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The validity of the normal distribution as an error model is commonly tested

with a (half) normal probability plot. Real data often contain outliers. The use of

t-distributions in a probability plot to model such data more realistically is

described. It is shown how a suitable value of the parameter � of the

t-distribution can be determined from the data. The results suggest that even

data that seem to be modeled well using a normal distribution can be better

modeled using a t-distribution.

1. Introduction

Abrahams & Keve (1971) introduced ‘probability plots’ as a tool in

crystallography to verify how the distribution of errors in any set of

observed values visually compares with a general presumed error

distribution. This is done by creating a scatter diagram of observed

versus theoretically expected deviations. In Abrahams & Keve

(1971), and in many subsequent papers using this technique, the

distribution that is used for the comparison is the Gaussian or

‘normal’ distribution, and the resulting probability plot is called a

‘normal probability plot’.

Unfortunately the uncertainties in many day-to-day observations

do not follow a normal distribution. Distributions encountered in real

experiments often have a much larger incidence of highly deviating

observations in the tails than predicted by the normal distribution.

The incidence of deviations of at least 10� following a normal

distribution is extremely low (8 � 10�24). These kinds of deviations,

however, are encountered in practice and will result in a normal

probability plot that shows an inverted S curve (Fig. 1).

The likelihood of outliers from a normal distribution is not only

very small, but also counter-intuitive. The incidence of deviations of

at least 11� is approximately 40 000 times less likely than deviations

of at least 10�. This is completely contrary to experience: in practice it

is observed that once a measurement deviates wildly from expected

values, it does not make much difference by how much.

It follows that to describe real-world experiments a distribution

should be found that is more permissive of outliers. A good

candidate is Student’s t-distribution (Student, 1908). Originally, the

t-distribution was derived to describe statistical experiments where

the population variance must be estimated from a limited set of

observations. Over the years, the t-distribution has found much wider

applications than Student’s original intention, most notably in robust

statistical modeling of data (Lange et al., 1989). Based on this, we

propose to use it in a probability plot as well.

The t-distribution is modulated by a parameter � (� > 0, not

restricted to integer values). This parameter describes the number of

degrees of freedom in the statistical sample. For � ¼ 1, the

t-distribution is equal to the normal distribution. For lower values like

� = 10, the central part of the distribution hardly differs from the

normal distribution, but the tails become very different (Fig. 2). At �
= 10, a deviation of at least 10� has a likelihood of 8 � 10�7, and

deviations of at least 11� are only 2.4 times less likely than that.

Overall, lower values of � will result in distributions that are more

permissive of outliers. Experiments with different fixed values of � to

model real data have been reported in the literature (e.g. Yuh &

Hogg, 1988).

Figure 1
Normal probability plot of Bijvoet differences of a small-molecule crystal-structure
data set obtained using a point detector, showing curves due to non-normal
behavior of the errors. The diagonal straight line represents a least-squares fit; its
slope is larger than 1.0.

Figure 2
Probability density function of a normal distribution and t-distributions with two
different values of �.



In this paper we will detail how a probability plot can be based on

Student’s t-distribution. We suggest calling this a ‘t-probability plot’

or tPP. We will not derive the basis of the t-distribution nor validate

our use of this distribution for our goals.

2. Method

Because there is more complex mathematics involved when using the

Student’s t-distribution than when using the normal distribution, we

will explain each of the steps that are needed to use this distribution

in a probability plot. We will first describe the t-distributions and

compare them with the normal distribution. Along the way we will

derive what is needed to use any distribution as the basis for a

probability plot. After that, we will show how the � parameter can be

used.

2.1. Calculating probability functions

The most natural way to look at a distribution function is to

describe its probability density function (PDF). The PDF for the

normal distribution is

pdfnðzÞ ¼ ½1=ð2�Þ
1=2
� expð�z2=2Þ: ð1Þ

Herein z is the variable of the so-called ‘standard normal’ distribution

with mean value of 0 and a standard deviation of 1, and it can be

obtained from any normal deviate x using the transformation

z ¼ ðx� �Þ=�: ð2Þ

Herein � is the ‘correct’ or ‘expected’ value for x, which can be

approximated as hxi in the case of a homogeneous population.

Similarly, � is the expected standard uncertainty and can be

approximated by the square root of the population variance [ðs2Þ
1=2]

in the case of a homogeneous population. The PDF for the

t-distribution is

pdftðzj�Þ ¼
�½ð�þ 1Þ=2�

ð��Þ1=2 �ð�=2Þ
1þ

z2

�

� ��ð�þ1Þ=2

: ð3Þ

In this formula � constitutes the gamma function, a mathematical

extension of the factorial to real numbers.1

To calculate a probability, the integral over the PDF for the

appropriate interval must be computed. The integral with lower

bound �1 is called the cumulative distribution function (CDF). The

integral of the PDF for any interval can be computed as the differ-

ence between two values of the CDF. The CDF for the normal

distribution can be expressed by means of the error function:

erfðxÞ ¼ ð2=�1=2
Þ
Rx
0

expð�t2Þ dt: ð4Þ

The error function and the complementary error function (‘erfc’) are

often used and are included in many standard mathematical libraries.

The CDF for the normal distribution is given as

cdfnðzÞ ¼ ð1=2Þ½1þ erfðz=21=2
Þ�; ð5Þ

but is more conveniently calculated (especially for z� 0) as

cdfnðzÞ ¼ ð1=2Þ½erfcð�z=21=2
Þ�: ð6Þ

The CDF for the t-distribution is

cdftðzj�Þ ¼
1

2
þ x�

�
�þ 1

2

�
2F1½1=2; ð�þ 1Þ=2; 3=2;�z2=��

ð��Þ1=2 �ð�=2Þ
: ð7Þ

In this equation, 2F1 is the hypergeometric function (e.g. Abramowitz

& Stegun, 1972; Wikipedia, 2009)

To be able to use a probability distribution in a probability plot, it

is necessary to calculate the value of z that corresponds to a known

value of the CDF. The function required to perform this calculation is

called the inverse CDF (cdf�1). The inverse CDF of the normal

distribution cannot be written in closed functional form, but is readily

available as an approximated function with sufficient accuracy in

libraries for many programming languages. Unfortunately, the

situation with the t-distribution is not so easy, especially since there

are infinitely many t-distributions for different values of �. The only

practical approach is to implement the inverse CDF of the

t-distribution as an iterated (binary) search using the CDF.

The inverse CDF is defined for values between 0 and 1. The values

p1 . . . pN for the horizontal (expected) axis of the probability plot

with N data points are calculated as

pi ¼ cdf�1
ðxiÞ ð8Þ

with

xi ¼ ði� 1=2Þ=N: ð9Þ

2.2. Choice of the number of degrees of freedom

Having described the functions involved in equations (7) and (8),

we can now make a probability plot based on a t-distribution. What is

still missing is a method for estimating the value for �. For the original

purpose of the t-distribution, � is the number of degrees of freedom of

the data set; most often two less than the number of data points.

When the t-distribution is used for robust statistical modeling, as in

this paper, the best choice of � is not obvious. Different practical

ranges have been suggested in the literature. Yuh & Hogg (1988)

suggested using � = 11 for lightly tailed distributions and � = 3 for

heavily tailed distributions. They also suggested how to decide

whether a distribution has a light or heavy tail.

In the case of a probability plot the situation is easier. We can make

different probability plots corresponding to different values of �. The

best probability plot corresponds most closely to a straight line.
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Figure 3
t-probability plot for the same data as shown in Fig. 1. A t-distribution with � = 2.2
was found to be optimal to model this data set. The least-squares line shows that the
slope is much smaller than 1.0, showing overestimation of the standard uncertainty.
Some points with expected deviations of larger than 10� have been left out of the
plot to make the axes identical.

1 Fortran code implementing all functions described in this section can be
obtained from Netlib, http://www.netlib.org/random/dcdflib.f.tar.gz. Equiva-
lent python code is available from the IUCr electronic archives (Reference:
ZM5057). Services for accessing the code are described at the back of the
journal.



Without having studied alternatives, we propose to choose a value of

� that maximizes the linear correlation coefficient of the probability

plot. Maximizing the correlation coefficient focuses on the mass of

data at the center of the distribution without ignoring deviations at

the tails.

Abrahams & Keve (1971) remark that the positions of the extreme

points in the probability plot are very sensitive to small changes in the

measured values. These points can therefore disturb the determina-

tion of the value of � at which the correlation coefficient is maxi-

mized. To avoid instability in the optimization, it would be possible to

use a downweighting procedure that takes the uncertainty in each

point into account in a quantitative way. In practice, however, for

large data sets a very simple but seemingly arbitrary cutoff of five

extreme data points at both ends gives sufficient stabilization.

3. Results and discussion

Fig. 3 gives the optimized t-probability plot for the same data set as

represented in the normal probability plot of Fig. 1. The slope of the

linear regression line is reduced from 1.33 for the normal probability

plot to 0.76 for the optimized t-probability plot, showing that stan-

dard uncertainties have not been underestimated but are over-

estimated for the bulk of the data points. The correlation coefficient

for the regression line increases from 0.92 to 0.998, showing a

dramatic improvement of the error model.

Over the course of our studies we have analyzed many data sets. A

few data sets required non-normal treatment of the standard uncer-

tainties as became obvious from studying their normal probability

plots. The description of the errors for these data sets could all be

very significantly improved by use of a t-distribution as modeled in an

optimized t-probability plot. Optimized values of � for these data sets

ranged between 2.3 and 5.6.

More surprisingly, we have found that the error model for almost

all of the data sets that could be adequately described using a normal

distribution could be significantly improved by using a t-distribution.

Such data sets, identified by normal probability plots with correla-

tions of their regression lines larger than 0.999, had significantly

better correlation coefficients in a t-distribution plot with optimized

values of � ranging between approximately 12 and 30.

Our results show that we can always use an optimized t-probability

plot where one would normally use a normal probability plot to

model the standard uncertainties of a data set. The normal prob-

ability plot forms the limiting case at � ¼ 1 and does not need to be

handled as a special case. In all but one of the data sets we have

analyzed so far the optimization converged to � < 100, and signifi-

cantly better fits were obtained than at � ¼ 1.

We have not studied how the optimization of � can be performed in

the case of smaller data sets. Our data sets generally contain many

thousands of data points. We expect that the same procedure can be

used for data sets as small as 100 points; with smaller data sets the

difference between probability plots will become smaller and a simple

binary decision about an appropriate value for � as made by Yuh &

Hogg (1988) may be more appropriate.

In the case where � can be determined directly from the data, this

may provide interesting information about the reliability of the

experimental methods used to obtain or process the data. We have

not studied this.

In cases when the reliability of the error model is of utmost

importance the use of t-probability plots to model the standard

uncertainties can improve the reliability of the calculations.

4. Conclusions

We have proposed a way of studying the standard uncertainties for

large data sets that allows robust modeling of the data including any

outliers. The method consists of an analysis of the errors by means of

a probability plot using Student’s t-distribution to provide expected

deviations. We have shown that it is possible to determine the

parameter � of the t-distribution from the data themselves. We have

seen that this procedure always improves the error modeling, even

for data sets that, at first glance, would appear to behave in accor-

dance with a normal distribution.
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