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Abstract

To overcome the mechanical coupling of an ice sheet with an ice shelf, one single set
of velocity equations is presented covering both the sheet and the shelf. This set is ob-
tained by applying shared sheet-shelf approximations. The hydrostatic approximation
and a constant density are the only approximations that are applied to the full-Stokes5

momentum equations. The remaining stress terms from the momentum equations and
the stress terms from the usual ice-flow law are multiplied by coefficients which can
be put to zero or one, facilitating several stress approximations per domain within one
model. In addition we derived a matrix format for the discretized set of the fully cou-
pled velocity equations on a three-dimensional vertically scaled grid, in which all linear10

derivative terms are treated implicitly. The compact vector format of this sparse matrix
equation is developed, including the boundary conditions.

1 Introduction

Large ice caps, like e.g. Antarctica, roughly consist of two domains: the sheet and the
shelf (see Fig. 1). The sheet or the grounded area, is that part of the ice cap where15

the ice rests on the bedrock. Sheet parts with their bottom below sea level are called
marine sheets. Shelves are the floating parts, surrounding the sheet. Shelves are fed
by ice flow from the sheet, and calve at the seaward front. The grounding line, being
part of the sheet, separates the sheet from the shelf or the ocean. The part of the sheet
near and including the grounding line is called the transition zone. Ice stream regions20

are grounded areas with a relative high sliding velocity.
Accurate modelling of the progressive growth of the sheet due to grounding shelves,

or the desintegration of the sheet vice versa, requires a dynamic inclusion of these
shelves and of grounding line migration. Large marine sheets can disintegrate rapidly
if they become unstable due to changes in the stress regime within the ice. Those25

changes can be caused by an increased ice temperature, by a decline of a bordering
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shelf, or by an increased sea level. For example, the scenario in which the collapse
of the West Antarctic ice sheet has been proposed (e.g. Mercer, 1978), yielding a sea
level rise of 5 meter, has ever since then also been challenged (e.g. Vaughan, 2007).

In order to be suitable for studying long term paleo ice-sheet evolution, a model must
be capable of handling various different ice-sheet configurations: from an ice free situ-5

ation to a situation where continents are covered by a 4 km thick ice cap. The complex
climate system, including ice caps themselves, generates positive feedback mecha-
nisms which can trigger strong forcing causing dramatic expansion or retreat of the ice
caps. This is indicated by various deep sea δ18O Cenozoic records (Zachos et al.,
2001) representing continental ice storage and changes in deepwater temperature.10

To simulate these phenomena, an ice model has to follow the forcing adequately
because of the hysteresis involved with grounding line migration (Schoof, 2007). If the
model reacts too slowly, it will possibly stay in a wrong stage for a long time due to this
hysteresis. In addition a proper grounding line migration is important on shorter time
scales because of its implications on the local stress regime and the sheet extent. Not15

including the shelves leads to artificial hysteresis: once a part of the sheet has vanished
it is difficult to recover. If a shelf forms first, it can slowly grow until the floatation criterion
is exceeded. Then it grounds and becomes part of the sheet. Therefore shelves should
be included to describe the irreversible behaviour of the sheet-shelf system.

Compared to the bottom friction at the sheet the bottom friction at the shelf is neg-20

ligible, leading to a different stress regime within the shelf. This, combined with some
other shelf specific assumptions, leads to a set of velocity equations for the shelf (see
e.g. Huybrechts (1991)) which differ from the usual ones for the sheet which are based
on the shallow ice approximation (SIA, Hutter (1983)). In the transition zone, which
is often taken equal to the grounding line, usually a more complex hybrid approach is25

followed (Huybrechts, 1991).
Calculating the velocity field is the central problem in ice dynamics. Once the ve-

locity field is known, the ice fluxes can be calculated directly from mass conservation.
The flow parameter for ice Aflow, partly causing the non-linearity in the velocity expres-
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sion, is strongly dependent on temperature (Paterson, 1994, chapter 5). By taking
energy conservation into account a parallel calculation of the temperature field can be
performed estimating Aflow at each grid point.

A difficult task in ice-cap modelling is coupling the sheet and the shelf. These two
domains with their different set of velocity equations have to be coupled at the ground-5

ing line, which has an irregular pattern and varies in time. In addition, often a special
hybrid stress treatment is used at this grounding line. Combining those difficulties at
the grounding line, makes grounding line migration a delicate subject. The importance
and the difficulty of modelling grounding line migration is for instance discussed by Vieli
and Payne (2005).10

Although the SIA suffices for most parts of the sheet, in the transition zone more
stresses should be included. Therefore, higher-order and full-Stokes ice-sheet models
are applied to sheets, and to marine sheets in particular. The performance of a variety
of such models is compared by Pattyn et al. (2008). The precise stress regime at the
sheet edges possibly influences a large part of the up stream sheet. Possibly this is15

even more the case in the numeric situation than in reality.
For a marine sheet with a one-dimensional flow direction, an adapting grid in that

direction improves the performance of modelling the grounding line migration (Schoof,
2007; van Tuyll et al., 2007). But in case of a large sheet with a grounding line varying
irregularly in both horizontal directions and in time, adapting grids are hard to handle20

numerically.
Therefore it is necessary to develop an ice model which is robust for various ice-cap

configurations, which includes shelves, and which is based on a full stress approach.
Here, we derive one set of velocity equations, which is valid for the sheet, the shelf and
the transition zone. Our method resembles the higher-order stress approach for the25

sheet of Pattyn (2003), but is extended by taking the full horizontal shear into account.
Solving this single set of equations for the entire domain avoids mechanical coupling of
the sheet with the shelf at an irregularly varying internal boundary. As a consequence
of including most stresses in our derivation, the transition zone and the ice divide are
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described accurately, which is not the case in the SIA. Crucial in our approach is that
the focus of simultaneous problems interfering at the grounding line reduces. With
the proposed approach we obtain a three-dimensional (3D) description of the sheet
and the shelf, with only boundary conditions at the outer domain edges, avoiding the
internal varying boundary conditions at the grounding line.5

To obtain the general velocity equations for the sheet, the transition zone and the
shelf, we applied five general assumptions to the full-Stokes momentum equations and
substituted the full stress flow law of ice. We took a flow law which is based on the
relation between the second invariants only. The result can be expressed in terms of
velocities, stresses or strain rates. Each representation has its advantages and disad-10

vantages in applying successive approximations in an earlier or later stage. To com-
bine the advantages of the different representations we took the velocity representation
and introduced some “simplification coefficients”, either one or zero, facilitating several
stress approximations in a later stage. These simplification coefficients are also helpful
in tracing the consequences for the numerical scheme of other implicit/explicit choices.15

The simplification coefficients allow tests concerning the validity of the usual stress ap-
proximations, because the coefficients can be chosen separately for the sheet and the
shelf. We prefer the velocity representation because the bottom boundary conditions,
such as sliding, can be specified readily.

As a result we obtain a higher order stress solution for a 3D 3-component velocity20

field which is valid for both the sheet and the shelf. Besides the hydrostatic approxi-
mation in the vertical, all stresses are taken into account. We present a matrix format
for the discretized set of fully coupled velocity equations on a 3D vertically scaled grid,
in which all linear derivatives are taken implicit. The compact vector format of this
sparse matrix equation is presented including the boundary conditions. The set of ve-25

locity equations can be solved with a sparse matrix solver by using this compact vector
format. Section 2 gives a conceptual outline of our approach.
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2 Approach

The general approach in the work presented is characterized by the following steps:

– Derivation of the velocity equations and application of the physical approxima-
tions, see Sect. 3 and Sect. 4.

– Transformation of these velocity equations to the scaled coordinates, see Sect. 55

and Appendix B which is summarized by Table 3.

– Decision about the implicit/explicit treatment of the equation terms, see Sect. 5.
This choice strongly determines the complexity in later steps.

– Discretization of the implicit parts, see Sect. 5 and Appendix C which is summa-
rized by Table 4.10

– Choosing a matrix format which is suited for the required “coupled dimensions”.
This matrix format must be capable of solving the given coupled set of equations.
Its complexity depends on the relation between the discretized equations. As
soon as all variables have discrete derivatives all equations become coupled, see
Sect. 5 and Appendix E.15

– Choosing the format to translate the sparse matrix to a three-vector format, and
choosing a matching format for the right-hand side (RHS) and the solution vector,
see Sect. 5 and Appendix E.

– Solving this {three-vector matrix, RHS, solution} -format by a sparse matrix solver.
The solution contains the 3D fields of the three velocity components.20
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3 Basic equations

For an overview of frequently used variables and coordinates see Table 1.
In ice dynamics several different physical processes are involved. As soon as there

is a gradient in the ice surface height Hs, ice starts to flow in the down slope direction
due to gravity. Therefore the gradient of Hs plays an important role in the flow of ice.5

Hs depends on the floatation criterion and has to be calculated differently for the sheet
and the shelf with

Hs =

{
H + Hb

S + (1 − ρice
ρw

)H
for

ρice
ρw

H > S − Hb grounded

else floating
(3.1)

where H is the ice thickness, Hb is the bedrock level or bottom topography, ρice and ρw
are the ice and sea-water densities respectively and S is the sea level. Hs, Hb and S10

are relative to present day sea level, as schematically indicated in Fig. 1. The floating
and grounded points are distinguished by the floatation criterion, which is given by the
condition in Eq. (3.1).

Gravity causes deformational ice flow and, if the bottom friction is low enough, slid-
ing. The water-saturated marine sheet parts in the coastal zone experience an upward15

buoyancy force proportional to the ice column below sea level, like glaciers in case of a
high melt water flux. This buoyancy effect might have a significant impact on the stress
regime reducing the bottom friction, possibly towards the temperature dependent slid-
ing threshold.

The deformation and the sliding threshold depend on the local temperature and the20

local pressure melting point, because higher temperatures will soften the ice and vice
versa. The ice temperature T depends on the surface temperature, the geothermal
heat flux, the ice conductivity and the ice heat capacity, the internal deformational
heating, the frictional heating at the bottom, and on heat advection.

The surface mass balance and the bottom shelf melt are determined by the sur-25

rounding atmosphere-ocean climate system. This surface mass balance, the bottom
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shelf melt, the geothermal heat flux and the surface ice temperature are the forcings
of the ice cap. The sea level can be considered as a forcing too because of the large
impact on the stress regime in the ice as soon as the floatation criterion is exceeded.

Crucial in the evolution of an ice sheet is the continental shape, the bedrock geome-
try, with its response to the ice load. The (initial) continental shape is as determing as5

the other forcings and in paleo studies poorly known.

3.1 Continuity equation for ice

The continuity equation for ice, describing mass conservation, per unit area ∆x∆y is

dtH = −∇ · (v̄H) +Ms +Mb (3.2)

with v̄ the two-dimensional vertical averaged velocity field in x and y direction, Ms10

the surface mass balance (in meter ice equivalent per year) being equal to the snow
accumulation minus the surface melt if any, and Mb the basal mass balance (in meter
ice equivalent per year) at the shelf being equal to the refreezing ocean water minus
the basal melt (relative large) and at the sheet being equal to the basal melt (relative
small). The basal melt process at the shelf bottom is caused by ocean water contact,15

while at the sheet bottom the melt is caused by the geothermal heat flux, frictional
heating and deformational heating.

This section addresses the central problem in Eq. (3.2): solving the velocity field
from the Stokes momentum equations and the incompressibility condition, in combi-
nation with the ice flow law. Via the flow parameter, the velocity field depends on the20

temperature. Further, the velocity field depends on the spatial derivatives of the surface
height and indirectly on the floatation criterion. The latter is because the floating crite-
rion determines the surface height and the bottom boundary condition, which again is
temperature dependent in the grounded case due to the sliding threshold. In the next
subsections we derive a general set of velocity equations by applying five common25

sheet-shelf assumptions to the momentum equations.
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3.2 Momentum equations

Summation of all forces, i.e. volume forces and stresses, the second law of Newton de-
scribes conservation of momentum (see e.g. Acheson, 2003) and reads in component
form (Navier-Stokes)

Fi + ∂jτij = ρicedtvi (3.3)5

Here, Fi is the i-th component of the sum of the volume forces, ρice is the ice density,
dtvi is the time derivative of the i-th velocity component, and τij is the Cauchy stress
tensor describing the stress in the direction i and acting on the plane which has j as
its normal vector. τij describes the normal stress components for i=j and the shear
stress components for i6=j. Because the antisymmetric part of a second order tensor10

only represents rotation, and because for our purpose we neglect rotation within the
ice-cap system, the stress tensor is a symmetric tensor.

3.3 The deviatoric stress equations for ice

In this section five general approximations are made which are assumed to be valid for
both the sheet and the shelf (and in the transition zone). In ice dynamics the accelera-15

tions in Eq. (3.3) are neglected

dtvi = 0 (3.4)

This is the first general assumption. Gravity is the permanent present volume force.
Another volume force acting on water-saturated ice layers is buoyancy, which also is
caused by gravity due to the differences in the densitiy of ice and water. Both gravity20

and buoyancy are directed vertically, which means Fx=Fy=0. For a non-saturated ice
sheet buoyancy plays no role. For an ice shelf which is in floating equilibrium the mass
of the layers on top of a certain layer z determines the local pressure at that z. Here,
we do not consider the (partial) saturatation of marine ice sheets, because the ice-
sheet saturation distribution would be an issue of large uncertainty. Therefore, we can25
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discount the upward buoyancy volume force (Fb=(ρw–ρice)g). Taking only gravity into
account we get

Fz(z) = −ρice(z)g (3.5)

with the gravitational acceleration g=9.81 m/s2. A second general assumption
is made by choosing the ice density independent of z at a constant value of5

ρice=910 kg/m3. So we have

Fi = −ρicegδiz (3.6)

These two assumptions, combined with the second law of Newton (3.3) lead to the
Euler equation which describes conservation of momentum for the specific case of an
ice sheet, an ice shelf, or a glacier:10

∂jτij = ρicegδiz (3.7)

For each component separately this becomes

∂xτxx + ∂yτxy + ∂zτxz = 0 (3.8)

∂xτyx + ∂yτyy + ∂zτyz = 0 (3.9)

∂xτzx + ∂yτzy + ∂zτzz = ρiceg (3.10)15

Where τxz and τyz, the stresses in respectively the x and the y direction in the horizontal
plane, are the horizontal shear stresses. The stresses τzx and τzy, directed into the z
direction and situated in the vertical planes, are called the vertical shear stresses. We
will call τxy and τyx, the stresses in respectively the x and the y direction and situated
in the vertical planes, the side stresses. Furthermore, τxx and τyy are the horizontal20

normal stresses, and τzz is the vertical normal stress.
A third general assumption is that the horizontal gradients of the vertical shear

stresses are small compared to the vertical gradient of the vertical normal stress. If the
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vertical stesses are relative important, e.g. in the transition zone, they are two orders
smaller (Herterich, 1987; Pattyn, 2000, 2003).

∂zτzz � ∂xτzx, ∂yτzy (3.11)

which is equivalent to the assumption that normal stress equals the weight of the layers
above: the hydrostatic approximation in the vertical. In contrast to a full-Stokes solution5

we refer to an ’almost-full-stress’ solution as we take all stresses into account except
those which vanish with this hydrostatic approximation. Using this third assumption
(3.11) Eq. (3.10) becomes

∂zτzz = ρiceg (3.12)

This equation can be integrated from layer z to the surface height Hs to obtain the10

vertical normal stress τzz at level z. After this integration we have

τzz(z) = −ρiceg(Hs − z) + τzz(Hs) (3.13)

Neglecting the vertical normal stress at the surface of 1 atmosphere means τzz(Hs)'0
which is the fourth general assumption, and leads to

τzz(z) = −ρiceg(Hs − z) (3.14)15

Substituting some linear combinations of the equation which defines the deviatoric
stress tensor τij (see Eq. (A2)) into Eqs. (3.8–3.9), using Eq. (3.14) and the symme-
try of the stress tensor, the set equations is expressed in deviatoric stresses (for the
derivation see Appendix A4):

∂zτ
′

xz = ρiceg∂xHs − 2∂xτ
′

xx − ∂xτ
′

yy − ∂yτ
′

xy (3.15)20

∂zτ
′

yz = ρiceg∂yHs − 2∂yτ
′

yy − ∂yτ
′

xx − ∂xτ
′

xy (3.16)

τ
′

zz = −τ
′

xx − τ
′

yy (3.17)

Here, as a third equation the incompressibility condition (see Eq. (A5)) has been added.
The incompressibility of ice is the fifth general assumption, and is however required
deriving the constitutive relation of ice in the next subsection.25
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3.4 Strain rate and the constitutive relation

As the stress tensor contains the applied forces in all directions, the strain tensor con-
tains the deformation in all directions. In fact the time derivative of the strain, the strain
rate, and thus the strain rate tensor ε̇ij is used, which is defined by

ε̇ij =
1
2

(∂jvi + ∂ivj) (3.18)5

where v is the deformational velocity due to the applied stress.
The empirical based constitutive relation for ice, the ice flow law known as Glen’s

flow law (Paterson, 1994), relates the deviatoric stress to the strain rate by

τ
′

ij = Aflow
−1
n (ε̇e

2 + ε̇2
0
)

1−n
2n ε̇ij (3.19)

where ε̇2
0
=10−30 is added to prevent dividing by zero in numerical evaluations, and10

with

ε̇e
2 ≡ ε̇xx

2 + ε̇yy
2 + ε̇xxε̇yy + ε̇xy

2 + ε̇xz
2 + ε̇yz

2 (3.20)

being minus the second invariant of ε̇.

3.5 The general 3D velocity field

To obtain the velocity equations the flow law for ice is substituted in the momentum15

equations. Recalling Eq. (3.19), substituting definition (3.20), and thereafter the sub-
stitution of Eq. (3.18) leads to

τ
′

ij = Aflow
−1
n (ε̇e

2 + ε̇2
0
)

1−n
2n ε̇ij

= Aflow
−1
n (ε̇xx

2 + ε̇yy
2 + ε̇xxε̇yy + ε̇xy

2 + ε̇xz
2 + ε̇yz

2 + ε̇2
0
)

1−n
2n ε̇ij (3.21)

=
1
2
Cuvw(∂jvi + ∂ivj) (3.22)20
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In which Cuvw abbreviates the fixed components. In that sense ’fixed’, that they don’t
depend on the deviatoric stress indices i and j. Cuvw is defined by

Cuvw ≡ Aflow
−1
n

(
(∂xu)2 + (∂yv)2 + (∂xu)(∂yv)

+
1
4

[
(∂yu + ∂xv)2 + (∂zu + ∂xw)2 + (∂zv + ∂yw)2] + ε̇2

0

)
1−n
2n (3.23)

In Eq. (3.22) each component is expressed in u, v , and w. Substituting Eq. (3.22) in5

the set of Eqs. (3.15–3.17) results in a set of equations expressed entirely in u, v , and
w

ρiceg∂xHs =
1
2
∂z(Cuvw(∂zu + ∂xw)) + 2∂x(Cuvw∂xu) + ∂x(Cuvw∂yv)

+
1
2
∂y (Cuvw(∂yu + ∂xv)) (3.24)

ρiceg∂yHs =
1
2
∂z(Cuvw(∂zv + ∂yw)) + 2∂y (Cuvw∂yv) + ∂y (Cuvw∂xu)10

+
1
2
∂x(Cuvw(∂yu + ∂xv)) (3.25)

0 = ∂xu + ∂yv + ∂zw (3.26)

This set of three elliptical second-order partial differential equations with three un-
knowns u, v , and w, has to be solved coupled to obtain an almost-full-stress solution.

3.6 The 3D boundary conditions15

To solve the resulting elliptical set of partial differential equations numerically, we need
several boundary conditions. At the horizontal domain boundaries of the grid a smooth
extension is assumed for all three velocity components by assuming:

∂xu = ∂xv = ∂xw = 0 (3.27)
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in the x-direction. And in the y-direction by

∂yu = ∂yv = ∂yw = 0 (3.28)

This is a slightly easier approach than applying a stress free condition, as e.g. derived
by Deponti et al. (2006), but without a significant difference. The atmosphere-ice in-
terface and the ice-water interface at the bottom of the shelf are both taken as free5

surfaces by imposing:

∂zu = ∂zv = ∂zw = 0 (3.29)

At the bottom of the sheet the horizontal velocity components are prescribed with
Dirichlet conditions. For large parts of the sheet this prescribed bottom horizontal
velocities will be zero, representing a situation in which the ice is frozen to the bedrock.10

For other parts of the sheet like for ice-stream areas in particular, this prescribed ve-
locities will be the sliding velocities:

u = usliding (3.30)

v = vsliding (3.31)

The vertical velocity at the bottom follows from a kinematic condition and is applied as15

a Dirichlet condition, with the boundary condition at the ice-bedrock interface given by

w(Hb) = ∂tHb +Mb + u(Hb)∂xHb + v(Hb)∂yHb (3.32)

where w(Hb) is the vertical velocity at the ice-bedrock interface and u(Hb) and v(Hb)
are the sliding velocities at the ice-bedrock interface. Note that the vertical movement
of the bedrock ∂tHb might differ from w(Hb) due to the basal melt and the advection in20

the lowest ice layer.
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4 A formulation of the general velocity equations facilitating several stress ap-
proximations

In the previous section the momentum Eqs. (3.15–3.17) are combined with the flow-law
Eq. (3.22) and expressed in u, v , and w (Eqs. (3.23–3.26)). The two reasons to express
those equations in u, v , and w are: Firstly, substituting three independent variants of5

Eq. (3.22) in Eqs. (3.15–3.17) yields a closed set, leaving three unknowns in the three
Eqs. (3.24–3.26). Secondly, the boundary conditions at the ice-bedrock interface, such
as the parameterized sliding velocity, the zero velocities in case of a frozen situation,
and w(Hb) as in Eq. (3.32), are expressed in terms of velocities instead of stresses.
The velocity representation conveniently matches both cases.10

However, in the velocity representation it is difficult to see from which stress terms
the velocity terms originate. Thus, attaining the stress approximations becomes cum-
bersome. Therefore, in this section we construct, by intoducing seven simplification
coefficients f0–f6, a differential representation of the velocity field which allows straight-
forward stress approximations. These simplification coefficients have values 0 or 1 for15

terms being omitted or taken into account respectively (see also Table 2). Including
them we can rewrite the set of Eqs. (3.24–3.26) to

ρiceg∂xHs =
1
2
f4∂z(Cuvw(∂zu + f0∂xw)) + 2f5∂x(Cuvw∂xu) + f5∂x(Cuvw∂yv)

+
1
2
f6∂y (Cuvw(∂yu + ∂xv)) (4.1)

ρiceg∂yHs =
1
2
f4∂z(Cuvw(∂zv + f0∂yw)) + 2f5∂y (Cuvw∂yv) + f5∂y (Cuvw∂xu)20

+
1
2
f6∂x(Cuvw(∂yu + ∂xv)) (4.2)

0 = ∂xu + ∂yv + ∂zw (4.3)

95

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
2, 81–158, 2009

A numerical ice sheet
– ice shelf 3D

velocity field solution

T. J. Reerink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

and we redefine Eq. (3.23) by

Cuvw ≡ Aflow
−1
n

(
f1(∂xu)2 + f1(∂yv)2 + f1(∂xu)(∂yv)

+
1
4

[
f2(∂yu + ∂xv)2 + f3(∂zu + f0∂xw)2 + f3(∂zv + f0∂yw)2] + ε̇2

0

)
1−n
2n (4.4)

Most models use another (sixth) general assumption

∂zu � ∂xw (4.5)5

∂zv � ∂yw (4.6)

This assumption can be applied by taking f0=0. In that case the first two equations
of this set depend only on u and v . After solving u and v coupled, w can solved
with Eq. (4.3) separately. The longitudinal stress, the side shear and the horizontal
shear can be neglected by taking respectively f1, f2 or f3 zero. Several derivatives, as10

presented in Table 2 can be neglected separately by taking f4, f5 or f6 zero.
The almost-full-stress solution is suitable for solving the combined velocity field for

the sheet, the shelf and the transition zone. Because of the simplification coefficients
it is possible to use this set in case of different stress approximations for the sheet and
the shelf. In both cases the advantage of using a single set of equations for the sheet15

and the shelf is that no interior boundary has to be handled.

4.1 Usual shelf and sheet approximations

If we take the usual shelf approximations we have f0=f3=f4=0 and f1=f2=f5=f6=1, as
in Table 2. Substituting these values in Eqs. (4.1–4.4), we obtain

ρiceg∂xHs = 2∂x(Cuvw∂xu) + ∂x(Cuvw∂yv) +
1
2
∂y (Cuvw(∂yu + ∂xv)) (4.7)20

ρiceg∂yHs = 2∂y (Cuvw∂yv) + ∂y (Cuvw∂xu) +
1
2
∂x(Cuvw(∂yu + ∂xv)) (4.8)

0 = ∂xu + ∂yv + ∂zw (4.9)
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with

Cuvw = Aflow
−1
n

(
(∂xu)2 + (∂yv)2 + (∂xu)(∂yv) +

1
4

[
(∂yu + ∂xv)2] + ε̇2

0

)
1−n
2n (4.10)

resembling the shelf equations in Huybrechts (1991). The u and v component have
to be solved coupled in these shelf Eqs. (4.7–4.8), while the uncoupled w can be
calculated with Eq. (4.9) afterwards.5

For the sheet the usual approximations (SIA) are f0=f1=f2=f5=f6=0 and f3=f4=1, as
in Table 2. Equations (4.1–4.4) reduces with these values to

ρiceg∂xHs =
1
2
∂z(Cuvw∂zu) (4.11)

ρiceg∂yHs =
1
2
∂z(Cuvw∂zv) (4.12)

0 = ∂xu + ∂yv + ∂zw (4.13)10

with

Cuvw = Aflow
−1
n

(1
4

[
∂zu

2 + ∂zv
2] + ε̇2

0

)
1−n
2n (4.14)

which is the differential representation. Usual for the SIA the integral representation is
taken, following a slightly different approach. The u and v component can be solved by
Eqs. (4.11–4.12) respectively, and w can be calculated with Eq. (4.13) afterwards.15

5 The numerical scheme for the almost-full-stress velocity solution

In this section and in the accompanying appendices we show the transformation of the
set of Eqs. (4.1–4.3) to the coordinates x, y , and ζ , with ζ the non-equidistant vertically
scaled coordinate (see Fig. 2). Subsequently, we demonstrate the discretization of that
result. And finally, we show how to put it in a huge sparse matrix and how to solve20

these three equations with three coupled unknowns simultaneously on all grid cells.
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A step by step derivation is given in Appendix D, to which we will refer here several
times. In Appendix E the structure of the matrix equation and a compact format for
such a sparse matrix is given and derived.

5.1 Index-derivative notation

Working out the derivatives in Eqs. (4.1–4.3), recombining the resulting terms, and5

changing to the index-derivative notation (e.g. Wx=∂xw, Uyy=∂
2
yyu, Cuvw

z =∂zC
uvw,

etc.), we get as in Eqs. (D10–D12) in Appendix D:

2ρiceg

Cuvw ∂xHs = f4Uzz + f0f4Wzx + 4f5Uxx + f6Uyy + f56Vxy (5.1)

+
1

Cuvw

[
f4C

uvw
z (Uz+f0Wx) + f5C

uvw
x

(
4Ux+2Vy

)
+ f6C

uvw
y

(
Uy+Vx

)]
10

2ρiceg

Cuvw ∂yHs = f4Vzz + f0f4Wzy + 4f5Vyy + f6Vxx + f56Uxy (5.2)

+
1

Cuvw

[
f4C

uvw
z

(
Vz+f0Wy

)
+ f5C

uvw
y

(
4Vy+2Ux

)
+ f6C

uvw
x

(
Uy+Vx

)]
0 = Ux + Vy +Wz (5.3)

with15

f56 ≡ 2f5 + f6 (5.4)

5.2 Transformation towards the scaled coordinates

This set of equations has to be transformed to the scaled coordinates x, y , and ζ . The
related transformation rules for the derivative operators, generating correction terms
for x, y , and t derivatives because the scaling is done per grid point and per time step,20

are presented in Appendix B and are summarized in Table 3. Below the accents for the
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new x and y coordinates are omitted. Rearranging the terms by the derivatives of u, v ,
and w, and defining new coefficients in front of those derivative terms, the transformed
equations become (as in Eqs. (D24–D26) in Appendix D):

f Ux
5 Ux + f

Uy

6 Uy + f
Uζ

456Uζ + f Uxx
5 Uxx + f

Uxζ

5 Uxζ + f
Uyy

6 Uyy + f
Uyζ

6 Uyζ + f
Uζζ

456Uζζ +

f Vx6 Vx + f
Vy
5 Vy + f

Vζ
56Vζ + f

Vxy
56 Vxy + f

Vxζ
56 Vxζ + f

Vyζ
56 Vyζ + f

Vζζ
56 Vζζ +5

fWx
04 Wx + f

Wζ

04 Wζ + f
Wxζ

04 Wxζ + f
Wζζ

04 Wζζ =
2ρiceg

Cuvw ∂xHs (5.5)

gUx
5 Ux + g

Uy

6 Uy + g
Uζ

56Uζ + g
Uxy

56 Uxy + g
Uxζ

56 Uxζ + g
Uyζ

56 Uyζ + g
Uζζ

56 Uζζ +

gVx
6 Vx + g

Vy
5 Vy + g

Vζ
456Vζ + gVxx

6 Vxx + g
Vxζ
6 Vxζ + g

Vyy
5 Vyy + g

Vyζ
5 Vyζ + g

Vζζ
456Vζζ +

g
Wy

04 Wy + g
Wζ

04 Wζ + g
Wyζ

04 Wyζ + g
Wζζ

04 Wζζ =
2ρiceg

Cuvw ∂yHs (5.6)

Ux + ζxUζ + Vy + ζyVζ + ζzWζ = 0 (5.7)10

The coefficients are defined in Table 5. The transformed derivative fields from Cuvw

devided by Cuvw, are defined as in Eqs. (D17–D19) in Appendix D, by

Cx =
Cuvw
x + ζxC

uvw
ζ

Cuvw (5.8)

Cy =
Cuvw
y + ζyC

uvw
ζ

Cuvw (5.9)

Cζ =
ζzC

uvw
ζ

Cuvw (5.10)15
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these quantities can be calculated explicitly by taking field derivatives of Cuvw. Cuvw

has to be expressed in ζ coordinates as in Eq. (D20), like

Cuvw(x, y, ζ ) = Aflow
−1
n

(
f1(∂xu + ζx∂ζu)2 + f1(∂yv + ζy∂ζv)2 +

f1(∂xu + ζx∂ζu)(∂yv + ζy∂ζv) +

1
4

[
f2(∂yu + ζy∂ζu + ∂xv + ζx∂ζv)2 +5

f3(ζz∂ζu + f0(∂xw + ζx∂ζw))2 +

f3(ζz∂ζv + f0(∂yw + ζy∂ζw))2] + ε̇2
0

)
1−n
2n (5.11)

In which Aflow depends on T (x, y, ζ ), the spatial dependent ice temperature.
The boundary conditions in the x-direction in Eqs. (3.27–3.29) become transformed

∂xu + ζx∂ζu = ∂xv + ζx∂ζv = ∂xw + ζx∂ζw = 0 (5.12)10

and in the y-direction

∂yu + ζy∂ζu = ∂yv + ζy∂ζv = ∂yw + ζy∂ζw = 0 (5.13)

while for the atmosphere-ice interface and the ice-water interface the transformed
boundary conditions become

∂zu = ∂zv = ∂zw = 0 for ζz 6= 0 (5.14)15

5.3 Discretization

The transformed set of Eqs. (5.5–5.7) can be discretized in several ways. In the ap-
proach here all the linear terms are taken implicit, while the non-linear part Cuvw is
taken explicit. We discretize the linear velocity components, with use of the finite dif-
ference rules from Table 3. After rearranging the terms and defining another amount20

of convenient coefficients (see Tables 6–8) we obtain the final discretized equations
which are presented in Appendix D in the Eqs. (D30–D32).
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5.4 Matrix format

We take from Appendix E Eq. (E25):(
als(i jk)[c

l
, cm + r ls]

)(
v

l
(i jk)[c

l
]
)
=
(

rhsl (i jk)[c
l
]
)

(5.15)

The coefficients in matrix A are denoted by a and are labeled with a superscript which
refers to the related equation number (between 1 and n). The ‘sparse’ subscript s lists5

for each l -th equation all the q
l

non-zero matrix coefficients. The i jk between paren-
thesis denotes the dependence on the different grid points of each matrix coefficient.
And between brackets the row and column indices in the matrix equation are given
with help of some grid dependent central indices cl (i jk), see Eqs. (E13–E14). The
structure of matrix Eq. (5.15) is explained in Appendix E. In this appendix also is ex-10

plained how to interpret the notation concerning the ranges of several indices. For the
l -th equation there are q

l
sparse (non-zero) matrix coefficients and an equal amount

of relative column indices:

al1 ≤ als ≤ alql (5.16)

r l1 ≤ r ls ≤ r lql (5.17)15

with, in our case of a three-dimensional grid (n=3), the indices l , q
l
, and s in the range:

1 ≤ l ≤ 3 (5.18)

q1 ≤ q
l
≤ q3 (5.19)

1 ≤ s ≤ q
l

(5.20)

with in our case q
1
=q

2
=43 and q

3
=13. Knowing their positions we can construct20

the three arrays containing the relative column indices: {r1
1, ..., r

1
43}, {r2

1, ..., r
2
43},
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{r3
1, ..., r

3
13}. With v1=u, v2=v , v3=w. Writing out Eq. (5.15) for l={1,2,3} we have:a1

1[c
1
, cm + r1

1] . . .a1
43[c

1
, cm + r1

43]

a2
1[c

2
, cm + r2

1] . . .a2
43[c

2
, cm + r2

43]

a3
1[c

3
, cm + rn1] . . .a3

13[c
3
, cm + rn13]


v

1
[c

1
]

v
2
[c

2
]

v
3
[c

3
]

 =

rhs1[c
1
]

rhs2[c
2
]

rhs3[c
3
]

 (5.21)

where the dependency of the components and of the central indices on i jk is omitted,
to keep the notation short. Note that the sparse matrix coefficients in Eq. (5.21) not
necessary occur in the same columns.5

5.5 Solving

The non-zero coefficients als(i jk)[c
l
, cm + r ls] standing ahead of the discretized vari-

ables in the discretized Eqs. (D30–D32), are defined in Tables 6–8 for the first, the
second, and the third equation respectively. The name-position rule (E15) relates the
name of each matrix coefficient with its position in the matrix:10

al
(vm)

k+dk
i+di ,j+dj

[c
l
, cm + diei+djej+dkek ] (5.22)

The non-zero coefficients can be stored in a certain order of i ,j ,k,l and s in a vector
As. While the row indices, the column indices, and the right hand sides will be stored
in this same order in the vectors Bs, Cs, and RHS respectively.

The domain boundary conditions for the first, the second, and the third equation are15

given in Table 9. The boundary conditions applied to the horizontal outer planes of the
computational grid are physical conditions. At the bottom of the sheet (the ice-bedrock
interface), the sliding velocities and w(Hb) as in Eq. (3.32) are applied as Dirichlet
conditions. The surface (the atmosphere-ice interface) and the shelf bottom (the ice-
water interface) are taken as free surfaces by applying Neumann conditions. Assuming20

a smooth extension beyond the horizontal domain boundaries, we also apply Neumann
conditions at the vertical side planes of the computational grid.
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Because As, Bs and Cs contain the sparse matrix efficiently, we call this the compact
three vector format of A. These four vectors As, Bs, Cs, and RHS form the common
format of input for a sparse matrix solver. With this input the 3D 3-component velocity
field with three coupled equations can be solved.

6 Discussion5

Taking five assumptions which are valid for both the sheet and the shelf, we derived a
general set of velocity equations for the combined sheet-shelf system. The dominance
of shear in large parts of the sheet, and compared to that its absence in the shelf,
does not allow other general assumptions. With the introduction of the ‘simplification
coefficients’ in Eqs. (4.1–4.3), several stress approximations are represented in the10

velocity representation. The familiar subsets of equations for the sheet and the shelf
are immediately returned by substituting the combination of simplification coefficients
as presented in Table 2.

These simplification coefficients, which are easy to implement in a code, are not
more than a tool to investigate the stress approximations themselves. Adjusting some15

of the simplification coefficients to zero is equivalent to applying a certain stress ap-
proximation. With this set up and without an internal boundary at the grounding line,
one single code can handle the almost-full-stress approach, but also several different
approximation cases. This prevents the interference in result-differences due to specific
approximation codes.20

Solving the general set of coupled velocity Eqs. (4.1–4.3) has the advantage that:

– The internal boundary problem between the sheet and the shelf disappears. Usu-
ally this internal boundary coincides with the grounding line of which the pattern is
irregular and varies in time. Our approach avoids handling such a complicated in-
ternal boundary with an additional specific stress treatment at the grounding line.25

The latter is possible, due to the fact that the longitudinal stresses are included
for the entire sheet-shelf system.
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– The transition zone and the ice divide are both treated accurate because the
longitudinal stresses are included for both the sheet and the shelf. Lateral shear
working on shelves is included as well.

– It enables testing with the simplification coefficients as described above.

– Within the shelf a temperature dependent 3D velocity field is calculated.5

Although in our methodology the grounding line needs no special treatment anymore,
it might still be necessary to use a finer grid near the grounding line to obtain accurate
grounding line migration.

The final general velocity solution clearly shows that there are only two differences
between the sheet and the shelf:10

– The boundary conditions at the ice bottom differ, see Table 9. For the shelf this
is an ice-water interface where friction is neglected. For the sheet, on the other
hand, this is an ice-bedrock interface where friction depends on a temperature
dependent threshold for sliding.

– The way of calculating the surface heigth Hs, see Eq. (3.1). The the condition in15

this equation distinguishes between the sheet and the shelf.

Our set of three coupled velocity Eqs. (4.1–4.3) can be solved numerically in several
ways. However, certain choices lead to interference of complexity. The vertically scaled
coordinate, often used in ice dynamics, has considerable advantages. Noting that
both surface and bottom levels vary at each grid point, the boundary conditions of20

the numerical ice grid are easy to handle. In addition, this vertical scaling enables
the use of a large range of different vertical grid distances necessary to adequately
describe the wide range of ice-cap geometries which also vary widely different over
time. Furthermore, a non-equidistant scaling allows a more accurate description of the
processes at the bottom of the sheet. With an addapting bedrock level due to changes25

in the ice load history, the vertically scaled ice coordinate is convenient too because
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it directly connects in the vertical without any gap between the bedrock and the ice.
However, a disadvantage is that this scaling introduces extra terms in the derivative
operators. Thus, because we have many terms with double and mixed derivatives, the
vertically scaled Eqs. (5.5–5.7) even contain a larger number of terms.

To solve this vertically scaled set of coupled elliptical differential velocity equations5

numerically, a decision has to be made on the implicit/explicit treatment of the different
terms. In that perspective we choose the most complicated approach by taking all linear
terms implicit. Taking the non-linear term in Eq. (5.11) implicit is almost impossible
because the non-linearity is caused by the temperature dependent ice flow parameter
Aflow. The temperature in this parameter depends on the 3D space and the time, and10

on the exponent which is a function of the flow-law exponent.
Taking all linear terms implicit for the three coupled velocity equations means that

they have to be solved simultaneously on the 3D grid. This technique is developed in
Appendix E.

Solving those equations on a 3D grid simultaneously, with their many subdiagonals15

in our matrix Eq. (5.21) caused by the many correction terms due to the vertical scaling,
becomes an intensive computational job. Working memory and CPU-time complicates
the practical application so far, although it is possible to deal with. A suited direct
solver in such a case is MUMPS (Amestoy et al., 2000), but an iterative method using
the combination of GRMS with a preconditioner from the PATSc package (Balay et al.,20

2004) might be favourable in such a 3D case.
However, with the insight of our complete approach it should be possible to find

sufficient implicit/explicit variants which are easier to manage. E.g. with an iterating
Red-Black Gauss Seidel over-relaxation method, the three space directions can be
taken implicit by permutation. Or in our case if f0=0 the third grid dimension uncouples,25

which reduces our matrix equations to the case of two coupled equations: n=2 in
Appendix E.

Other implicit/explicit choices can be made, for which the consequences further on
in the derivation can be followed by tracing the simplification coefficients.
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7 Conclusions

We documented an integral sheet-shelf modelling approach, in which various stress
approximations can be made by only adjusting some of the simplification coeffi-
cients. The general velocity equations for the combined sheet-shelf system are derived
straightforwardly. We showed how these partial differential equations and their bound-5

ary conditions are transformed to the locally and time wise scaled coordinates typically
used in ice-cap dynamics, and how they are (non-equidistantly) discretized in case all
linear terms are taken implicitly. Finally, a matrix equation format is developed which
contains these coupled equations for a 3D case. Once the implicit/explicit scheme has
been chosen, many numerical approaches are possible. How useful these are de-10

pends on the consistence with the prior physical assumptions. This work enables one
to decide which physical assumptions and which numerical choices can be combined.

Appendix A

Deviatoric stresses15

In this appendix the hydrostatic pressure, deviatoric stress, hydrostatic equilibrium, and
incompressibility are defined, whereupon the stress equations for ice can be rewritten
in terms of deviatoric stress.

A1 The deviatoric stress tensor

The hydrostatic pressure pδij, having normal stress components only, has an amplitude20

p being the mean of the normal stresses:

p =
1
3

(τxx + τyy + τzz) =
1
3
τkk (A1)
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Where τ represents the full stress tensor and k indicates a summation index. The
deviatoric stress τ

′
is defined as the full stress minus the hydrostatic pressure, which

is in component form:

τ
′

ij ≡ τij − pδi j = τij −
1
3
τkkδij (A2)

A2 Hydrostatic equilibrium5

In case of hydrostatic equilibrium the normal stresses are equal τxx=τyy=τzz, so the x

component of the longitudinal deviatoric stress is τ
′

xx=τxx–1
3 (τxx+τyy+τzz)=0, and ana-

logue for the y and the z component. For hydrostatic equilibrium we have thus

τxx = τyy = τzz (A3)

τ
′

xx = τ
′

yy = τ
′

zz = 0 (A4)10

A3 Incompressibility

Incompressibility is imposed by

τ
′

xx + τ
′

yy + τ
′

zz = 0 (A5)

Hydrostatic equilibrium is a stronger restriction than incompressibility, because incom-
pressibility requires τ

′

ii = 0 which not necessarily implies Eq. (A4). In ice dynamics15

incompressibility is assumed everywhere (at the sheet, the shelf and in the transition
zone), while hydrostatic equilibrium is only valid at most parts of the sheet.
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A4 The derivation of the deviatoric stress equations

The horizontal normal deviatoric stresses, being in general non-zero if there is no hy-
drostatic equilibrium, are with use of Eq. (A2)

τ
′

xx =
2
3
τxx −

1
3
τyy −

1
3
τzz (A6)

τ
′

yy =
2
3
τyy −

1
3
τxx −

1
3
τzz (A7)5

Taking six times Eq. (A6) and adding or subtracting three times Eq. (A7) leads respec-
tively to

τxx = τzz + 2τ
′

xx + τ
′

yy (A8)

τyy = τzz + 2τ
′

yy + τ
′

xx (A9)

Substitution of Eqs. (A8–A9) respectively into Eqs. (3.8–3.9) gives10

∂zτxz = −∂x(τzz + 2τ
′

xx + τ
′

yy) − ∂yτxy (A10)

∂zτyz = −∂y (τzz + 2τ
′

yy + τ
′

xx) − ∂xτyx (A11)

Substituting for τzz Eq. (3.14) into Eqs. (A10–A11) and using τxy=τyx because the stress
tensor τij is symmetric, we get:

∂zτxz = ρiceg∂xHs − 2∂xτ
′

xx − ∂xτ
′

yy − ∂yτxy (A12)15

∂zτyz = ρiceg∂yHs − 2∂yτ
′

yy − ∂yτ
′

xx − ∂xτxy (A13)

Because each non-diagonal component of the stress tensor equals the corresponding
component of the deviatoric stress tensor, we can express Eqs. (A12–A13) in deviatoric
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components only

∂zτ
′

xz = ρiceg∂xHs − 2∂xτ
′

xx − ∂xτ
′

yy − ∂yτ
′

xy (A14)

∂zτ
′

yz = ρiceg∂yHs − 2∂yτ
′

yy − ∂yτ
′

xx − ∂xτ
′

xy (A15)

τ
′

zz = −τ
′

xx − τ
′

yy (A16)

As a third equation the incompressibility condition A5 has been added.5

Appendix B

The transformed derivatives accompanying a coordinate transformation

B1 The transformed gradients

Having a coordinate system A with coordinates x, where x is a vector containing all10

the coordinates of A, and having a derivative operator working on a function f , which
takes the derivative to one of the coordinates of x, we want to transform this derivative
operator to another coordinate system B with coordinates x

′
. The general transforma-

tion rule or chain rule, for a transformation from system A to B of the operator which
takes the xi-derivative of a function f , is then15

∂xi
f =

(
∂x

′
j
f
)
∂xi

x
′

j (B1)

with the summation convention, x={x1, x2, ..., xn} and x
′
={x

′

1, x
′

2, ..., x
′

n}. In principle
f might be a function of the old x or the new x

′
coordinates. The transformation rule

only takes the correction for the derivative operator into account and not the eventually
transformation of f . E.g. in our cases f will usually be expressed in the old coordinates20

x at the left hand side, while at the right hand side f will be expressed in the new
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coordinates x
′
. In our specific case we have x={t, x, y, z} and x

′
={t

′
, x

′
, y

′
, ζ}, which

leads with Eq. (B1) to

∂xi
f (t, x, y, z) =

(
∂x

′
j
f (t

′
, x

′
, y

′
, ζ )

)
∂xi

x
′

j (B2)

where in general t
′
, x

′
, y

′
, ζ don’t have to be independent variables. In our case ζ is a

(non-equidistant) scaled coordinate. ζ is scaled for each grid point and for each time5

step. This means ζ varies with x, y , and t, causing ‘correction terms’ for the x, y , and
t derivatives of f when transformed to system B. For example, if we take xi=t, we get

∂tf = (∂t′ f )∂tt
′
+ (∂x′ f )∂tx

′
+
(
∂y ′ f

)
∂t′y

′
+
(
∂ζ f

)
∂tζ (B3)

In our case the transformation actually concerns only the vertical coordinate z, so t
′
=t,

x
′
=x, and y

′
=y , and thus ∂tt

′
=1, ∂tx

′
=∂ty

′
=0 and ∂tζ 6=0, etc. Using these values10

results in

∂tf = ∂t′ f +
(
∂ζ f

)
∂tζ = ∂t′ f + ζt∂ζ f (B4)

Analogue, we obtain for the remaining transformed gradients of f :

∂xf = ∂x′ f +
(
∂ζ f

)
∂xζ = ∂x′ f + ζx∂ζ f (B5)

∂y f = ∂y ′ f +
(
∂ζ f

)
∂yζ = ∂y ′ f + ζy∂ζ f (B6)15

∂zf =
(
∂ζ f

)
∂zζ = ζz∂ζ f (B7)

Where the ζ ’s with a lower index are a short notation for the derivative of ζ to the
variable indicated by the index.

In our case the vertical coordinate z is transformed to the (non-equidistant) scaled
vertical coordinate ζ which is given by20

ζ (t, x, y, z) =
Hs(t, x, y) − z

H(t, x, y)
(B8)
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where ζ = 0 at the ice surface, and ζ=1 at the ice-bedrock interface (see Fig. 2). With
the product rule (and with ∂tz=∂xz=∂yz=0 and ∂zHs=∂zH=0, because Hs and H are
two-dimensional fields which are independent of the vertical coordinate) the derivatives
of ζ become

ζt ≡ ∂tζ =
1
H

(∂tHs − ζ∂tH) (B9)5

ζx ≡ ∂xζ =
1
H

(∂xHs − ζ∂xH) (B10)

ζy ≡ ∂yζ =
1
H

(∂yHs − ζ∂yH) (B11)

ζz ≡ ∂zζ = − 1
H

(B12)

B2 The transformed second derivatives

The “simple chain rule” is used to transform a derivative of a function to an old co-10

ordinate towards a derivative of a function to a new coordinate. In case that more
coordinates are involved the “chain rule for several variables” as in Eq. (B1) should
be used. In case the coordinate transformation concerns a single coordinate system,
higher derivative operators can be transformed with use of Faà di Bruno’s formula which
is the “generalized chain rule for higher derivatives”. Here, we derive a general chain15

rule for the specific case of second derivatives but for the case of several coordinates
(or variables).

To derive the transformation rules for second derivatives working on a function f we
consider the chain rule for the gradient Eq. (B1)

∂xj
f =

(
∂x

′
n
f
)(

∂xj
x

′

n

)
20

with the summation convention for the primed variables. Now we take the xi-derivative
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of this equation:

∂xi

(
∂xj

f
)
= ∂xi

[(
∂x

′
n
f
)(

∂xj
x

′

n

)]
Using the product rule, we get

∂2
xixj

f =
(
∂xi

[
∂x

′
n
f
])(

∂xj
x

′

n

)
+
(
∂x

′
n
f
)(

∂2
xixj

x
′

n

)
Because in the first term at the right hand side ∂xi

[
∂x

′
n
f
]

is the old coordinate xi-5

derivative, we need the chain rule again to express all derivatives of f in the previous
equation as derivatives to the new (the primed) coordinates. This is done in the next
step:

∂2
xixj

f =
(
∂2
x
′
mx

′
n
f
)(

∂xi
x

′

m

)(
∂xj

x
′

n

)
+
(
∂x

′
n
f
)(

∂2
xixj

x
′

n

)
(B13)

with the summation convention for the primed variables x
′

m and x
′

n. Usually, but not10

necessary, f at the left hand side is expressed in the old coordinates and f at the right
hand side in the new coordinates.

Substituting xi=xj=x in Eq. (B13), we get

∂2
xxf =

(
∂2
x
′
mx

′
n
f
)(

∂xx
′

m

)(
∂xx

′

n

)
+
(
∂x

′
n
f
)(

∂2
xxx

′

n

)
(B14)

Do we substitute xi = x and xj = y in Eq. (B13), we get15

∂2
xy f =

(
∂2
x
′
mx

′
n
f
)(

∂xx
′

m

)(
∂yx

′

n

)
+
(
∂x

′
n
f
)(

∂2
xyx

′

n

)
(B15)

Finally, substitution of xi = x and xj = z in Eq. (B13) gives

∂2
xzf =

(
∂2
x
′
mx

′
n
f
)(

∂xx
′

m

)(
∂zx

′

n

)
+
(
∂x

′
n
f
)(

∂2
xzx

′

n

)
(B16)
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In our case, in fact only the vertical coordinate is transformed. The other three coordi-
nates remain equal. In that case, Eq. (B14) reduces to

∂2
xxf = ∂2

x′x′ f + 2(∂xζ )
(
∂2
x′ζ f

)
+ (∂xζ )2

(
∂2
ζζ f

)
+
(
∂2
xxζ

)(
∂ζ f

)
(B17)

while Eq. (B15) becomes

∂2
xy f = ∂2

x′y ′ f +
(
∂yζ

)(
∂2
x′ζ f

)
+ (∂xζ )

(
∂2
y ′ζ f

)
+ (∂xζ )

(
∂yζ

)(
∂2
ζζ f

)
+
(
∂2
xyζ

)(
∂ζ f

)
(B18)5

and Eq. (B16) simplifies to

∂2
xzf = (∂zζ )

(
∂2
x′ζ f

)
+ (∂xζ )(∂zζ )

(
∂2
ζζ f

)
+
(
∂2
xzζ

)(
∂ζ f

)
(B19)

Finally, these Eqs. (B17–B19) and their equivalents can then be written as

∂2
xxf = ∂2

x′x′ f + 2ζx∂
2
x′ζ f + ζx

2∂2
ζζ f + ζxx∂ζ f (B20)

∂2
xy f = ∂2

x′y ′ f + ζy∂
2
x′ζ f + ζx∂

2
y ′ζ f + ζxζy∂

2
ζζ f + ζxy∂ζ f (B21)10

∂2
xzf = ζz∂

2
x′ζ f + ζxζz∂

2
ζζ f + ζxz∂ζ f (B22)

∂2
yy f = ∂2

y ′y ′ f + 2ζy∂
2
y ′ζ f + ζy

2∂2
ζζ f + ζyy∂ζ f (B23)

∂2
yzf = ζz∂

2
y ′ζ f + ζyζz∂

2
ζζ f + ζyz∂ζ f (B24)

∂2
zzf = ζz

2∂2
ζζ f (B25)

The various coefficients are defined at the bottom of Table 3.15
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Appendix C

Discretization rules for derivatives

With a Taylor expansion a value of a function f (x) in a point x can be approximated
with a value f (x0), for a value x0 near x, up to n-th order accuracy5

f (x) =
n∑

m=0

(
fm(x)
m!

)
x=x0

(x − x0)m (C1)

To obtain the discretization for a gradient or any n-th derivative of a function f , we con-
sider the Taylor approximation within a point being a few grid steps ahead of the point
(x0), around which the approximation will occur. Numerical calculations are performed
on a grid. The grid sizes will determine the smallest steps. In general this grid size10

might be non-equidistant. We take as a non-equidistant coordinate ζ , labeled by k for
each grid cell. The grid size will be dζ . Both, ζ and k have the same direction. Let
ζk correspond with ζ0 in the Taylor expansion. We will calculate the approximation of
f (ζk + pdζ ) around ζk. The taylor expansion for a point p dζ ahead of ζk becomes

f (ζk + pdζ ) =
n∑

m=0

(
fm(ζk)
m!

)
((ζk + pdζ ) − ζk)m (C2)15

With writing fk+p = f (ζk + pdζ ), we obtain

fk+p =
n∑

m=0

(
∂m
ζmf

)
k

(
ζk+p−ζk

m!

)m

(C3)

with ζk+p ≡ ζk + pdζ . With this rule the central, one-sided, or mixed (e.g. upsteam)
discretization of an n-th derivative of any order can be constructed. In case of an
equidistant grid we have ζk+p−ζk=p∆x. Using x and i instead of ζ and k, and noting20
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that x and i point in the same direction, Eq. (C3) becomes in the equidistant case

fi+p =
n∑

m=0

pm

m!
(∂m

xmf )i(∆x)m (C4)

Taking Eq. (C4) with n=2 for p=−1, p=1, p=−2 and p=2 we get respectively

fi−1 = fi − (∂xf )i∆x +
1
2

(∂2
xxf )i(∆x)2 + O((∆x)3) (C5)

fi+1 = fi + (∂xf )i∆x +
1
2

(∂2
xxf )i(∆x)2 + O((∆x)3) (C6)5

fi−2 = fi − 2(∂xf )i∆x + 2(∂2
xxf )i(∆x)2 + O((∆x)3) (C7)

fi+2 = fi + 2(∂xf )i∆x + 2(∂2
xxf )i(∆x)2 + O((∆x)3) (C8)

To obtain a central second order discretization for the gradient and the second deriva-
tive of f, Eqs. (C5–C6) have to be added and subtracted respectively

(∂xf )i =
fi+1 − fi−1

2∆x
(C9)10

(∂2
xxf )i =

fi−1 + fi+1 − 2fi

(∆x)2
(C10)

Taking Eq. (C4) with n=1 for p=−1

fi−1 = fi − (∂xf )i∆x + O((∆x)2) (C11)

immediately produces the first order gradient

(∂xf )i =
fi − fi−1

∆x
(C12)15

For the more general eventually non-equidistant case, we take Eq. (C3) with n=2 for
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p=−1, p=1, p=−2 and p=+2

fk−1 = fk +
(
∂ζ f

)
k
(ζk−1 − ζk) +

1
2

(
∂2
ζζ f

)
k
(ζk−1 − ζk)2 + O((∆x)3)

= fk − a
(
∂ζ f

)
k
+

1
2
a2

(
∂2
ζζ f

)
k
+ O((∆x)3) (C13)

fk+1 = fk +
(
∂ζ f

)
k
(ζk+1 − ζk) +

1
2

(
∂2
ζζ f

)
k
(ζk+1 − ζk)2 + O((∆x)3)

= fk + b
(
∂ζ f

)
k
+

1
2
b2

(
∂2
ζζ f

)
k
+ O((∆x)3) (C14)5

fk−2 = fk +
(
∂ζ f

)
k
(ζk−2 − ζk) +

1
2

(
∂2
ζζ f

)
k
(ζk−2 − ζk)2 + O((∆x)3)

= fk − c
(
∂ζ f

)
k
+

1
2
c2

(
∂2
ζζ f

)
k
+ O((∆x)3) (C15)

fk+2 = fk +
(
∂ζ f

)
k
(ζk+2 − ζk) +

1
2

(
∂2
ζζ f

)
k
(ζk+2 − ζk)2 + O((∆x)3)

= fk + d
(
∂ζ f

)
k
+

1
2
d2

(
∂2
ζζ f

)
k
+ O((∆x)3) (C16)

where10

a = ak ≡ ζk − ζk−1 (C17)

b = bk ≡ ζk+1 − ζk (C18)

c = ck ≡ ζk − ζk−2 (C19)

d = dk ≡ ζk+2 − ζk (C20)

To obtain a second order central discretization of the gradient on an eventually non-15

equidistant grid, we take a2 times Eq. (C14) and subtract b2 times Eq. (C13)

(
∂ζ f

)
k
=

a2fk+1 − b2fk−1 − (a2 − b2)fk
ab(a + b)

(C21)
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To obtain a second order central discretization of the second derivative on an eventually
non-equidistant grid, we take a times Eq. (C14) and add b times Eq. (C13)(
∂2
ζζ f

)
k
=

afk+1 + bfk−1 − (a + b)fk
1
2ab(a + b)

(C22)

The rest term of Eq. (C22) is

rest term = −1
3
b2 − a2

a + b

(
∂3
ζ3f

)
k
− 1

12
a3 + b3

a + b

(
∂4
ζ4f

)
k

(C23)5

from which is seen that the first term might be second order if the grid is near to
equidistant, but could be first order. This implies that we have to be careful with taking
Eq. (C22) as a second order accuracy discretization.

Taking Eq. (C3) with n=1 for p=−1

fk−1 = fk +
(
∂ζ f

)
k
a + O((∆x)2) (C24)10

we directly get the first order gradient on an eventually non-equidistant grid(
∂ζ f

)
k
=

fk − fk−1

a
(C25)

In case of an equidistant grid, a=b=∆x Eqs. (C21–C22) reduce to Eqs. (C9–C10)
respectively and Eq. (C25) reduces to Eq. (C12).

C1 Alternative notation for central discretizations15

In complicated cases it might be handier to use a simple notation which also makes
a efficient coding possible. The central non-equidistant discretizations of the first and
second derivative Eqs. (C21–C22) can be written as(

∂ζ f
)

k
= aζ fk−1 + bζ fk + cζ fk+1 (C26)(

∂2
ζζ f

)
k
= aζζ fk−1 + bζζ fk + cζζ fk+1 (C27)20
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where the coefficients are defined in Table 4.
Equation (C26) becomes shorter for the equidistant case (because a = b and thus

bx = 0)

(∂xf )i = axfi−1 + cxfi+1 (C28)

where the coefficients are defined in Table 4.5

C2 Mixed second derivatives

Although not directly derived from a combination of Taylor series, like we did before
with Eq. (C3), the mixed second derivatives are obtained by applying a sequence of
Eq. (C26) and Eq. (C28) for a three-dimensional field variable. The lower indices i and
j represent the horizontal equidistant grid directions x and y , while the upper index k10

represents the vertical non equidistant direction ζ .(
∂2
xy f

)
k
= axay f

k
i−1,j−1 + axcy f

k
i−1,j+1 + cxay f

k
i+1,j−1 + cxcy f

k
i+1,j+1 (C29)(

∂2
xζ f

)
k
= aζaxf

k−1
i−1,j + aζcxf

k−1
i+1,j + bζaxf

k
i−1,j + bζcxf

k
i+1,j + cζaxf

k+1
i−1,j + cζcxf

k+1
i+1,j (C30)(

∂2
yζ f

)
k
= aζay f

k−1
i,j−1 + aζcy f

k−1
i,j+1 + bζay f

k
i,j−1 + bζcy f

k
i,j+1 + cζay f

k+1
i,j−1 + cζcy f

k+1
i,j+1 (C31)

where the coefficients are defined in Table 4.15

118

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
2, 81–158, 2009

A numerical ice sheet
– ice shelf 3D

velocity field solution

T. J. Reerink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Appendix D

Transformation and discretization

Starting from Eqs. (4.1–4.3):

1
2
f4∂z(Cuvw(∂zu + f0∂xw)) + 2f5∂x(Cuvw∂xu) + f5∂x(Cuvw∂yv)5

+
1
2
f6∂y (Cuvw(∂yu + ∂xv)) = ρiceg∂xHs (D1)

1
2
f4∂z(Cuvw(∂zv + f0∂yw)) + 2f5∂y (Cuvw∂yv) + f5∂y (Cuvw∂xu)

+
1
2
f6∂x(Cuvw(∂yu + ∂xv)) = ρiceg∂yHs (D2)

∂xu + ∂yv + ∂zw = 0 (D3)

We work out the parenthesis:10

f4∂z
(
Cuvw∂zu

)
+ f4f0∂z

(
Cuvw∂xw

)
+ 4f5∂x

(
Cuvw∂xu

)
+2f5∂x

(
Cuvw∂yv

)
+ f6∂y

(
Cuvw(∂yu + ∂xv

))
= 2ρiceg∂xHs (D4)

f4∂z
(
Cuvw∂zv

)
+ f4f0∂z

(
Cuvw∂yw

)
+ 4f5∂y

(
Cuvw∂yv

)
+2f5∂y

(
Cuvw∂xu

)
+ f6∂x

(
Cuvw(∂yu + ∂xv

))
= 2ρiceg∂yHs (D5)

∂xu + ∂yv + ∂zw = 0 (D6)15
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We work out the derivatives (product rule):

f4 Cuvw ∂2
zzu + f0 f4 Cuvw ∂2

zxw + 4f5 Cuvw ∂2
xxu +

2f5 Cuvw ∂2
xyv + f6 Cuvw

(
∂2
yyu + ∂2

xyv
)

+

f4
(
∂zC

uvw)(∂zu) + f0 f4
(
∂zC

uvw)(∂xw) +4f5
(
∂xC

uvw)(∂xu) +
2f5

(
∂xC

uvw)(∂yv
)
+f6

(
∂yC

uvw)(∂yu + ∂xv
)
+ =2ρice g ∂xHs

(D7)

f4 Cuvw ∂2
zzv + f0 f4 Cuvw ∂2

zyw + 4f5 Cuvw ∂2
yyv +

2f5 Cuvw ∂2
xyu + f6 Cuvw

(
∂2
xxv + ∂2

xyu
)

+ +

f4
(
∂zC

uvw)(∂zv) + f0 f4
(
∂zC

uvw)(∂yw
)
+4f5

(
∂yC

uvw)(∂yv
)
+

2f5
(
∂yC

uvw)(∂xu) +f6
(
∂xC

uvw)(∂yu + ∂xv
)
+ =2ρice g ∂yHs

(D8)

∂xu + ∂yv + ∂zw = 0 (D9)

Recombining the terms and changing to the index-derivative notation (e.g. Wx=∂xw,5

Uyy=∂
2
yyu, Cuvw

z =∂zC
uvw, etc.), we get:

f4Uzz + f0f4Wzx + 4f5Uxx + f6Uyy + f56Vxy (D10)

+
1

Cuvw

[
f4C

uvw
z (Uz + f0Wx) + f5C

uvw
x

(
4Ux + 2Vy

)
+ f6C

uvw
y

(
Uy + Vx

)]
=

2ρiceg

Cuvw ∂xHs

f4Vzz + f0f4Wzy + 4f5Vyy + f6Vxx + f56Uxy (D11)

+
1

Cuvw

[
f4C

uvw
z

(
Vz + f0Wy

)
+ f5C

uvw
y

(
4Vy + 2Ux

)
+ f6C

uvw
x

(
Uy + Vx

)]
=

2ρiceg

Cuvw ∂yHs10

Ux + Vy +Wz = 0 (D12)

with

f56 ≡ 2f5 + f6 (D13)

Equations (D10–D12) have to be transformed to the vertically scaled coordinates x
′
, y

′

and ζ . See Table 3 in Appendix B for the transformation rules for the derivative opera-15

tors. Due to the vertical scaling at each grid point separately, the transformed x and y
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derivatives also cause correction terms. Because the scaled x
′
and y

′
coordinates are

equal to the x and y coordinates, the accents are omitted from now on. Accomplishing
the transformation gives

f4ζz
2Uζζ + f0f4

(
ζzWxζ + ζxζzWζζ + ζxzWζ

)
+ 4f5

(
Uxx + 2ζxUxζ + ζx

2Uζζ + ζxxUζ

)
+f6

(
Uyy + 2ζyUyζ + ζy

2Uζζ + ζyyUζ

)
+ f56

(
Vxy + ζyVxζ + ζxVyζ + ζxζyVζζ + ζxyVζ

)
5

+f4C
ζ[ζzUζ + f0

(
Wx + ζxWζ

)]
+ f5C

x[4(Ux + ζxUζ
)
+ 2

(
Vy + ζyVζ

)]
+f6C

y(Uy + ζyUζ + Vx + ζxVζ
)
=

2ρiceg

Cuvw ∂xHs

(D14)

f4ζz
2Vζζ + f0f4

(
ζzWyζ + ζyζzWζζ + ζyzWζ

)
+ 4f5

(
Vyy + 2ζyVyζ + ζy

2Vζζ + ζyyVζ
)

+f6
(
Vxx + 2ζxVxζ + ζx

2Vζζ + ζxxVζ
)

10

+f56
(
Uxy + ζyUxζ + ζxUyζ + ζxζyUζζ + ζxyUζ

)
+f4C

ζ[ζzVζ + f0
(
Wy + ζyWζ

)]
+ f5C

y[4(Vy + ζyVζ
)
+ 2

(
Ux + ζxUζ

)]
+f6C

x(Uy + ζyUζ + Vx + ζxVζ
)
=

2ρiceg

Cuvw ∂yHs

(D15)

Ux + ζxUζ + Vy + ζyVζ + ζzWζ = 015

(D16)
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Three quantities are defined which equal the transformed derivatives of the explicit
Cuvw fields but devided by Cuvw:

Cx =
Cuvw
x + ζxC

uvw
ζ

Cuvw (D17)

Cy =
Cuvw
y + ζyC

uvw
ζ

Cuvw (D18)5

Cζ =
ζzC

uvw
ζ

Cuvw (D19)

Here, Cuvw has to be expressed in the scaled coordinates. Equation (4.4) shows that
Cuvw contains many derivatives which have to be transformed as well. Substituting in
Eq. (4.4) the transformation rules for the derivatives results in10

Cuvw(x, y, ζ ) = Aflow
−1
n

(
f1(∂xu + ζx∂ζu)2 + f1(∂yv + ζy∂ζv)2 +

f1(∂xu + ζx∂ζu)(∂yv + ζy∂ζv)

+
1
4

[
f2(∂yu + ζy∂ζu + ∂xv + ζx∂ζv)2 +

f3(ζz∂ζu + f0(∂xw + ζx∂ζw))2 +

f3(ζz∂ζv + f0(∂yw + ζy∂ζw))2] + ε̇2
0

)
1−n
2n (D20)15

In which Aflow depends on the spacial dependent temperature T (x, y, ζ ). Note that the
u, v , and w are velocities relative to the scaled coordinates. That corresponds with
how they are stored in a usual ice model code.
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The Eqs. (D14–D16) are reordered on the derivatives of the variables u, v , and w:

4f5C
xUx + f6C

yUy +
(

4f5C
xζx + f6C

yζy + f4C
ζζz + 4f5ζxx + f6ζyy

)
Uζ

+ 4f5Uxx + 8f5ζxUxζ + f6Uyy

+ 2f6ζyUyζ +
(

4f5ζx
2 + f6ζy

2 + f4ζz
2
)
Uζζ + f6C

yVx

+ 2f5C
xVy +

(
f6C

yζx + 2f5C
xζy + f56ζxy

)
Vζ + f56Vxy5

+ f56ζyVxζ + f56ζxVyζ + f56ζxζyVζζ + f0f4C
ζWx +

(
f0f4C

ζζx + f0f4ζxz

)
Wζ

+ f0f4ζzWxζ + f0f4ζxζzWζζ =
2ρiceg

Cuvw ∂xHs (D21)

2f5C
yUx + f6C

xUy +
(
2f5C

yζx + f6C
xζy + f56ζxy

)
Uζ + f56Uxy + f56ζyUxζ

+ f56ζxUyζ + f56ζxζyUζζ10

+ f6C
xVx + 4f5C

yVy +
(
f6C

xζx + 4f5C
yζy + f4C

ζζz + f6ζxx + 4f5ζyy

)
Vζ

+ f6Vxx + 2f6ζxVxζ + 4f5Vyy + 8f5ζyVyζ

+
(
f6ζx

2 + 4f5ζy
2 + f4ζz

2
)
Vζζ + f0f4C

ζWy +
(
f0f4C

ζζy + f0f4ζyz

)
Wζ

+ f0f4ζzWyζ + f0f4ζyζzWζζ =
2ρiceg

Cuvw ∂yHs (D22)

15

Ux + ζxUζ + Vy + ζyVζ + ζzWζ = 0 (D23)

The Eqs. (D21–D23) are shortened by defining coefficients (see Table 5) which replace
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the factors in front of the discretized variables:

f Ux
5 Ux + f

Uy

6 Uy + f
Uζ

456 Uζ + f Uxx
5 Uxx + f

Uxζ

5 Uxζ + f
Uyy

6 Uyy + f
Uyζ

6 Uyζ +

f
Uζζ

456 Uζζ + f Vx6 Vx + f
Vy
5 Vy + f

Vζ
56 Vζ + f

Vxy
56 Vxy + f

Vxζ
56 Vxζ + f

Vyζ
56 Vyζ +

f
Vζζ
56 Vζζ + fWx

04 Wx + f
Wζ

04 Wζ + f
Wxζ

04 Wxζ + f
Wζζ

04 Wζζ =
2ρiceg
Cuvw ∂xHs

(D24)

gUx
5 Ux + g

Uy

6 Uy + g
Uζ

56 Uζ + g
Uxy

56 Uxy + g
Uxζ

56 Uxζ + g
Uyζ

56 Uyζ + g
Uζζ

56 Uζζ +

gVx
6 Vx + g

Vy
5 Vy + g

Vζ
456 Vζ + gVxx

6 Vxx + g
Vxζ
6 Vxζ + g

Vyy
5 Vyy + g

Vyζ
5 Vyζ +

g
Vζζ
456 Vζζ + g

Wy

04 Wy + g
Wζ

04 Wζ + g
Wyζ

04 Wyζ + g
Wζζ

04 Wζζ =
2ρiceg
Cuvw ∂yHs

(D25)5

Ux + ζx Uζ + Vy + ζy Vζ + ζz Wζ = 0 (D26)

The derivatives of u, v , and w in Eqs. (D24–D26) are discretized with use of the finite
difference rules from Table 4 in Appendix C:
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Equations (D27–D29) form the discretized set of equations for a non-equidistant verti-
cal grid. The non-equidistant discretization coefficients are given in Table 4. Defining
the many coefficients which contain the factors in front of the discretized variables, we5

get (in same order)
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In their subscript these coefficients contain the name of the discretized variable where
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they are working on. These coefficients are defined in the Tables 6–8 in the same
order. Given that v1 ≡ U , v2 ≡ V and v3 ≡ W , those names in the subscript agree.
The transformed boudary conditions in Sect. 5.2 can be found in Table 9 where they
are applyed as Dirichlet and Neumann conditions. The correction terms due to the
scaling for the horizontal derivatives are neclected because the scaling is assumed to5

be equal for neighbour points at the domain edges. The coefficients in the matrix equa-
tion concerning those boundary conditions are presented behind each corresponding
equation in Table 9. The results presented in this appendix were verified by backward
substitution with help of Mathematica.

Appendix E10

Matrix format for n coupled equations on a three or d dimensional grid

We consider a set of n physical equations with an equal number of variables defined
on a 3D grid which contains linear derivatives in every grid direction. If the implicit
taken linear derivative terms contain all the n variables, then all this equations at all15

this grid points have to be solved coupled. The derivatives in each grid direction cause
the dependence of each grid point on its neighbours in that direction because of the
(central second order) finite difference schemes used to discretize the linear derivative
terms implicitly. E.g. in our case in Eqs. (5.1–5.3) we take all the linear first derivatives,
all the linear second derivatives, and all the linear second cross derivatives implicit. It20

means for n physical equations on a 3D (x,y,z)-grid of size NxNyNz, that we have to
solve the N≡nNxNyNz equations at this grid simultaneously.

For a given i jk grid point we call the (implicit) variables like Uk
i,j, V k

i,j, W k
i,j (or gen-

eraly V1
k
i,j, ..., Vn

k
i,j) central variables, and the (implicit) variables like Uk

i−1,j, V
k−1

i,j+1, etc.
neighbour variables.25

We consider the matrix equation, with an NxN matrix A, a solution vector v and a

130

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
2, 81–158, 2009

A numerical ice sheet
– ice shelf 3D

velocity field solution

T. J. Reerink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

right hand side vector RHS both of length N,

Av = RHS (E1)

describing a set of n equations with n variables v1...vn on a 3D (x,y,z)-grid of size
NxNyNz.

E1 The structure of the matrix equation5

All n equations for all NxNyNz grid points have to be placed in this matrix Eq. (E1).
This requires a format which organizes the position of all this equations in this matrix
equation. We choose to structure the format as follows (only the matrix coefficients
working on the central variables are shown, those working on the neighbour variables
are indicated by the most left and the most right dots in the matrix A

′′
down):10 

· · · a1
v1

(i =1) a1
v2

(i =1) · · · a1
vn(i =1) · · ·

· · · a2
v1

(i =1) a2
v2

(i =1) · · · a2
vn(i =1) · · ·

...
...

. . .
...

· · · anv1
(i =1) anv2

(i =1) · · · anvn(i =1) · · ·

· · · a1
v1

(i =Nx) a1
v2

(i =Nx) · · · a1
vn(i =Nx) · · ·

· · · a2
v1

(i =Nx) a2
v2

(i =Nx) · · · a2
vn(i =Nx) · · ·

...
...

. . .
...

· · · anv1
(i =Nx) anv2

(i =Nx) · · · anvn(i =Nx) · · ·





v1(i =1)
v2(i =1)

...
vn(i =1)

v1(i =Nx)
v2(i =Nx)

...
vn(i =Nx)



=



rhs1(i =1)
rhs2(i =1)

...
rhsn(i =1)

rhs1(i =Nx)
rhs2(i =Nx)

...
rhsn(i =Nx)



(E2)

≡ ≡ ≡
A

′′
v

′′
RHS

′′

In Eq. (E2) we see how the solution vector v
′′

is organized: for each i all variables
v1...vn are placed below each other, which is repated from i=1 up to i=Nx. Between15

i=1 and i=Nx the variables are indicated by a vertical line.
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The coefficients of A
′′

working on the central variables are indicated in Eq. (E2) for
i=1 up to i=Nx, where those for the i ’s between are indicated by a vertical line. Each

coefficient of A
′′

is labeled by a subscript equal to the name of the variable it works on,
and a superscript equal to the equation number it belongs to. The dependence on i is
denoted between parenthesis. The most left and right dots in A

′′
indicate, for a given5

i , the non-shown coefficients working on the neighbour variables. The RHS
′′

vector
is composed analogue to the solution vector v

′′
and each component is labeled by a

superscript equal to the equation number it belongs to.
With this matrix equation A

′′
v

′′
=RHS

′′
only the x-derivatives (of all n variables) can be

taken implicit in the discretized equations. In case we want to include the y-derivatives10

implicitly in the discretized equations and to handle them by a matrix equation we have
to extend the matrix Eq. (E2). Then, the matrix coefficients, the solution variables, and
the right hand sides become i j dependent. For each j we have an A

′′
(j ) for all i . The

next A
′′
(j+1) is placed at the rows below A

′′
(j ) in the extended matrix. And the same

for the v ’s and the RHS’s.15

We create an extended matrix equation where we put the A
′′
’s at the position of the

coefficients working on the central variables, which can be sketched like:
A

′′
(j =1)

A
′′
(j = 2)

. . .

A
′′
(j =Ny)




v
′′
(j =1)

v
′′
(j = 2)

...

v
′′
(j =Ny)

 =


RHS

′′
(j =1)

RHS
′′
(j = 2)
...

RHS
′′
(j =Ny)

 (E3)

≡ ≡ ≡

A
′

v
′

RHS
′

20

The rows in A
′
are longer than in the A

′′
’s because of the extra included y-neighbours.

And if the z-derivatives have to be included implicitly, analogue to the previous step,
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we have to extend the matrix Eq. (E3) by: placing A
′
(k+1) below A

′
(k) etc, like

A
′
(k=1)

A
′
(k = 2)

. . .

A
′
(k=Nz)




v
′
(k=1)

v
′
(k = 2)

...

v
′
(k=Nz)

 =


RHS

′
(k=1)

RHS
′
(k = 2)
...

RHS
′
(k=Nz)

 (E4)

≡ ≡ ≡

A v RHS

This is how the format of Eq. (E1) is organized.5

Summarized in words: For a given i jk combination a block of n equations is placed
in A, starting with the 1st and ending with the n-th equation, where the solution vector
v is composed by placing v1(i jk) ... vn(i jk) above each other. Having placed this
n equations for this i jk combination, the next n equations and variables for i+1 are
placed at the next n rows in this matrix equation. And so on, up to i=Nx. Then, all10

i combinations for j+1 are placed, which is repeated up to j=Ny. Below that, all i j
combinations for k+1 are placed, and so on for all the next k up to k=Nz.

E2 A more compact notation

For a given jk combination, the nNx equations for all i are given by Eq. (E2). This
Eq. (E2) can be represented more compact, first by writing only one block of n equa-15
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tions for a certain i .

...
...

...
· · · a1

v1
(i ) a1

v2
(i ) · · · a1

vn(i ) · · ·
· · · a2

v1
(i ) a2

v2
(i ) · · · a2

vn(i ) · · ·
...

...
. . .

...
· · · anv1

(i ) anv2
(i ) · · · anvn(i ) · · ·

...
...

...





...
v1(i )
v2(i )

...
vn(i )

...


=



...
rhs1(i )
rhs2(i )

...
rhsn(i )

...


(E5)

Here, i represents n equations, in that sense that only the central variables of that
equations are shown in the solution vector while the neighbour variables are indicated
by the dots up and below. In the matrix, the coefficients working on the central variables5

are shown while the coefficients working on the neighbour variables are indicated by
the most left and most right horizontal dots. The matrix coefficients, the solution vari-
ables, and the RHS’s for other i are indicated by the dots up and below.

Secondly, this can be written more compact by introducing a counter l which equals
the equation number. Actually, because l runs from 1 up to n, the n successive equa-10

tions are meant:
...

...
...

· · · alv1
(i ) alv2

(i ) · · · alvn(i ) · · ·
...

...
...




...
vl (i )

...

 =


...

rhsl (i )
...

 (E6)

with l in the range:

1 ≤ l ≤ n (E7)

Finally, the n matrix coefficients in Eq. (E6) working on the central variables be com-15

bined in a compact notation by introducing a counter m which represents the n suc-
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cessive coefficients working on the n central variables v1 ... vn:
...

· · · alvm(i ) · · ·
...




...
vl (i )

...

 =


...

rhsl (i )
...

 (E8)

with m in the range:

1 ≤ m ≤ n (E9)

Equation (E8) is a very short notation for Eq. (E2) for which one has to realize that l5

and m represent n rows and columns respectively. The left and right dots in the matrix
indicate the coefficients working on the neighbour variables. The other i’s for this given
jk combination are indicated by the upper and lower dots in this matrix equation.

E3 Relating the component names with their position

The next step simultaneously handles two issues: Firstly, relating both the matrix coef-10

ficient names and the vector component names by a rule to their position in the matrix
equation. Secondly, developing adequate names for the coefficients working on the
neighbour variables, for which the earlier mentioned rule has to be valid as well. It is
convenient for identification that the discretized variable names occur in the subscripts
of the matrix coefficients. Because the coefficients in the matrix equal the factors in15

front of the discretized variables in the discretized equations, they easily can be placed
in A using the rule which relates the coefficient names with their positions.

A rule relating the name of a matrix coefficient with its position in a matrix, with a
structure as described in Appendix E1, for a coefficient belonging to the l -th equation
and working on an m-th variable vm (in this step only central variables are considered),20

is given by

al(vm)ki,j
[c

l
, cm] (E10)
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with again l and m in the range:

1 ≤ l ≤ n (E11)

1 ≤ m ≤ n (E12)

and with (vm)ki ,j the m-th central variable. The i jk indices of vm label the grid point

where the variable is defined on, and (vm)ki ,j is a central variable because the indices5

just equal i jk. Closest neighbours would cary an additional −1 or +1 in those i jk
indices. Between brackets in rule E10, the row and column indices of the matrix coeffi-
cient are shown. Those row and column indices depend on i jk via the ‘central index’.
We call c1−cn the first up to the n-th central index. Any l -th central index, cl , is given
by10

cl (i jk) = cindex(i jk) + l (E13)

for 1≤l≤n, with the central index, cindex, given by

cindex(i jk) = n(i − 1) + n(j − 1)Nx + n(k − 1)NxNy (E14)

for 1≤i≤Nx, 1≤j≤Ny and 1≤k≤Nz. The central indices are calculated once, for each
block of n equations for a certain i jk combination.15

The rule in E10 for coefficients working on the central variables can be generalized
to a rule which is valid for all matrix coefficients by the following additions in the i jk
labels:

al
(vm)

k+dk
i+di ,j+dj

[c
l
, cm + diei+djej+dkek ] (E15)

with di , dj , and dk the distants (in grid units) in the i , j , and k directions respectively20

between a neighbour grid point and the considered i jk grid point. Where we have for
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each i jk combination

1 − i ≤ di ≤ Nx − i (E16)

1 − j ≤ dj ≤ Nx − j (E17)

1 − k ≤ dk ≤ Nx − k (E18)

Usually, as in our case, only di , dj , and dk with values −1, 0, or 1 (in case of high5

discretization accuracy: −2, 2) contribute, because they have matrix coefficients un-
equal to zero. The ei , ej , and ek in Eq. (E15) are the amounts of horizontally shifted
places relative to the m-th row in respectively the i , j , and k direction in matrix A of two
neighbour points situated side by side:

ei = n (E19)10

ej = nNx (E20)

ek = nNxNy (E21)

in accordance with the structure of matrix A as desribed in Appendix E1.
For instance, a coefficient working on Uk

i+1,j−1 in the l -th equation looks like

al(v1)ki+1,j−1
[c

l
, c1 + ei − ej ] (E22)15

With the rule in E15 for the matrix coefficients and with an easier but analogue nota-
tion for the solution vector and the RHS vector, we construct a matrix equation in which
the component names are related with their position in this matrix equation:(
al

(vm)
k+dk
i+di ,j+dj

(i jk)[c
l
, cm + diei+djej+dkek ]

) (
vl (i jk)[cl ]

)
=
(

rhsl (i jk)[cl ]
)

(E23)

In Eq. (E23) the i jk dependency of the central variables is omitted to keep the notation20

short. Equation (E23) relates any component name of the matrix equation with its
position for all i jk, l , m, di , dj , and dk . Actually it describes the matrix equation in
full component form in case one extends each variable for its entire range, in the same
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way as we did in Eqs. (E6–E9) for a given jk combination. But Eq. (E23) is valid for
any i jk combination. All those i jk, l , m, di , dj , and dk should be looped over their
ranges to construct all components of the matrix equation. Therefore, the dots are not
necessary anymore in this notation.

The relative column index is the additional part in the column index and denotes the5

relative distance to the coordinates [cl ,cm ], i.e. in Eq. (E23) the relative indices are
diei+djej+dkek . The location for a given i jk combination in A of a coefficient alvm
working on an m-th central variable in the l -th equation, is [cl , cm].

E4 The compact three vector format

Because A is a huge NxN but sparse matrix, our final interest is to give a compact10

‘three vector format’ of A. In this three vector format only the non-zero coefficients of A
are stored. The first vector contains the values of the coefficients of A while the second
and the third contain respectively the corresponding row and column indices in A of
those coefficients. For this compact vector format of A we have to know the indices of
the matrix coefficients. We use the previous developed general notation for a matrix15

equation in which the names of the coefficients contain the name of the variable they
work on. Then, the location of these matrix coefficients in A are related to their names
with rule (E15).

Equation (E23) concerns any component of the matrix equation, while we are inter-
ested in a describtion of a typical sparse matrix equation. Therefore, we develop a20

notation for the same matrix equation for which we realize it is sparse, which means a
limited number of neighbours is involved per equation.

In a sparse case, most of the di , dj , dk -range combinations will not contribute. Even
some m cases of vm may not occur in some equations. Therefore, we have for each
l -th equation a small selection of q

l
coefficients in A being non-zero. We label, for25

each l , those non-zero matrix coefficients by a subscript with a number between 1 and
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q
l
.(
al1(i jk)[c

l
, cm + r l1] . . . alql (i jk)[c

l
, cm + r lql ]

)(
v

l
(i jk)[c

l
]
)
=
(

rhsl (i jk)[c
l
]
)

(E24)

with r l1 . . . r
l
ql

the relative column indices, relative to [cl , cm]. The matrix coefficients
carry in this sparse notation a number in their subscript instead of variable name. For
this limited number of non-zero coefficients, this coefficient names have to be specified.5

It depends on the shape of the equation, the implicit/explicit choice, and the discretiza-
tion accuracy, which and how many terms are included. In our case, the non-zero
matrix coefficients in the discretized equations are with help of the name-position rule
(E15), listed in Tables 6–8 for the first, the second, and the third equation respectively.

Equation (E24) can be written more compact by using a sparse counter s, looping10

from 1 up to q
l

for a certain l(
als(i jk)[c

l
, cm + r ls]

)(
v

l
(i jk)[c

l
]
)
=
(

rhsl (i jk)[c
l
]
)

(E25)

where the combinations of m, di , dj , dk , which lead to the non-zero matrix coeffi-
cients, are stored with their row and column indices in the compact three vector format.
The exact non-zero coefficient names have to be read from the discretized equations.15

Those discretized variable names combined with rule (E15) give their positions in ma-
trix A. For each l in Eq. (E25) we have q

l
matrix coefficients and q

l
relative column

indices:

al1 ≤ als ≤ alql (E26)

r l1 ≤ r ls ≤ r lql (E27)20

with l , q
l
, and s in the range:

1 ≤ l ≤ n (E28)

q
1
≤ q

l
≤ qn (E29)

1 ≤ s ≤ q
l

(E30)
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with a different amount of q
l

matrix coefficients for each of the l equations. Knowing
their positions we can construct the n arrays containing the relative column indices:
{r1

1 , ..., r
1
q1
}, {r2

1 , ..., r
2
q2
}, ..., {rn1 , ..., r

n
qn
}.

Writing out Eq. (E25) for all l we have:
a1

1[c
1
, cm + r1

1] . . . a1
q1

[c
1
, cm + r1

q1
]

a2
1[c

2
, cm + r2

1] . . . a2
q2

[c
2
, cm + r2

q2
]

...
. . .

...
an1[c

n
, cm + rn1] . . . anqn [cn

, cm + rnqn ]




v
1
[c

1
]

v
2
[c

2
]

...
v

n
[c

n
]

 =


rhs1[c

1
]

rhs2[c
2
]

...
rhsn[c

n
]

 (E31)5

where the dependency of the components and of the central indices on i jk is omitted,
to keep the notation short.

For CPU reasons Eq. (E25) can be written, with use of cm=cl−l+m, as(
als(i jk)[c

l
, cl + pl

s]
)(

v
l
(i jk)[c

l
]
)
=
(

rhsl (i jk)[c
l
]
)

(E32)

with pl
s = −l +m + r ls, p

l
s is relative to [cl , cl ].10

This additional column indices r ls are called the relative column indices for the l -th
equation working on the s-th neighbour, because they give the the position relative
to the m-th row at position [cl , cm]. We have for an l -th equation the relative column
indices r ls with 1≤s≤ q

l
, where q

l
is the number of non-zero matrix coefficients for that

l . The numbers q
l

can differ for each of the n physical equations depending on the15

nature of each equations, the way of discretization, and the implicit/explicit choices.
Together with Eqs. (E13–E14) Eq. (E25) represents the complete format for matrix

A describing n coupled equations on a 3D grid.
All type of problems with n equations and n variables on a 3D grid can be han-

dled with Eq. (E25), the problem specific information is stored in the short lists als20

and r ls. Changing the previous choices concerning the shape of the equation, the im-
plicit/explicit choice and the discretization accuracy, just needs adaption of those sets
als and r ls, but not in the rest of the story.
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Programming this matrix equation exactly matches with looping the expression in
Eq. (E25) over s, l and i jk, after composing the n arrays containing the non-zero
matrix coefficients:

{a1
1, ..., a

1
q1}, {a

2
1, ..., a

2
q2}, ..., {a

n
1, ..., a

n
qn}

and the relative column indices:5

{r1
1, ..., r

1
q1}, {r

2
1, ..., r

2
q2}, ..., {r

n
1, ..., r

n
qn}

If we follow this s, l , i jk looping order in which only the non-zero matrix elements
are counted, three vectors can be filled: one with the matrix coefficients, one with the
corresponding row indices of that matrix coefficients and one with the corresponding
column indices. We call this the compact vector format of the sparse matrix, because10

in this three vectors the complete content of this sparse matrix is stored ommiting the
overwhelming majority of zero-components.

E5 For a d dimensional grid

We showed the case of a 3D grid, it can be extended to a d dimensional grid by
taking the d grid dimensions i1...id instead of the three grid dimensions i jk. Further,15

in Eq. (E25) we have to replace i jk by i1...id , and the cindex is generalized by

cindex(i1...id ) = n
d∑

d ′=1

 d
′∏

p=1

(ip − 1)N i(p−1)

 with N i0 ≡ 1 (E33)

with 1≤ip≤Nip for the p-th grid direction. The dimension N of v and RHS becomes

N = n
d∏

p=1

N ip (E34)
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The general equation format for n equations with n variables on a d dimensional grid
becomes(

al
(vm)

k+dk
i+di ,j+dj

(i1...id )[c
l
, cm + diei+djej+dkek ]

)(
vl (i1...id )[cl ]

)
=
(

rhsl (i1...id )[cl ]
)

(E35)

where the dependency of the central variables on i1...id is omitted to keep the notation5

short.
The sparse matrix format becomes(
als(i1...id )[c

l
, cm + r ls]

)(
v

l
(i1...id )[c

l
]
)
=
(

rhsl (i1...id )[c
l
]
)

(E36)
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Table 1. Definitions of frequently used quantities and some math conventions.

symbol explanation units equation

x, y, z spatial coordinates m
ζ scaled vertical coordinate - (B8)

ζ ≡ Hs−z
H

t time coordinate s
H ice thickness m (3.1), (3.2)
Hs surface height m (3.1)
Hb bedrock height m (3.1)
S sea level m (3.1)
ρice density of ice kg m−3 (3.1), (3.3)
ρw density of sea water kg m−3 (3.1)
Ms surface mass balance m ice equivalent y−1 (3.2)
Mb basal melt m ice equivalent y−1 (3.2)
vi i-th velocity component m s−1 (3.3)
v̄ vertical avarage velocity m s−1 (3.2)
Fi summed volume force N (3.3), (3.6)
g gravitational acceleration m s−2 (3.6)
τij stress tensor N m−2 (3.3), (3.7)

τ
′

ij deviatoric stress tensor N m−2 (3.19)

ε̇ij stain rate s−1 (3.18)
ε̇e minus the 2nd invariant of ε̇ (3.20)
u velocity in x-direction m s−1 (3.24), (4.1)
v velocity in y-direction m s−1 (3.25), (4.2)
w velocity in z-direction m s−1 (3.26), (4.3)
n flow law exponent - (3.19)

Aflow ice flow parameter Pa−n s−1 (3.19)
T ice temperature K

Cuvw abbreviation non linear part (3.23)
∂i

∂
∂xi

operator
dt

d
dt operator

δij δij=1 for i = j , else δij=0
: indicates a range
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Table 2. The values of the simplification coefficients f0–f6 for the usual approximations at the
sheet, the shelf, and within the transition zone (TZ). In case the simplification coefficients are
adjusted to one, those momentum-equation terms listed are included in the calculation. If
all f0–f6 equal one, the entire almost-full-stress solution is performed. Also the abbreviation
f56≡2f5+f6 is used further on.

sheet TZ shelf involved terms description

f0 0 0 0 ∂xw, ∂yw 2nd part horizontal shear

f1 0 1 1 τ
′

xx, τ
′

yy longitudinal stress

f2 0 1 1 τ
′

xy side shear

f3 1 1 0 τ
′

xz, τ
′

yz horizontal shear

f4 1 1 0 ∂zτ
′

xz vertical derivative

∂zτ
′

yz of horizontal shear

f5 0 0 1 ∂xτ
′

xx, ∂xτ
′

yy horizontal derivative

∂yτ
′

yy, ∂yτ
′

xx of longitudinal stress

f6 0 0 1 ∂yτ
′

xy horizontal derivative

∂xτ
′

xy of side shear
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Table 3. The transformed derivative operators accompanying the coordinate transformation
scaling the vertical ice coordinate.

∂tf = ∂t′ f + ζt∂ζ f
∂xf = ∂x′ f + ζx∂ζ f
∂y f = ∂y ′ f + ζy∂ζ f
∂zf = ζz∂ζ f
∂2
xxf = ∂2

x′x′ f + 2ζx∂
2
x′ ζ f + ζx

2∂2
ζζ f + ζxx∂ζ f

∂2
xy f = ∂2

yxf = ∂2
x′y ′ f + ζy∂

2
x′ ζ f + ζx∂

2
y ′ ζ f ζxζy∂

2
ζζ f + ζxy∂ζ f

∂2
xzf = ∂2

zxf = ζz∂
2
x′ ζ f + + ζxζz∂

2
ζζ f + ζxz∂ζ f

∂2
yy f = ∂2

y ′y ′ f + 2ζy∂
2
y ′ ζ f + ζy

2∂2
ζζ f + ζyy∂ζ f

∂2
yzf = ∂2

zy f = ζz∂
2
y ′ ζ f + ζyζz∂

2
ζζ f + ζyz∂ζ f

∂2
zzf = ζz

2∂2
ζζ f

or

ft = ft′ + ζtfζ
fx = fx′ + ζxfζ
fy = fy ′ + ζyfζ
fz = ζzfζ
fxx = fx′x′ + 2ζxfx′ ζ + ζx

2fζζ + ζxxfζ
fxy = fyx = fx′y ′ + ζyfx′ ζ + ζxfy ′ ζ + ζxζyfζζ + ζxyfζ
fxz = fzx = ζzfx′ ζ + ζxζzfζζ + ζxzfζ
fyy = fy ′y ′ + 2ζyfy ′ ζ + ζy

2fζζ + ζyyfζ
fyz = fzy = ζzfy ′ ζ + ζyζzfζζ + ζyzfζ
fzz = ζz

2fζζ

with

ζt = 1
H (∂tHs − ζ∂tH)

ζx = 1
H (∂xHs − ζ∂xH)

ζy = 1
H
(
∂yHs − ζ∂yH

)
ζz = 1

H
ζxx = 1

H

(
∂2
xxHs − ζ∂2

xxH − 2ζx∂xH
)

ζxy = 1
H

(
∂2
xyHs − ζ∂2

xyH − ζy∂xH − ζx∂yH
)

ζxz = 1

H 2 ∂xH

ζyy = 1
H

(
∂2
yyHs − ζ∂2

yyH − 2ζy∂yH
)

ζyz = 1

H 2 ∂yH
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Table 4. The central finite difference discretizations (for a 3D field variable f on an Arakawa
A-grid).

(∂xf )kij = axf
k
i−1,j + cxf

k
i+1,j

(∂y f )kij = ay f
k
i,j−1 + cy f

k
i,j+1(

∂ζ f
)k

ij
= aζ f

k−1
i,j + bζ f

k
i,j + cζ f

k+1
i,j

(∂2
xxf )kij = axxf

k
i−1,j + bxxf

k
i,j + cxxf

k
i+1,j(

∂2
xy f

)k
ij
= axay f

k
i−1,j−1 + axcy f

k
i−1,j+1 + cxay f

k
i+1,j−1 + cxcy f

k
i+1,j+1(

∂2
xζ f

)k
ij

= aζaxf
k−1
i−1,j + aζcxf

k−1
i+1,j + bζaxf

k
i−1,j + bζcxf

k
i+1,j + cζaxf

k+1
i−1,j + cζcxf

k+1
i+1,j

(∂2
yy f )kij = ayy f

k
i,j−1 + byy f

k
i,j + cyy f

k
i,j+1(

∂2
yζ f

)k
ij

= aζay f
k−1
i,j−1 + aζcy f

k−1
i,j+1 + bζay f

k
i,j−1 + bζcy f

k
i,j+1 + cζay f

k+1
i,j−1 + cζcy f

k+1
i,j+1(

∂2
ζζ f

)k
ij

= aζζ f
k−1
i,j + bζζ f

k
i,j + cζζ f

k+1
i,j

with

ax = − 1
2∆x a = ζk- ζk−1

cx = 1
2∆x b = ζk+1- ζk

ay = − 1
2∆y

cy = 1
2∆y

aζ = − b
a(a+b)

bζ = b−a
ab

cζ = a
b(a+b)

axx = 1

(∆x)2

bxx = − 2

(∆x)2

cxx = 1

(∆x)2

ayy = 1

(∆y)2

byy = − 2

(∆y)2

cyy = 1

(∆y)2

aζζ = 2
a(a+b)

bζζ = − 2
ab

cζζ = 2
b(a+b)
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Table 5. The definitions of the coefficients in front of the derivatives of the scaled equations
(D25–D24 or 5.6–5.5). The coefficients denoted by f and g concern the first and the second
momentum equation respectively. The coefficients in front of the third equation need no extra
definitions. The simplification coefficients f0–f6 and f56 are as in Table 2.

first equation second equation

f Ux
5 = 4f5C

x gUx
5 = 2f5C

y

f
Uy

6 = f6C
y g

Uy

6 = f6C
x

f
Uζ

456 = 4f5C
xζx + f6C

yζy + f4C
ζζz + 4f5ζxx + f6ζyy g

Uζ

56 = 2f5C
yζx + f6C

xζy + f56ζxy

f Uxx
5 = 4f5 g

Uxy

56 = f56

f
Uxζ

5 = 8f5ζx g
Uxζ

56 = f56ζy

f
Uyy

6 = f6 g
Uyζ

56 = f56ζx

f
Uyζ

6 = 2f6ζy g
Uζζ

56 = f56ζxζy

f
Uζζ

456 = 4f5ζx
2 + f6ζy

2 + f4ζz
2 gVx

6 = f6C
x

f Vx6 = f6C
y g

Vy
5 = 4f5C

y

f
Vy
5 = 2f5C

x g
Vζ
456 = f6C

xζx + 4f5C
yζy + f4C

ζζz + f6ζxx + 4f5ζyy

f
Vζ
56 = f6C

yζx + 2f5C
xζy + f56ζxy gVxx

6 = f6
f
Vxy
56 = f56 g

Vxζ
6 = 2f6ζx

f
Vxζ
56 = f56ζy g

Vyy
5 = 4f5

f
Vyζ
56 = f56ζx g

Vyζ
5 = 8f5ζy

f
Vζζ
56 = f56ζxζy g

Vζζ
456 = f6ζx

2 + 4f5ζy
2 + f4ζz

2

fWx
04 = f0f4C

ζ g
Wy

04 = f0f4C
ζ

f
Wζ

04 = f0f4C
ζζx + f0f4ζxz g

Wζ

04 = f0f4C
ζζy + f0f4ζyz

f
Wxζ

04 = f0f4ζz g
Wyζ

04 = f0f4ζz

f
Wζζ

04 = f0f4ζxζz g
Wζζ

04 = f0f4ζyζz

148

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/81/2009/gmdd-2-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
2, 81–158, 2009

A numerical ice sheet
– ice shelf 3D

velocity field solution

T. J. Reerink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 6. The 43 matrix coefficients als(i jk)[c
l
, cm + r ls] for the first equation: l=1, 1≤s≤43, which are the coefficients

in front of the discretized variables in Eq. (D30). Between brackets the row and column indices of the location of each
coefficient in the matrix, which is part of Eq. (5.21), are shown. The i jk dependence of the coefficients and the central
indices are omitted to keep the notation short. Far left shows the variable of the solution vector where the coefficient
works on. The next table column shows the coefficient name in “sparse” notation: The subscript equals the sparse
index 1≤s≤ q

l
. The row index equals the central index cl , while the column index is equal to the central index cm plus

the relative column index r ls. The third table column contains real names of the coefficients and the indices. Far right,
the values of the coefficients are defined. Note that the three vertical parts of the table concern the cases m=1 up to
m=3 top-down respectively. The coefficients denoted by f and g are defined in Table 5. The precise definitions of the
indices can be found in Table 8.

Uk
i−1,j: a

1
1[c

1
, c1 + r1

1] = a1
(v1)ki−1,j

[c
1
, c1 − ei ] = axf

Ux
5 + axxf

Uxx
5 + axbζ f

Uxζ

5

Uk
i+1,j: a

1
2[c

1
, c1 + r1

2] = a1
(v1)ki+1,j

[c
1
, c1 + ei ] = cxf

Ux
5 + cxxf

Uxx
5 + bζcxf

Uxζ

5

Uk
i,j−1: a

1
3[c

1
, c1 + r1

3] = a1
(v1)ki,j−1

[c
1
, c1 − ej ] = ay f

Uy

6 + ayy f
Uyy

6 + aybζ f
Uyζ

6

Uk
i,j+1: a

1
4[c

1
, c1 + r1

4] = a1
(v1)ki,j+1

[c
1
, c1 + ej ] = cy f

Uy

6 + cyy f
Uyy

6 + bζcy f
Uyζ

6

Uk−1
i,j : a1

5[c
1
, c1 + r1

5] = a1
(v1)k−1

i ,j
[c

1
, c1 − ek ] = aζ f

Uζ

456 + aζζ f
Uζζ

456

Uk
i,j : a1

6[c
1
, c1 + r1

6] = a1
(v1)ki,j

[c
1
, c1] = bζ f

Uζ

456 + bxxf
Uxx
5 + byy f

Uyy

6 + bζζ f
Uζζ

456

Uk+1
i,j : a1

7[c
1
, c1 + r1

7] = a1
(v1)k+1

i ,j
[c

1
, c1 + ek ] = cζ f

Uζ

456 + cζζ f
Uζζ

456

Uk−1
i−1,j: a

1
8[c

1
, c1 + r1

8] = a1
(v1)k−1

i−1,j
[c

1
, c1 − ei − ek ]= axaζ f

Uxζ

5

Uk−1
i+1,j: a

1
9[c

1
, c1 + r1

9] = a1
(v1)k−1

i+1,j
[c

1
, c1 + ei − ek ]= aζcxf

Uxζ

5

Uk+1
i−1,j: a

1
10[c

1
, c1 + r1

10] = a1
(v1)k+1

i−1,j
[c

1
, c1 − ei + ek ]= axcζ f

Uxζ

5

Uk+1
i+1,j: a

1
11[c

1
, c1 + r1

11] = a1
(v1)k+1

i+1,j
[c

1
, c1 + ei + ek ]= cxcζ f

Uxζ

5

Uk−1
i,j−1: a

1
12[c

1
, c1 + r1

12] = a1
(v1)k−1

i ,j−1
[c

1
, c1 − ej − ek ]= ayaζ f

Uyζ

6

Uk−1
i,j+1: a

1
13[c

1
, c1 + r1

13] = a1
(v1)k−1

i ,j+1
[c

1
, c1 + ej − ek ]= aζcy f

Uyζ

6

Uk+1
i,j−1: a

1
14[c

1
, c1 + r1

14] = a1
(v1)k+1

i ,j−1
[c

1
, c1 − ej + ek ]= aycζ f

Uyζ

6

Uk+1
i,j+1: a

1
15[c

1
, c1 + r1

15] = a1
(v1)k+1

i ,j+1
[c

1
, c1 + ej + ek ]= cycζ f

Uyζ

6
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Table 6. Continued.

V k
i−1,j : a1

16[c
1
, c2 + r1

16] = a1
(v2)ki−1,j

[c
1
, c2 − ei ] = axf

Vx
6 + axbζ f

Vxζ
56

V k
i+1,j : a1

17[c
1
, c2 + r1

17] = a1
(v2)ki+1,j

[c
1
, c2 + ei ] = cxf

Vx
6 + bζcxf

Vxζ
56

V k
i,j−1 : a1

18[c
1
, c2 + r1

18] = a1
(v2)ki,j−1

[c
1
, c2 − ej ] = ay f

Vy
5 + aybζ f

Vyζ
56

V k
i,j+1 : a1

19[c
1
, c2 + r1

19] = a1
(v2)ki,j+1

[c
1
, c2 + ej ] = cy f

Vy
5 + bζcy f

Vyζ
56

V k−1
i,j : a1

20[c
1
, c2 + r1

20] = a1
(v2)k−1

i ,j
[c

1
, c2 − ek ] = aζ f

Vζ
56 + aζζ f

Vζζ
56

V k
i,j : a1

21[c
1
, c2 + r1

21] = a1
(v2)ki,j

[c
1
, c2] = bζ f

Vζ
56 + bζζ f

Vζζ
56

V k+1
i,j : a1

22[c
1
, c2 + r1

22] = a1
(v2)k+1

i ,j
[c

1
, c2 + ek ] = cζ f

Vζ
56 + cζζ f

Vζζ
56

V k−1
i−1,j : a1

23[c
1
, c2 + r1

23] = a1
(v2)k−1

i−1,j
[c

1
, c2 − ei − ek ] = axaζ f

Vxζ
56

V k−1
i+1,j : a1

24[c
1
, c2 + r1

24] = a1
(v2)k−1

i+1,j
[c

1
, c2 + ei − ek ] = aζcxf

Vxζ
56

V k+1
i−1,j : a1

25[c
1
, c2 + r1

25] = a1
(v2)k+1

i−1,j
[c

1
, c2 − ei + ek ] = axcζ f

Vxζ
56

V k+1
i+1,j : a1

26[c
1
, c2 + r1

26] = a1
(v2)k+1

i+1,j
[c

1
, c2 + ei + ek ] = cxcζ f

Vxζ
56

V k−1
i,j−1 : a1

27[c
1
, c2 + r1

27] = a1
(v2)k−1

i ,j−1
[c

1
, c2 − ej − ek ] = ayaζ f

Vyζ
56

V k−1
i,j+1 : a1

28[c
1
, c2 + r1

28] = a1
(v2)k−1

i ,j+1
[c

1
, c2 + ej − ek ] = aζcy f

Vyζ
56

V k+1
i,j−1 : a1

29[c
1
, c2 + r1

29] = a1
(v2)k+1

i ,j−1
[c

1
, c2 − ej + ek ] = aycζ f

Vyζ
56

V k+1
i,j+1 : a1

30[c
1
, c2 + r1

30] = a1
(v2)k+1

i ,j+1
[c

1
, c2 + ej + ek ] = cycζ f

Vyζ
56

V k
i−1,j−1: a

1
31[c

1
, c2 + r1

31] = a1
(v2)ki−1,j−1

[c
1
, c2 − ei − ej ]= axay f

Vxy
56

V k
i−1,j+1: a

1
32[c

1
, c2 + r1

32] = a1
(v2)ki−1,j+1

[c
1
, c2 − ei + ej ]= axcy f

Vxy
56

V k
i+1,j−1: a

1
33[c

1
, c2 + r1

33] = a1
(v2)ki+1,j−1

[c
1
, c2 + ei − ej ]= aycxf

Vxy
56

V k
i+1,j+1: a

1
34[c

1
, c2 + r1

34] = a1
(v2)ki+1,j+1

[c
1
, c2 + ei + ej ]= cxcy f

Vxy
56
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Table 6. Continued.

W k
i−1,j: a

1
35[c

1
, c3 + r1

35] = a1
(v3)ki−1,j

[c
1
, c3 − ei ] = axf

Wx
04 + axbζ f

Wxζ

04

W k
i+1,j: a

1
36[c

1
, c3 + r1

36] = a1
(v3)ki+1,j

[c
1
, c3 + ei ] = cxf

Wx
04 + bζcxf

Wxζ

04

W k−1
i,j : a1

37[c
1
, c3 + r1

37] = a1
(v3)k−1

i ,j
[c

1
, c3 − ek ] = aζ f

Wζ

04 + aζζ f
Wζζ

04

W k
i,j : a1

38[c
1
, c3 + r1

38] = a1
(v3)ki,j

[c
1
, c3] = bζ f

Wζ

04 + bζζ f
Wζζ

04

W k+1
i,j : a1

39[c
1
, c3 + r1

39] = a1
(v3)k+1

i ,j
[c

1
, c3 + ek ] = cζ f

Wζ

04 + cζζ f
Wζζ

04

W k−1
i−1,j: a

1
40[c

1
, c3 + r1

40] = a1
(v3)k−1

i−1,j
[c

1
, c3 − ei − ek ]= axaζ f

Wxζ

04

W k−1
i+1,j: a

1
41[c

1
, c3 + r1

41] = a1
(v3)k−1

i+1,j
[c

1
, c3 + ei − ek ]= aζcxf

Wxζ

04

W k+1
i−1,j: a

1
42[c

1
, c3 + r1

42] = a1
(v3)k+1

i−1,j
[c

1
, c3 − ei + ek ]= axcζ f

Wxζ

04

W k+1
i+1,j: a

1
43[c

1
, c3 + r1

43] = a1
(v3)k+1

i+1,j
[c

1
, c3 + ei + ek ]= cxcζ f

Wxζ

04
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Table 7. The 43 matrix coefficients al
s(i jk)[c

l
, cm + r ls] for the second equation: l=2, 1≤s≤43,

which are the coefficients in front of the discretized variables in Eq. (D31). See for more expla-
nation the caption of Table 6, and Table 8 for the precise definitions of the indices.

Uk
i−1,j :a2

1[c
2
, c1 + r2

1] = a2
(v1)ki−1,j

[c
2
, c1 − ei ] = axg

Ux
5 + axbζg

Uxζ

56

Uk
i+1,j :a2

2[c
2
, c1 + r2

2] = a2
(v1)ki+1,j

[c
2
, c1 + ei ] = cxg

Ux
5 + bζcxg

Uxζ

56

Uk
i,j−1 :a2

3[c
2
, c1 + r2

3] = a2
(v1)ki,j−1

[c
2
, c1 − ej ] = ayg

Uy

6 + aybζg
Uyζ

56

Uk
i,j+1 :a2

4[c
2
, c1 + r2

4] = a2
(v1)ki,j+1

[c
2
, c1 + ej ] = cyg

Uy

6 + bζcyg
Uyζ

56

Uk−1
i,j :a2

5[c
2
, c1 + r2

5] = a2
(v1)

k−1
i ,j

[c
2
, c1 − ek ] = aζg

Uζ

56 + aζζg
Uζζ

56

Uk
i,j :a2

6[c
2
, c1 + r2

6] = a2
(v1)ki,j

[c
2
, c1] = bζg

Uζ

56 + bζζg
Uζζ

56

Uk+1
i,j :a2

7[c
2
, c1 + r2

7] = a2
(v1)k+1

i ,j
[c

2
, c1 + ek ] = cζg

Uζ

56 + cζζg
Uζζ

56

Uk−1
i−1,j :a2

8[c
2
, c1 + r2

8] = a2
(v1)

k−1
i−1,j

[c
2
, c1 − ei − ek ] = axaζg

Uxζ

56

Uk−1
i+1,j :a2

9[c
2
, c1 + r2

9] = a2
(v1)

k−1
i+1,j

[c
2
, c1 + ei − ek ] = aζcxg

Uxζ

56

Uk+1
i−1,j :a2

10[c
2
, c1 + r2

10] = a2
(v1)k+1

i−1,j
[c

2
, c1 − ei + ek ] = axcζg

Uxζ

56

Uk+1
i+1,j :a2

11[c
2
, c1 + r2

11] = a2
(v1)k+1

i+1,j
[c

2
, c1 + ei + ek ] = cxcζg

Uxζ

56

Uk−1
i,j−1 :a2

12[c
2
, c1 + r2

12] = a2
(v1)

k−1
i ,j−1

[c
2
, c1 − ej − ek ] = ayaζg

Uyζ

56

Uk−1
i,j+1 :a2

13[c
2
, c1 + r2

13] = a2
(v1)

k−1
i ,j+1

[c
2
, c1 + ej − ek ] = aζcyg

Uyζ

56

Uk+1
i,j−1 :a2

14[c
2
, c1 + r2

14] = a2
(v1)k+1

i ,j−1
[c

2
, c1 − ej + ek ] = aycζg

Uyζ

56

Uk+1
i,j+1 :a2

15[c
2
, c1 + r2

15] = a2
(v1)k+1

i ,j+1
[c

2
, c1 + ej + ek ] = cycζg

Uyζ

56

Uk
i−1,j−1:a

2
16[c

2
, c1 + r2

16] = a2
(v1)ki−1,j−1

[c
2
, c1 − ei − ej ]= axayg

Uxy

56

Uk
i−1,j+1:a

2
17[c

2
, c1 + r2

17] = a2
(v1)ki−1,j+1

[c
2
, c1 − ei + ej ]= axcyg

Uxy

56

Uk
i+1,j−1:a

2
18[c

2
, c1 + r2

18] = a2
(v1)ki+1,j−1

[c
2
, c1 + ei − ej ]= aycxg

Uxy

56

Uk
i+1,j+1:a

2
19[c

2
, c1 + r2

19] = a2
(v1)ki+1,j+1

[c
2
, c1 + ei + ej ]= cxcyg

Uxy

56
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Table 7. Continued.

V k
i−1,j:a

2
20[c

2
, c2 + r2

20] = a2
(v2)ki−1,j

[c
2
, c2 − ei ] = axg

Vx
6 + axxg

Vxx
6 + axbζg

Vxζ
6

V k
i+1,j:a

2
21[c

2
, c2 + r2

21] = a2
(v2)ki+1,j

[c
2
, c2 + ei ] = cxg

Vx
6 + cxxg

Vxx
6 + bζcxg

Vxζ
6

V k
i,j−1:a

2
22[c

2
, c2 + r2

22] = a2
(v2)ki,j−1

[c
2
, c2 − ej ] = ayg

Vy
5 + ayyg

Vyy
5 + aybζg

Vyζ
5

V k
i,j+1:a

2
23[c

2
, c2 + r2

23] = a2
(v2)ki,j+1

[c
2
, c2 + ej ] = cyg

Vy
5 + cyyg

Vyy
5 + bζcyg

Vyζ
5

V k−1
i,j :a2

24[c
2
, c2 + r2

24] = a2
(v2)

k−1
i ,j

[c
2
, c2 − ek ] = aζg

Vζ
456 + aζζg

Vζζ
456

V k
i,j :a2

25[c
2
, c2 + r2

25] = a2
(v2)ki,j

[c
2
, c2] = bζg

Vζ
456 + bxxg

Vxx
6 + byyg

Vyy
5 + bζζg

Vζζ
456

V k+1
i,j :a2

26[c
2
, c2 + r2

26] = a2
(v2)k+1

i ,j
[c

2
, c2 + ek ] = cζg

Vζ
456 + cζζg

Vζζ
456

V k−1
i−1,j:a

2
27[c

2
, c2 + r2

27] = a2
(v2)

k−1
i−1,j

[c
2
, c2 − ei − ek ]= axaζg

Vxζ
6

V k−1
i+1,j:a

2
28[c

2
, c2 + r2

28] = a2
(v2)

k−1
i+1,j

[c
2
, c2 + ei − ek ]= aζcxg

Vxζ
6

V k+1
i−1,j:a

2
29[c

2
, c2 + r2

29] = a2
(v2)k+1

i−1,j
[c

2
, c2 − ei + ek ]= axcζg

Vxζ
6

V k+1
i+1,j:a

2
30[c

2
, c2 + r2

30] = a2
(v2)k+1

i+1,j
[c

2
, c2 + ei + ek ]= cxcζg

Vxζ
6

V k−1
i,j−1:a

2
31[c

2
, c2 + r2

31] = a2
(v2)

k−1
i ,j−1

[c
2
, c2 − ej − ek ]= ayaζg

Vyζ
5

V k−1
i,j+1:a

2
32[c

2
, c2 + r2

32] = a2
(v2)

k−1
i ,j+1

[c
2
, c2 + ej − ek ]= aζcyg

Vyζ
5

V k+1
i,j−1:a

2
33[c

2
, c2 + r2

33] = a2
(v2)k+1

i ,j−1
[c

2
, c2 − ej + ek ]= aycζg

Vyζ
5

V k+1
i,j+1:a

2
34[c

2
, c2 + r2

34] = a2
(v2)k+1

i ,j+1
[c

2
, c2 + ej + ek ]= cycζg

Vyζ
5
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Table 7. Continued.

W k
i,j−1:a

2
35[c

2
, c3 + r2

35] = a2
(v3)ki,j−1

[c
2
, c3 − ej ] = ayg

Wy

04 + aybζg
Wyζ

04

W k
i,j+1:a

2
36[c

2
, c3 + r2

36] = a2
(v3)ki,j+1

[c
2
, c3 + ej ] = cyg

Wy

04 + bζcyg
Wyζ

04

W k−1
i,j :a2

37[c
2
, c3 + r2

37] = a2
(v3)

k−1
i ,j

[c
2
, c3 − ek ] = aζg

Wζ

04 + aζζg
Wζζ

04

W k
i,j :a2

38[c
2
, c3 + r2

38] = a2
(v3)ki,j

[c
2
, c3] = bζg

Wζ

04 + bζζg
Wζζ

04

W k+1
i,j :a2

39[c
2
, c3 + r2

39] = a2
(v3)k+1

i ,j
[c

2
, c3 + ek ] = cζg

Wζ

04 + cζζg
Wζζ

04

W k−1
i,j−1:a

2
40[c

2
, c3 + r2

40] = a2
(v3)

k−1
i ,j−1

[c
2
, c3 − ej − ek ]= ayaζg

Wyζ

04

W k−1
i,j+1:a

2
41[c

2
, c3 + r2

41] = a2
(v3)

k−1
i ,j+1

[c
2
, c3 + ej − ek ]= aζcyg

Wyζ

04

W k+1
i,j−1:a

2
42[c

2
, c3 + r2

42] = a2
(v3)k+1

i ,j−1
[c

2
, c3 − ej + ek ]= aycζg

Wyζ

04

W k+1
i,j+1:a

2
43[c

2
, c3 + r2

43] = a2
(v3)k+1

i ,j+1
[c

2
, c3 + ej + ek ]= cycζg

Wyζ

04
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Table 8. The 13 matrix coefficients als(i jk)[c
l
, cm + r ls] for the third equation: l=3, 1≤s≤13, which are the coefficients

in front of the discretized variables in Eq. (D32). See for more explanation the caption of Table 6. The down part of the
table shows the definitions and the ranges of various indices, and gives the format of the solution vector and the RHS
vector.

Uk
i−1,j : a3

1[c
3
, c1 + r3

1] = a3
(v1)ki−1,j

[c
3
, c1 − ei ] = ax

Uk
i+1,j : a3

2[c
3
, c1 + r3

2] = a3
(v1)ki+1,j

[c
3
, c1 + ei ] = cx

Uk−1
i,j : a3

3[c
3
, c1 + r3

3] = a3
(v1)k−1

i ,j
[c

3
, c1 − ek ] = aζζx

Uk
i,j : a3

4[c
3
, c1 + r3

4] = a3
(v1)ki,j

[c
3
, c1] = bζζx

Uk+1
i,j : a3

5[c
3
, c1 + r3

5] = a3
(v1)k+1

i ,j
[c

3
, c1 + ek ] = cζζx

V k
i,j−1 : a3

6[c
3
, c2 + r3

6] = a3
(v2)ki,j−1

[c
3
, c2 − ej ] = ay

V k
i,j+1 : a3

7[c
3
, c2 + r3

7] = a3
(v2)ki,j+1

[c
3
, c2 + ej ] = cy

V k−1
i,j : a3

8[c
3
, c2 + r3

8] = a3
(v2)k−1

i ,j
[c

3
, c2 − ek ] = aζζy

V k
i,j : a3

9[c
3
, c2 + r3

9] = a3
(v2)ki,j

[c
3
, c2] = bζζy

V k+1
i,j : a3

10[c
3
, c2 + r3

10] = a3
(v2)k+1

i ,j
[c

3
, c2 + ek ] = cζζy

W k−1
i,j : a3

11[c
3
, c3 + r3

11] = a3
(v3)k−1

i ,j
[c

3
, c3 − ek ] = aζζz

W k
i,j : a3

12[c
3
, c3 + r3

12] = a3
(v3)ki,j

[c
3
, c3] = bζζz

W k+1
i,j : a3

13[c
3
, c3 + r3

13] = a3
(v3)k+1

i ,j
[c

3
, c3 + ek ] = cζζz

The central indices are given by:
c1 = c1(i jk) = cindex(i jk) + 1
c2 = c2(i jk) = cindex(i jk) + 2
c3 = c3(i jk) = cindex(i jk) + 3

with
cindex(i jk) = 3(i − 1) + 3(j − 1)Nx + 3(k − 1)NxNy

The i jk directed shifts in matrix A for side by side neighbours:
ei = 3
ej = 3Nx
ek = 3NxNy

The solution vector V is related to the 3D velocity field by:
u(i jk) ≡ v1(i jk) = v1(c1) = V (c1)
v(i jk) ≡ v2(i jk) = v2(c2) = V (c2)
w(i jk) ≡ v3(i jk) = v3(c3) = V (c3)

The right hand side vector RHS is given by:

RHS(c1(i jk)) =
2ρiceg

Cuvw ∂xHs

RHS(c2(i jk)) =
2ρiceg

Cuvw ∂yHs

RHS(c3(i jk)) = 0
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Table 9. The coefficients of the boundary conditions at the outer planes in the sparse matrix which solves
the set of three coupled equations for u, v , and w. See Table 8 for the index definitions. As in Eq. (3.32),
W (Hb)=∂tHb+Mb+u(Hb)∂xHb+v(Hb)∂yHb. The equations contained by the first three lines in this table are Dirich-
let conditions, whereas the rest of the table represents Neumann conditions (see Sect. 3.6). The correction terms in
the scaled boundary conditions in Eqs. (5.12–5.14) are neglected, because the domain is assumed to be such large
that the scaling does not change in horizontal directions anymore at the domain boundaries. See Fig. 2 for the orien-
tation of the vertical ζ (k) axis. Notice that the order of applying these boundary conditions matters, they have to be
applied in this top-down order.

{2:Nx-1,2:Ny-1,Nζ} U(:,:,Nζ ) =usliding a1
(v1)

Nζ

2:Nx−1,2:Ny−1

[c
1
, c1] = 1 rhs1[c

1
] = usliding = 0

If sheet V(:,:,Nζ ) =vsliding a2
(v2)

Nζ

2:Nx−1,2:Ny−1

[c
2
, c2] = 1 rhs2[c

2
] = vsliding = 0

W(:,:,Nζ ) =W (Hb) a3
(v3)

Nζ

2:Nx−1,2:Ny−1

[c
3
, c3] = 1 rhs3[c

3
] = W (Hb)

{2:Nx-1,2:Ny-1,Nζ} U(:,:,Nζ ) = U(:,:,Nζ -1) a1
(v1)

Nζ

2:Nx−1,2:Ny−1

[c
1
, c1] = 1 a1

(v1)
Nζ−1

2:Nx−1,2:Ny−1

[c
1
, c1 − ek ] = -1 rhs1[c
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Fig. 1. A sketch of a cross section of an ice sheet with an ice shelf. We call the part of the
sheet near the grounding line where longitudinal stresses are important the transition zone.
The transition zone is indicated by the red-hatched area. The ice thickness is indicated by H .
The surface height Hs, the bedrock Hb and the sea level S are relative to a reference level: the
present day sea level. The shelves are shaded blue in the inset.
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