-trigonal curves, a similar but more subtle idea of exhaustion of the 
eligible triples of quadratic polynomials in F2[X, Y, Z, T, U ] was used. We extensively explain the steps in 
our reasoning preceding the final algorithm we used for this problem and mention some intermediate steps 
and partial results in Section 4.

In Section 5, we discuss some of the outcomes of our computations and crosscheck them with some 
known results. The stack counts we get, |H5(F2)| and |T5(F2)|, match the ones from [3] and [11], while 
|U5(F2)| = 212−29 was not known before. The maximum numbers of F2-points for curves of genus 5 over F2
of the three considered types match the corresponding ones from [6] and [7]. The values of certain sums over 
the curves in Hyp5(F2) that we get match the expected ones from [2]. Finally, among the other examples, 
we show that each eligible Newton polygon of height 2 · 5 = 10 occurs for a Jacobian of a smooth curve of 
genus 5 over F2.

We implement all the algorithms in SageMath, [10]. Our implementations and the obtained data of the 
curves and the sizes of their F2-automorphism groups are available on

https://github .com /DusanDragutinovic /MT _Curves.

The data has been added to the L-functions and modular forms database [9] in the section https://www .
lmfdb .org /Variety /Abelian /Fq/.
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2. Hyperelliptic curves

Any hyperelliptic curve of genus g over F2 can be given by a standard (affine) equation

y2 + q(x)y = p(x), for p(x), q(x) ∈ F2[x], (1)

with 2g + 1 ≤ max{2 deg(q(x)), deg(p(x))} ≤ 2g + 2.
In [12], Xarles gave the approach to compute all (smooth) curves of genus 4 over F2 up to isomorphism. 

The presented algorithm for determining the hyperelliptic curves over F2 can be generalized to higher genera. 
Here, we use it to obtain the set Hyp5(F2). We can directly use some of the claims made in [12, Section 1], 
and we mention the analogs of the others in the genus 5 case.

Let F2[x]n = {h(x) ∈ F2[x] : deg(h(x)) ≤ n} for n ∈ Z≥0, and for A =
(
a b
c d

)
∈ PGL2(F2) and 

q(x) ∈ F2[x]n, define an action of PGL2(F2) on F2[x]n by

https://github.com/DusanDragutinovic/MT_Curves
https://www.lmfdb.org/Variety/Abelian/Fq/
https://www.lmfdb.org/Variety/Abelian/Fq/
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ψn(A)(q(x)) = (cx + d)nq
(
ax + b

cx + d

)
;

we will also use the notation A.q(x) for this. Further, denote the quotient set of F2[x]n under this action by 
F2[x]n = F2[x]n/PGL2(F2).

Let H1 : y2 + q1(x)y = p1(x) and H2 : y2 + q2(x)y = p2(x) be two hyperelliptic curves over F2 as in (1). 
Using that any isomorphism of such H1 and H2 has to be of the form

(x, y) �→
(
ax + b

cx + d
,

r(x) + y

(cx + d)g+1

)

for some A =
(
a b
c d

)
∈ PGL2(F2) and r(x) ∈ F2[x]g+1, Xarles showed the following lemma.

Lemma 2.1 ([12, Lemma 1]). Let H1 and H2 be as above and suppose H1 ∼= H2. Then there exists A ∈
PGL2(F2) such that q2(x) = ψg+1(A)(q1(x)).

For any q(x) ∈ F2[x]g+1, let Stab(q(x)) be the stabilizer of q(x) under the PGL2(F2)-action. We cite two 
more results from [12].

Lemma 2.2 ([12, Lemma 4]). Let H1 and H2 be two hyperelliptic curves of genus g over F2 given by standard 
equations (1): y2 + q(x)y = pi(x), i ∈ {1, 2}. If H1 and H2 are isomorphic over F2, then there are A ∈
Stab(q(x)) and r(x) ∈ F2[x], deg(r(x)) ≤ g + 1 such that

p2(x) = ψ2g+1(A)(p1(x) + r(x)2 + q(x)r(x)).

Lemma 2.3 ([12, Lemma 5]). Let g ∈ Z≥2. Given a nonzero polynomial q(x) ∈ F2[x] and a polynomial 
p(x) ∈ F2[x] with 2g + 1 ≤ max{2 deg(q(x)), deg(p(x))} ≤ 2g + 2, the equation y2 + q(x)y = p(x) defines a 
hyperelliptic curve of genus g if and only if

gcd(q(x), p′(x)2 + q′(x)2p(x)) = 1,

and either deg(q(x)) = g + 1 or a2
2g+1 �= a2g+2b

2
g, where p(x) =

∑2g+2
i=0 aix

i and q(x) =
∑g+1

i=0 bix
i.

Using the lemmas above, to compute Hyp5(F2), we should first find Q5(F2), a complete set of represen-
tatives of F2[x]6. We do that below using the ideas from [12, Lemma 2].

Lemma 2.4. For q(x) ∈ F2[x]6 and Z ′(q(x)) = {P ∈ F2 : q(P ) = 0}, let

Dq(x) = Z ′(q(x)) + (6 − deg(q(x))) · ∞

be the zero divisor of q(x) in P 1. Then the action of PGL2(F2) on F2[x]6 naturally translates to the (standard) 
action of PGL2(F2) on Div6(F2), and these actions are compatible, i.e., DA.q(x) = A.Dq(x).

Proof. For an arbitrary polynomial q(x) = b6x
6 + b5x

5 + . . .+ b1x + b0 ∈ F2[x]6 and a matrix A =
(
a b
c d

)
∈

PGL2(F2) we compute

qnew(x) = A.q(x) = b6(ax + b)6 + b5(ax + b)5(cx + d) + . . . + b1(ax + b)(cx + d)5 + b0(cx + d)6.

For P = d/c = −d/c, with c �= 0, we see that P ∈ Z ′(A.q(x)) if and only if deg(q(x)) < 6, and moreover, 
its multiplicity as a zero of A.q(x) is precisely 6 − deg(q(x)); this means that the multiplicity of P = d/c in 
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DA.q(x) is the same as the multiplicity of ∞ in Dq(x). Using A−1 and changing the roles of q(x) and qnew(x)
we can similarly get the conclusion on the degree of qnew(x) when inspecting P = ∞. For other P ∈ F2, we 
see P ∈ Z ′(A.q(x)) if and only if aP+b

cP+d ∈ Z ′(q(x)) and the corresponding multiplicities match. The result 
follows. �

The preceding lemma implies that determining the set of representatives of F2[x]6 is equivalent to finding 
the one for Div6(F2)/PGL2(F2). We use that in the following theorem.

Theorem 2.5. The set Q5(F2) which consists of the elements q(x) ∈ F2[x] listed below is a complete set of 
representatives of F2[x]6:

deg(q(x)) ≤ 2: 1, x, x2, x(x + 1), x2 + x + 1
deg(q(x)) = 3: x3, x2(x + 1), (x2 + x + 1)x, x3 + x + 1
deg(q(x)) = 4: x2(x + 1)2, (x2 + x + 1)2, (x2 + x + 1)x2, (x2 + x + 1)x(x + 1), (x3 + x + 1)x, (x3 + x2 +
1)x, x4 + x + 1, x4 + x3 + 1
deg(q(x)) = 5: (x2 + x + 1)2x, (x3 + x + 1)(x2 + x + 1), (x3 + x + 1)x(x + 1), (x4 + x + 1)x, (x4 + x3 +
x2 + x + 1)x, x5 + x2 + 1, x5 + x3 + 1, x5 + x3 + x2 + x + 1
deg(q(x)) = 6: (x2 + x + 1)3, (x3 + x + 1)2, (x3 + x + 1)(x3 + x2 + 1), (x4 + x + 1)(x2 + x + 1),
x6 + x + 1, x6 + x3 + 1.

Proof. For a polynomial q(x) ∈ F2[x]6, let Dq(x) be as in Lemma 2.4. With ζn, we denote any element 
ζn ∈ F2 of degree n over F2. We use the well-known fact that given any three F2-points p∞, p0, p1 there is 
a (unique) projective automorphism A ∈ PGL2(F2) that maps p∞ �→ ∞, p0 �→ 0, and p1 �→ 1.

Firstly, any Dq(x) that consists only of F2-points in Div6(F2)/PGL2(F2) is equal to the unique one 
n∞ · ∞ + n0 · 0 + n1 · 1 with n1 ≤ n0 ≤ n∞. Since deg(Dq(x)) = 6, we get that all the possible triples 
(n∞, n0, n1) are {(6, 0, 0), (5, 1, 0), (4, 2, 0), (4, 1, 1), (3, 3, 0), (3, 2, 1), (2, 2, 2)}. Using the correspondence from 
Lemma 2.4, this gives us the subset of polynomials q(x) in Q5(F2),

{1, x, x2, x(x + 1), x3, x2(x + 1), x2(x + 1)2}.

If Dq(x) contains only one point of degree 2 and no other points of degree ≥ 2 in its support, similarly as 
above, we get that Dq(x) is equal to one of

3ζ2, 2ζ2 + 2∞, 2ζ2 + ∞ + 0, ζ2 + 4∞, ζ2 + 3∞ + 0, ζ2 + 2∞ + 2 · 0, ζ2 + 2∞ + 0 + 1.

This induces the set of polynomials in Q5(F2):

{(x2 + x+ 1)3, (x2 + x+ 1)2, (x2 + x+ 1)2x, x2 + x+ 1, (x2 + x+ 1)x, (x2 + x+ 1)x2, (x2 + x+ 1)x(x+ 1)}.

If Dq(x) contains a point of degree 3 in its support, then

Dq(x) ∈ {2ζ3, ζ3 + ζ ′3, ζ3 + ζ2 + ∞, ζ3 + 3∞, ζ3 + 2∞ + 0, ζ3 + ∞ + 0 + 1},

where ζ3, ζ ′3 are of degree 3. The mapping x �→ x + 1 (induced by the action of A =
( 1 1

0 1

)
), translates 

q1(x) = x3 + x + 1 into q2(x) = x3 + x2 + 1. Therefore, in Div6(F2)/PGL2(F2), we have that Dq1(x)
equals Dq2(x), and moreover, that D(q1(x))2 , D(q1(x))(x2+x+1), and D(q1(x))x(x+1) are, respectively, equal to 
D(q2(x))2 , D(q2(x))(x2+x+1), and D(q2(x))x(x+1). The set of possible polynomials q(x) we get from this case is: 
{(x3 + x + 1)2, (x3 + x + 1)(x3 + x2 + 1), (x3 + x + 1)(x2 + x + 1), x3 + x + 1, (x3 + x + 1)x, (x3 + x2 +
1)x, (x3 + x + 1)x(x + 1)}.
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If there is a point of degree 4 in the support of Dq(x), Dq(x) is of form ζ4 + ζ2, ζ4 + 2∞, or ζ4 + ∞ + 0. 
There are three irreducible polynomials over F2 of degree 4, so out of all possible combinations, discussing 
the PGL2(F2) action on F2[x]6 as above, we extract the following list of representatives for q(x):

{(x4 + x + 1)(x2 + x + 1), x4 + x + 1, x4 + x3 + 1, (x4 + x + 1)x, (x4 + x3 + x2 + x + 1)x}.

If the support of Dq(x) contains a point of degree 5, there is only one possibility for the form of Dq(x), 
namely, Dq(x) = ζ5 + ∞. Among the six irreducible polynomials of degree 5, we found that, for example, 
the following three are representatives of q(x) for the considered action:

{x5 + x + 1, x5 + x3 + 1, x5 + x3 + x2 + x + 1}.

Lastly, among the nine irreducible polynomials of degree 6, we found two:

x6 + x + 1 and x6 + x3 + 1,

such that by acting via PGL2(F2) on them, we can get all the others. This corresponds to a choice of the 
divisor Dq(x) = ζ6, with ζ6 (a point of degree 6, which is either) a zero of x6 + x + 1 or a zero of x6 + x3 + 1
in F2. �

The previously described reasoning leads to an algorithm for computing the set Hyp5(F2), which is 
practically the same as the algorithm from [12, p. 6] for computing Hyp4(F2), the set of all (smooth) 
hyperelliptic curves of genus 4 over F2, up to F2-isomorphism.

Algorithm 1. Determine Hyp5(F2).

Step 0 From the preceding theorem, we get list_of_qs = Q5(F2), the list of all possible representatives 
for a polynomial q(x).

Step 1 For each q(x) in list_of_qs, compute the stabilizer Stab(q(x)) ⊆ PGL2(F2) of q(x) under the action 
defined by ψ6(

(
a b
c d

)
)(q(x)) = (cx + d)6q(ax+b

cx+d ) for 
(
a b
c d

)
∈ PGL2(F2).

Step 2 For a fixed q(x) in list_of_qs, check whether a polynomial p(x) ∈ F2[x], which satisfies 11 ≤
max{2 deg(q(x)), deg(p(x))} ≤ 12, is such that C : y2 +q(x)y = p(x) is a (nonsingular) curve; collect 
all such p(x)’s in the list q_list_of_ps of potential p(x)’s for q(x). The smoothness condition 
can be checked using Lemma 2.3, saying that C is a (nonsingular) curve of genus 5 if and only if 
gcd(q(x), p′(x)2 + q′(x)2p(x)) = 1 and either deg(q(x)) = 6 or a2

11 �= a12b
2
5, where p(x) =

∑12
i=0 aix

i

and q(x) =
∑6

i=0 bix
i.

Step 3 Fix a q(x) in list_of_qs and consider q_list_of_ps, the list of potential p(x)’s associated with 
it. We write p1(x) ∼ p2(x) if the curves C1 : y2 + q(x)y = p1(x) and C2 : y2 + q(x)y = p2(x) are 
isomorphic over F2. Using Lemma 2.2, we find that the relation ∼ is defined as: p1(x) ∼ p2(x) if 
and only if (cx + d)12p2(ax+b

cx+d ) = p1(x) + r(x)2 + r(x)q(x) for some 
(
a b
c d

)
∈ Stab(q(x)) and some 

r(x) ∈ F2[x] of degree deg(q(x)) ≤ 6. We iterate over all such 
(
a b
c d

)
and r(x) to refine q_list_of_ps

by taking only the representatives p(x) for this relation ∼.

In such a manner, using the mathematical software SageMath, we computed the list of all non-
isomorphic hyperelliptic curves of genus 5 defined over F2. There are in total 1070 such curves, i.e., 
|Hyp5(F2)| = 1070, and we confirmed [3, Proposition 7.1] that

|H5(F2)| =
∑ 1

|AutF2(C)| = 512 = 22·5−1.

C∈Hyp5(F2)
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In addition, for the curves in Hyp5(F2), we computed their numbers of points over finite fields F2N , for 
N ∈ {1, 2, 3, 4, 5}, and then we found their Newton polygons. We mention some of the observations we got 
in Section 5.

3. Trigonal curves

We say that a singularity of a plane (projective) curve C is of delta invariant one if it is either a node 
(an ordinary double point), where a curve is locally of the form xy = 0, or an ordinary cusp, where C is 
locally of the form y2 = x3.

Let C be a trigonal curve of genus 5, and let D ∈ g1
3 on C. Then, KC −D belongs to g2

5, the dual linear 
system of that g1

3 on C, and we can use it to get a morphism C → P 2 such that the image of C is a plane 
quintic. Moreover, the computations based on the Riemann-Roch theorem and the genus-degree formula, 
together with some further reasoning, give us the following well-known fact, which we use to compute 
Trig5(F2).

Theorem 3.1 ([1, p. 207]). A curve C of genus 5 is trigonal if and only if it can be represented as a plane 
quintic with one singularity of delta invariant one and no other singularities.

Any isomorphism of such curves C1 and C2 extends to an automorphism of P 2. (Note that the g1
3 on Ci

is unique, and so is its dual g2
5; see [8, Exercise IV.5.5] or [1, p. 207].)

For a matrix M =
(
m11 m12 m13
m21 m22 m23
m31 m32 m33

)
in PGL3(F2) and q(X, Y, Z) a homogeneous polynomial in 

F2[X, Y, Z], the formula

M.q(X,Y, Z) = q(m11X + m12Y + m13Z,m21X + m22Y + m23Z,m31X + m32Y + m33Z) (2)

defines an action of PGL3(F2) on the set of all homogeneous polynomials in F2[X, Y, Z]. Alternatively, we 
can define M.q(X, Y, Z) = q(M.(X, Y, Z)) with

M.(X,Y, Z) = M · (X,Y, Z)t.

Therefore, to determine the list of all trigonal curves of genus 5 defined over F2, it is sufficient to find the 
PGL3(F2)-representatives among all the quintic homogeneous polynomials in X, Y, Z that define projective 
plane curves with one singularity of delta invariant one and no other singularities.

To compute all trigonal curves of genus 5 over F2, we have implemented the following algorithm in
SageMath.

Algorithm 2. Determine Trig5(F2).

Step 1 Make a list of all the monomials in X, Y, Z of degree 5 and fix the order of these, e.g. the lexicographic 
order X5 > X4Y > X4Z > X3Y 2 > X3Y Z > X3Z2 > X2Y 3 > X2Y 2Z > X2Y Z2 > X2Z3 >

XY 4 > XY 3Z > XY 2Z2 > XY Z3 > XZ4 > Y 5 > Y 4Z > Y 3Z2 > Y 2Z3 > Y Z4 > Z5. Since 
there are 21 monomials, we can represent all homogeneous polynomials of degree 5 using the 21-
tuples in (F2)21 − {0}. Call quintics the lexicographically sorted list of all 21-tuples. The action of 
PGL3(F2) on quintics is induced by acting on X, Y, Z and using the mentioned correspondence.
(For example, X5 + Y Z4 ←→ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) under 
this correspondence.)
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Step 2 Get list quintics_repr of the representatives of the quotient set quintics/PGL3(F2) formed as 
follows. Start from an empty list quintics_repr. Take the first element from quintics, put it in 
quintics_repr, delete from quintics all of its PGL3(F2)-conjugates, and repeat this until quintics
is empty.

Step 3 Deduce whether a plane quintic corresponding to an element of quintics_repr has exactly one 
singularity of order 2 (and no other singularities) to reduce the preceding list and get the list 
good_quintics.

Step 4 For each quintic with exactly one singularity P of order 2, represented by an element of 
good_quintics, find a PGL3(F2)-isomorphic quintic q(0:0:1) with a singularity at the point (0 : 0 : 1)
that, locally at (0 : 0 : 1) up to order 3, equals to either xy or x2 + xy + y2 (nodal case), or y2

(potentially cuspidal case). We call good_quintics_001 the list of all the 21-tuples corresponding 
to such quintics q(0:0:1).

Step 5 For each element of good_quintics_001 with the corresponding quintic from the potentially cus-
pidal case, decide whether there is a PGL3(F2)-isomorphic quintic to it, with lowest terms y2 + x3

(locally at (0 : 0 : 1)) - if there is none, delete that element from good_quintics_001. Collect all 
the curves defined by the quintics corresponding to the remaining elements of good_quintics_001
into the resulting set Trig5(F2).

We found 2854 non-isomorphic trigonal curves over F2, i.e., |Trig5(F2)| = 2854, and we computed the 
sizes of their automorphism groups over F2. In particular, we have obtained that

|T5(F2)| =
∑

C∈Trig5(F2)

1
|AutF2(C)| ,

the number of (non-isomorphic) smooth trigonal curves of genus 5 defined over the finite field with two 
elements weighted by the size of their automorphism group, i.e. the stack count for trigonal curves of genus 
5 over F2, precisely equals

|T5(F2)| = 2817 = 211 + 210 − 28 + 1.

This matches Wennink’s results from [11, Theorem 1], where he, using a partial sieve method for plane 
curves, computed these weighted numbers for any finite field with q elements Fq, and obtained |T5(Fq)| =
q11 + q10 − q8 + 1. We comment further on the obtained results in Section 5.

4. Complete intersections of three quadrics in P4

The remaining set we need to compute is CompInt5(F2), the set of curves of genus 5 over F2 are the ones 
whose canonical embedding in P 4 is a complete intersection of three quadric hypersurfaces; see [8, Example 
IV.5.5.3]. In other words, its elements are of the form

C = Z(qP , qQ, qR),

for qP , qQ, qR ∈ F2[X, Y, Z, T, U ], three homogeneous geometrically irreducible polynomials of degree 2 with 
no non-trivial F2-linear relation between them.

The idea behind computing curves C in CompInt5(F2) is as follows. First, we find a suitable set Σ
of triples (qP , qQ, qR) of homogeneous quadratic polynomials in F2[X, Y, Z, T, U ], such that, for any C in 
CompInt5(F2), there is an element of Σ defining a curve isomorphic to C. We want the first quadrics qP
of the triples in Σ to be the representatives under the projective automorphisms of P 4 and that Σ is of 
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a reasonable size. Then, we filter the set Σ to get CompInt5(F2), in which no two elements define curves 
isomorphic over F2.

Recall that the curves with canonical embedding into P 4 are isomorphic over F2 if and only if their 
canonical models in P 4 are isomorphic via some projective automorphism M ∈ PGL5(F2).

The group PGL5(F2) acts on the subset of homogeneous quadratic polynomials in the polynomial ring 
F2[X, Y, Z, T, U ] by acting on variables X, Y, Z, T, U via

M.(X,Y, Z, T, U) = M · (X,Y, Z, T, U)t (3)

for M ∈ PGL5(F2). This induces the right action on the set of homogeneous quadratic polynomials.
For the practical reasons of working in the mathematical software SageMath, we represent the quadrics

qP = p0X
2 + p1XY + p2XZ + p3XT + p4XU + p5Y

2 + p6Y Z + p7Y T+

+ p8Y U + p9Z
2 + p10ZT + p11ZU + p12T

2 + p13TU + p14U
2

using the 15-tuples P ∈ (F2)15 − {0} of the coefficients in qP ,

P = (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14). (4)

As usual, with Stab(q) and Orbit(q) we denote the stabilizer and the orbit of a homogeneous quadratic 
polynomial q with respect to the action (3). Using the correspondence above, for a 15-tuple P ∈ (F2)15−{0}
we set

Stab(P ) := Stab(qP ) and Orbit(P ) := Orbit(qP ).

To justify this notation, we can also define the action of PGL5(F2) on (F2)15−{0}, where we define M.P = Q, 
for M ∈ PGL5(F2) and P, Q ∈ (F2)15 − {0} if it holds that M.qP = qQ.

First, we determine the set Σ.

Algorithm 3. Determine Σ.
Description. Form a set Σ of triples of quadrics (qP , qQ, qR) such that for any non-hyperelliptic non-trigonal 
curve C of genus five over F2, there is a triple (q′P , q′Q, q′R) in Σ such that C is isomorphic to Z(q′P , q′Q, q′R)
over F2.

Step 1 Among all (nonzero) 15-tuples representing the quadratic polynomials, find the representatives for 
the PGL5(F2)-action irreducible over F2. There are seven representatives for the PGL5(F2)-action. 
Two of them are reducible over F2, while one of them is irreducible over F2, but not over F4. The 
remaining four are irreducible over F2. Output: list_of_Ps; call its elements P1, P2, P3, and P4.
(We can always find an isomorphism of C = Z(q1, q2, q3) and C ′ = Z(qP , qQ, qR) induced by a matrix 
from PGL5(F2), such that P in list_of_Ps.)

Step 2 For P = Pi and i ∈ {1, 2, 3, 4}, let P_potential_QRs be the list consisting of all elements contained 
in the union Orbit(P1) ∪ Orbit(P2) ∪ . . . ∪ Orbit(Pi).
Fix P in list_of_Ps, and find the representatives for the second quadric: take an element Q from 
P_potential_QRs, put it in P_list_of_Qs, and remove all the Stab(P )-conjugates of Q and P+Q

from P_potential_QRs; repeat this. Output: P_list_of_Qs for P = P1, P2, P3, P4.
(As above, using matrices from Stab(qP ), we can find an isomorphism over F2

C = Z(q1, q2, q3) ∼= C ′ = Z(qP , qQ, qR)

with P in list_of_Ps and Q in P_list_of_Qs.)
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Step 3 Find the representatives for the third quadric. Fix P in list_of_Ps and fix Q in P_list_of_Qs. 
Use the same reasoning as in Step 2: take R from the list P_potential_QRs, put it in 
PQ_list_of_Rs_apriori, and erase all the (Stab(P ) ∩ Stab(Q))-conjugates of R, P + R, Q + R, 
and P + Q + R from the list P_potential_QRs; repeat this.
For fixed P and Q as above and R in PQ_list_of_Rs_apriori, check whether all the elements 
from (F2 · P + F2 ·Q + F2 ·R) − {0} are in P_potential_QRs and whether the triple (qP , qQ, qR)
defines a non-singular curve over F2. If those are satisfied, put (P, Q, R) into P_list.

The union of all these lists P_list is the desired set Σ.

Remark. As we indicated, working with polynomial rings is technically demanding. Therefore, in all three 
Steps, we implemented that structure and found the PGL5(F2)-, Stab(P )-, or Stab(P ) ∩ Stab(Q)-orbits 
using (3) and (4) as directly as we could, to make the computations take only a reasonable amount of time.

Furthermore, for a fixed P in Step 3, we use the idea of multithread computations by parallelizing the 
processes for different Q’s, relying on the fact that those processes do not depend on each other.

Theorem 4.1. For any non-hyperelliptic non-trigonal curve C of genus five over F2, there is an element P
in list_of_Ps and a triple (P, Q, R) in P_list such that C ∼= Z(qP , qQ, qR) over F2.

Proof. Take C = Z(q1, q2, q3) and let i ∈ {1, 2, 3, 4} be the largest index such that there is an element q in 
the intersection of Orbit(qPi

) and (F2 · q1 + F2 · q2 + F2 · q3) − {0}. We may without of loss of generality 
assume that q1 = q and set q2 = q′2, q3 = q′3 such that 〈q1, q2, q3〉 = 〈q, q′2, q′3〉. Write P = Pi.

By the construction, we can find an isomorphism C
∼=→ C ′ = Z(qP , q′R, q′Q) induced by a matrix M ∈

PGL5(F2), such that M.q1 = qP , M.q2 = q′Q and M.q3 = q′R. Then, we can find M ′ ∈ Stab(P ), which induces 
an isomorphism of C ′ and C ′′ = Z(qP , qQ, q′′R) = Z(qP , qQ+qP , q′′R) such that q′Q goes to either qQ or qQ+qP
for some Q in P_list_of_Qs. Lastly, there is some M ′′ ∈ Stab(P ) ∩Stab(Q), which induces an isomorphism 
of C ′′ and C ′′′ = Z(qP , qQ, qR) such that q′′′R goes to an element from {qR, qR + qP , qR + qQ, qR + qP + qQ}
for R in PQ_list_of_Rs. In particular,

C ∼= Z(qP , qQ, qR),

for (P, Q, R) in Pi_list.
Therefore, our construction of the lists P_list for P = P1, P2, P3, and P4 (and thus of Σ) is satisfactory.
Checking the condition of whether the curves are smooth over a field F2 was done by using the 

function is_smooth(). Furthermore, checking whether the considered varieties are curves indeed, i.e., one-
dimensional, was done using the function dimension(). Both mentioned functions were already implemented 
in SageMath, [10]. �

The second part of computing the final list CompInt5F2 consists of reducing the lists P_list for P =
P1, P2, P3, P4. For each curve C ∈ CompInt5(F2), we want to have precisely one element of CompInt5F2
representing the F2-isomorphism class of C.

First, note that by our construction, for i, j ∈ {1, 2, 3, 4} and i �= j, no two triples

(Pi, Q,R) ∈ Pi_list, and (Pj , Q
′, R′) ∈ Pj_list

can define isomorphic curves. Without loss of generality, assume i < j. Then, inside the set (F2 · qPi
+ F2 ·

qQ +F2 ·qR) −{0} there cannot be elements in Orbit(Pj) by our construction, so we cannot find a projective 
transformation establishing the desired isomorphism.
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Then, for a fixed list Pi_list, with i ∈ {1, 2, 3, 4} consider two of its elements (P, Q, R) and (P, Q′, R′). 
Note that the triples (P, Q, R) and (P, Q′, R′) define the same curve if and only if 〈P,Q,R〉F2

= 〈P,Q′, R′〉F2
. 

Moreover, if (P, Q, R) and (P, Q′, R′) define isomorphic curves, then in 〈P,Q′, R′〉F2
, there has to be an 

element S mapping to P , and hence inside the orbit of P .

Algorithm 4. Determine CompInt5(F2).
Description. Consider the triples in Σ one after the other. For a chosen triple (P, Q, R), which defines a 
curve C, find all the triples in Σ −{(P, Q, R)} defining a curve that is isomorphic over F2 to C and remove 
them from Σ.

Step 0 Let CompInt5F2 be an empty list at the beginning.
Step 1 For a fixed P = Pi with i ∈ {1, 2, 3, 4}, take a triple (P, Q, R) in P_list. Add it to the final list 

CompInt5F2. Let C = Z(qP , qQ, qR).
Step 2 For a triple (P, Q, R) from Step 1, consider the vector space V = F2 · P + F2 · Q + F2 · R and let 

D = V ∩ Orbit(Pi). For each element in D, find all matrices M ∈ PGL5(F2) mapping it to P = Pi.
Step 3 Use the matrices M , obtained in Step 2, to act on (P, Q, R). If (M.P, M.Q, M.R) defines the same 

curve as some triple from P_list, remove such a triple from P_list.

Remark. To find all matrices M ∈ PGL5(F2) that map an element S ∈ Orbit(Pi) to Pi, it is enough to have 
only one such matrix M0 and to know all matrices in Stab(Pi). Namely, it is not hard to see for any such S
and M that there is a matrix N ∈ Stab(Pi) such that M.S = N.(M0.S). We use that in our implementation.

Remark. In every iteration of Step 3, we will remove at least one element from P_list, namely (P, Q, R), 
so the process terminates. As discussed in the last paragraph before the presentation of Algorithm 4, in this 
way, we will indeed remove from P_list all the triples (P ′, Q′, R′) defining a curve isomorphic over F2 to 
C = Z(qP , qQ, qR). Lastly, in Step 3, we check whether (M.P, M.Q, M.R) defines the same curve as some 
triple from P_list using the criterion occurring in the paragraph just mentioned by checking the equality 
of the corresponding vector spaces.

4.1. Computing the automorphisms over F2

An F2-automorphism of a curve C in CompInt5(F2) is induced by a matrix in PGL5(F2). If a matrix 

M ∈ PGL5(F2) is such that M : C
∼=→ C and C = Z(qP , qQ, qR), then

〈MqP ,MqQ,MqR〉F2
= 〈qP , qQ, qR〉F2

.

Therefore, for triples (P, Q, R) in CompInt5F2 with P = Pi and i ∈ {1, 2, 3, 4}, either M ∈ Stab(P ) or M
maps an element of W = (F2 · P + F2 ·Q + F2 · R) − {0, P} to P . In the latter case, we see that M needs 
to belong to the set of matrices mapping elements from W ∩ Orbit(P ) to P ; call that set D = D(P,Q,R). 
Therefore, for a fixed (P, Q, R) as above, we can only check whether

F2 ·M.P + F2 ·M.Q + F2 ·M.R = F2 · P + F2 ·Q + F2 ·R

for M in Stab(P ) ∪D(P,Q,R).
From the preceding discussion, we can easily get the precise steps of an algorithm for computing AutF2(C)

as a set, for each C ∈ CompInt5(F2).
We implemented the algorithms from this section in SageMath, [10] and computed the sets Σ and 

CompInt5(F2), as well as |AutF2(C)| for each curve C ∈ CompInt5(F2). For example, the set CompInt5(F2)
consists of 3905 elements.



D. Dragutinović / Journal of Pure and Applied Algebra 228 (2024) 107522 11
5. Obtained results

As we already indicated, using the algorithms from Section 2 for hyperelliptic, Section 3 for trigonal, and 
Section 4 for non-hyperelliptic non-trigonal curves of genus 5 over F2, we computed Hyp5(F2), Trig5(F2), 
and CompInt5(F2), the sets of all the isomorphism representatives. For all the obtained curves, we computed 
the number of their points over F2N for N ∈ {1, 2, 3, 4, 5} and determined the sizes of their F2-automorphism 
groups.

There are 1070 hyperelliptic, 2854 trigonal, and 3905 non-hyperelliptic non-trigonal curves of genus 5 
over F2, so in total, there are 7829 pairwise non-isomorphic curves of genus 5 over F2.

We already mentioned the stack counts

|H5(F2)| = 512 and |T5(F2)| = 2817,

and we got the stack count that was not known before

|U5(F2)| =
∑

C∈CompInt5(F2)

1
|AutF2(C)| = 3584 = 212 − 29.

Therefore, we have

|M5(F2)| = 6913 = 212 + 211 + 210 − 28 + 1.

The Honda-Tate theorem gives us that there are 4339 isogeny classes over F2 that contain a Jacobian of 
a genus 5 curve defined over F2.

Furthermore, Jacobian varieties of dimension g = 5 over F2 realize all eligible Newton polygons of height 
2g = 10. In other words, for any eligible Newton polygon N of height 10, there is a curve of genus 5 defined 
over F2, which has N as its Newton polygon.

In Table 1, for each of the three discussed classes of genus 5 curves, we mention the number of such 
curves occurring for indicated Newton polygons of height 10.

Table 1
Numbers of curves for indicated Newton polygon.

Newton polygon slopes Hyp5(F2) Trig5(F2) CompInt5(F2) Total
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1] 550 1417 1617 3584[
0, 0, 0, 0, 1

2 ,
1
2 , 1, 1, 1, 1

]
156 623 868 1647[

0, 0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

]
108 404 672 1184[

0, 0, 1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

]
32 122 206 360[

0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

]
88 80 176 344[

0, 1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1

]
0 64 88 152[

0, 1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1

]
48 24 40 112[

0, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1

]
56 28 108 192[ 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5
]

0 48 48 96[ 1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4
]

0 8 24 32[ 1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3
]

16 18 26 60[ 2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5
]

8 4 4 16[ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2
]

8 14 28 50

In Table 2, we collect the stack counts for all three types of genus 5 curves over F2 possessing specified 
Newton polygon.
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Table 2
Stack counts for indicated Newton polygon.

Newton polygon slopes H5(F2) T5(F2) U5(F2) M5(F2)
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1] 264 1405 1524 3193[
0, 0, 0, 0, 1

2 ,
1
2 , 1, 1, 1, 1

]
76 610 838 1524[

0, 0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

]
52 402 574 1028[

0, 0, 1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

]
16 122 198 336[

0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

]
40 78 154 272[

0, 1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1

]
0 64 88 152[

0, 1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1

]
24 24 32 80[

0, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1

]
24 24 64 112[ 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5
]

0 48 48 96[ 1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4
]

0 8 24 32[ 1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3
]

8 14 18 40[ 2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5
]

4 4 4 12[ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2
]

4 14 18 36

Example 5.1. There are 161 isogeny classes over F2 such that in each of them, we can find (pairwise non-
isomorphic) Jacobians defined by all three types of genus 5 curves over F2. For example, we can consider 
the hyperelliptic curve defined by the standard affine equation

y2 + y + x11 + x10 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x = 0,

the trigonal curve defined by

X4Y +X3Y 2 + XY 4 + X3Y Z + X2Y 2Z + XY 3Z+

+X3Z2 + X2Y Z2 + Y 3Z2 + XY Z3 + Y 2Z3 = 0 in P 2,

and the non-hyperelliptic non-trigonal curve defined by
⎧⎪⎪⎨
⎪⎪⎩
Y 2 + Y Z + Z2 + XT + ZT = 0
XT + XU + Y U + ZU = 0
X2 + XY + Y 2 + XZ + Y Z + XU + Y U + ZU + TU + U2 = 0

in P 4.

Since for each curve C of them we have that

|C(F2)| = 5, |C(F22)| = 9, |C(F23)| = 11, |C(F24)| = 33, and |C(F25)| = 25,

it follows that their Jacobians are isogenous over F2.

Example 5.2. The non-hyperelliptic non-trigonal curve C given in P 4 by
⎧⎪⎪⎨
⎪⎪⎩
Y 2 + XZ + Y Z = 0
XY + XZ + Y T + ZT + XU + ZU + U2 = 0
XY + XZ + Y Z + Z2 + XT + ZT + T 2 + Y U + ZU = 0

is the unique curve of genus 5 over F2 with 9 F2-points, which is the maximal number of F2-points among 
all genus 5 curves over F2; this agrees with [7] for q = 2 and g = 5 in their notation. The maximum number 
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of F2-points among hyperelliptic curves (of genus 5 over F2) is 6, and there are 44 such curves with this 
property. Among trigonal curves (of genus 5 over F2), the maximum number of F2-points is 8, and there 
are 6 trigonal curves attaining this number. The obtained values in these three cases agree with [6, Table 
2]. There are 308 (out of which 44 hyperelliptic, 23 trigonal, and 241 non-hyperelliptic non-trigonal) curves 
of genus 5 over F2 without F2-points.

Example 5.3. In Table 3, we mention the sizes of F2-automorphism groups occurring for the curves in 
Hyp5(F2) and the number of such curves C with the indicated size |AutF2(C)|.

Table 3
Sizes of F2-automorphism groups of curves in 
Hyp5(F2).

|AutF2 (C)| 2 4 6 12
#C in Hyp5(F2) 983 76 7 4

The four curves given in our list Hyp5(F2) by the equations

y2 + (x + 1)2x2y + x11 + x9 + x8 + x5 + x3 + x2 + x + 1 = 0,

y2 + (x + 1)2x2y + x11 + x10 + x3 + x = 0,

y2 + (x3 + x2 + 1)(x3 + x + 1)y + x10 + x6 + x4 + x3 = 0,

y2 + (x3 + x2 + 1)(x3 + x + 1)y + x12 + x10 + x8 + x7 + x5 + x3 + 1 = 0

are the ones with F2-automorphism group of size 12, the maximal one. Using the description from Section 2, 
we can take a closer look at the elements of these groups, compute their orders, and using [4, Table 2], find 
that the first two F2-automorphism groups are isomorphic to Z/3Z �Z/4Z, while the last two are isomorphic 
to the dihedral group D6.

Note that, a priori, we only counted the number of elements of each AutF2(C) for C in one of the lists 
Hyp5(F2), Trig5(F2), or CompInt5(F2), and we do not know what the structure of the group AutF2(C) is.

Example 5.4. Let Fq be a finite field of cardinality q = pr for r ∈ Z>0 and a prime number p ∈ Z>0, 
let g ∈ Z≥2, and let λ = [1λ1 , . . . , νλν ] be a partition of an integer m ∈ Z≥1 with non-negative integers 
λ1, . . . , λν , such that |λ| :=

∑ν
i=1 iλi = m. In [2], Bergström made Sn-equivariant counts of points defined 

over finite fields of the moduli space Hg,n of n-pointed smooth hyperelliptic curves of genus g over Fq. The 
counts depend on the numbers

aλ|g :=
∑

C∈Hypg(Fq)

1
|AutFq

(C)|

ν∏
i=1

ai(C)λi ,

where ai(C) = qi + 1 − |C(Fqi)|, for i ∈ Z≥1. In that paper, for arbitrary q and g as above, some explicit 
formulas were mentioned: a[2]|g = (−1)g − q2g, a[12]|g = −1 + q2g,

a[12,2]|g = −q2g+2 − 1
q + 1 − q2g + 1

2g(q
3 + q − 2) + 1

2

{
2q if g ≡ 0 mod 2
q3 − q − 2 if g ≡ 1 mod 2

,

and aλ|g = 0, if |λ| is odd. Using our data, for q = 2 and g = 5, we computed the sums from the definition 
of aλ|g for some λ, and the outcomes agree with the mentioned formulas:

a[2]|5 = −1025, a[12]|5 = 1023, a[12,2]|5 = −2367, a[12,3]|5 = a[3,42]|5 = a[1,2,52]|5 = 0.
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Example 5.5. In Table 4, we mention the sizes of F2-automorphism groups occurring for the curves in 
Trig5(F2) and the number of such curves C with the indicated size |AutF2(C)|.

Table 4
Sizes of F2-automorphism groups of curves in 
Trig5(F2).

|AutF2 (C)| 1 2 3 6
#C in Trig5(F2) 2783 63 7 1

The curve C given in P 2 by the equation

X5+Y 5 + X4Z + X3Y Z + XY 3Z + Y 4Z + X3Z2+

+X2Y Z2 + XY 2Z2 + Y 3Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0,

is the one with |AutF2(C)| = 6.

Example 5.6. In Table 5, we mention the sizes of F2-automorphism groups occurring for the curves in 
CompInt5(F2) and the number of such curves C with the indicated size |AutF2(C)|.

Table 5
Sizes of F2-automorphism groups of curves in CompInt5(F2).

|AutF2 (C)| 1 2 3 4 6 8 12 16 24
#C in CompInt5(F2) 3319 490 3 60 4 24 2 2 1

The curve C given in P 4 by
⎧⎪⎪⎨
⎪⎪⎩
Y 2 + XZ + Y Z = 0
Y 2 + XZ + Y Z + Z2 + Y T + T 2 + XU + Y U + ZU = 0
X2 + Y 2 + XZ + Y T + T 2 + Y U + U2 = 0

is the (only) one with F2-automorphism group of size 24; this is the largest possible size among all F2-
automorphism groups of genus 5 curves defined over F2.

Example 5.7. In Appendix A, we present the tables of the equations defining all the supersingular curves 
C of genus 5 over F2. Also, we present there the number of their F2N -points for N ∈ {1, 2, 3, 4, 5} in the 
form [|C(F2)|, |C(F4)|, |C(F8)|, |C(F16)|, |C(F32)|], which one can use to see that their Jacobians occur in 19
distinct F2-isogeny classes.

Example 5.8. In the first step of Algorithm 3 for determining the set CompInt5(F2) of non-hyperelliptic 
non-trigonal curves of genus 5 over F2, we mentioned that we found models for curves C in CompInt5(F2), 
such that one quadric on which such a curve lies is always one of the quadrics corresponding to the 15-tuples 
P1, P2, P3, or P4. Explicitly, we have

qP1 = X2 + XZ + Y Z + XT + ZT + TU,

qP2 = XY + Y 2 + Z2 + Y T + ZT,

qP3 = Y 2 + Y Z + Z2 + XT + ZT,

qP4 = Y 2 + XZ + Y Z.
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In the union 
⋃

i∈{1,2,3,4} Orbit(qPi
) there are 32116 elements, so in the set difference between all quadratic 

polynomials and this union, there are 651 elements. It can be checked that all of them are reducible over 
F2 and that they split into three orbits as was mentioned in the description of Algorithm 3.

For completeness, let us mention the remaining three (reducible over F2) quadratic polynomials we 
obtained in the first step of Algorithm 3. They are

qP5 = Y 2,

qP6 = X2 + XY,

qP7 = X2 + XY + XT + Y 2 + Y Z + Y T + Z2 + ZT + T 2

= (X + ζ2Y + Z + (ζ2 + 1)T )(X + (ζ2 + 1)Y + Z + ζ2T ),

where ζ2 ∈ F2, such that ζ2
2 + ζ2 + 1 = 0.

All the relevant data that we used, including the sets Orbit(Pi) and Stab(Pi) for i ∈ {1, 2, 3, 4} and 
the matrices M appearing in the second step of Algorithm 4, can be found in the codes available on the 
mentioned GitHub page. Finally, we note that the choice of the representatives Pi for i ∈ {1, 2, 3, 4, 5, 6, 7}
is not canonical and depends on our implementation of the first step of Algorithm 3. However, one can 
use the mentioned additional data to find some other defining equations of the isomorphism classes of 
non-hyperelliptic non-trigonal curves of genus 5 over F2.
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Appendix A. Tables of supersingular binary curves of genus five

In this section, we present the defining equations of all the supersingular curves C of genus 5 over F2
and their number of F2N -points for N ∈ {1, 2, 3, 4, 5} as mentioned in Example 5.7, and for each of them 
we comment on the size of AutF2(C).

There are 8 hyperelliptic, 14 trigonal, and 28 non-hyperelliptic non-trigonal supersingular curves of genus 
5 over F2, up to an isomorphism over F2. All the hyperelliptic ones have an F2-automorphism group of size 
2 and we present their equations in Table 6. All the trigonal ones have a trivial F2-automorphism group 
and we present their equations in Table 7. In Table 8, we present the equations of supersingular curves in 
CompInt5(F2) with a trivial F2-automorphism group, and in Table 9, we present the ones with a non-trivial 
F2-automorphism group - the top four ones have an F2-automorphism group of size 2, the next six of size 
4, and the bottom four of size 8.
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Table 6
Supersingular curves C in Hyp5(F2).

Defining equation of C List of |C(F2N )| for N = 1, 2, 3, 4, 5
y2 + y + x12 + x11 + x10 + x5 + x2 + x + 1 = 0 [1, 5, 13, 25, 41]

y2 + y + x11 + x10 + x9 + x4 + x3 + x + 1 = 0 [1, 9, 1, 17, 41]

y2 + y + x11 + x8 + x2 + 1 = 0 [3, 5, 9, 17, 33]

y2 + y + x11 + x10 + x6 + x5 + x3 + x2 + x = 0 [3, 5, 9, 17, 33]

y2 + y + x12 + x11 + x10 + x5 + x2 = 0 [3, 9, 9, 25, 33]

y2 + y + x12 + x11 + x10 + x9 + x8 + x3 + x = 0 [3, 9, 9, 25, 33]

y2 + y + x12 + x11 = 0 [5, 5, 5, 25, 25]

y2 + y + x11 + x10 + x9 + x8 + x6 + x4 + x2 + x = 0 [5, 9, 17, 17, 25]

Table 7
Supersingular curves C in Trig5(F2).

Defining equation of C List of |C(F2N )| for N = 1, 2, 3, 4, 5
X5 + X3Y 2 + X2Y 3 + X4Z + XY 3Z + Y 4Z+

+X2Y Z2 + Y 3Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [1, 5, 13, 41, 41]

X5 + X4Y + X3Y 2 + X2Y 3 + XY 4 + Y 4Z + X3Z2+
+X2Y Z2 + XY 2Z2 + Y 3Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [1, 9, 13, 33, 41]

X5 + X4Y + X3Y 2 + X2Y 3 + Y 5 + X3Y Z+
+X2Y 2Z + X2Y Z2 + XY 2Z2 + XY Z3 + Y 2Z3 = 0 [3, 5, 9, 17, 33]

X5 + X4Z + XY 3Z + Y 4Z + XY 2Z2 + X2Z3 + XY Z3 = 0 [3, 5, 9, 17, 33]

X5 + X4Y + X3Y 2 + X2Y 3 + Y 5 + X3Y Z+
+XY 3Z + Y 4Z + X2Y Z2 + XY 2Z2 + XY Z3 = 0 [3, 5, 9, 17, 33]

X5 + X4Y + X2Y 3 + X4Z + X3Y Z + X2Y 2Z+
+Y 4Z + X3Z2 + X2Y Z2 + XY 2Z2 + XY Z3 = 0 [3, 5, 9, 17, 73]

X4Y + X3Y 2 + X2Y 3 + XY 4 + Y 5+
+X3Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [3, 9, 9, 25, 33]

X5 + X2Y 3 + XY 4 + Y 5 + X4Z + X3Y Z + X2Y 2Z+
+X3Z2 + X2Y Z2 + XY 2Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [3, 9, 9, 25, 33]

X5 + X4Y + X4Z + Y 4Z + X2Y Z2+
+XY 2Z2 + Y 3Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [3, 9, 9, 25, 33]

X4Y + Y 5 + X4Z + X3Z2 + X2Y Z2+
+XY 2Z2 + X2Z3 + XY Z3 + Y 2Z3 = 0 [3, 13, 9, 17, 33]

X4Y + X3Y 2 + X2Y 3 + Y 5 + X3Y Z + X2Y 2Z+
+X3Z2 + X2Y Z2 + XY 2Z2 + XY Z3 + Y 2Z3 = 0 [5, 9, 17, 17, 25]

X3Y 2 + Y 5 + X4Z + X2Y 2Z + XY 3Z + X3Z2 + X2Z3 + XY Z3 = 0 [5, 9, 17, 17, 25]

X5 + X2Y 3 + XY 4 + Y 5 + X2Y 2Z + XY 3Z+
+Y 4Z + X2Y Z2 + XY 2Z2 + X2Z3 + XY Z3 = 0 [5, 9, 17, 17, 25]

X4Y + X3Y 2 + X2Y 2Z + XY 3Z+
+Y 4Z + X3Z2 + X2Z3 + XY Z3 = 0 [7, 9, 13, 25, 17]
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Table 8
Supersingular curves C in CompInt5(F2) with |AutF2 (C)| = 1.

Defining equations of C List of |C(F2N )| for N = 1, 2, 3, 4, 5⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + TX + UX + X2 + UY + Y 2 + Z2 = 0
T 2 + TU + U2 + TX + UY + TZ + UZ + Z2 = 0

[1, 5, 13, 25, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + TX + UX + TY + UY + XY + TZ + UZ = 0
U2 + UX + X2 + UY + XY + Y 2 + TZ + XZ + Y Z + Z2 = 0

[1, 5, 13, 25, 41]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + X2 + TY + UY + TZ + UZ + XZ = 0
TU + U2 + TX + UX + TY + UY + Y 2 + TZ + XZ = 0

[1, 5, 13, 41, 41]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + TX + UX + X2 + UY + Y 2 + Z2 = 0
U2 + TX + UY + XY + Y 2 + XZ = 0

[1, 9, 1, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + TX + UX + TY + UY + XY + TZ + UZ = 0
U2 + TX + X2 + TY + UZ + XZ + Y Z + Z2 = 0

[3, 5, 9, 17, 33]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + X2 + TY + UY + TZ + UZ + XZ = 0
U2 + TY + UY + XY + TZ + Y Z = 0

[3, 5, 9, 17, 33]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + X2 + TY + UY + TZ + UZ + XZ = 0
T 2 + U2 + UX + XY + TZ + UZ + Y Z + Z2 = 0

[3, 5, 9, 17, 33]

⎧⎪⎨
⎪⎩
TU + TX + X2 + TZ + XZ + Y Z = 0
TU + TX + UX + X2 + UY + Y 2 + Z2 = 0
T 2 + TX + UX + X2 + XY + TZ + UZ + XZ + Z2 = 0

[3, 5, 9, 17, 73]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + X2 + TY + UY + TZ + UZ + XZ = 0
T 2 + U2 + TY + UY + XZ + Y Z + Z2 = 0

[3, 5, 9, 17, 73]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
TU + X2 + TY + UY + TZ + UZ + XZ = 0
T 2 + TU + U2 + TX + UX + X2 + UY + Y 2 + Y Z + Z2 = 0

[3, 9, 9, 25, 33]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + TX + UX + TY + UY + XY + TZ + UZ = 0
U2 + TX + TY + UZ + XZ + Y Z = 0

[3, 9, 9, 25, 33]

⎧⎪⎨
⎪⎩
TX + Y 2 + TZ + Y Z + Z2 = 0
T 2 + TU + TX + TY + XY + TZ + UZ + XZ + Y Z = 0
TU + U2 + UX + TY + XY + Y 2 + UZ + XZ + Y Z = 0

[5, 9, 17, 17, 25]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + TX + UX + TY + UY + XY + TZ + UZ = 0
U2 + TX + TY + XY + Y 2 + UZ + Y Z = 0

[5, 9, 17, 17, 25]

⎧⎪⎨
⎪⎩
TY + XY + Y 2 + TZ + Z2 = 0
TU + UX + TY + UY + Y Z + Z2 = 0
TU + U2 + TX + UX + TY + UY + XY + UZ + XZ = 0

[5, 9, 17, 17, 25]
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Table 9
Supersingular curves C in CompInt5(F2) with |AutF2 (C)| > 1.

Defining equations of C List of |C(F2N )| for N = 1, 2, 3, 4, 5⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + UY + Y 2 + TZ + UZ + XZ = 0
T 2 + U2 + UX + TY + UY + Y 2 + UZ + XZ + Y Z + Z2 = 0

[1, 1, 13, 33, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + TX + TY + UY + Y 2 + TZ + XZ = 0
T 2 + TX + UX + TY + Y 2 + TZ + UZ + Z2 = 0

[3, 5, 9, 17, 33]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + UY + Y 2 + TZ + UZ + XZ = 0
T 2 + U2 + UX + X2 + TY + UY + Y 2 + UZ + Z2 = 0

[3, 13, 9, 17, 33]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + UY + Y 2 + TZ + UZ + XZ = 0
T 2 + TX + TY + TZ + XZ = 0

[5, 9, 5, 33, 25]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + XY + UZ + XZ + Z2 = 0
T 2 + TX + UX + TZ + XZ + Y Z = 0

[1, 9, 1, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + XY + UZ + XZ + Z2 = 0
T 2 + U2 + X2 + XY + TZ + UZ + Z2 = 0

[1, 9, 13, 49, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + XY + UZ + XZ + Z2 = 0
T 2 + U2 + X2 + XY + Y 2 + TZ + UZ + Z2 = 0

[1, 17, 13, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + UX + X2 + Y 2 + TZ + UZ + XZ + Z2 = 0
U2 + X2 + XY + Y 2 + UZ + Y Z = 0

[5, 9, 5, 49, 25]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + UX + X2 + Y 2 + TZ + UZ + XZ + Z2 = 0
T 2 + UX + X2 + XY + TZ + XZ = 0

[5, 9, 17, 17, 25]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + UX + X2 + Y 2 + TZ + UZ + XZ + Z2 = 0
T 2 + UX + X2 + XY + TZ = 0

[5, 17, 5, 17, 25]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + TX + UX + X2 + XY + UZ + XZ + Z2 = 0
T 2 + TX + UX + X2 + Y 2 + TZ + XZ + Y Z + Z2 = 0

[1, 9, 1, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + UX + X2 + Y 2 + TZ + UZ + XZ + Z2 = 0
U2 + XY + Y 2 + UZ + Y Z + Z2 = 0

[1, 9, 1, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
T 2 + U2 + UX + X2 + Y 2 + TZ + UZ + XZ + Z2 = 0
U2 + X2 + XY + Y 2 + UZ + Y Z + Z2 = 0

[1, 9, 25, 17, 41]

⎧⎪⎨
⎪⎩
Y 2 + XZ + Y Z = 0
U2 + UX + TY + XY + TZ + UZ + XZ = 0
T 2 + TX + UY + XY + TZ + UZ + XZ + Y Z + Z2 = 0

[9, 9, 9, 17, 9]
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