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A B S T R A C T   

Several studies have linked air pollution to COVID-19 morbidity and severity. However, these studies do not 
account for exposure levels to SARS-CoV-2, nor for different sources of air pollution. We analyzed individual- 
level data for 8.3 million adults in the Netherlands to assess associations between long-term exposure to 
ambient air pollution and SARS-CoV-2 infection (i.e., positive test) and COVID-19 hospitalisation risks, ac
counting for spatiotemporal variation in SARS-CoV-2 exposure levels during the first two major epidemic waves 
(February 2020–February 2021). We estimated average annual concentrations of PM10, PM2.5 and NO2 at resi
dential addresses, overall and by PM source (road traffic, industry, livestock, other agricultural sources, foreign 
sources, other Dutch sources), at 1 × 1 km resolution, and weekly SARS-CoV-2 exposure at municipal level. Using 
generalized additive models, we performed interval-censored survival analyses to assess associations between 
individuals’ average exposure to PM10, PM2.5 and NO2 in the three years before the pandemic (2017–2019) and 
COVID-19-outcomes, adjusting for SARS-CoV-2 exposure, individual and area-specific confounders. In single- 
pollutant models, per interquartile (IQR) increase in exposure, PM10 was associated with 7% increased infec
tion risk and 16% increased hospitalisation risk, PM2.5 with 8% increased infection risk and 18% increased 
hospitalisation risk, and NO2 with 3% increased infection risk and 11% increased hospitalisation risk. Bi- 
pollutant models suggested that effects were mainly driven by PM. Associations for PM were confirmed when 
stratifying by urbanization degree, epidemic wave and testing policy. All emission sources of PM, except in
dustry, showed adverse effects on both outcomes. Livestock showed the most detrimental effects per unit 
exposure, whereas road traffic affected severity (hospitalisation) more than infection risk. This study shows that 
long-term exposure to air pollution increases both SARS-CoV-2 infection and COVID-19 hospitalisation risks, 
even after controlling for SARS-CoV-2 exposure levels, and that PM may have differential effects on these COVID- 
19 outcomes depending on the emission source.   

1. Introduction 

Outdoor air pollution is a major cause of morbidity and mortality 
worldwide, accounting for an estimated 4.2 million deaths every year, 

primarily from cardiovascular and respiratory diseases, including res
piratory infections (WHO. WHO Global Air Quality Guidelines, 2021; 
Sheridan et al., 2022). Since the beginning of the Coronavirus Disease 
2019 (COVID-19) pandemic caused by the Severe Acute Respiratory 
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Syndrome Coronavirus 2 (SARS-CoV-2), several studies worldwide have 
linked outdoor air pollution to COVID-19 morbidity and mortality. 

The earliest studies were based on ecological study designs that 
involve aggregate, population-level data, e.g. (Zang et al., 2022; Ali 
et al., 2021; Marquès and Domingo, 2022), which are notoriously prone 
to bias (Heederik et al., 2020). More recently, a growing number of 
studies have examined the association between long-term exposure to 
air pollution and COVID-19 morbidity and mortality using 
individual-level data in a cohort design (Bozack et al., 2022; Li et al., 
2022; Marquès et al., 2022; Hyman et al., 2023; Bowe et al., 2021; 
Mendy et al., 2021; Chen et al., 2022a, 2022b; English et al., 2022; 
Ranzani et al., 2023; Zhang et al., 2023). While these studies are a sig
nificant improvement compared to earlier work, they also have their 
limitations. First, to date, most studies used selected samples instead of 
country-wide, population-based datasets. Second, and more impor
tantly, risk models have commonly treated air pollution as a main effect 
without explicitly accounting for dynamics of local virus exposure in the 
statistical model. If air pollution increases susceptibility, more polluted 
areas will also see more infections, which themselves cause higher virus 
exposure, thereby creating a positive feedback loop with dispropor
tionally more cases in those areas. By not accounting explicitly for virus 
exposure in the statistical model, the effect of virus exposure might be 
absorbed by the effect of air pollution, thus overestimating the actual 
effect on individual susceptibility (Heederik et al., 2020). Additionally, 
taking into account the spatially resolved contributions of different 
sources of air pollutant emission (e.g., livestock, road traffic, industrial 
activities, etc.) may help clarify the potential role of those different 
contributions. This is particularly relevant for particulate matter (PM) 
with diameter <10 μm (PM10) and <2.5 μm (PM2.5), as they may have 
different compositions depending on their sources. 

In the Netherlands, at the beginning of the pandemic, higher COVID- 
19 morbidity and mortality were observed in areas that also happened to 
be those with poor air quality largely attributable to emissions from 
livestock farming. High morbidity and mortality were subsequently 
observed in other (non-agricultural) areas where air quality was also 
poor, including in more densely populated parts of the country where 
higher air pollution from traffic and industry can be found (Hogerwerf 
et al., 2022). 

In this study, we examined associations between long-term exposure 
to overall ambient air pollution concentrations of PM10, PM2.5 and NO2, 
at the residential address and both SARS-CoV-2 infection (i.e., positive 
PCR test) and COVID-19 hospitalisation risks in the Netherlands, using 
comprehensive nationwide individual-level data and accounting 
explicitly for spatiotemporal variation in SARS-CoV-2 exposure. We also 
examined the role of different sources of PM (e.g., livestock, road traffic, 
industrial activities, etc.) to help clarify the potential role of those 
different contributions. 

2. Methods 

2.1. Study population 

The study population was selected from the Dutch municipal basis 
registration of population data. This registration system, known as the 
Personal Records Database (BRP), is compiled by Statistics Netherlands 
(CBS) and contains personal demographic records of all residents in the 
Netherlands (Prins, 2017). From the BRP, we selected all adults (≥18 
years of age) on 1 January 2020 who did not change residential address 
since 1 January 2017, as long-term exposure to air pollution considered 
here focused on the three years before the start of the COVID-19 
pandemic. From this population, we further excluded 1) health 
workers and people living in institutions (e.g., mental health institutions 
and nursing homes) due to their different risk of viral exposure and 
eligibility for testing as compared to the general population, 2) people 
who lived within 1 km from the borders of the Netherlands with Belgium 
and Germany (for which air pollution exposure and source attribution 

could not be accurately estimated), and 3) people with missing infor
mation for one or more of the study variables. Further exclusions were 
specific to the different analyses performed (see Fig. 1). 

2.2. Health data 

Health data for the period between 1 February 2020 and 31 January 
2021, covering the first two major COVID-19 periods in the Netherlands, 
was included. After this period, vaccination started for the study pop
ulation and novel SARS-CoV-2 variants became dominant, which 
complicated estimation of virus exposure (see section 2.6.3) and inter
pretation of analyses. 

2.2.1. Infection data 
In June 2020, public testing facilities for SARS-CoV-2 infection were 

opened in the 25 Public Health Services of the Netherlands. Test- 
confirmed SARS-CoV-2 infection was mandatorily notifiable in the 
country, and when such confirmation was made in a public testing fa
cility, it was registered in a centralized database named ‘CoronIT’. This 
database contains individual-level patient information on all test results 
from all public testing facilities of the country. The policy on which part 
of the population was eligible to public testing evolved over time. On 1 
June 2020, everyone with COVID-19-compatible symptoms (i.e., runny 
nose, cough, shortness of breath or difficulty breathing, fever, loss of 
taste or smell) and >12 years of age was eligible for testing. Subse
quently, on 1 December 2020, testing was extended to people without 
symptoms in the context of source and contact tracing, and on 1 January 
2021 to children <12 years of age, and by mid-January 2021 to travelers 
returning from abroad after quarantine. Over the course of the 
pandemic, part of the testing took place outside the public test facilities. 
These tests are not included in the CoronIT database. This includes tests 
from the period before 1 June 2020, when a restricted test policy was in 
place with testing being limited to severely ill patients and health 
workers, and tests from later during the epidemic when testing in health 
care institutions (hospitals, residential care homes, medical practices 
etc.) was extended to vulnerable people and regular screening practices 
and commercial test facilities emerged (for testing in the context of 
work, travelling, access to venues, etc.). Results from these tests are 
included in another database and were not available in the secure 
environment (except for the hospitalisation data, see below). For this 
study, we selected data for all positive SARS-CoV-2 tests from the 
CoronIT database for the period between 1 June 2020 and 31 January 
2021. In case a person had multiple positive tests, only the first one was 
retained as some people can repeatedly test positive for SARS-CoV-2 
months after infection. 

2.2.2. Hospital admission data 
Data on hospital admission was obtained from the Dutch National 

Hospital Care Basic Registration. This database is managed by the DHD 
(Dutch Hospital Data) foundation and contains information on all hos
pital admissions. At the time of analysis, only data for the year 2020 was 
available. We selected patients admitted to the hospital with COVID-19 
as main diagnosis. For the main analyses, only subjects with confirmed 
COVID-19 (ICD-10 code U07.1) were included. In sensitivity analyses, 
subjects with suspected COVID-19 (ICD-10 code U07.2) were also 
included. In case a patient had multiple admissions, only the first 
admission was retained. From the beginning of the epidemic onwards, it 
was common policy to perform SARS-CoV-2 testing on hospitalized 
cases with suspected COVID-19. However, some patients could still be 
registered as suspected COVID-19 cases for a variety of reasons, 
including test refusal, failed test results, or early patient death. Strate
gies for handling COVID-19 and regulating capacity and patient distri
bution across all Dutch hospitals were set by a national coordination 
team. COVID-19 hospital admission was based on the principle of 
medical benefit, weighted against factors such as the possibility of home 
treatment and the need to alleviate pressure on hospitals. In practice, 
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this meant that elderly people and mild cases were often treated at home 
or in residential care institutions. 

For both outcomes, analyses were first performed on all health data 
(1 June 2020–31 January 2021 for infection and 1 February 2020–31 
December 2020 for hospitalisation). To check for consistency of effects, 

analyses were then performed on subsets of the data. For infection, 
analyses were restricted to the period in which only symptomatic people 
were allowed to test (1 June 2020–30 November 2020). For hospital
isation, analyses were performed separately for the 1st (1 February 
2020–31 May 2020) and 2nd COVID-19 period (1 June 2020–31 

Fig. 1. Flow chart of the criteria applied to select the study populations. 
Exclusions applied to obtain the study population for the main analyses on hospitalisation and infection. 1Only full ISO-weeks were included in the virus exposure 
modelling, hence these subjects were excluded to match the virus exposure modelling. Not shown in the flowchart are a small number of individuals who were 
excluded because their infection dates were backsampled to a moment before the infection or hospitalisation study intervals (n = 502 and n = 3, respectively). 
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December 2020), or “wave”. 

2.3. Air pollution data 

The methods used to estimate long-term exposure to PM10, PM2.5 and 
NO2 concentrations are described in detail elsewhere (Velders et al., 
2017, 2020; Velders and Diederen, 2009; Hoogerbrugge et al., 2021). In 
brief, 1 × 1 km maps representing the annual average background 
concentrations were generated from emissions (as reported to the 
Netherlands Pollutant Release and Transfer Register (Wever et al., 2020) 
and the EMEP-database (Hoogerbrugge et al., 2021; Projections ECoEIa, 
2023)) and their dispersion, transport, chemical conversion and depo
sition were modelled using the Operational Priority Substances (OPS) 
dispersion model, taking into account meteorological conditions (van 
Jaarsveld and de Leeuw, 1993; Sauter et al.). Total PM10 and PM2.5 
concentrations represent the sum of the contributions from primary PM 
emissions, secondary aerosols, and sea salt, calibrated against mea
surements from 35 to 45 background locations in the Netherlands. The 
spatially resolved contribution of several emission source-categories to 
the total concentrations was calculated separately as different compo
sitions of particulate matter due to its origin may pose a different health 
impact. Here, we broke down the emission sources into 6 main cate
gories: industry, livestock farming, other agricultural activities, road 
traffic, foreign sources (i.e., outside the Netherlands), and other Dutch 
sources (miscellaneous) (Velders et al., 2017). NO2 concentrations were 
calculated from the OPS-modelled NOx concentration and an empirical 
relationship between annual average measured NOx and NO2 concen
trations (Velders et al., 2014; van de Kassteele and Velders, 2006). As 
NO2 is the same molecule regardless of the source, source contributions 
were not calculated. For each home address in the study population, we 
derived the estimated annual averages for the years 2017–2019 for the 
total and source-specific concentrations of PM10, PM2.5 and NO2 from 
the maps; average concentrations over the three years were used as the 
exposure variables in our analyses. 

2.4. Confounders 

2.4.1. Individual variables 
We adjusted for the following variables at the individual level: sex, 

age, migration background, household size, and socio-economic status. 
Information on sex (male/female), age (years on 1st of January 2020), 
migration background (as defined by CBS: autochthonous Dutch, 
Moroccan, Turkish, Surinamese, Former Dutch Antilles and Aruba, other 
non-Western countries, and other Western countries) and household size 
(number of people in household in 2020) was extracted from the BRP. 
Information on highest attained educational level (primary and lower 
secondary education, higher and senior secondary education and pre- 
university education, higher professional and university education, 
and unknown educational level) and household wealth (operationalized 
as the difference between a household’s assets and liabilities based on 
tax registration data and categorized into percentiles ranging from 1 
[1% households with lowest wealth] to 100 [1% households with 
highest wealth]), was available from CBS and used as a proxy for socio- 
economic status. 

2.4.2. Spatial variables 
This study included variables at the municipal, district and neigh

bourhood level (see this section and section 2.6.1 and 2.6.5). At the end 
of 2020, the Netherlands counted 352 municipalities (median popula
tion: 31,376 (interquartile range (IQR): 21,907–49,962); median land 
area: 798 km2 (IQR: 365-1382 km2)), 3248 districts (median population: 
3125 (IQR: 975-7229); median land area: 62 km2 (IQR: 18–145 km2)) 
and 14,080 neighbourhoods (median population: 690 (IQR: 175-1695), 
median land area: 5.7 km2 (IQR: 2.6–20.2 km2)). Information on so
cioeconomic status (SES) of the neighbourhood was used as overall 
proxy for local conditions that may influence behaviour (e.g., 

compliance with COVID-19 measures, test propensity). Socioeconomic 
scores for private households (SES-WOA) were used to describe the SES 
of neighbourhoods. The SES-WOA (Arts et al., 2021), was developed by 
CBS and is a composite measure based on financial welfare, level of 
education and recent employment status of households. The most recent 
scores for the year 2019 were used. Data on urbanisation degree of the 
residence location for the year 2020 was obtained from CBS and based 
on 500 × 500 m grid. Urbanisation degree was categorized as: extremely 
urbanised (≥2500 addresses/km2), strongly urbanised (1500–2499 
addresses/km2), moderately urbanised (1000–1499 addresses/km2), 
hardly urbanised (500-999 addresses/km2) to not urbanised (<500 
addresses/km2). For this study, rural regions and urban regions were 
classified as addresses with an urbanisation degree of <1500 addres
ses/km2 and≥1500 addresses/km2), respectively. Urbanisation degree 
was used to stratify the study population into rural and urban pop
ulations in the analyses. 

2.5. Data privacy regime 

Data was analyzed in a secure computational environment provided 
by CBS where researchers had access to pseudo-anonymized datasets at 
the individual level. Each individual was given a personal Record 
Identification Number (RIN) used to link the different datasets with one 
another. Air pollution and virus exposure variables (see below) were 
calculated outside of the secure environment and linked to a general 
address code (BAG), which was then pseudo-anonymized by CBS and 
linked to the study subjects. 

2.6. Statistical analyses 

2.6.1. The infection model 
We modelled the time to infection (or in case of hospitalisation, time 

to infection followed by hospitalisation) with an interval-censored sur
vival model with time intervals of one week (Hosmer and Lemeshow, 
1999; Suresh et al., 2022). The weekly hazard is equal to the force of 
infection, as known in infectious disease models, defined as the proba
bility (per week) by which a susceptible person is infected, which can 
itself be defined as the product of the contact rate (how many contacts 
do people make per week), the prevalence of infectious people among 
those contacts (what proportion of contacts is made with infectious 
persons), and the infection probability per contact (see Fig. 2). As a 
proxy for the risk of being exposed to infectious people, we chose to 
estimate and utilize the prevalence of infectious people at the municipal 
level, as this was assumed to be the level where individuals had most of 
their contacts during the study phase of the pandemic. 

For an individual with covariates X (air pollution levels, confounders 
and spatial random effects) in municipality L, the force of infection in 
week T is 

λ(T,X, L)= c(T)IL(T)p(X) = vL(T)p(X)

In λ(T,X,L), the covariates X are fixed in time and associated (propor
tional hazards) with the infection probability per contact p(X), whereas 
the contact rate c(T) and prevalence IL(T) in municipality L are different 
in each week T. The product of contact rate and prevalence will be 
referred to as the virus exposure VL(T), which was estimated from 
incidence data (see Fig. 2 and below). 

2.6.2. The regression model 
In the survival model, all individuals i in the dataset start as sus

ceptible, which means that they are at risk of infection each week until 
they become infected or are right-censored (in case of death or when 
reaching the end of the study period) in week Ti (Ti = ∞ for those that 
did not get infected during the observation period). These observations 
were turned into records for a regression analysis, with a binomial 
response Y denoting escape or infection, virus exposure V, and 
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explanatory variables X (as described in (Hosmer and Lemeshow, 1999; 
Suresh et al., 2022)). Two records were made for individuals who 
became infected, one record for individuals who escaped infection or 
were right-censored:  

- For all individuals, with V equal to the cumulative virus exposure 
until infection or censoring, a record with: Y = 0, X = Xi, V =
∑

T<Ti

vLi (T).  

- For individuals who became infected, with V equal to the virus 
exposure in the week of infection, a record with: Y = 1, X = Xi, V =

vLi (Ti). 

The expected response for each record is equal to the probability of 
infection (1 minus the probability of escaping infection from the cu
mulative force of infection) 

E(Y)= 1 − exp(− V ⋅ p(X)),

which can be fitted with a generalized additive model (GAM), with 
binomially distributed response Y, a complementary log-log link func
tion, and log(V) as offset (Hosmer and Lemeshow, 1999; Suresh et al., 
2022). Essentially, this is equivalent to a Cox model for time-to-event 
data on a weekly resolution, with all confounders and locations (for 
the random spatial intercepts) in X, and virus exposure in V. 

2.6.3. Virus exposure modelling 
In the regression model, we used log(V) as offset, where V denotes 

the cumulative virus exposure in the time interval and location of the 
corresponding record as explained in the section above. Virus exposure 
vL(T) in week T and location L was modelled as the product of the 
contact rate c(T) and the prevalence of infectious people IL(T). The 
contact rate c(T) was assumed to be proportional to the mean 

reproduction number R(T) in week T, divided by the proportion of the 
population still susceptible s(T). We assumed R(T) to be spatially uni
form across the Netherlands. Calculation of R(T), s(T), and IL(T) was 
done with daily hospitalisations registered by NICE (National Intensive 
Care Evaluation), as during the COVID-19 epidemic in the Netherlands. 
Briefly, age-stratified daily hospitalisations were inflated to an under
lying incidence of infections by an age-dependent infection-hospital
isation ratio (estimated from seroprevalence data), then distributed 
across municipalities weighed by local incidence and population size, 
and sampled back in time to the day of symptom onset. The resulting 
daily incidence was used to estimate weekly reproduction number R(T) 
(Wallinga and Teunis, 2004), to calculate cumulative incidence and thus 
the proportion of the population still susceptible s(T), and prevalence by 
municipality IL(T) by assuming an infectious period from two days 
before until five days after symptom onset (see Supplementary Material 
for detail). 

2.6.4. Generalized additive models (GAM) 
GAMs were run to assess the association between exposure to air 

pollution and risk of SARS-CoV-2 infection (i.e. positive SARS-CoV-2 test 
at a community test centre) and COVID-19 hospitalisation. The GAM is 
an expansion of the traditional general linear model that allows the 
relationship between the explanatory and response variables to be 
described by smooth functions. We employed penalized cubic splines, a 
smoothing method requiring a relatively large number of knots, which 
causes the model to be relatively insensitive to the choice of the knot 
locations. Overfitting by the number of knots is prevented through the 
implementation of a roughness penalty, which controls the ‘wiggliness’ 
of the smooth through an automatic smoothing parameter selection 
procedure (Wood, 2002). We included air pollution with linear terms in 
the regression equation, while other predictors were included with 
linear or non-linear terms (see section 2.6.5). 

Fig. 2. Conceptual analysis framework of individual virus exposure modelling. 
Overview of the conceptual analysis framework underlying the virus exposure modelling. The framework used is based on the so-called SIR infectious disease model, 
in which individuals in the population are divided into compartments based on their infection status (Susceptible, Infectious, Removed). In the stochastic SIR model 
the movement of individuals between compartments is described by rates. The (per capita) rate (probability per unit of time, or hazard) at which Susceptible (S) 
individuals become infected (I), is known as the (per-capita) force of infection (λ) and can be expressed as λ = (I*C) *p(X). Here, (I*C) represents the degree of virus 
exposure, which is determined by two factors: the contact rate (C) (the number of contacts that individuals make, per unit of time) and the prevalence of infectious (I) 
(the proportion of contacts with infectious people, per unit of time), whereas p(X), represents the transmission probability (chance of infection given contact between 
a susceptible and infectious individual). The force of infection is thus determined by two factors, the degree of virus exposure (number of infectious contacts) and the 
transmission probability (probability of infection per infectious contact). The latter is dependent on individual risk factors (X) determining an individual’s sus
ceptibility. The analysis can thus be interpreted as a survival model where the force of infection acts as the hazard rate and infection or hospitalisation is the response. 
It follows that if the degree of virus exposure is known, it becomes possible to estimate hazard ratios for potential individual risk factors including air pollution. 
Accordingly, for this work, the degree of virus exposure was reconstructed in space (per municipality) and time (per week) based on hospitalisation incidence data, 
using the reproduction number (Rt) as proxy for the contact rate. From this, individual virus exposure was then estimated and included as offset variable in 
generalized additive regression models allowing estimation of the unknown hazard ratios for the individual risk factors (see methods). 
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2.6.5. Main analyses 
To examine overall effects, all analyses were first performed at the 

national level. Since the degree of urbanisation can influence air 
pollution concentrations and composition of the different PM fractions, 
and there are important differences in lifestyle factors and other expo
sures between rural and urban populations for which full control is 
difficult using demographic variables alone, analyses were also stratified 
by rural and urban areas. For analyses on total exposure, both single- 
pollutant and multi-pollutant models (including either PM10 or PM2.5 
plus NO2) were built. For emission source analyses, all sources of PM10 
or all sources of PM2.5, except other agricultural sources, were included 
in the same models. The contribution from other agricultural sources 
was excluded from the source models due to high collinearity with 
livestock sources and low absolute concentrations with low variation. 
The following variables were always included for adjustment: age 
(penalized spline with 20 degrees of freedom), sex (categorical, male/ 
female), household wealth (penalized spline with 20 degrees of 
freedom), household size (categorical, 1, 2, 3, 4 ≥ 5), migration back
ground (categorical, see 2.4.1). All models also included a random 
intercept at district-level to correct for area-specific confounders. The 
latter was done to account for small-scale unobserved heterogeneity (e. 
g., local differences in test propensity, SES, frailty etc.). Generalized 
variance inflation factor (GVIF >3) was used to assess multicollinearity. 
All risk estimates were expressed as hazard ratios (HR) and 95% confi
dence intervals (95% CI) per 1 μg/m3 increase in exposure. Risk esti
mates at national level were also expressed per interquartile range 
(IQR), as this measure also incorporates the range of each exposure 
magnitude in the country. Statistical significance was set at p-value 
<0.05, but given the relatively high number of tests, the Benjamini- 
Hochberg method was applied to identify significant associations ac
counting for false discovery rate. 

2.6.6. Sensitivity analyses 
Sensitivity analyses were performed for the single-pollutant models 

and analyses on emission source contributions. The following general 
sensitivity analyses were performed for all models: 1) inclusion of 
highest educational attainment as a covariate as an important indicator 
of socio-economic status. Educational attainment was missing for about 
45% of the study population, mainly for older people, hence it was not 
included in the main analyses, 2) inclusion of neighbourhood-level SES 
as covariate, which was missing for about 2% of the population, 3) 
assessment of the effects at the extremes of the urbanisation gradient by 
restricting the analyses to the most rural areas (0-999 addresses/km2) 
and to the most urbanised areas (≥2500 addresses/km2). This was done 
to examine the robustness of the urbanisation stratification used in the 
main analyses and to further assess potential effects of different PM 
compositions linked to different urbanisation levels, 4) analyses of the 
effect of five-year long-term exposure (2015–2019), to examine the 
robustness of the exposure period used in the main analyses. In addition, 
some specific sensitivity analyses were done for part of the models: a) for 
the source contribution analyses, an additional sensitivity analysis 
involved including other agricultural sources instead of livestock sour
ces in the models, b) for the hospitalisation outcome, analyses were 
performed in which cases with suspected COVID-19 were also included, 
c) for the hospitalisation outcome, analyses were performed separately 
for the 1st and 2nd COVID-19 period, d) for the infection outcome, 
analyses were restricted to the period in which only symptomatic people 
were allowed to test, e) to aid interpretation of results (to rule out 
possible residual seeding effects), a post-hoc analysis was performed on 
hospitalisation data, restricting analyses to the first COVID-19 period 
and stratifying analyses by two high density livestock provinces in the 
Southeast of the Netherlands (Brabant and Limburg) vs. the rest of the 
Netherlands. 

2.6.7. Software 
Data management and analysis was carried out in R version 4.1.3 

within the remote environment of CBS. Estimation of parameters was 
performed via restricted maximum likelihood (REML) with the R 
package mgcv (Wood, 2017). 

3. Results 

3.1. Descriptive statistics 

The study populations for the main analyses on infections (June 
2020–January 2021) and hospitalisations (February 2020–December 
2020) consisted of 8,299,321 and 8,357,159 persons, respectively 
(Fig. 1, full descriptives in Tables 1A and 1B). There were 367,250 in
fections (4.3%) and 22,919 hospitalized cases (0.3%) in total. Study 
population characteristics are provided in Table 1. Overall, the pro
portion of infections was higher among men, younger individuals, larger 
households, household with higher wealth and people with a non- 
Western migration background. The proportion of hospitalisations was 
higher among men, older individuals, smaller households, households 
with lower wealth and people with a non-Western migration back
ground. These patterns were observed in both rural and urban areas. 

Fig. S1 shows how incident cases of SARS-CoV-2 infection and 
COVID-19 hospitalisation were spatially distributed across the 
Netherlands for the different study periods. Figs. S2–4 show the spatial 
distribution of PM10, PM2.5 and NO2 air pollution exposures in the three 
years before the COVID-19 pandemic, overall and by emission source. 
Note that the Netherlands has no major geographical features causing 
large meteorological differences. The Netherlands is a densely populated 
country, and also has the largest livestock density in Europe (Freidl 
et al., 2017), due to widespread intensive farming, which is mainly 
situated in the Southeastern parts of the country. Moreover, because of 
its relatively small territorial extension and immediacy with Germany 
and Belgium, air pollution concentrations from foreign sources also tend 
to be high, especially in the most south east parts of the country. NO2 
concentrations are highest in the more densely populated western parts 
of the country where higher pollution from traffic and industry can also 
be found. Table S1 shows the correlations between total individual 
PM10, PM2.5 and NO2 exposure concentrations at the residential address. 
Correlations between PM10, PM2.5 and NO2 were relatively high: above 
0.9 between PM10, PM2.5 and about 0.8 between the different PM frac
tions and NO2. Table S2 shows the correlations between source-specific 
exposure concentrations for PM10 and PM2.5 at the residential address. 
Correlations between different source exposures were generally lower 
(>0.7), with the exception of road traffic and other Dutch sources. 
Exposure to road traffic and other Dutch sources were also highly 
correlated with total NO2 exposure (>0.7). 

In both single- and multi-pollutant models, all confounders 
(including sex, age, household size, household wealth, migration back
ground) were significantly associated with COVID-19 outcomes (see 
Table S3). 

3.2. Effects of exposure to total concentrations of PM10, PM2.5 and NO2 

3.2.1. Infection risk 
As shown in Table 2A, in single-pollutant models, there were sig

nificant positive associations between an individual’s average residen
tial exposure to PM10, PM2.5 and NO2 in the three years before the 
pandemic and risk of SARS-CoV-2 infection. At national level, per IQR 
increase in exposure, PM10 was associated with 7% increased infection 
risk (HR: 1.072, 95% CI: 1.061, 1.083), PM2.5 with 8% increased risk 
(HR: 1.081, 95% CI: 1.070, 1.091), and NO2 with 3 % increased risk (HR: 
1.027, 95% CI: 1.016, 1.039). Effects for PM10 and PM2.5 were 
confirmed at both rural and urban levels. Effects for NO2 were confirmed 
at the rural but not urban level, which showed an inverse effect. In bi- 
pollutant models, positive associations for PM10 and PM2.5 persisted 
when adjusting for NO2 (HR: 1.100, 95% CI: 1.086, 1.116 and HR: 
1.117, 95%CI: 1.103, 1.132 at national level, respectively). Conversely, 
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after adjusting for either PM10 or PM2.5, associations between NO2 and 
infection reversed or remained negative (HR: 0.960, 95% CI: 
0.947,0.974 and HR: 0.948, 95% CI: 0.934, 0.962, at national level, 
respectively). 

3.2.2. Hospitalisation risk 
As shown in Table 2B, in single-pollutant models, there were sig

nificant positive associations between long-term exposure to PM10, 
PM2.5 and NO2 and COVID-19 hospitalisation risk. At national level, per 
IQR increase in exposure, PM10 was associated with 16% increased 
hospitalisation risk (HR: 1.162, 95% CI: 1.135, 1.190), PM2.5 with 18% 
increased risk (HR: 1.175, 95% CI: 1.149, 1.202), and NO2 with 11% 
increased risk (HR: 1.112, 95% CI: 1.084, 1.140). Effects were confirmed 
at both rural and urban levels. In bi-pollutant models, positive associa
tions for PM10, PM2.5 persisted when adjusting for NO2 (HR: 1.202, 95% 
CI: 1.59, 1.247 and HR: 1.234, 95% CI: 1.94, 1.275 at national level, 
respectively). Conversely, after adjusting for either PM10 and PM2.5, the 
association between NO2 and hospitalisation disappeared/faded or 
reversed (HR: 0.954, 95% CI: 0.917, 0.992 and HR: 0.928, 95% CI: 
0.894, 0.964, at national level, respectively). 

3.3. Effects of PM10 and PM2.5 exposure by emission source 

Analyses on source contributions showed significant positive effects 
of PM10 and PM2.5 on both SARS-CoV-2 infection and COVID-19 hos
pitalisation, in line with the results of the main analyses. At national 
level, exposures from all sources, except industry, were positively 
associated with SARS-CoV-2 infection and COVID-19 hospitalisation 
risks (Table 3). 

3.3.1. Infection risk per source 
Results on infection risk are presented in Table 3A. At national level, 

per IQR increase in exposure, PM10 from foreign sources was associated 
with 11% increased infection risk (HR: 1.105, 95% CI: 1.089, 1.121, 
IQR: 1.66 μg/m3), from other Dutch sources with 5% increased risk (HR: 
1.050, 95% CI: 1.034, 1.066, IQR: 1.26 μg/m3) and from livestock and 
road traffic with 2% increased risk (HR: 1.022, 95% CI: 1.015, 1.029, 
IQR: 0.44 μg/m3 and HR: 1.017, 95% CI: 1.004, 1.031, IQR: 0.59 μg/m3, 
respectively). For PM2.5, exposure to emissions from foreign sources was 
associated with 10% increased risk (HR: 1.104, 95% CI: 1.088, 1.120, 
IQR: 1.36 μg/m3), and from livestock and other Dutch sources with 5% 
increased risk (HR: 1.052, 95% CI: 1.037, 1.066, IQR: 0.28 μg/m3 and 

Table 1 A 
Descriptive statistics of the study population for the analyses on SARS-CoV-2 infection, at national level and stratified by rural and urban areas.   

National level Rural level Urban level 

Characteristic Baseline cohort Cases Baseline cohort Cases Baseline cohort Cases 

N 8299321 367250 4343239 186695 3956082 180555 
Women [n (%)] 3894130 (46.9) 169525 (46.2) 1983253 (45.7) 82774 (44.3) 1910877 (48.3) 86751 (48.0) 
Age [median (IQR)] 55.11 (17.62) 49.36 (16.66) 55.65 (17.44) 50.02 (16.72) 54.52 (17.80) 48.67 (16.56) 
Household wealth [median (IQR)] 56.90 (27.96) 59.53 (26.92) 61.74 (26.36) 65.45 (24.59) 51.59 (28.70) 53.40 (27.83) 
Household size [n (%)] 
1 person 1725447 (20.8) 41770 (11.4) 692966 (16.0) 15463 (8.3) 1032481 (26.1) 26307 (14.6) 
2 persons 3246853 (39.1) 112197 (30.6) 1794416 (41.3) 58850 (31.5) 1452437 (36.7) 53347 (29.5) 
3 persons 1254071 (15.1) 68082 (18.5) 674918 (15.5) 34688 (18.6) 579153 (14.6) 33394 (18.5) 
4 persons 1412531 (17.0) 92443 (25.2) 808715 (18.6) 50711 (27.2) 603816 (15.3) 41732 (23.1) 
≥5 persons 660419 (8.0) 52758 (14.4) 372224 (8.6) 26983 (14.5) 288195 (7.3) 25775 (14.3) 
Migration background [n (%)] 
Autochtonous 6562514 (79.1) 270180 (73.6) 3813279 (87.8) 162583 (87.1) 2749235 (69.5) 107597 (59.6) 
Moroccan 171579 (2.1) 17057 (4.6) 27209 (0.6) 2373 (1.3) 144370 (3.6) 14684 (8.1) 
Turkish 200759 (2.4) 20838 (5.7) 37076 (0.9) 3575 (1.9) 163683 (4.1) 17263 (9.6) 
Surinamese 172584 (2.1) 10824 (2.9) 32171 (0.7) 1841 (1.0) 140413 (3.5) 8983 (5.0) 
Former Dutch Antilles and Aruba 57997 (0.7) 2993 (0.8) 12849 (0.3) 601 (0.3) 45148 (1.1) 2392 (1.3) 
Other non-Western countries 338361 (4.1) 17816 (4.9) 92198 (2.1) 4390 (2.4) 246163 (6.2) 13426 (7.4) 
Western countries 795527 (9.6) 27542 (7.5) 328457 (7.6) 11332 (6.1) 467070 (11.8) 16210 (9.0) 
Urbanisation degree [n (%)] 
Extremely urbanised 1824341 (22.0) 85763 (23.4) na na 1824341 (46.1) 85763 (47.5) 
Strongly urbanised 2131741 (25.7) 94792 (25.8) na na 2131741 (53.9) 94792 (52.5) 
Moderately urbanised 1463675 (17.6) 64448 (17.5) 1463675 (33.7) 64448 (34.5) na na 
Hardly urbanised 1443758 (17.4) 62980 (17.1) 1443758 (33.2) 62980 (33.7) na na 
Not urbanised 1435806 (17.3) 59267 (16.1) 1435806 (33.1) 59267 (31.7) na na 
Average air pollution concentration 2017–2019 (μg/m3) [median (IQR)] 
PM10 

Total 18.40 [1.87] 18.57 [1.67] 17.75 [2.03] 17.99 [1.81] 19.03 [1.28] 19.08 [1.12] 
Foreign 6.61 [1.66] 6.67 [1.58] 6.88 [1.84] 7.02 [1.78] 6.46 [1.16] 6.48 [1.05] 
Industry 0.76 [0.26] 0.77 [0.25] 0.69 [0.24] 0.70 [0.22] 0.83 [0.26] 0.85 [0.27] 
Agriculture, livestock 0.65 [0.44] 0.66 [0.45] 0.75 [0.52] 0.81 [0.56] 0.61 [0.37] 0.61 [0.35] 
Agriculture, other 0.13 [0.03] 0.13 [0.02] 0.13 [0.04] 0.13 [0.104] 0.13 [0.01] 0.13 [0.01] 
Road traffic 1.15 [0.59] 1.19 [0.57 0.93 [0.57] 0.98 [0.53] 1.30 [0.43] 1.33 [0.4] 
Other Dutch sources 2.27 [1.26] 2.36 [1.25] 1.79 [0.91] 1.86 [0.89] 2.86 [0.98] 2.94 [0.94] 
PM2.5 

Total 11.07 [1.35] 11.18 [1.16] 10.65 [1.82] 10.82 [1.47] 11.41 [1.03] 11.46 [0.97] 
Foreign 5.54 [1.37] 5.59 [1.28] 5.74 [1.5] 5.84 [1.45] 5.43 [0.95] 5.45 [0.88] 
Industry 0.54 [0.16] 0.55 [0.15] 0.49 [0.17] 0.50 [0.14] 0.58 [0.14] 0.59 [0.15] 
Agriculture, livestock 0.55 [0.28] 0.56 [0.27] 0.58 [0.33] 0.60 [0.33] 0.53 [0.22] 0.54 [0.2] 
Agriculture, other 0.10 [0.02] 0.10 [0.01] 0.09 [0.02] 0.09 [0.03] 0.10 [0.01] 0.10 [0.01] 
Road traffic 0.83 [0.42] 0.86 [0.39] 0.68 [0.42] 0.71 [0.39] 0.93 [0.29] 0.95 [0.26] 
Other Dutch sources 1.90 [1.02] 1.97 [1.01] 1.51 [0.77] 1.56 [0.74] 2.37 [0.77] 2.44 [0.73] 
NO2 

Total 17.87 [6.07] 18.27 [6] 16.18 [4.81] 16.51 [4.32] 20.66 [5.73] 21.21 [5.76] 

n/a = not applicable. 
Extremely urbanised: ≥2500 addresses/km2; Strongly urbanised: 1500–2499 addresses/km2; Moderately urbanised: 1000–1499 addresses/km2; Hardly urbanised: 
500-999 addresses/km2, Not urbanised: <500 addresses/km.2. 
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HR: 1.050, 95% CI: 1.034, 1.066, IQR: 1.02 μg/m3, respectively). No 
significant effect was observed for the PM2.5-concentration contribution 
of road traffic. Note that source estimates are not directly comparable to 
the estimates for total exposure as exposure ranges and compositions 
may differ (e.g., a source with a relatively small exposure range but large 
effect may contribute little to the overall estimate when the exposure 
range of the latter is much larger). When considered on a 1 μg/m3 
comparable basis, at national level, the largest significant effect was 
observed for exposure to livestock PM2.5 (HR: 1.197, 95% CI: 1.139, 
1.258). At rural level, significant effects of exposure to PM10 and PM2.5 
were only observed for foreign, livestock and other Dutch sources. At 
urban level, significant effects were only observed for foreign and live
stock sources. No significant effects were observed for road traffic, 
neither at the rural nor urban level. 

3.3.2. Hospitalisation risk per source 
Results on hospitalisation are presented in Table 3B. At national 

level, per IQR increase, PM10 from foreign sources was associated with 
15% increased hospitalisation risk (HR: 1.150, 95% CI: 1.117, 1.184, 
IQR: 1.66 μg/m3), from road traffic and other Dutch sources with 8–9% 
increased risk (HR: 1.076, 95% CI: 1.033, 1.122, 2.26 μg/m3 and HR: 

1.092, 95% CI: 1.050, 1.135, IQR: 0.59 μg/m3, respectively), and from 
livestock with 5% increased risk (HR: 1.054, 95% CI: 1.034, 1.074, IQR: 
0.44 μg/m3). For PM2.5, exposure to emissions from foreign sources was 
associated with 16% increased hospitalisation risk (HR: 1.159, 95% CI: 
1.127, 1.193, IQR: 1.36 μg/m3), from livestock with 10% increased risk 
(HR: 1.095, 95% CI: 1.060, 1.132, IQR: 0.28 μg/m3), and from road 
traffic and other Dutch sources with 7–8% increased risk (HR: 1.070, 
95% CI: 1.019, 1.124, IQR: 0.42 μg/m3 and HR: 1.079, 95% CI: 1.033, 
1.128, IQR: 1.02 μg/m3, respectively). When considered on a 1 μg/m3 

comparable basis, at national level, the highest significant HR was again 
observed for livestock PM2.5 (HR: 1.385, CI: 1.233, 1.555), while HRs for 
road traffic and livestock PM10 and road traffic PM2.5 were also rela
tively high. At rural level, significant effects of PM10 and PM2.5 were 
again only observed for foreign, livestock and other Dutch sources. At 
urban level, significant effects of PM10 and PM2.5 were only observed for 
foreign and road traffic sources. 

3.4. Sensitivity analyses 

3.4.1. General sensitivity analyses 
Results were generally robust to sensitivity analyses. Sensitivity 

Table 1 B 
Descriptive statistics of the study population for the analyses on COVID-19 hospitalisation, at national level and stratified by rural and urban areas.  

Characteristic National level Rural level Urban level 

Baseline cohort Cases Baseline cohort Cases Baseline cohort Cases 

N 8357159 22919 4370445 10178 3986714 12741 
Women [n (%)] 3918562 (46.9) 8478 (37.0) 1994364 (45.6) 3523 (34.6) 1924198 (48.3) 4955 (38.9) 
Age [median (IQR)] 55.22 (17.67) 68.32 (13.19) 55.76 (17.48) 69.12 (12.52) 54.63 (17.85) 67.69 (13.67) 
Household wealth [median (IQR)] 56.76 (28.02) 45.75 (28.70) 61.62 (26.42) 53.35 (27.82) 51.44 (28.75) 39.67 (27.93) 
Household size [n (%)] 
1 person 1734373 (20.8) 5675 (24.8) 695332 (15.9) 2179 (21.4) 1039041 (26.1) 3496 (27.4) 
2 persons 3267773 (39.1) 11477 (50.1) 1803078 (41.3) 5691 (55.9) 1464695 (36.7) 5786 (45.4) 
3 persons 1259948 (15.1) 2450 (10.7) 678164 (15.5) 1028 (10.1) 581784 (14.6) 1422 (11.2) 
4 persons 1426615 (17.1) 1920 (8.4) 817108 (18.7) 788 (7.7) 609507 (15.3) 1132 (8.9) 
> = 5 persons 668450 (8.0) 1397 (6.1) 376763 (8.6) 492 (4.8) 291687 (7.3) 905 (7.1) 
Migration background [n (%)] 
Autochtonous 6606143 (79.0) 15644 (68.3) 3836590 (87.8) 8641 (84.9) 2769553 (69.5) 7003 (55.0) 
Moroccan 173166 (2.1) 1548 (6.8) 27416 (0.6) 156 (1.5) 145750 (3.7) 1392 (10.9) 
Turkish 202171 (2.4) 1384 (6.0) 37286 (0.9) 180 (1.8) 164885 (4.1) 1204 (9.4) 
Surinamese 173791 (2.1) 1044 (4.6) 32318 (0.7) 136 (1.3) 141473 (3.5) 908 (7.1) 
Former Dutch Antilles and Aruba 58344 (0.7) 193 (0.8) 12922 (0.3) 33 (0.3) 45422 (1.1) 160 (1.3) 
Other non-Western countries 340251 (4.1) 989 (4.3) 92582 (2.1) 190 (1.9) 247669 (6.2) 799 (6.3) 
Western countries 803293 (9.6) 2117 (9.2) 331331 (7.6) 842 (8.3) 471962 (11.8) 1275 (10.0) 
Urbanisation degree [n (%)] 
Extremely urbanised 1839496 (22.0) 6432 (28.1) na na 1839496 (46.1) 6432 (51.5) 
Strongly urbanised 2147218 (25.7) 6309 (27.5) na na 2147218 (53.9) 6309 (49.5) 
Moderately urbanised 1473327 (17.6) 3829 (16.7) 1473327 (33.7) 3829 (37.6) na na 
Hardly urbanised 1452721 (17.4) 3420 (14.9) 1452721 (33.2) 3420 (33.6) na na 
Not urbanised 1444397 (17.3) 2929 (12.8) 1444397 (33.0) 2929 (28.8) na na 
Average air pollution concentration 2017–2019 (μg/m3) [median (IQR)] 
PM10 

Total 18.40 [1.87] 18.71 [1.57 17.75 [2.03] 18.09 [1.66] 19.03 [1.29] 19.14 [1.13] 
Foreign 6.61 [1.66] 6.73 [1.59] 6.88 [1.84] 7.26 [1.82] 6.46 [1.16] 6.54 [1.33] 
Industry 0.76 [0.26] 0.78 [0.24] 0.69 [0.24] 0.71 [0.2] 0.83 [0.26] 0.86 [0.27] 
Agriculture, livestock 0.65 [0.44] 0.66 [0.45] 0.75 [0.52] 0.85 [0.58] 0.61 [0.37] 0.61 [0.36] 
Agriculture, other 0.13 [0.02] 0.13 [0.02] 0.13 [0.04] 0.13 [0.03] 0.13 [0.01] 0.13 [0.01] 
Road traffic 1.15 [0.59] 1.22 [0.52] 0.93 [0.57] 1.01 [0.51] 1.30 [0.43] 1.35 [0.38] 
Other Dutch sources 2.27 [1.26] 2.42 [1.52] 1.79 [0.91] 1.87 [0.82] 2.86 [0.98] 2.98 [1.06] 
PM2.5 

Total 11.07 [1.35] 11.30 [1.08] 10.65 [1.82] 10.97 [1.3] 11.41 [1.03] 11.55 [0.95] 
Foreign 5.54 [1.36] 5.65 [1.29] 5.74 [1.5] 6.06 [1.46] 5.43 [0.95] 5.50 [1.08] 
Industry 0.54 [0.17] 0.55 [0.14] 0.49 [0.17] 0.51 [0.13] 0.58 [0.14] 0.59 [0.15] 
Agriculture, livestock 0.55 [0.28] 0.56 [0.28] 0.58 [0.33] 0.62 [0.34] 0.53 [0.22] 0.54 [0.19] 
Agriculture, other 0.10 [0.02] 0.10 [0.01] 0.09 [0.02] 0.10 [0.03] 0.10 [0.01] 0.10 [0.01] 
Road traffic 0.83 [0.42] 0.88 [0.35] 0.68 [0.42] 0.74 [0.37] 0.93 [0.29] 0.96 [0.25] 
Other Dutch sources 1.90 [1.02] 2.03 [1.01] 1.51 [0.77] 1.58 [0.68] 2.37 [0.77] 2.47 [0.8] 
NO2 

Total 17.88 [6.07] 18.90 [16.14] 16.18 [4.80] 16.82 [3.84] 20.67 [5.74] 21.63 [5.91] 

n/a = not applicable. 
Extremely urbanised: ≥2500 addresses/km2; Strongly urbanised: 1500–2499 addresses/km2; Moderately urbanised: 1000–1499 addresses/km2; Hardly urbanised: 
500-999 addresses/km2, Not urbanised: <500 addresses/km.2. 

J. Zorn et al.                                                                                                                                                                                                                                     



Environmental Research 252 (2024) 118812

9

analyses did not change the results of the analyses on total exposure to 
PM10, PM2.5 and NO2, except when restricting urban level analyses to 
the urbanisation extremes (loss of significance, Figs. S5–6). The same 
was true for results by source of air pollution (Figs. S7–8). Furthermore, 
like most other sources, other agricultural sources showed significant 
positive associations with the infection and hospitalisation outcomes 
(Table S4). 

3.4.2. Other sensitivity analyses 
For exposure to total concentrations of PM10, PM2.5 and NO2, no 

major differences compared to the main results were observed when 
including only symptomatic people for infection as outcome. The same 
was true when analyses on hospitalisation were performed separately 
for the 1st and 2nd COVID-19 period (see Table S5 for descriptives and 
Table S6 for results). For analyses by emission source (Table S7), some 
differences compared to the main results were observed. When analyses 

Table 2 
Hazard ratios (95% confidence intervals) for effects of individual exposure to 
PM10, PM2.5 and NO2 in the three years before the COVID-19 pandemic, by 
outcome measure, A) SARS-CoV-2 infection (June 2020–January 2021), B) 
COVID-19 hospitalisation (February 2020–December 2020).  

Air pollutant HR (95% CI) per 
IQR increase 

HR (95% CI) per 1 μg/m3 increase 

National National Rural areas Urban 
areas 

PM10 1.072 [1.061, 
1.083] *** 

1.038 
[1.032, 
1.044] *** 

1.056 
[1.049, 
1.064] *** 

1.012 
[1.003, 
1.021] * 

PM10 adj. NO2 1.100 [1.086, 
1.116] *** 

1.053 
[1.045, 
1.060] *** 

1.065 
[1.055, 
1.075] *** 

1.033 
[1.021, 
1.046] *** 

PM2.5 1.081 [1.070, 
1.091] *** 

1.059 
[1.052, 
1.067] *** 

1.086 
[1.076, 
1.096] *** 

1.019 
[1.007, 
1.031] ** 

PM2.5 adj. NO2 1.117 [1.103, 
1.132] *** 

1.086 
[1.075, 
1.096] *** 

1.111 
[1.097, 
1.125] *** 

1.045 
[1.029, 
1.060] *** 

NO2 1.027 [1.016, 
1.039] *** 

1.004 
[1.003, 
1.006] *** 

1.010 
[1.007, 
1.012] *** 

0.997 
[0.995, 
1.000] * 

NO2 adj. 
PM10 

0.960 [0.947, 
0.974] *** 

0.993 
[0.991, 
0.996] *** 

0.996 
[0.992, 
0.999] ** 

0.991 
[0.988, 
0.994] ***  

adj. 
PM2.5 

0.948 [0.934, 
0.962] *** 

0.991 
[0.989, 
0.994] *** 

0.991 
[0.988, 
0.994] *** 

0.991 
[0.988, 
0.995] *** 

PM10 1.162 
[1.135,1.190] *** 

1.084 
[1.070, 
1.098] *** 

1.128 
[1.109, 
1.148] *** 

1.045 
[1.024, 
1.067] *** 

PM10 adj. NO2 1.202 [1.159, 
1.247] *** 

1.104 
[1.082, 
1.126] *** 

1.138 
[1.110, 
1.167] *** 

1.045 
[1.014, 
1.077] ** 

PM2.5 1.175 [1.149, 
1.202] *** 

1.127 
[1.109, 
1.146] *** 

1.178 
[1.152, 
1.204] *** 

1.076 
[1.047, 
1.105] *** 

PM2.5 adj. NO2 1.234 [1.194, 
1.275] *** 

1.169 
[1.140, 
1.198] *** 

1.212 
[1.174, 
1.251] *** 

1.089 
[1.049, 
1.131] *** 

NO2 1.112 [1.084, 
1.140] *** 

1.018 
[1.013, 
1.022] *** 

1.031 
[1.024, 
1.037] *** 

1.009 
[1.003, 
1.016] ** 

NO2 adj. 
PM10 

0.954 [0.917, 
0.992] * 

0.992 
[0.986, 
0.999] * 

0.996 
[0.986, 
1.005] 

1.000 
[0.991, 
1.009]  

adj. 
PM2.5 

0.928 [0.894, 
0.964] *** 

0.988 
[0.982, 
0.994] *** 

0.988 
[0.979, 
0.988] * 

0.996 
[0.988, 
1.004] 

adj. = Adjusted for. HR = Hazard Ratio. 95% CI = 95% Confidence Interval. 
Significance levels: * <0.036; ** <0.01; *** <0.001. The value of 0.036 for the 
first significance level was determined from the applied Benjamini-Hochberg 
procedure for multiple-hypothesis testing correction. 

Table 3 
Hazard ratios (and 95% confidence interval) for effects of individual exposure to 
emission source contributions of PM10 and PM2.5 in the three years before the 
pandemic, by outcome measure. A) SARS-CoV-2 infection (June 2020–January 
2021), B) COVID-19 hospitalisation (February 2020–December 2020).  

Air 
pollutant 

Source HR (95% 
CI) per IQR 
increase 

HR (95% CI) per 1 μg/m3 increase 

National National Rural 
areas 

Urban 
areas 

PM10 Foreign 
sources 

1.105 
[1.089, 
1.121] *** 

1.062 
[1.052, 
1.071] *** 

1.076 
[1.065, 
1.087] *** 

1.011 
[0.997, 
1.025] 

Industry 1.000 
[0.995, 
1.006] 

1.001 
[0.982, 
1.021] 

0.989 
[0.961, 
1.018] 

0.987 
[0.960, 
1.015] 

Livestock 1.022 
[1.015, 
1.029] *** 

1.050 
[1.035, 
1.066] *** 

1.038 
[1.021, 
1.055] *** 

1.138 
[1.087, 
1.191] *** 

Road 
traffic 

1.017 
[1.004, 
1.031] ** 

1.029 
[1.007, 
1.052] ** 

1.011 
[0.980, 
1.043] 

0.998 
[0.966, 
1.031] 

Other 
Dutch 
sources 

1.050 
[1.034, 
1.066] *** 

1.040 
[1.027, 
1.052] *** 

1.111 
[1.087, 
1.135] *** 

1.009 
[0.993, 
1.025] 

PM2.5 Foreign 
sources 

1.104 
[1.088, 
1.120] *** 

1.075 
[1.064, 
1.087] *** 

1.092 
[1.079, 
1.106] *** 

1.021 
[1.005, 
1.038] ** 

Industry 0.999 
[0.993, 
1.005] 

0.992 
[0.957, 
1.029] 

0.981 
[0.930, 
1.035] 

0.955 
[0.908, 
1.004] 

Livestock 1.052 
[1.037, 
1.066] *** 

1.197 
[1.139, 
1.258] *** 

1.155 
[1.089, 
1.225] *** 

1.234 
[1.128, 
1.351] *** 

Road 
traffic 

1.007 
[0.991, 
1.023] 

1.017 
[0.980, 
1.056] 

0.974 
[0.923, 
1.028] 

1.003 
[0.949, 
1.061] 

Other 
Dutch 
sources 

1.050 
[1.034, 
1.066] *** 

1.049 
[1.034, 
1.065] *** 

1.142 
[1.111, 
1.174] *** 

1.006 
[0.985, 
1.027] 

PM10 Foreign 
sources 

1.150 
[1.117, 
1.184] *** 

1.087 
[1.068, 
1.107] *** 

1.117 
[1.092, 
1.142] *** 

1.047 
[1.019, 
1.077] ** 

Industry 1.008 
[0.992, 
1.024] 

1.030 
[0.970, 
1.095] 

0.988 
[0.894, 
1.091] 

1.015 
[0.941, 
1.095] 

Livestock 1.054 
[1.034, 
1.074] *** 

1.126 
[1.079, 
1.175] *** 

1.122 
[1.068, 
1.179] *** 

1.097 
[0.998, 
1.206] 

Road 
traffic 

1.092 
[1.050, 
1.135] *** 

1.160 
[1.086, 
1.239] *** 

1.100 
[0.996, 
1.214] 

1.161 
[1.058, 
1.275] ** 

Other 
Dutch 
sources 

1.076 
[1.033, 
1.122] *** 

1.060 
[1.026, 
1.096] *** 

1.211 
[1.130, 
1.299] *** 

1.014 
[0.972, 
1.058] 

PM2.5 Foreign 
sources 

1.159 
[1.127, 
1.193] *** 

1.114 
[1.091, 
1.138] *** 

1.148 
[1.118, 
1.179] *** 

1.065 
[1.031, 
1.100] *** 

Industry 1.004 
[0.986, 
1.022] 

1.026 
[0.917, 
1.148] 

0.954 
[0.790, 
1.151] 

0.997 
[0.866, 
1.148] 

Livestock 1.095 
[1.060, 
1.132] *** 

1.385 
[1.233, 
1.555] *** 

1.462 
[1.260, 
1.696] *** 

1.194 
[0.992, 
1.437] 

Road 
traffic 

1.070 
[1.019, 
1.124] ** 

1.176 
[1.046, 
1.321] ** 

0.998 
[0.836, 
1.190] 

1.287 
[1.096, 
1.511] ** 

Other 
Dutch 
sources 

1.079 
[1.033, 
1.128] *** 

1.078 
[1.033, 
1.126] *** 

1.290 
[1.177, 
1.415] *** 

1.003 
[0.949, 
1.061] 

HR = Hazard Ratio. 95% CI = 95% Confidence Interval. adj. = Adjusted for. HR 
= Hazard Ratio. 95% CI = 95% Confidence Interval. Significance levels: * 
<0.036; ** <0.01; *** <0.001. The value of 0.036 for the first significance level 
was determined from the applied Benjamini-Hochberg procedure for multiple- 
hypothesis testing correction. 
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of infections by emission source were restricted to the period in which 
only symptomatic people were allowed to test, exposures to road traffic 
PM10 and PM2.5 became positively associated with infection at both 
national and urban levels. Furthermore, associations for PM2.5 exposure 
from foreign sources at urban level and livestock sources at rural level 
were no longer significant. For analyses on hospitalisation by emission 
source, significant effects of PM10 and PM2.5 exposure from livestock 
farming were only observed for the 1st but not 2nd COVID-19 period and 
for other Dutch sources only the 2nd but not the 1st. 

To rule out that the effects of livestock emissions on hospitalisation 
observed for the 1st but not 2nd wave were merely driven by seeding 
events taking place coincidentally in the most livestock-rich parts of the 
country, further analyses were restricted to the provinces of Brabant and 
Limburg in the Southeastern parts of the Netherlands that formed the 
initial hotspots of COVID-19 spread in the country (see Fig. S1 (Hoger
werf et al., 2022),). Results were then compared to those for the rest of 
the Netherlands. For the 1st wave, effects of livestock PM10 and PM2.5 
were observed throughout the country, both in the provinces of Brabant 
and Limburg and the rest of the country, with effects being similar in size 
(Table S8). 

4. Discussion 

This study assessed whether long-term exposure to ambient air 
pollution concentrations of PM10, PM2.5 and NO2 in the years before the 
pandemic was associated with increased risk of SARS-CoV-2 infection 
and COVID-19 hospitalisation in the Netherlands, before vaccination 
campaigns started, and while explicitly accounting for SARS-CoV-2 
exposure levels to control for varying magnitudes of viral circulation 
in space and time. This was done to minimize bias in the estimates of air 
pollution. Overall, we found significant positive associations for all 
pollutants with both infection and hospitalisation outcomes, which were 
stronger and more robust for PM than for NO2, of which the effects 
reversed in bi-pollutant models. Due to the high correlation between 
pollutants, these models need to be interpreted with caution, although 
they do support a more important role of PM than NO2 in the investi
gated risks. Analyses by emission source revealed that all sources of PM 
but industry contributed significantly to increased risks at population 
level, with livestock and road traffic showing the strongest effects per 
unit increase in exposure. 

Our results for the effect of long-term air pollution exposure on 
infection are generally consistent with the previous literature. A Danish 
nation-wide population-based cohort study (n = 3,721,810) by Zhang 
et al. (2023), observed strong effects for the associations between 
long-term exposure to PM10, PM2.5 and NO2 and infections with HRs of 
1.09 (95% CI, 1.06, 1.12) per IQR 1.14 μg/m3 increase, 1.10 (95% CI, 
1.05, 1.14) per IQR 0.54 μg/m3 increase, and 1.18 (95% CI, 1.14, 1.23) 
per IQR 3.6 μg/m3 increase, respectively. In contrast, a 
population-based cohort study with a selected sample from the UK 
Biobank (n = 424,721) by Sheridan et al. (2022), reported smaller es
timates for PM2.5 and NO2 with odds ratios of 1.05 (95% CI, 1.02, 1.08) 
per IQR 1.27 μg/m3 increase, and 1.05 (95% CI, 1.01, 1.08) per IQR 
9.93 μg/m3 increase, respectively, but did not find evidence for an as
sociation with PM10. Although direct comparison with other studies is 
not straightforward due to differences in exposure, confounder adjust
ment, modelling framework and outcome definition, estimates for PM2.5 
and NO2 of the latter study are more similar to estimates in this study 
(PM2.5, HR: 1.06, 95% CI 1.05, 1.07; NO2, HR: 1.004, 95% CI 1.003, 
1.006, per 1 μg/m3 increase), and ecological studies on COVID-19 
incidence (English et al., 2022; Veronesi et al., 2022). 

Estimates for the effect of long-term air pollution exposure on hos
pitalisation are less consistent across previous studies. In Denmark, 
Zhang et al. (2023), observed strong effects for the effect of PM10, PM2.5 
and NO2 on hospitalisations, with HRs of 1.14 (95% CI, 1.07, 1.20) per 
IQR 1.14 μg/m3 increase, 1.10 (95% CI, 1.05, 1.14) per IQR 0.54 μg/m3 

increase, and 1.18 (95% CI, 1.01, 1.08) per IQR 3.6 μg/m3 increase, 

respectively. With UK biobank data, Sheridan et al. (2022), did not find 
evidence for associations of PM10, PM2.5 and NO2 with hospitalisations, 
possibly because of a lack of power due to small sample size. A third 
population-based cohort-study (n = 4,660,502) from Catalonia, Spain, 
by Ranzani et al. (2023), reported associations between PM2.5 and NO2 
and hospitalisations with HRs of 1.19 (95% CI, 1.16,1.21), per IQR 3.2 
μg/m3 increase, and 1.25 (95% CI, 1.16, 1.21), per IQR 16.1 μg/m3 

increase, respectively. Our estimates were smaller in magnitude than 
reported by Zhang et al. (2023), but larger than reported by Ranzani 
et al. (2023) (PM2.5, 1.13, 95% CI, 1.12, 1.15; NO2, 1.018, 1.013, 1.022, 
per 1 μg/m3 increase). It is further worth mentioning that our study 
corroborates the results of the only other Dutch study that investigated 
the effect of long-term air pollution on COVID-19. This ecological study 
(Cole et al., 2020), reported risks estimates for PM2.5, the equivalent of a 
7–11% increase in infections and a 9–13% increase in hospitalisations 
per 1 μg/m3 increase (compared to 6 and 13% in this study, 
respectively). 

Regarding NO2, we observed negative associations when stratifying 
by urban and rural regions, or when adjusting for PM in bi-pollutant 
models. This is in contrast to other comparable studies, which 
observed positive associations for NO2 which persisted in bi-pollutant 
models. Compared to PM, NO2 exhibits higher spatial contrast within 
small areas, with sharp gradients around roads and other pollution 
sources (Velders and Diederen, 2009). This small-scale variation, in 
combination with the 1 × 1 km resolution air quality data used in this 
study, may have produced exposure misclassification which could 
explain part of the unexpected results. Alternatively, the reversal of ef
fects in bi-pollutant models may also be due to the high correlation 
between PM and NO2 observed in this study (>0.8). 

In addition to the analyses on overall exposure, we examined 
whether exposures from different emission sources of PM, because of 
different PM compositions, have potentially different health effects. Of 6 
pre-defined source categories (road traffic, industry, agriculture live
stock, agriculture other, foreign and other Dutch sources), we found 
exposures from all sources but industry to be positively associated with 
both infection and hospitalisation outcomes. Associations at national 
level were largely confirmed at either the urban or rural level. Overall, 
associations showed a largely similar pattern across infection and hos
pitalisation outcomes, with some notable exceptions. Specifically, for 
infection, road traffic was only associated with PM10 at national level, 
and not with PM2.5 or with PM10 at urban or rural level, although as
sociations became stronger and significant in sensitivity analyses when 
restricting to the period in which only symptomatic people were allowed 
to test. The effects for the other two source categories with highest 
contribution, foreign and other Dutch sources, are not easily interpret
able, as these source categories encompass a mix of sources (all sources 
other than agriculture, industry and road traffic for other Dutch sources 
and all sources for foreign sources). Therefore, they merely act as 
background concentrations against which the effects of the more specific 
sources should be interpreted. 

While the contribution of livestock and road traffic per IQR is not 
particularly large, their health effect per unit exposure is much larger. 
We found particularly potent effects of livestock PM2.5 on both infection 
risk (HR: 1.197, 95% CI: 1.139, 1.258) and hospitalisation risk (HR: 
1.385, 95% CI: 1.233, 1.555), while HRs for hospitalisation risk were 
also relatively high for road traffic and livestock PM10 and road traffic 
PM2.5. The effects for livestock are in line with several other studies that 
showed that living near livestock farms influences human respiratory 
health and immunological responses (Hogerwerf et al., 2022; Freidl 
et al., 2017; Smit et al., 2012; Simoes et al., 2022; Post et al., 2021; Klous 
et al., 2018; Kalkowska et al., 2018). The proposed hypotheses about the 
underlying biological mechanisms include hypersensitization towards 
livestock-borne PM, including PM contaminated with microbes and 
endotoxins, or bioPM, which would trigger innate immune responses 
contributing to respiratory disease (Diamond and Kanneganti, 2022; 
Sahlander et al., 2012; Poole and Romberger, 2012; Liu et al., 2019). 
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However, more research is needed to corroborate whether and how 
these hypotheses would also apply to COVID-19. The large effect of road 
traffic on hospitalisation and not infection suggests a role in severity of 
disease rather than susceptibility to infection. This is further suggested 
by the fact that, for infection, significant effects for road traffic (at na
tional and urban but not rural level) were only observed when analyses 
were restricted to the period in which only symptomatic people were 
allowed to test. This effect should be interpreted with caution, however, 
as other aspects may have differed between periods and asymptomatic 
people may still have tested against directions (e.g., after an infectious 
contact). Therefore, this effect should be confirmed by directly 
comparing symptomatic and non-symptomatic cases or with a 
test-negative design, which was beyond the scope of this study. 

In the Netherlands, the initial hotspots of COVID-19 appeared in the 
Southeastern provinces of the country, which overlapped with the 
country’s main livestock-rich areas, which we recognised as a risk for 
finding incorrect associations between infection or hospitalisation and 
exposure to livestock-associated pollutants. We addressed this risk by 
correcting for virus exposure in our regression model, but still, in 
sensitivity analyses, we observed a distinct pattern for hospitalizations 
in which associations for livestock where only observed for the first but 
not second COVID-19 period. Therefore, we carried out additional 
sensitivity analyses with only cases during the first epidemic period in 
provinces outside the original hotspot, which showed that the effect of 
livestock sources on hospitalisations remained the same. The observed 
differences in emission source contributions between the first and sec
ond wave confirms an earlier study on proximity of livestock farms and 
COVID-19 risk in the Netherlands (Hogerwerf et al., 2022). The differ
ence might be due to seasonal effects, e.g., by ammonia emissions from 
manure spread on fields, which mainly took place in the first epidemic 
period), but this is still unclear. This also illustrates the difficulty in 
discriminating between long- and short-term effects. Although we 
studied associations with a long-term air pollution exposure index, it 
cannot be ruled out that some of the associations we found were driven 
by short-term effects, particularly when analyses were performed by 
subperiod. 

Our study results corroborate a larger literature, showing that air 
pollution impacts COVID-19 outcomes. Notwithstanding these findings, 
it should be emphasized that person-to-person transmission remains the 
driving force behind the COVID-19 pandemic. This is also evidenced by 
the fact that hazard ratios for other risk factors included in the analyses, 
including migration background and household size, were an order of 
magnitude larger than those for air pollution (with HRs up to 2–3). In 
addition to affecting COVID-19 spread, these risk factors, may have also 
directly affected COVID-19 outcomes. 

This study had some limitations, which depended on the data and 
analyses in question. For instance, infection data suffered from potential 
testing bias due to varying testing policy and propensity. Public testing 
was performed on a voluntary basis, and test propensity was likely 
influenced by individual factors such as age and SES among others. We 
therefore performed analyses controlling for these and other factors to 
the extend allowed by our data availability. In addition to controlling for 
individual characteristics, we included local random intercepts, as a way 
of accounting for small-scale unobserved heterogeneities. This should be 
able to control for local differences in test propensity related to factors 
that were not explicitly controlled for in the models, such as an in
dividual’s distance to the nearest test facility. Related to this issue, we 
observed clear demographic differences between infection and hospi
talisation outcomes and rural and urban populations. This indicates the 
presence of health-seeking and testing bias, which we attempted to 
control for by correcting for individual characteristics. Nevertheless, it 
cannot be ruled out that this explains some of the differences in the 
observed effects, for example between rural and urban populations. 
Furthermore, due to restrictive test policies during the first phase of the 
epidemic, many infections went unnoticed in that period. This may be 
problematic if these cases were mostly those at higher risk from air 

pollution exposure, as these cases may have incorrectly ended up as 
controls in subsequent analyses, because of conferred immunity. How
ever, serological data, suggest that about 4.5% of the Dutch population 
got infected during the first wave (Vos et al., 2021), which should limit 
this bias. Another limitation is that people with a positive SARS-CoV-2 
test acquired outside community test centres were excluded from the 
infection analyses for the reason that, during the study period, those 
people were mostly tested in the context of severe disease. As we were 
able to observe all hospitalizations but only part of all SARS-CoV-2 in
fections (due to asymptomatic infections and not all people testing), 
including those people, would have resulted in an overestimation of the 
effect of infection in case of an additional effect on severity. Conversely, 
not including those people, might have resulted in a small underesti
mation of infection effects, but allowed us to look with specificity at the 
effect of infection. A further limitation is that we lacked symptom data. 
For the largest part of our study period, symptomatic infection was 
required for testing. Hence, our infection estimates mainly apply to 
symptomatic disease as opposed to asymptomatic infections. However, 
given the lack of symptom data, we could not specifically estimate as
sociations for symptomatic or asymptomatic SARS-CoV-2 infections. We 
also lacked specific data on comorbidities. However, other 
individual-level studies that included adjustment for comorbidities 
found only small changes in effect estimates (English et al., 2022; 
Ranzani et al., 2023; Nobile et al., 2022). Moreover, our study included 
adjustment for several other factors known to be associated with poor 
health outcomes, lifestyles and behaviors (e.g., age, SES, income, 
migration background, occupation, etc.), as well as viral transmission. 
Finally, we focused here on linear effects, but exploring potential 
non-effects would add another layer of complexity and represents a 
natural step forward in this research. 

A strength of this study is that it is the first of its kind to incorporate 
infectious disease models to reconstruct the spatiotemporal dynamics of 
SARS-CoV-2 spread, so that analyses could account explicitly for varying 
infection pressure during the study period. This allowed us to discern 
whether air pollution had significant effects on COVID-19 susceptibility 
and severity without the risk of overestimating those effects resulting 
from a positive feedback caused by increased virus circulation in more 
polluted areas. Since person-to-person transmission of SARS-CoV-2 is 
the driving force behind the COVID-19 pandemic, this could shed new 
lights on observed associations (Heederik et al., 2020). Other 
population-based cohort studies that did not explicitly model virus 
exposure, but instead controlled for spatiotemporal components by 
other means (e.g., use of daily timescales in Cox models, area-wise 
adjustment or stratification, control for test positive proportion or con
trol measures) (Ranzani et al., 2023; Zhang et al., 2023), reached largely 
similar conclusions. Nevertheless, our estimates tend to fall on the lower 
end of the spectrum, especially for the infection outcome measure, 
which could be due to the virus exposure term. The virus exposure 
modelling required us to make several basic assumptions that were 
partially constrained by limited data availability. Our main consider
ation was to have the best possible spatiotemporal resolution that was 
still supported by sufficient underlying data. The choice to model virus 
exposure by week and municipality was the best possible compromise in 
this matter. Moreover, hospitalisation data was considered the most 
suitable for the virus exposure modelling, since this data source was not 
prone to test bias and the chance of COVID-19 hospitalisation was 
assumed to be relatively constant for the duration of the study period. 

5. Conclusions 

In conclusion, this study confirmed previous observations that there 
are significant adverse effects of long-term exposure to outdoor air 
pollution on both SARS-CoV-2 infection and COVID-19 hospitalisation 
risks. All emission sources of PM, except industry, showed adverse ef
fects on both outcomes, with significance varying mainly according to 
urbanicity. Livestock showed the most detrimental health effects per 
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unit exposure, whereas road traffic seemed to affect severity (hospital
isation) more than infection. The outcomes of this study stress the 
importance of improving air quality in Europe. Moving toward the WHO 
air quality guidelines would improve health generally and reduce the 
impact of severe acute respiratory infections. 
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2022. Long-term exposure to PM10 above WHO guidelines exacerbates COVID-19 
severity and mortality. Environ. Int. 158. 

Mendy, A., Wu, X., Keller, J.L., Fassler, C.S., Apewokin, S., Mersha, T.B., et al., 2021. Air 
pollution and the pandemic: Long-term PM(2.5) exposure and disease severity in 
COVID-19 patients. Respirology 26 (12), 1181–1187. 

Nobile, F., Michelozzi, P., Ancona, C., Cappai, G., Cesaroni, G., Davoli, M., et al., 2022. 
Air pollution, SARS-CoV-2 incidence and COVID-19 mortality in Rome - a 
longitudinal study. Eur. Respir. J. 60 (3). 

Poole, J.A., Romberger, D.J., 2012. Immunological and inflammatory responses to 
organic dust in agriculture. Curr. Opin. Allergy Clin. Immunol. 12 (2), 126–132. 

Post, P.M., Houthuijs, D., Sterk, H.A.M., Marra, M., van de Kassteele, J., van Pul, A., 
et al., 2021. Proximity to livestock farms and exposure to livestock-related 
particulate matter are associated with lower probability of medication dispensing for 
obstructive airway diseases. Int. J. Hyg Environ. Health 231, 113651. 

Prins, K., 2017. Population register data, basis for the Netherlands Population Statistics. 
Bevolkingstrends 9, 1–32. 

Projections ECoEIa, 2023. Officially Reported Emission Data [Available from: https:// 
www.ceip.at/webdab-emission-database/reported-emissiondata. 

Ranzani, O., Alari, A., Olmos, S., Mila, C., Rico, A., Ballester, J., et al., 2023. Long-term 
exposure to air pollution and severe COVID-19 in Catalonia: a population-based 
cohort study. Nat. Commun. 14 (1), 2916. 

Sahlander, K., Larsson, K., Palmberg, L., 2012. Daily exposure to dust alters innate 
immunity. PLoS One 7 (2), e31646. 

Sauter F, Van Zanten, M., Van der Swaluw, E., Aben, J.M.M., De Leeuw, F., Van 
Jaarsveld, H. The OPS-Model, Description of OPS 4.5.2. Bilthoven, the Netherlands: 
National Institute for Public Health and the Environment (RIVM).. 

Sheridan, C., Klompmaker, J., Cummins, S., James, P., Fecht, D., Roscoe, C., 2022. 
Associations of air pollution with COVID-19 positivity, hospitalisations, and 
mortality: Observational evidence from UK Biobank. Environ. Pollut. 308, 119686. 

Simoes, M., Janssen, N., Heederik, D.J.J., Smit, L.A.M., Vermeulen, R., Huss, A., 2022. 
Residential proximity to livestock animals and mortality from respiratory diseases in 
The Netherlands: A prospective census-based cohort study. Environ. Int. 161, 
107140. 

Smit, L.A., van der Sman-de Beer, F., Opstal-van Winden, A.W., Hooiveld, M., 
Beekhuizen, J., Wouters, I.M., et al., 2012. Q fever and pneumonia in an area with a 
high livestock density: a large population-based study. PLoS One 7 (6), e38843. 

Suresh, K., Severn, C., Ghosh, D., 2022. Survival prediction models: an introduction to 
discrete-time modeling. BMC Med. Res. Methodol. 22 (1), 207. 

van de Kassteele, J., Velders, G.J.M., 2006. Uncertainty assessment of local NO2 
concentrations derived from error-in-variable external drift kriging and its 
relationship to the 2010 air quality standard. Atmos. Environ. 40 (14), 2583–2595. 

van Jaarsveld, J.A., de Leeuw, F.A.A.M., 1993. OPS: An operational atmospheric 
transport model for priority substances. Environ. Software 8 (2), 91–100. 

Velders, G.J.M., Diederen, H.S.M.A., 2009. Likelihood of meeting the EU limit values for 
NO2 and PM10 concentrations in the Netherlands. Atmos. Environ. 43 (19), 
3060–3069. 

Velders, G.J.M., Aben, J.M.M., Geilenkirchen, G.P., den Hollander, H.A., Noordijk, H., 
van der Swaluw, E., et al., 2014. Grootschalige concentratie- en depositiekaarten 
Nederland : Rapportage 2014. Rijksinstituut voor Volksgezondheid en Milieu RIVM. 

Velders, G.J.M., Aben, J.M.M., Geilenkirchen, G.P., den Hollander, H.A., Nguyen, L., van 
den Broek, I., et al., 2017. Grootschalige concentratie- en depositiekaarten 
Nederland : Rapportage 2017. New Maps of Concentrations and Depositions for NSL 
and PAS: : 2016. Rijksinstituut voor Volksgezondheid en Milieu RIVM. 

Velders, G.J.M., Maas, R.J.M., Geilenkirchen, G.P., de Leeuw, F.A.A.M., Ligterink, N.E., 
Ruyssenaars, P., et al., 2020. Effects of European emission reductions on air quality 
in the Netherlands and the associated health effects. Atmos. Environ. 221, 117109. 

Veronesi, G., De Matteis, S., Calori, G., Pepe, N., Ferrario, M.M., 2022. Long-term 
exposure to air pollution and COVID-19 incidence: a prospective study of residents in 
the city of Varese, Northern Italy. Occup. Environ. Med. 79 (3), 192–199. 

Vos, E.R.A., van Boven, M., den Hartog, G., Backer, J.A., Klinkenberg, D., van Hagen, C. 
C.E., Boshuizen, H., van Binnendijk, R.S., Mollema, L., van der Klis, F.R.M., de 
Melker, H.E., 2021. Associations Between Measures of Social Distancing and Severe 
Acute Respiratory Syndrome Coronavirus 2 Seropositivity: A Nationwide 
Population-based Study in the Netherlands. Clin. Infect. Dis. 73 (12), 2318–2321. 

Wallinga, J., Teunis, P., 2004. Different epidemic curves for severe acute respiratory 
syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160 (6), 
509–516. 
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