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Abstract

We prove that commutative semirings in a cartesian closed presentable
∞-category, as defined by Groth, Gepner, and Nikolaus, are equivalent
to product-preserving functors from the (2, 1)-category of bispans of fi-
nite sets. In other words, we identify the latter as the Lawvere theory
for commutative semirings in the ∞-categorical context. This implies
that connective commutative ring spectra can be described as grouplike
product-preserving functors from bispans of finite sets to spaces. A key
part of the proof is a localization result for ∞-categories of spans, and
more generally for ∞-categories with factorization systems, that may be
of independent interest.
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1 Introduction

The goal of this paper is to give an explicit description of commutative semirings
in the ∞-categorical setting in terms of a certain (2,1)-category Bispan(F ) of
bispans of finite sets:

Theorem A. Let C be a cartesian closed presentable ∞-category. Then there is a
natural equivalence

CRig(C) ≃ Fun× (Bispan(F ), C)

between the∞-category of commutative semirings in Cand the∞-category of product-
preserving functors Bispan(F ) → C.

Before properly introducing both sides of the equivalence, let us motivate
this result by first discussing the analogous statement for commutative monoids.

Commutative monoids and spans

Given a category1 Cwith finite products, there is a category CMon(C) of com-
mutative monoids in C, which consists of objects of C equipped with a binary
operation that is unital, associative and commutative. The theory of commu-
tative monoids is algebraic in nature, in the sense that it can be described by a
Lawvere theory: the data of a commutative monoid in C is the same as that of a
product-preserving functor 𝐿 → Set, where 𝐿 = {N𝑛 | 𝑛 ≥ 0}op is the opposite
of the category of free commutative monoids on finitely many generators.

The Lawvere theory 𝐿 for commutative monoids admits an explicit descrip-
tion as the category hSpan(F ) of spans of finite sets. Recall that the objects of
this category are finite sets, while the set of morphisms in hSpan(F ) from 𝑆 to
𝑇 is given as the set of isomorphism classes of spans (or correspondences)

𝑋

𝑆 𝑇

in finite sets. The identity maps are given by taking 𝑆 = 𝑋 = 𝑇 , and composition
is defined via pullback: given two composable spans 𝑆 ← 𝑋 → 𝑇 and𝑇 ← 𝑌 →
𝑈 , their composite is given by the outer (dashed) span in the following pullback
diagram:

𝑋 ×𝑇 𝑌

𝑋 𝑌

𝑆 𝑇 𝑈 .

⌟

1In this paper we will call categories categories and ∞-categories ∞-categories. We hope this
does not cause too much confusion for younger readers.
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One can show that the category hSpan(F ) admits finite products given by tak-
ing disjoint unions of sets.

The fact that 𝐿 is equivalent to hSpan(F ) means that for every category C

with finite products there is a natural equivalence of categories

CMon(C) ≃ Fun× (hSpan(F ), C),

where the right-hand side denotes the category of product-preserving functors
from hSpan(F ) to C. Explicitly, a commutative monoid 𝑀 in C corresponds
under this equivalence to the functor 𝑀 (−) : hSpan(F ) → Cgiven as follows:

▶ On objects, 𝑀 (−) sends a finite set 𝑆 to the 𝑆-indexed product 𝑀𝑆 � 𝑀×|𝑆 | ;

▶ On morphisms, 𝑀 (−) sends a span 𝑆
𝑓
←− 𝑋

𝑔
−→ 𝑇 to the composite

𝑀𝑆
𝑓 ∗

−−→ 𝑀𝑋
𝑔⊕−−→ 𝑀𝑇 ,

where we define 𝑓 ∗ by (𝑓 ∗𝜓 )𝑥 = 𝜓𝑓 (𝑠 ) for𝜓 ∈ 𝑀𝑆 and 𝑥 ∈ 𝑋 , and we define
𝑔⊕ by summing over the fibers of 𝑔: for 𝜙 ∈ 𝑀𝑋 and 𝑡 ∈ 𝑇 we set

(𝑔⊕𝜙)𝑡 =
∑︁

𝑥∈𝑔−1 (𝑡 )
𝜙𝑥 .

It turns out that the above description of commutative monoids carries over
to the ∞-categorical setting, provided that we work with the (2, 1)-category
Span(F ) in which we include isomorphisms of spans instead of taking isomor-
phism classes. In other words, for any∞-category Cwith finite products there
is a natural equivalence of ∞-categories

CMon(C) ≃ Fun× (Span(F ), C) .

This seems to have been first proved in the thesis of Cranch [Cra11].

Commutative semirings and bispans

In this paper we are interested in a similar description for the Lawvere theory for
commutative semirings. Recall that a commutative semiring in a category with
finite products is an object 𝑅 equipped with two unital, associative and commu-
tative operations, called addition and multiplication, satisfying the property that
multiplication distributes over addition. The Lawvere theory of commutative
semirings is given by the category hBispan(F ) of bispans of finite sets: the ob-
jects are still finite sets, but now the set of morphisms from 𝑆 to 𝑇 is given by
the set of isomorphism classes of bispans (or polynomial diagrams)

𝐸 𝐵

𝑆 𝑇 .

𝑝

𝑠 𝑡
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The fact that there are now two maps pointing to the right reflects the fact
that we need to encode both the addition and the multiplication on 𝑅. Since
these two operations interact via a distributivity relation, the composition rule
in hBispan(F ) is necessarily somewhat non-trivial to describe. Given a bispan
from 𝑆 to 𝑇 and bispan from 𝑇 to𝑈 , as displayed at the bottom of the following
diagram, their composite is given by the outer (dashed) bispan in the diagram:

𝐺 𝑋 𝐷

𝑌 𝐵 ×𝐽 𝐹

𝐸 𝐵 𝐹 𝐶

𝑆 𝑇 𝑈 .

𝑝′′

𝜖 ′

⌟ ⌟
𝑞

𝜖

𝑞∗𝑞∗𝜋 𝑞∗𝜋
⌟

𝑝′

𝑢′′
⌟

𝑢′
𝜋

𝑝

𝑠 𝑡 𝑢

𝑞

𝑣

(1)

Here four of the squares are pullbacks, as indicated, and 𝑞∗ is the right adjoint
to pullback along 𝑞, so that for 𝑓 : 𝐾 → 𝐹 , the function 𝑞∗ 𝑓 has fibres (𝑞∗ 𝑓 )𝑐 �∏

𝑥∈𝑞−1 (𝑐 ) 𝐾𝑥 ; the map 𝜖 is the counit map 𝑞∗𝑞∗ → id for the adjunction 𝑞∗ ⊣ 𝑞∗.
The statement that hBispan(F ) is the Lawvere theory for commutative semir-

ings amounts to having, for any category C with finite products, a natural
equivalence

CRig(C) ≃ Fun× (hBispan(F ), C) (2)
between the category of commutative semirings in C and product-preserving
functors from hBispan(F ) to C. We are unsure of where this statement was first
proved, but it is discussed in Strickland’s notes on Tambara functors [Str12, §5],
and a proof appears in the work of Gambino and Kock on polynomial functors
[GK13].

Commutative semirings in ∞-categories

The goal of this paper is to show that the description of the 1-categorical Law-
vere theory of commutative semirings in terms of bispans generalizes to the
∞-categorical setting. For the definition of commutative semirings in this set-
ting, we recall that Gepner, Groth, and Nikolaus [GGN15] proved that if C is a
presentable∞-category equipped with a closed symmetric monoidal structure,
then the ∞-category CMon(C) of commutative monoids in C admits a unique
closed symmetric monoidal structure such that the free commutative monoid
functor from C to CMon(C) is symmetric monoidal. We then define commu-
tative semirings in C as commutative algebras with respect to this symmetric
monoidal structure:

CRig(C) := CAlg(CMon(C), ⊗).
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The Lawvere theory of commutative semirings will be a higher category of
bispans of finite sets, where we no longer take isomorphism classes of bispans as
above. To define this as an ∞-category, we make use of an observation due to
Street [Str20]: The composition of bispans can be described in terms of pullbacks
in the category of spans. This has been verified in the ∞-categorical setting
by Elmanto and the second author [EH23], so that we can define the (2, 1)-
category Bispan(F ) as the (2,1)-category of spans in Span(F ), where the forward
maps have no backward component.

Now that both sides have been defined, we recall the statement of our The-
orem A: for every cartesian closed presentable∞-category C, viewed as a sym-
metric monoidal category via the cartesian product, there is a natural equiva-
lence

CRig(C) ≃ Fun× (Bispan(F ), C) .
In other words we exhibit Bispan(F ) as the Lawvere theory for commutative
semirings in∞-categories. That this should be the case was suggested briefly at
the end of [Ber20]; it was also proposed as a definition of commutative semirings
in the thesis of Cranch [Cra10], which contains the first (and rather different)
construction of Bispan(F ) as a quasicategory.

Gepner–Groth–Nikolaus also show that the symmetric monoidal structure
on CMon(C) localizes to the full subcategory CGrp(C) ⊆ CMon(C) of grouplike
commutative monoids, and that this is moreover compatible with the natural
symmetric monoidal structure on the stabilization of C. When C is the ∞-
category Spc of spaces, this enhances the recognition principle for infinite loop
spaces of May [May72] and Boardman–Vogt [BV73] to a symmetric monoidal
equivalence between CGrp(Spc) and the ∞-category Sp≥0 of connective spec-
tra. Combining this with our result, we get a rather concrete description of
connective commutative ring spectra:

Corollary B. There is an equivalence

CAlg(Sp≥0) ≃ Fun× (Bispan(F ), Spc)grp
between connective commutative ring spectra and product-preserving functors Bispan(F ) →
Spc whose underlying commutative monoid is grouplike.

Overview

Let us outline our strategy for the proof of Theorem A. First, we derive a more
explicit description of CRig(C):

▶ Recall that CMon(C) is equivalent to the full subcategory of Fun(Span(F ), C)
spanned by the product-preserving functors. We identify the symmetric
monoidal structure of [GGN15] as a localization of the Day convolution
structure arising from a tensor product on Span(F ) given by the carte-
sian product of finite sets. This is essentially a result of Ben-Moshe and
Schlank [BMS24] (though they work in a slightly different setting).
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▶ Using the universal property of Day convolution, this means that we can
identify CRig(C)with a full subcategory of the∞-category of lax symmetric
monoidal functors (Span(F ), ⊗) → (C,×).

▶ Using the universal property of the cartesian symmetric monoidal structure,
we can identify this in turn as a full subcategory of the functors

Span(F )⊗ −→ C,

where Span(F )⊗ is the total space of the cocartesian fibration that encodes
the symmetric monoidal structure on Span(F ).

We will prove this in §3 (culminating with Corollary 3.3.7), where we also give
an explicit identification of the ∞-category Span(F )⊗. Surprisingly, it ends up
being another ∞-category of bispans, now in Ar(F ) (Corollary 3.2.5).

From this description of Span(F )⊗ we obtain an evident functor to Bispan(F ).
We are left with proving that this functor is a localization, as well as show-
ing that under this localization the∞-category of product-preserving functors
from Bispan(F ) corresponds precisely to that of commutative semirings. This
is the content of §4. We deduce the first statement as a special case of a general
recognition theorem for localizations which we believe may be of independent
interest:

Theorem C. Let 𝑓 : C→ C′ be a functor, and assume we have equipped C and
C′ with factorization systems (𝐸,𝑀) and (𝐸′, 𝑀 ′), respectively, such that
(1) 𝑓 restricts to a localization 𝐸 → 𝐸′ at some class𝑊 ⊂ 𝐸, and

(2) 𝑓 restricts to a right fibration 𝑀 → 𝑀 ′.
Then 𝑓 : C→ C′ is also a localization at𝑊 .

Future work

In follow-up work, we intend to generalize the main theorem of this paper
to the more general setting of parametrized higher algebra. For simplicity, let
us merely explain the statement in the 𝐺-equivariant setting for a finite group
𝐺 . Instead of working with ∞-categories, one should now work with 𝐺-∞-
categories, defined as contravariant functors Orbop

𝐺
→ Cat∞ from the orbit category

of 𝐺 . The statement and proof strategy for Theorem A can be generalized to
this setting:

▶ For a 𝐺-∞-category D admitting so-called finite 𝐺-products, there is a 𝐺-
∞-category CMon(D) of 𝐺-commutative monoids in D defined by [Nar16].

▶ If D is presentably 𝐺-symmetric monoidal, this 𝐺-∞-category inherits a
𝐺-symmetric monoidal structure, and so we can consider the ∞-category

CRig𝐺 (D) := CAlg𝐺 (CMon𝐺 (D))

of 𝐺-commutative semirings in D.
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▶ Every cartesian closed presentable∞-category Cgives rise to a presentably
𝐺-symmetric monoidal 𝐺-∞-category C(𝐺/𝐻 ) B Fun(Orbop

𝐻
, C), and the

same strategy as for Theorem A will show that there exists an equivalence

CRig𝐺 (C) ≃ Fun× (Bispan(F𝐺 ), C),

where Bispan(F𝐺 ) denotes the (2, 1)-category of bispans of finite 𝐺-sets.

Product-preserving functors from Bispan(F𝐺 ) to sets that are also group-
like in an appropriate sense are one definition of Tambara functors, see e.g. [Str12,
Definition 6.2]. Adding the same group-like condition, we can therefore in-
terpret this result as saying that the ∞-category of 𝐺-commutative rings in C

is equivalent to the ∞-category of C-valued Tambara functors. In particular,
we expect to obtain a description of connective 𝐺-commutative ring spectra as
Tambara functors valued in spaces,

CAlg𝐺 (Sp≥0𝐺
) ≃ Fun× (Bispan(F𝐺 ), Spc)grp.

As some of the required foundational material on parametrized higher category
theory still needs to be developed, we postpone a precise treatment of these
results to a future article.

Notation

▶ We write F for the category of finite sets, and

n := {1, . . . , 𝑛}

for a set with 𝑛 elements.

▶ We write Cat∞ for the ∞-category of ∞-categories and Spc for the ∞-
category of spaces or ∞-groupoids.

▶ If C is an ∞-category, then we usually denote its underlying ∞-groupoid
by C≃; in a few instances it will instead by notationally convenient to denote
it by Ceq, however.

▶ We denote generic ∞-categories as A,B, C, . . . .

▶ We denote the arrow ∞-category of C as Ar(C) := Fun( [1], C).

▶ A subcategory C0 of an ∞-category C is a functor 𝑖 : C0 → C such that
C≃0 → C≃ and MapC0

(𝑥,𝑦) → MapC(𝑖 (𝑥), 𝑖 (𝑦)) for all 𝑥,𝑦 are all monomor-
phisms of ∞-groupoids. In other words, subcategories are by definition
always “replete”, meaning that they must contain all equivalences among
their objects. A subcategory is wide if it contains all objects, or equivalently
if C≃0 → C≃ is an equivalence.
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2 Background

In this section we recall some background material: We review spans in §2.1
and bispans in §2.2, and then look briefly at symmetric monoidal∞-categories
in general in §2.3 and the special cases of (co)cartesian symmetric monoidal
structures in §2.4.

2.1 Spans

In this subsection we briefly recall some definitions and results relating to ∞-
categories of spans. These were originally constructed in [Bar17] using qua-
sicategories, though our primary reference will be the model-independent re-
working in [HHLN23].

Definition 2.1.1. A span pair (C, C𝐹 ) consists of an ∞-category C together
with a wide subcategory C𝐹 , whose morphisms we call the forward morphisms,
such that:

(1) for any forward morphism 𝑓 : 𝑥 → 𝑦 and any morphism 𝑔 : 𝑧 → 𝑦 there
exists a pullback square

𝑤 𝑧

𝑥 𝑦,

𝑓 ′

𝑔′ 𝑔

𝑓

in C,

(2) and in this pullback square the morphism 𝑓 ′ again lies in C𝐹 .

We write SpanPair for the ∞-category of span pairs; a morphism (C, C𝐹 ) →
(D, D𝐹 ) here is a functor C → D that preserves the forward maps as well as
pullbacks along forward maps.

Remark 2.1.2. The setup in [Bar17] and [HHLN23] is a bit more general than
this, and uses instead adequate triples (C, C𝐹 , C𝐵) where we specify subcategories
of both forward and backward maps. Here we will only consider span pairs, as
this simplifies the notation and encompasses all the examples we will encounter
in this paper.
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Observation 2.1.3. The ∞-category SpanPair has limits and filtered colimits,
which are both computed in Cat∞, by [HHLN23, 2.4].

Example 2.1.4. For any∞-category C, we always have the span pair (C, C≃).

Example 2.1.5. If C is an ∞-category with pullbacks, then (C, C) is a span
pair.

Notation 2.1.6. We write Catpb∞ for the subcategory of Cat∞ consisting of ∞-
categories with pullbacks and functors that preserve these; the functor Catpb∞ →
SpanPair, C ↦→ (C, C) identifies it as a full subcategory of SpanPair that is closed
under limits and filtered colimits.

Given a span pair (C, C𝐹 ), we can construct an ∞-category

Span𝐹 (C) = Span(C, C𝐹 ),

which informally has the same objects as C, with a morphism from 𝑥 to 𝑦 given
by a span (or correspondence)

𝑧

𝑥 𝑦,

𝑏 𝑓

where 𝑓 is in C𝐹 and 𝑏 is arbitrary; composition is given by taking pullbacks in
C. See [HHLN23, 2.12] for a definition of Span𝐹 (C) as a complete Segal space,
which gives a functor

Span : SpanPair −→ Cat∞.

Given C ∈ Catpb∞ , for the span pair (C, C𝐹 ) = (C, C) we will write

Span(C) := Span𝐹 (C).

We note some important properties of this functor:

▶ We have Spaneq(C) = Span(C, C≃) ≃ Cop [HHLN23, 2.15].

▶ The functor Span preserves limits — in fact, on the larger ∞-category of
adequate triples it has a left adjoint, given by the twisted arrow∞-category
[HHLN23, 2.18]

Observation 2.1.7. A morphism in Span𝐹 (C), that is a span

𝑍

𝑋 𝑌

𝑓 𝑔

is invertible if and only if the maps 𝑓 and 𝑔 are invertible in C; see for instance
[Hau18, 8.2] for a proof.
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Next, we recall two useful results relating spans and (co)cartesian fibrations:

Theorem 2.1.8 (Barwick). Suppose C is an ∞-category with pullbacks and

Φ : Cop −→ Cat∞

is a functor such that

▶ for every morphism 𝑓 : 𝑥 → 𝑦 in C, the functor 𝑓 ∗ := Φ(𝑓 ) has a left adjoint 𝑓!,

▶ for every pullback square

𝑤 𝑧

𝑥 𝑦,

𝑓 ′

𝑔′ 𝑔

𝑓

in C, the Beck–Chevalley transformation

𝑓 ′! 𝑔
′∗ −→ 𝑔∗ 𝑓!

is an equivalence.

Let 𝑝 : E→ C be the cartesian fibration for Φ and write Ecart for the subcategory of
E spanned by the 𝑝-cartesian edges. Then (E, Ecart) is a span pair, and moreover the
functor

Span(𝑝)op : Spancart(E)op −→ Span(C)op ≃ Span(C)

is a cocartesian fibration for a functor Span(C) → Cat∞ that restricts to Φ on Cop and
is given on forward maps by taking left adjoints.

Proof. This is a special case of [Bar17, 11.6]; see also [HHLN23, 3.2 and 3.4] for
further discussion. □

Remark 2.1.9. In the situation of Theorem 2.1.8, the universal property of the
(∞, 2)-category SPAN(C) of spans in C says that there is a unique functor of
(∞, 2)-categories SPAN(C) → CAT∞ that extendsΦ. We expect that its underly-
ing functor of∞-categories corresponds to the cocartesian fibration Span(𝑝)op.

Theorem 2.1.10. Suppose 𝑝 : E→ C is the cartesian fibration for a functor 𝐹 : Cop →
Catpb∞ . Then the cocartesian fibration for the composite functor Span ◦ 𝐹 : Cop → Cat
is

Span(𝑝) : Spanfw(E) −→ Spaneq(C) ≃ Cop,

where Efw contains the (“fibrewise”) maps in E that map to equivalences in C under
𝑝 .

Proof. This is a special case of [HHLN23, 3.9]. □
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2.2 Bispans

We now recall the definition of ∞-categories of bispans, following [EH23].

Definition 2.2.1 ([EH23, 2.4.3 and 2.4.6]). A bispan triple (C, C𝐹 , C𝐿) consists
of an∞-category C together with two wide subcategories C𝐹 and C𝐿 such that
the following conditions hold:

(1) Both (C, C𝐹 ) and (C, C𝐿) are span pairs.

(2) Let C𝐿
/𝑥 ⊆ C/𝑥 be the full subcategory spanned by the maps to 𝑥 that lie

in C𝐿; for 𝑓 : 𝑥 → 𝑦 in C𝐹 , the functor 𝑓 ∗ : C𝐿
/𝑦 → C𝐿

/𝑥 given by pullback
along 𝑓 has a right adjoint 𝑓∗.

(3) For every pullback square

𝑥 ′ 𝑦′

𝑥 𝑦

𝑓 ′

𝜉 𝜂

𝑓

with 𝑓 in C𝐹 , the commutative square

C𝐿
/𝑦 C𝐿

/𝑥

C𝐿
/𝑦′ C𝐿

/𝑥 ′

𝑓 ∗

𝜂∗ 𝜉∗

𝑓 ′∗

is right adjointable, i.e. the mate transformation 𝜂∗ 𝑓∗ → 𝑓 ′∗ 𝜉
∗ is an equiva-

lence.

Remark 2.2.2. If C𝐿 = C, then condition (2) says precisely that C is locally
cartesian closed; in this case, condition (3) is automatic.

Theorem 2.2.3 ([EH23, 2.5.2(1)]). Suppose (C, C𝐹 ) is a span pair and suppose
C𝐿 is a wide subcategory of C. Then (C, C𝐹 , C𝐿) is a bispan triple if and only if
(Span𝐹 (C)op, C𝐿) is a span pair, where we regard C𝐿 as contained in the subcategory
C≃ Spaneq(C)op inside Span𝐹 (C)op. □

Definition 2.2.4. Suppose (C, C𝐹 , C𝐿) is a bispan triple. Then we define

Bispan𝐹,𝐿 (C) := Span𝐿 (Span𝐹 (C)op) .

If C𝐿 = C we abbreviate this to Bispan𝐹 (C), and if also C𝐹 = C we just write
Bispan(C).
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Remark 2.2.5. The fact that we get the correct composition of bispans by
viewing them as “spans in spans” was first observed by Street [Str20]. The first
(and rather different) construction of Bispan(F ) as an∞-category is in the thesis
of Cranch [Cra10].

Definition 2.2.6. If (C, C𝐹 , C𝐿) and (D, D𝐹 , D𝐿) are bispan triples, then a mor-
phism of bispan triples is a functor Φ : C→ D that induces morphisms of span
pairs (C, C𝐹 ) → (D, D𝐹 ), (C, C𝐿) → (D, D𝐿) and

(Span𝐹 (C)op, C𝐿) −→ (Span𝐹 (D)op, D𝐿) .

Assuming the previous conditions, the final condition is equivalent to the square

C𝐿
/𝑦 C𝐿

/𝑥

D𝐿
/Φ(𝑦) D𝐿

/Φ(𝑥 )

𝑓 ∗

Φ Φ

Φ(𝑓 )∗

being right adjointable for every morphism 𝑓 : 𝑥 → 𝑦 in C𝐹 , i.e. the Beck–
Chevalley transformation

Φ ◦ 𝑓∗ −→ Φ(𝑓 )∗ ◦ Φ

is an equivalence; this follows from the identification of pullbacks in Span𝐹 (C)op

of maps C ⊂ Span𝐹 (C)op along forwards and backwards morphisms in Span𝐹 (C)op

with pullbacks in C and distributivity diagrams in C respectively, see [EH23,
2.5.10, 2.5.12].

2.3 Symmetric monoidal ∞-categories

In this subsection we recall some definitions related to commutative monoids
and symmetric monoidal structures on ∞-categories.

Definition 2.3.1. Let Cbe an∞-category with finite products. A commutative
monoid in C is a functor

𝑀 : Span(F ) −→ C

that preserves finite products. We write CMon(C) for the full subcategory of
Fun(Span(F ), C) spanned by the commutative monoids.

Remark 2.3.2. This definition of commutative monoids fits into the frame-
work for algebraic structures defined by Segal conditions from [CH21]: We
can endow Span(F ) with the structure of an algebraic pattern where the inert–
active factorization system is that given by the backwards and forwards maps,
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and the point is the only elementary object. Then a Segal Span(F )-object in C

is a functor 𝑀 such that

𝑀 (n) ∼−→ lim({1}/n )op 𝑀 (1) ≃
𝑛∏
𝑖=1

𝑀 (1)

for every 𝑛.

Remark 2.3.3. This definition of commutative monoids is equivalent to that
used in [Lur17] in terms of finite pointed sets; see for instance [BH21, C.1].

Definition 2.3.4. A symmetric monoidal∞-category is a commutative monoid
in Cat∞; its underlying ∞-category is the value at 1. Given a symmetric monoidal
structure on an ∞-category C, we will denote the corresponding cocartesian
and cartesian fibrations by2

C⊗ −→ Span(F ), C⊗ −→ Span(F )op.

We say that a morphism in C⊗ is inert if it is cocartesian over a backwards
morphism in Span(F ); similarly, a morphism in C⊗ is inert if it is cartesian over
a (reversed) backwards morphism in Span(F )op.

Definition 2.3.5. Suppose C⊗, D⊗ → Span(F ) are symmetric monoidal ∞-
categories. A symmetric monoidal functor from C to D is a commutative triangle

C⊗ D⊗

Span(F )

𝐹

where 𝐹 preserves cocartesian morphisms. We say that 𝐹 is lax symmetric monoidal
if it instead only preserves inert morphisms. We write FunLSM/Span(F ) (C

⊗, D⊗)
for the full subcategory of Fun/Span(F ) (C⊗, D⊗) spanned by the lax symmet-
ric monoidal functors.

Remark 2.3.6. It follows from [BHS22, 5.1.15] that this definition of lax sym-
metric monoidal functors agrees with the more standard one, with F∗ in place
of Span(F ). By [Hau23, 2.2.7 and 2.2.10], we can also equivalently define a lax
symmetric monoidal functor to be a commutative triangle as above where 𝐹
preserves finite products.

Definition 2.3.7. A commutative algebra in a symmetric monoidal ∞-category
C⊗ is a lax symmetric monoidal functor from ∗⊗ = Span(F ); we write

CAlg(C) := FunLSM/Span(F ) (Span(F ), C
⊗)

for the ∞-category of commutative algebras in C.
2Here Span(F )op ≃ Span(F ), but we write op as a reminder that this is a cartesian fibration.
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2.4 Cartesian and cocartesian symmetric monoidal structures

In this subsection we review some results from [Lur17] on cartesian and co-
cartesian symmetric monoidal structures, meaning those arising from products
and coproducts in an ∞-category. Let us first recall a precise definition of such
structures:

Definition 2.4.1 ([Lur17, 2.4.0.1]). Let C⊗ be a symmetric monoidal∞-category.
We say that this is cocartesian if

▶ the unit 1 in C is initial,

▶ for all objects 𝑋,𝑌 ∈ C, the maps

𝑋 ≃ 𝑋 ⊗ 1 −→ 𝑋 ⊗ 𝑌 ←− 1 ⊗ 𝑌 ≃ 𝑌

exhibit 𝑋 ⊗ 𝑌 as the coproduct of 𝑋 and 𝑌 .

Dually, C⊗ is cartesian if

▶ the unit 1 in C is terminal,

▶ for all objects 𝑋,𝑌 ∈ C, the maps

𝑋 ≃ 𝑋 ⊗ 1←− 𝑋 ⊗ 𝑌 −→ 1 ⊗ 𝑌 ≃ 𝑌

exhibit 𝑋 ⊗ 𝑌 as the product of 𝑋 and 𝑌 .

Remark 2.4.2. As the unit 1C is simply the image of the essentially unique
object of C(0) ≃ ∗ under the functor C(0 = 0→ 1), in the cocartesian case the
first condition is equivalent to demanding that C(0 = 0 → 1) is a left adjoint.
If in this case also C(2 = 2 → 1) is a left adjoint, then the second condition
follows, because (𝑋, 1) → (𝑋,𝑌 ) ← (1, 𝑌 ) is a coproduct diagram in C(2).
Conversely, it will follow from Proposition 3.1.1 that all forward maps in a co-
cartesian symmetric monoidal structure are left adjoint to the corresponding
backwards map.

Theorem 2.4.3 (Lurie). Suppose C is an ∞-category with finite coproducts. Then
there is a unique cocartesian symmetric monoidal ∞-category C⨿ such that C⨿1 ≃ C.
Dually, if C is an ∞-category with finite products, then there is a unique cartesian
symmetric monoidal ∞-category C× such that C×1 ≃ C.

Proof. This is part of [Lur17, 2.4.1.8 and 2.4.3.12]. □

In the cartesian case, we can further describe lax symmetric monoidal func-
tors to C× in terms of certain functors to C:

14



Definition 2.4.4. Suppose D⊗ → Span(F ) is a symmetric monoidal∞-category
and C is an ∞-category with finite products. A D⊗-monoid in C is a functor

𝑀 : D⊗ −→ C

such that for an object 𝑋 ∈ D⊗ over n ∈ Span(F ), if 𝜌𝑖 : 1 → n for 𝑖 = 1, . . . , 𝑛
are the summand inclusions, viewed as backwards maps in Span(F ), then

𝑀 (𝑋 ) ∼−→
𝑛∏
𝑖=1

𝑀 (𝜌𝑖,!𝑋 ) .

We write MonD⊗ (C) for the full subcategory of Fun(D⊗, C) spanned by the
monoids.

Remark 2.4.5. By [Hau23, 2.3.3], we can equivalently characterize D⊗-monoids
in C as functors D⊗ → C that preserve finite products.

Theorem 2.4.6 (Lurie). Suppose C is an ∞-category with finite products. Then
there is a functor C× → C that induces an equivalence

FunLSM/Span(F ) (D
⊗, C×) ∼−→ MonD⊗ (C)

between lax symmetric monoidal functors and monoids.

Proof. This is the content of [Lur17, §2.4.1], translated through the equivalence
between ∞-operads over F∗ and Span(F ) from [BHS22]. □

Applied to D⊗ = ∗⊗, the previous theorem gives the following corollary:

Corollary 2.4.7. Let C be an ∞-category with finite products. Then the functor
C× → C from Theorem 2.4.6 induces an equivalence CAlg(C×) ≃ CMon(C).

3 Commutative semirings and spans

Our goal in this section is to give an explicit description of commutative semir-
ings, defined as commutative algebras in the symmetric monoidal structure
on commutative monoids constructed by Gepner–Groth–Nikolaus. We first
obtain a concrete construction of the fibration Span(F )⊗ → Span(F ) for the
symmetric monoidal structure on spans induced by the cartesian product of
finite sets, by first describing (co)cartesian symmetric monoidal structures in
terms of spans in §3.1 and then describing symmetric monoidal structures on
∞-categories of spans in §3.2. In §3.3 we then prove, following Ben-Moshe and
Schlank, that the symmetric monoidal structure on commutative monoids is a
localization of the Day convolution for this symmetric monoidal structure on
Span(F ); from this we then get the desired description of commutative semir-
ings in C as lax symmetric monoidal functors from Span(F ).
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3.1 (Co)cartesian symmetric monoidal structures via spans

In this subsection we will see that the cocartesian fibration for a cocartesian
symmetric monoidal structure can be described in terms of spans. Moreover,
so can the cartesian fibration for a cartesian symmetric monoidal structure, in a
way that is not simply dual to the first description.3

Proposition 3.1.1. Suppose C is an ∞-category with finite coproducts, and let

𝑝 : CF −→ F

denote the cartesian fibration for the functor

C(−) : F op → Cat∞, 𝑆 ↦→ Fun(𝑆, C).

Then Spancart(CF )op → Span(F )op ≃ Span(F ) is the cocartesian fibration for the
cocartesian symmetric monoidal structure on C.

Proof. Because C admits coproducts, the functor C(–) : F op → Cat satisfies the
assumptions of Theorem 2.1.8, showing that (CF , CF ,cart) is a span pair and that
the functor

Spancart(CF )op −→ Span(F )

is a cocartesian fibration.
Furthermore, as explained there, the restriction of the corresponding func-

tor Span(F ) → Cat to F op ⊂ Span(F ) agrees with the original functor C(−) ,
and so Spancart(CF )op is a symmetric monoidal ∞-category, while the restric-
tion to F ⊂ Span(F ) agrees with the functor obtained from C(−) by passing to
left adjoints. In particular, it is cocartesian monoidal by Remark 2.4.2. □

Corollary 3.1.2. Let Ar(F )pb denote the subcategory of Ar(F ) whose morphisms are
the commutative squares that are pullbacks. Then

ev1 : Spanpb(Ar(F ))op −→ Span(F )

is the cocartesian fibration for the cocartesian symmetric monoidal structure on F .

Proof. By Proposition 3.1.1 it suffices to show that ev1 : Ar(F ) → F is the cartesian
fibration for the functor F (–) : F op → Cat∞. But ev1 is the cartesian fibration for
𝑆 ↦→ F/𝑆 , with functoriality given by pullbacks, so this follows from the natural
straightening equivalence F/𝑆 ≃ Fun(𝑆, F ), under which pullbacks correspond
to compositions. □

We now give an explicit description of the cartesian fibration for a cartesian
symmetric monoidal structure:

3Such a dual description does also exist, but this is in terms of cospans rather than spans.
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Proposition 3.1.3. Suppose C is an ∞-category with finite products. Then

Spancart(CF )op −→ Span(F )op

is a cartesian fibration, which classifies the cartesian symmetric monoidal structure on
C. That is, Spancart(CF )op ≃ C× .

Proof. Assume first that C in addition has finite coproducts, so we can apply
Proposition 3.1.1 to describe the cocartesian unstraightening of the cocartesian
symmetric monoidal structure on C as Spancart(CF )op → Span(F ).

Because Calso admits finite products, the corresponding functor Span(F ) →
Cat sends every map to a left adjoint, and so Spancart(CF ) → Span(F ) is also a
cartesian fibration, and as a cartesian fibration it unstraightens to the diagram
Span(F )op → Cat obtained by passing to right adjoints. On the backward maps
this functor thus recovers C(–) : F op → Cat∞, since we have taken left adjoints
and then right adjoints for this diagram. The new functor therefore also pre-
serves products, as this condition only depends on the backwards maps, and
so Spancart(CF ) → Span(F ) is the cartesian unstraightening of a symmetric
monoidal ∞-category. By the dual of Remark 2.4.2 it is moreover cartesian.
This completes the proof under the additional assumption that C also has finite
coproducts.

For general C, let D denote the finite-coproduct-completion of C, i.e. the
full subcategory of the ∞-category of presheaves on C spanned by finite co-
products of representables. As C has finite products, and since coproducts and
products distribute in spaces, D also has finite products, and the Yoneda em-
bedding C ↩→ D preserves finite products.

By the above special case, Spancart(DF )op → Span(F ) is then the carte-
sian fibration for the cartesian symmetric monoidal on on D. As the inclusion
C ↩→ D preserves products, it extends to a fully faithful functor C× ↩→ D× =

Spancart(DF )op with essential image those tuples (𝑋1, . . . , 𝑋𝑛) such that all 𝑋𝑖 are
contained in C. As the natural inclusion Spancart(CF )op → Spancart(DF )op is
also fully faithful with the same essential image, the claim follows. □

Combining this with Corollary 3.1.2, we get the following special case:

Corollary 3.1.4. There is an equivalence of cartesian fibrations

Spanpb(Ar(F ))op ≃ F×

over Span(F )op (using evaluation at 1 in the arrow category).

3.2 Symmetric monoidal structures on spans

In this subsection we discuss symmetric monoidal structures on span∞-categories,
and in particular on Span(F ). These symmetric monoidal structures were first
constructed in [BGS20].
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Construction 3.2.1. Since the functor Span : SpanPair→ Cat∞ preserves limits,
and in particular finite products, it also preserves commutative monoids. There-
fore, Span applied to any commutative monoid in SpanPair (or more generally in
adequate triples) is a symmetric monoidal∞-category. Here we will only con-
sider this construction for objects of Catpb∞ ⊆ SpanPair. A commutative monoid
in Catpb∞ is a symmetric monoidal ∞-category 𝑀 : Span(F ) → Cat∞ such that

▶ the underlying ∞-category C = 𝑀 (1) has pullbacks,

▶ the tensor product functor – ⊗ – : C× C→ C preserves pullbacks.4

In this case, Span(𝑀) : Span(F ) → Cat∞ is a commutative monoid, which en-
dows Span(C) with a symmetric monoidal structure whose tensor product is
inherited from C.

Example 3.2.2. If 𝑀 : Span(F ) → Cat∞ is the cartesian symmetric monoidal
structure on an ∞-category C with finite limits, then – × – : C × C → C

clearly preserves pullbacks, and so induces a symmetric monoidal structure on
Span(C).5 For example, we conclude that Span(F ) is endowed with a symmet-
ric monoidal structure given by the cartesian product in F .

We can describe the cocartesian fibrations for these symmetric monoidal
structures rather explicitly:

Proposition 3.2.3. Suppose 𝑝 : C⊗ → Span(F )op is the cartesian fibration for a
commutative monoid in Catpb∞ . Then the cocartesian fibration Span(C)⊗ → Span(F )
for the induced symmetric monoidal structure on spans from Construction 3.2.1 is given
by

Span(C)⊗ ≃ Spanfw(C⊗),

where (C⊗)fw denotes the subcategory of maps that go to equivalences under 𝑝 .

Proof. This follows immediately from Theorem 2.1.10. □

Remark 3.2.4. When the symmetric monoidal structure on C is cartesian,
the description of Span(C)⊗ above shows that it agrees with the symmetric
monoidal structure on Span(C) constructed as a special case of [BGS20, 2.14].

Combining Proposition 3.2.3 with the description of F× from Corollary 3.1.4,
we get the following special case:

4Here we mean pullbacks in C× C, so that the tensor product of a pair of pullback squares
in C is again a pullback. In particular, this condition is stronger than ⊗ preserving pullbacks in
each variable.

5Note that this is not the cartesian monoidal structure on Span(C)!
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Corollary 3.2.5. The symmetric monoidal structure on Span(F ) induced by the
cartesian symmetric monoidal structure on F is given by

Span(F )⊗ ≃ Bispanpb,tgt=eq(Ar(F )) = Spantgt=eq(Spanpb(Ar(F ))op)

where Ar(F )pb denotes the subcategory of Ar(F ) where the morphisms are pullback
squares, and Span(Ar(F ))tgt=eq denotes the subcategory of morphisms whose image
under ev1 is a span of equivalences in F . □

Remark 3.2.6. A morphism in Span(F )⊗ is then a diagram

𝑋 𝑌 𝑋 ′ 𝑌 ′ 𝑋 ′′

𝑆 𝑇 𝑆 ′ 𝑇 ′ 𝑆 ′′

⌟
∼
⌞

𝑓 𝑔 ∼ ∼

which simplifies to

𝑋 𝑌 𝑋 ′ 𝑋 ′′

𝑆 𝑇 𝑆 ′.

⌟

𝑓 𝑔

This amounts to specifying a family of spans∏
𝑡 ∈𝑔−1 (𝑠′ )

𝑋𝑓 (𝑡 ) ←− 𝑋 ′𝑠′ −→ 𝑋 ′′𝑠′

indexed by 𝑠′ ∈ 𝑆 ′, as we expect.

Remark 3.2.7. For later use, let us identify some of the cocartesian edges of
the cocartesian fibration 𝑝 : Bispanpb,tgt=eq(Ar(F )) → Span(F ). By construction,
the restriction of the cartesian fibration Spanpb(Ar(F ))op → Span(F ) to F is
the cartesian fibration Ar(F ) → F , whose cartesian arrows are precisely the
pullback squares in F . Applying the characterization of cocartesian edges from
[HHLN23, 3.2], we therefore see that the 𝑝-cocartesian lifts of a map

𝑆
𝑓
←−− 𝑇 =−−→ 𝑇

in Span(F ) are precisely given by the bispans of the form

𝑋 𝑌 𝑌 𝑌

𝑆 𝑇 𝑇 𝑇 .

⌞

𝑓

Observation 3.2.8. Evaluation at 0 gives a functor

Span(F )⊗ ≃ Bispanpb,tgt=eq(Ar(F )) −→ Bispan(F ) .

We will prove in Corollary 4.2.3 below that this is a localization.
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3.3 Commutative monoids and Day convolution

In this subsection we briefly recall the definition of commutative semirings from
[GGN15] and then study its relation to the symmetric monoidal structure on
Span(F ).

Definition 3.3.1. We say a symmetric monodial ∞-category C is presentably
symmetric monoidal if C is presentable and the tensor product – ⊗ – : C× C→
C preserves colimits in each variable separately.6 A presentably symmetric
monoidal ∞-category is equivalently a commutative monoid in PrL equipped
with the Lurie tensor product.

Theorem 3.3.2 (Gepner–Groth–Nikolaus [GGN15]). Suppose C is a presentably
symmetric monoidal∞-category. Then CMon(C) has a unique presentably symmetric
monoidal structure such that the free monoid functor C → CMon(C) is symmetric
monoidal. □

Definition 3.3.3. A commutative semiring in a presentably symmetric monoidal
∞-category C is a commutative algebra in CMon(C). We write

CRig(C) := CAlg(CMon(C))

for the ∞-category of commutative semirings in C.7

Recall that CMon(C) is by definition a full subcategory of Fun(Span(F ), C).
We will now prove that the symmetric monoidal structure of Theorem 3.3.2 is
a localization of a Day convolution structure on this functor ∞-category. To
see this we first need to know that this Day convolution indeed localizes to the
product-preserving functors. This is a special case of the following proposition,
which is really just [BMS24, 4.24] stated in a more general form, but we include
a proof for completeness.

Proposition 3.3.4 (Ben-Moshe–Schlank). Fix a set R ⊂ Cat∞ of ∞-categories.
Suppose I is an ∞-category with R-shaped limits that is equipped with a symmetric
monoidal structure such that for every 𝑋 ∈ I, the functor 𝑋 ⊗ – preserves R-shaped
limits. Then for every presentably symmetric monoidal ∞-category C, the Day convo-
lution structure on Fun(I, C) localizes to a symmetric monoidal structure on the full
subcategory FunR(I, C) of R-limit-preserving functors.

Proof. We first consider the case where C is the∞-category Spc of spaces, with
the cartesian product. Let 𝐿 : Fun(I, Spc) → FunR(I, Spc) denote the localiza-
tion functor. We must show that for any Φ ∈ Fun(I, Spc), the functor Φ⊗– pre-
serves 𝐿-equivalences. Since 𝐿-equivalences are closed under colimits in the ar-
row∞-category, it suffices to show this when Φ is of the form𝑦 (𝑋 ) for𝑋 ∈ Iop,

6By the adjoint functor theorem for presentable ∞-categories, this is equivalent to the sym-
metric monoidal structure being closed.

7Note that this notation is slightly abusive, as this ∞-category really depends not just on C,
but on its symmetric monoidal structure.
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where 𝑦 is the Yoneda embedding, since these generate Fun(I, Spc) under col-
imits. Also, for any Φ the statement is equivalent to: for 𝑀 ∈ FunR(I, Spc), the
internal hom𝑀Φ in Fun(I, Spc) also preserves R-shaped limits, as is immediate
from the natural equivalence

Map(Φ ⊗ –, 𝑀) ≃ Map(–, 𝑀Φ)

and the relation between 𝐿-equivalences and 𝐿-local objects.
Now we claim that we can describe 𝑀𝑦 (𝑋 ) as 𝑀 (– ⊗ 𝑋 ). Indeed, we know

that 𝑦 : Iop → Fun(I, Spc) is symmetric monoidal, so that we have natural
equivalences

𝑀𝑦 (𝑋 ) (–) ≃ Map(𝑦 (–), 𝑀𝑦 (𝑋 ) )
≃ Map(𝑦 (–) ⊗ 𝑦 (𝑋 ), 𝑀)
≃ Map(𝑦 (– ⊗ 𝑋 ), 𝑀)
≃ 𝑀 (– ⊗ 𝑋 ) .

Now by assumption – ⊗ 𝑋 : I→ I preserves R-shaped limits, hence so does
the composite 𝑀 (– ⊗ 𝑋 ).

For a general C, we have a commutative square

Fun(I, Spc) ⊗ C Fun(I, C)

FunR(I, Spc) ⊗ C FunR(I, C)

∼

∼

where the top equivalence is symmetric monoidal for the Day convolution by
[BMS24, 3.10] and the bottom equivalence will be shown below. The result
then follows from [BMS24, 4.21], which shows that the left map is again a sym-
metric monoidal localization.

It remains to show that the map

FunR(I, Spc) ⊗ C→ FunR(I, C)

is an equivalence. For this we may compute

FunR(I, Spc) ⊗ C≃ FunR(Cop, FunR(I, Spc))
≃ FunR(I, FunR(Cop, Spc))
≃ FunR(I, C),

where we have used that for any two presentable ∞-categories C and D the
tensor product C⊗ D is equivalent to the ∞-category FunR(Cop, D) of (small)
limit-preserving functors from Cop to D; see [Lur17, 4.8.1.17]. □

Applying this to Span(F ), we get the following variant of [BMS24, 4.26]:
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Corollary 3.3.5. Let C be a presentably symmetric monoidal∞-category. The sym-
metric monoidal structure on CMon(C) from [GGN15] is a localization of the Day
convolution on Fun(Span(F ), C) using the symmetric monoidal structure on Span(F )
induced by the cartesian product in F .

Proof. The cartesian product in Span(F ) is given by the coproduct in F , and the
tensor product on Span(F ), given by the cartesian product in F , indeed pre-
serves this in each variable. Thus the assumptions of Proposition 3.3.4 are sat-
isfied, so that the Day convolution on Fun(Span(F ), C) localizes to CMon(C),
making this a presentably symmetric monoidal∞-category. It remains to show
that this satisfies the condition that unqiuely characterizes the symmetric monoidal
structure of [GGN15], namely that the free commutative monoid functor

𝐹 : C−→ CMon(C)

is symmetric monoidal. The functor 𝐹 is by definition left adjoint to the for-
getful functor CMon(C) → C, which factors as

CMon(C) ↩→ Fun(Span(F ), C) 𝑢∗−−→ C,

where 𝑢∗ is evaluation at 1, i.e. restriction along 𝑢 : {1} → Span(F ). Hence 𝐹
factors as

C
𝑢!−−→ Fun(Span(F ), C) 𝐿−−→ CMon(C).

Here the localization 𝐿 is symmetric monoidal for the localized Day convolu-
tion, and 𝑢! is symmetric monoidal by [BMS24, 3.6] since 𝑢 : ∗ → Span(F ) is
symmetric monoidal. □

Using the universal property of Day convolution, we then immediately get
the following description of commutative semirings:

Corollary 3.3.6. For any presentably symmetric monoidal ∞-category C, the ∞-
category CRig(C) of commutative semirings in C is equivalent to the full subcategory of
FunLSM
/Span(F ) (Span(F )

⊗, C⊗) spanned by those lax symmetric monoidal functors whose
underlying functors Span(F ) → C are commutative monoids.

Proof. Since CMon(C) is a symmetric monoidal localization of Fun(Span(F ), C),
we have a full subcategory inclusion

CRig(C) = CAlg(CMon(C)) ⊆ CAlg(Fun(Span(F ), C))

whose image is spanned by the commutative algebras whose underlying ob-
ject in Fun(Span(F ), C) is a commutative monoid. Moreover, the universal
property of Day convolution from [Gla16] (or [Lur17, §2.2.6]) identifies com-
mutative algebras in Fun(Span(F ), C) with lax symmetric monoidal functors
Span(F )⊗ → C⊗. □
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In the case where the symmetric monoidal structure on C is cartesian, we
can simplify this further:

Corollary 3.3.7. For any cartesian closed presentable ∞-category C, the ∞-category
CRig(C) (using the cartesian product on C) is equivalent to the full subcategory of
Fun(Span(F )⊗, C) spanned by the functors

𝐹 : Span(F )⊗ −→ C

such that:

(1) 𝐹 is a Span(F )⊗-monoid in the sense of Definition 2.4.4.

(2) The restriction of 𝐹 to Span(F ) is a commutative monoid in C.

Proof. Combine Corollary 3.3.6 with the description of lax symmetric monoidal
functors to C× as monoids from Theorem 2.4.6. □

4 Comparison with bispans

In this section, we first prove a general localization result for ∞-categories of
spans in §4.1. We then apply this to our functor Span(F )⊗ → Bispan(F ) in
§4.2 before we complete the proof of our comparison result for commutative
semirings in §4.3.

4.1 Localizations of span ∞-categories

In this subsection we will prove the following general result about localizations
of ∞-categories of spans:

Theorem 4.1.1. Suppose 𝜙 : (C, C𝐹 ) → (D, D𝐹 ) is a functor of span pairs such that

(i) 𝜙 is a localization at some class of maps𝑊 ,

(ii) C𝐹 → D𝐹 is a right fibration.

Then Span(𝜙) : Span𝐹 (C) → Span𝐹 (D) is a localization, at the class of maps of the
form 𝑋

𝑤←− 𝑌 =−→ 𝑌 where 𝑤 is in𝑊 .

In fact, this theorem is a special case of a more general result about localiza-
tions of factorization systems, in the following sense:

Definition 4.1.2. A factorization system on an ∞-category C consists of two
wide subcategories 𝐸,𝑀 ⊂ C satisfying the following conditions:

(1) Every morphism in 𝐸 is left orthogonal to every morphism in 𝑀 .

(2) Every morphism 𝑓 of C admits a factorization 𝑓 ≃𝑚𝑒 with 𝑒 in 𝐸 and𝑚 in
𝑀 .
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If (C, 𝐸, 𝑀) and (C′, 𝐸′, 𝑀 ′) are two factorization systems, then a map of fac-
torization systems 𝑓 : (C, 𝐸, 𝑀) → (C′, 𝐸′, 𝑀 ′) is a functor 𝑓 : C→ C′ of their
underlying ∞-categories satisfying 𝑓 (𝐸) ⊂ 𝐸′ and 𝑓 (𝑀) ⊂ 𝑀 ′.

Remark 4.1.3. The above definition follows [ABFJ22, 3.1.6]. As a consequence
of Lemma 3.1.9 of the same paper, it is equivalent to [Lur09, 5.2.8.8]; see also
[CLL23, 3.32].

Proposition 4.1.4. Let (C, 𝐸, 𝑀) be a factorization system and consider the com-
mutative square of inclusions

C≃ 𝐸

𝑀 C.

𝛼

𝑖 𝑗

𝛽

(3)

Then the induced Beck–Chevalley transformation

𝑖!𝛼
∗ −→ 𝛽∗ 𝑗!

on functors to any cocomplete ∞-category is an equivalence.

Proof. Using the colimit formula for left Kan extensions, we see that it suffices
to show that for every 𝑋 ∈ C, the induced functor C≃ ×𝑀 𝑀/𝑋 → 𝐸 ×C C/𝑋
is (co)final, i.e. that restriction along it induces an equivalence on all colimits.
We will show that the functor above is a right adjoint, from which the result
follows by [Cis19, 6.1.13].

For this, we note that by [CLL23, Proof of 3.33], the inclusion 𝜅 : 𝑀/𝑋 →
C/𝑋 is fully faithful and admits a left adjoint 𝜆 such that for every (𝑌 → 𝑋 ) ∈
C/𝑋 the unit map 𝑌 → 𝜅𝜆(𝑌 ) belongs to 𝐸; moreover, in the same proof it is
also shown that 𝜆 is a localization at 𝐸. It follows directly that the left adjoint 𝜆
restricts to a functor between the non-full subcategories

𝐸 ×C C/𝑋 −→ C≃ ×𝑀 𝑀/𝑋 ,

and that also the unit restricts accordingly. As the counit is an equivalence by
the full faithfulness of 𝑀/𝑋 → C/𝑋 , it similarly restricts to these subcategories,
so that the restricted functor is a right adjoint, as claimed. □

Using this, we will now prove the following general base change criterion:

Theorem 4.1.5. Let

(C00, 𝐸00, 𝑀00) (C10, 𝐸10, 𝑀10)

(C01, 𝐸01, 𝑀01) (C11, 𝐸11, 𝑀11)

𝑓0

𝑔0

𝑓1

𝑔1

(4)
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be a commutative diagram of small factorization systems and assume that the restricted
maps 𝑓0 : 𝑀00 → 𝑀01 and 𝑓1 : 𝑀10 → 𝑀11 are right fibrations.

Let T be a complete ∞-category and let 𝑋 : C10 → T be arbitrary. Then the
Beck–Chevalley map 𝑔∗1 𝑓1∗𝑋 → 𝑓0∗𝑔∗0𝑋 associated to (4) is an equivalence if and only
if the analogous Beck–Chevalley map 𝑔∗1 𝑓1∗(𝑋 |𝐸10) → 𝑓0∗𝑔∗0(𝑋 |𝐸10) associated to

𝐸00 𝐸10

𝐸01 𝐸11

𝑓0

𝑔0

𝑓1

𝑔1

is an equivalence.

We begin with the following key special case:

Lemma 4.1.6. Let 𝑓 : (C, 𝐸, 𝑀) → (C′, 𝐸′, 𝑀 ′) be a map of small factorization
systems such that 𝑓 : 𝑀 → 𝑀 ′ is a right fibration. Then the Beck–Chevalley map
𝑗∗ 𝑓∗ → 𝑓∗𝑖∗ associated to

𝐸 C

𝐸′ C′

𝑖

𝑓 𝑓

𝑗

is an equivalence for functors to any complete ∞-category.

Proof. Let Tbe a complete ∞-category, which by changing universe we may
assume is small. Then we may embed T continuously into a complete and
cocomplete ∞-category T′ via the Yoneda embedding. Proving the statement
for T′ implies the statement for T, and so it suffices to prove the statement for
(co)complete T. Having made this reduction, we may pass to total mates, and
instead show that the Beck–Chevalley map 𝑖! 𝑓 ∗ → 𝑓 ∗ 𝑗! is an equivalence. For
this, let us consider the commutative cube

𝐸 C

C≃ 𝑀

𝐸′ C′.

(C′)≃ 𝑀 ′

𝑓

𝑖

𝑓

𝑓

𝛼

𝑗

𝛽

𝑓
(5)

Taking functors into T and passing to left adjoints horizontally we obtain a
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commutative diagram

T𝐸 TC

TC≃ T𝑀

T𝐸′ TC′

T(C
′ )≃ T𝑀 ′

𝑓 ∗

𝑖!

𝑓 ∗

𝑓 ∗

𝛼!

𝑗!

𝛽!

𝑓 ∗

in the homotopy 2-category of ∞-categories, where the left and right face are
filled by the naturality equivalences and the remaining squares are filled by
the respective Beck–Chevalley maps, which a priori might or might not be
invertible; our goal is to prove that the natural transformation filling the back
square is an equivalence.

For this we observe that the Beck–Chevalley maps in the top and bottom
face are invertible by Proposition 4.1.4. On the other hand, as 𝑓 : 𝑀 → 𝑀 ′ is
conservative, the front face of (5) is a pullback square, and as this restriction of
𝑓 is moreover assumed to be a right fibration, we see that the associated Beck–
Chevalley map is an equivalence by the dual of [Cis19, 6.4.13].

Altogether, we have shown that all squares except possibly the back square
are filled with invertible transformations. By coherence, we conclude that 𝑖! 𝑓 ∗ →
𝑓 ∗ 𝑗! becomes an equivalence after restricting to 𝑀 ⊂ C. However, 𝑀 is a wide
subcategory, so restriction is conservative and the claim follows. □

Proof of Theorem 4.1.5. Consider the commutative cube

C00 C10

𝐸00 𝐸10

C01 C11.

𝐸01 𝐸11

𝑓0

𝑔0

𝑓1

𝑓0

𝑔0

𝑔1

𝑔1

𝑓1

Mapping into T and passing to right adjoints vertically, we again obtain a co-
herent cube, where the top and bottom face are filled by the naturality equiv-
alences and all other faces are filled via the appropriate Beck–Chevalley maps.

By Lemma 4.1.6, the Beck–Chevalley maps filling the left and right face
are invertible. Fixing now 𝑋 : C10 → T, we conclude from coherence that the
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diagram of Beck–Chevalley maps

(𝑔∗1 𝑓1∗𝑋 ) |𝐸01 (𝑓0∗𝑔∗0𝑋 ) |𝐸01

𝑔∗1 𝑓1∗(𝑋 |𝐸10) 𝑓0∗𝑔∗0(𝑋 |𝐸10)

∼ ∼

commutes up to homotopy. The claim follows via 2-out-of-3, using again that
we can test equivalences on a wide subcategory. □

Using this we can now prove the following localization criterion for maps
of factorization systems:

Theorem 4.1.7 (‘Separation of variables’). Let 𝑓 : (C, 𝐸, 𝑀) → (C′, 𝐸′, 𝑀 ′) be a
map of factorization systems. Assume the following:

(1) 𝑓 : 𝐸 → 𝐸′ is a localization at some class𝑊 ⊂ 𝐸 .

(2) 𝑓 : 𝑀 → 𝑀 ′ is a right fibration.

Then 𝑓 : C→ C′ is also a localization at𝑊 .

Proof. Passing to a larger universe, we may assume without loss of generality
that all participating ∞-categories are small.

As 𝑓 : 𝐸 → 𝐸′ is a localization, it is in particular essentially surjective, whence
so is 𝑓 : C→ C′. It is moreover clear that the latter inverts all maps in𝑊 . By
[Cis19, 7.1.11] it will therefore be enough to show that for every presentable T

the restriction 𝑓 ∗ : Fun(C′,T) → Fun(C,T) is fully faithful and that its essential
image contains all functors inverting𝑊 .

For this we consider the two commutative diagrams

C C′

C′ C′

𝑓

𝑓 and
C C

C C′.

𝑓

𝑓

Full faithfulness of 𝑓 ∗ amounts to saying that the unit id → 𝑓∗ 𝑓 ∗ is an equiv-
alence. However, this is precisely the Beck–Chevalley map associated to the
left-hand square, so the claim follows from full faithfulness of (𝑓 |𝐸)∗ via The-
orem 4.1.5. Similarly, if 𝑋 : C′ → T is arbitrary, then Theorem 4.1.5 applied
to the right hand square shows that the counit 𝑓 ∗ 𝑓∗𝑋 → 𝑋 is an equivalence if
and only if the counit of 𝑋 |𝐸 is so. The latter holds if (and only if ) 𝑋 |𝐸 inverts
𝑊 , proving that any such functor is contained in the essential image of 𝑓 ∗, as
claimed. □
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Proof of Theorem 4.1.1. Given a span pair (C, C𝐹 ), the∞-category Span𝐹 (C) ad-
mits a canonical factorization system by [HHLN23, 4.9] such that 𝐸 = Cop and
𝑀 = C𝐹 . Moreover given any map of span pairs 𝜙 : (C, C𝐹 ) → (D, D𝐹 ), the in-
duced map Span(𝜙) : Span𝐹 (C) → Span𝐹 (D) is a map of factorization systems,
which agrees with 𝜙op and 𝜙𝐹 when restricted to the backward and forward
morphisms, respectively. In particular we may immediately apply the previous
criterion. □

4.2 Localization of Span(F )⊗

To apply Theorem 4.1.1 to Span(F )⊗, we must first show that Spanpb(Ar(F )) →
Span(F ) is a localization. This is a special case of the following more general
statement:

Proposition 4.2.1. Let (C, C𝐹 ) be a span pair. Then (Ar(C), Ar(C)𝐹-pb) is also
a span pair, where Ar(C)𝐹-pb is the subcategory whose morphisms are the pullback
squares

𝑋 ′ 𝑌 ′

𝑋 𝑌

𝑓 ′

𝑓

where 𝑓 (and hence also 𝑓 ′) lies in C𝐹 . Moreover, ev0 is a morphism of span pairs, and
the induced functor

Span𝐹-pb(Ar(C)) −→ Span𝐹 (C)

is a localization.

Proof. That (Ar(C), Ar(C)𝐹-pb) is again a span pair, and that ev0 is a map of span
pairs, is clear.

Now consider the constant arrow functor 𝑐 : C→ Ar(C), and note that it is
also a map of span pairs. We claim that Span(𝑐) provides an inverse to Span(ev0)
after localization. First note that Span(ev0) ◦ Span(𝑐) is already the identity
before localization. Therefore it suffices to show that the other composite is
also the identity after localization. Consider the counit 𝜖 : 𝑐 ◦ ev0 ⇒ id of the
adjunction 𝑐 ⊣ ev0. We claim that it induces a natural transformation Span(𝑐) ◦
Span(ev0) ⇒ id, which is an equivalence after localization. The first claim will
follow from [BH21, C.20], see also [HHLN23, 2.22], after we show that 𝜂 is a
natural transformation of span pairs. The second follows by observing that the
component of Span(𝜂) on an object 𝑥 → 𝑦 is given by

𝑥 𝑥 𝑥

𝑥 𝑥 𝑦

and so is inverted by Span(ev0).
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To complete the proof it only remains to show that 𝜂 is a natural transfor-
mation of span pairs. Unwinding the definition, this amounts to the claim that
for a commutative cube

𝑥 𝑥 ′

𝑥 𝑥 ′

𝑥 𝑥 ′

𝑦 𝑦′

such that the front face is a pullback in C, the cube is a pullback in Ar(C). Since
limits in functor ∞-categories are computed objectwise, this is true since the
back face is evidently a pullback. □

Proposition 4.2.2. Let (C, C𝐹 , C𝐿) be a bispan triple. Then

(Ar(C), Ar(C)𝐹-pb, Ar(C)Λ)

is also a bispan triple, where Ar(C)Λ consists of the squares

𝑥 𝑦

𝑥 ′ 𝑦′

𝑙

≃

such that 𝑙 is in C𝐿 and the lower horizontal map is an equivalence. Moreover,
ev0 : Ar(C) → C is a morphism of bispan triples, and the induced functor

Bispan𝐹-pb,Λ(Ar(C)) −→ Bispan𝐹,𝐿 (C)

is a localization.

Proof. To show that (Ar(C), Ar(C)𝐹-pb, Ar(C)Λ) is a bispan triple, we first ob-
serve that condition (1) in Definition 2.2.1 is clear, as is the fact that ev0 gives a
morphism of span pairs using both classes of morphisms in Ar(C). Now note
that given a map 𝑓 : 𝑥 → 𝑥 ′ in C, the ∞-category Ar(C)Λ/𝑓 consists of squares
of the form

𝑦 𝑥

𝑦′ 𝑥 ′,

𝑙

𝑓

∼

with 𝑙 in C𝐿, so that evaluation at 0 gives an equivalence Ar(C)Λ/𝑓 ≃ C𝐿
/𝑥 , which

is moreover natural with respect to pullback. Therefore, conditions (2) and (3)
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in the definition follow immediately from the analogous facts for C𝐹 and C𝐿.
The adjointability condition for ev0 to be a morphism of bispan triples from
Definition 2.2.6 also follows immediately.

Next we recall that, by definition, the functor

Bispan𝐹-pb,Λ(Ar(C)) −→ Bispan𝐹,𝐿 (C)

is given by applying Span to the morphism of span pairs

Span(ev0) : (Span𝐹-pb(Ar(C))op, Ar(C)Λ) −→ (Span𝐹 (C)op, C𝐿) .

To complete the proof we will show that Theorem 4.1.1 applies to this functor.
We saw in Proposition 4.2.1 that the functor Span(ev0) is a localization, so we
only need to show that the functor ev0 : Ar(C)Λ → C𝐿 is a right fibration. But
here Ar(C)Λ is precisely the subcategory of cartesian arrows for the cartesian
fibration ev0 : Ar(C𝐿) → C𝐿, so we have a right fibration by [Lur09, 2.4.2.5]. □

As a special case, for the bispan triple (F , F , F ) we get the desired localization
result for bispans in F :

Corollary 4.2.3. The functor

Span(F )⊗ ≃ Bispanpb,tgt=eq(Ar(F )) −→ Bispan(F )

given by evaluation at 0 is a localization. □

4.3 Proof of the main theorem

In this subsection we complete the proof of Theorem A. Given Corollary 3.3.7
and Corollary 4.2.3, it remains to prove the following:

Proposition 4.3.1. The following are equivalent for a functor 𝐹 : Span(F )⊗ → C:

(1) 𝐹 is a Span(F )⊗-monoid, and its restriction to Span(F ) is a commutative monoid.

(2) 𝐹 factors through the localization Bispan(F ), and the induced functor Bispan(F ) →
C preserves products.

We first make condition (1) above explicit using the equivalence Span(F )⊗ ≃
Bispanpb,tgt=eq(Ar(F )) from Corollary 3.2.5:

Lemma 4.3.2. Let C be a presentable ∞-category. For a functor

𝐹 : Bispanpb,tgt=eq(Ar(F )) −→ C,

the following conditions are equivalent:

(1) 𝐹 satisfies condition (1) of Proposition 4.3.1, after applying the equivalence of Corol-
lary 3.2.5.
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(2) For all 𝑆 → 𝑇 in Ar(F ), we have equivalences

𝐹 (𝑆 −→ 𝑇 ) ∼−→
∏
𝑡 ∈𝑇

𝐹 (𝑆𝑡 −→ ∗), 𝐹 (𝑆 −→ ∗) ∼−→
∏
𝑠∈𝑆

𝐹 (∗ −→ ∗),

induced by the backwards maps associated to the obvious inclusions in Ar(F ).

(3) For all 𝑆 → 𝑇 in Ar(F ), we have equivalences

𝐹 (𝑆 −→ ∗) ∼−→ 𝐹 (𝑆 −→ 𝑇 ), 𝐹 (𝑆 −→ ∗) ∼−→
∏
𝑠∈𝑆

𝐹 (∗ −→ ∗),

induced by the obvious maps in Ar(F ).

(4) 𝐹 takes all backward maps of the form

𝑆 𝑆

𝑇 𝑇 ′

(6)

to equivalences, and 𝐹 (𝑆 → ∗) ∼−→∏
𝑠∈𝑆 𝐹 (∗ → ∗).

Proof. For the equivalence of (1) and (2) observe that the first condition of (2) is
by Remark 3.2.7 equivalent to 𝐹 being a Bispanpb,tgt=eq(Ar(F ))-monoid, while
the usual description of products in Span(F ) (as coproducts in F ) shows that the
second condition is equivalent to the restriction to Span(F ) being a commuta-
tive monoid.

To see that (2) and (3) are equivalent, consider the following commutative
square:

𝐹 (𝑆 −→ ∗) 𝐹 (𝑆 −→ 𝑇 ) ∏
𝑡 ∈𝑇 𝐹 (𝑆𝑡 −→ ∗)

∏
𝑠∈𝑆 𝐹 (∗ −→ ∗)

∏
𝑡 ∈𝑇

∏
𝑠∈𝑆𝑡 𝐹 (∗ −→ ∗).

(3)

∼

(2)

∼

∼

Here the first top horizontal map is an equivalence if (3) holds and the second
if (2) holds, while the other maps are invertible under both assumptions; the
equivalence of the two conditions then follows from the 2-of-3 property.

Finally, we observe that (3) is a special case of (4), and conversely (4) follows
from (3) by applying the 2-of-3 property to the value of 𝐹 at the composition

𝑆 𝑆 𝑆

∗ 𝑇 𝑇 ′,

which completes the proof. □
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Proof of Proposition 4.3.1. Let 𝑆 be the class of maps in Bispanpb,tgt=eq(Ar(F )) of
the form (6) and let 𝑊 be the class of maps that are inverted by ev0. Since a
span is invertible if and only if both of its components are (Observation 2.1.7),
the maps in 𝑊 are those whose top row consists of equivalences, which can
immediately be simplified to those of the form

𝑋 𝑋 𝑋

𝑆 𝑇 𝑆 ′.

⌟

Using the characterization from Lemma 4.3.2(4) and the description of products
in Bispan(F ) from [EH23, Remark 2.6.13] we see that (1) follows from (2), since
𝑆 is contained in𝑊 . For the converse, Corollary 4.2.3 implies that it suffices to
show that a functor that inverts the maps in 𝑆 must invert all maps in𝑊 . A map
in𝑊 is a composite of a map in 𝑆 and a forward map of the form

𝑋 𝑋

𝑇 𝑆,

⌟
𝑓

𝑔

so it suffices to show that such maps are inverted. For this we consider the
composition

𝑋 𝑋 𝑋

𝑇 𝑆 𝑋

⌟
𝑓

𝑔 𝑓

where the second map lies in 𝑆 . The left square being cartesian implies that the
composite is

𝑋 𝑋 𝑋

𝑇 𝑋 𝑋,

⌟

which lies in 𝑆 . The 2-of-3 property then implies that a functor that inverts 𝑆
must invert all maps in𝑊 , as required. □
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