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Multiple myeloma (MM) is characterized by the clonal expansion of malignant

plasma cells in the bonemarrow (BM). MM remains an incurable disease, with the

majority of patients experiencing multiple relapses from different drugs. The MM

tumor microenvironment (TME) and in particular bone-marrow stromal cells

(BMSCs) play a crucial role in the development of drug resistance. Metabolic

reprogramming is emerging as a hallmark of cancer that can potentially be

exploited for cancer treatment. Recent studies show that metabolism is further

adjusted in MM cells during the development of drug resistance. However, little is

known about the role of BMSCs in inducing metabolic changes that are

associated with drug resistance. In this Perspective, we summarize current

knowledge concerning the metabolic reprogramming of MM, with a focus on

those changes associated with drug resistance to the proteasome inhibitor

Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics

(glucose isotope-tracing) and Seahorse data to show that co-culture of MM

cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-

resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine

synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the

crucial role of BMSCs in conveying drug resistance, insights into the metabolic

interaction between MM and BMSCs may ultimately aid in the identification of

novel metabolic targets that can be exploited for therapy.
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1 Introduction

Multiple myeloma (MM) is an incurable B-cell neoplasm

characterized by the clonal expansion of malignant plasma cells in

the bone marrow (BM) (1). MM is the 2nd most common

hematological malignancy (2) and accounted for 2.1% of all cancer

deaths in the USA in 2022 (3). Over the last decade therapeutic

advances (4), including the proteasome inhibitor Bortezomib (BTZ,

VELCADE®) (1, 5), led to improvement in overall MM survival (1).

BTZ targets mainly the b5(i)/b1(i) subunits of the 26S proteosome

(6), resulting in a cascade of events that include the unfolded protein

response (UPR) and amino acid deprivation, ultimately leading to

cell death (7–9). However, MM remains an incurable disease, with

only 57.9% ofMMpatients reaching 5 years survival (2012–2018) (3)

and ultimately most MM patients relapse after BTZ treatment (10,

11). MM cells can develop drug resistance via multifactorial

mechanisms (4, 8). In case of BTZ resistance, adaptation

mechanisms include alterations at the level of the proteosome

(mutations in the proteosome binding pocket, reduction of the 19S

proteosome subunit, up-regulation of proteasomal machinery),

upregulation of heat-shock proteins, genetic changes, activation of

the aggresome-autophagy pathway, interactions within the MM

tumor microenvironment (TME) and metabolic alterations (6, 8,

12, 13).

Metabolic reprogramming is regarded as an emerging hallmark

of cancer (14–16) and is a potential target for cancer treatment (17).

Metabolic rewiring fulfils the higher requirements of cancer cells for

energy, building blocks for biosynthetic pathways and helps to

maintain redox balance. These metabolic changes can be driven by

genetic alterations, but can also be induced by the TME (18) and

support both metastasis (16) and drug resistance (19). Metabolic

reprogramming is a key feature of MM (7, 20) and metabolism

further changes during the development of BTZ resistance (20–27).

However, the influence of the MM TME on metabolic

reprogramming of MM cells and its effect on drug resistance is

still poorly understood.

In this perspective, we will highlight the most prominent

metabolic alterations in MM and their contribution to drug

resistance. Next, we will describe the current knowledge on the

metabolic interactions between the BM TME and MM cells. As a

proof-of-concept, we present novel data linking MM metabolic

alterations induced by bone-marrow stromal cells (BMSCs) to drug

resistance. Finally, we highlight how future studies on MM TME

metabolism in the context of drug resistance can open novel

therapeutic avenues for (relapsed) MM.
2 Multiple myeloma metabolism and
its involvement in drug resistance

2.1 Glycolysis, serine synthesis pathway
and pentose phosphate pathway

Glycolysis encompasses the breakdown of glucose into

pyruvate, generating ATP and NADH. Most cancers are highly
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dependent on glycolysis (14, 28) and characterized by an increased

production of lactate from pyruvate in the presence of oxygen. This

so-called Warburg effect (29, 30) entails a faster, but less productive

ATP generation compared to oxidative phosphorylation

(OXPHOS) (31, 32). In addition to energy production, glycolytic

intermediates can branch off into the pentose phosphate pathway

(PPP) or serine synthesis pathway (SSP) to support the biosynthetic

needs of cancer cells (33–35).

Like most cancers, MM cells show an increased glycolic flux

(Figure 1A) (19), which is sustained by increased expression of

glucose transporters (GLUTs) (36) and glycolytic enzymes such as

hexokinase 2 (HK2) (37, 38), phosphofructokinase (PFK) (39),

pyruvate kinase M2 (PKM2) (40–42), pyruvate dehydrogenase

kinase 1 (PDK1) (43, 44) and lactate dehydrogenase A (LDHA)

(43, 45). The generated lactate is exported by monocarboxylate

transporters (MCTs) (46–48) and promotes a pro-tumorigenic

extracellular environment (49). In addition to glycolysis, both the

PPP and SSP are upregulated in MM (Figure 1A). Glucose-6-

phosphate dehydrogenase (G6PD), the rate limiting enzyme of the

PPP, and its regulator protein disulfide isomerase family A member 3

pseudogene 1 (PDIA3P) are increased in MM patients (50). Notably,

expression of glycolytic and PPP enzymes, such as LDHA, PDK1,

PKM2, G6PD and PDIA3P, are also associated with poor prognosis

(41, 51, 52) and low survival (50, 53) in MM patients. Furthermore,

levels of 3-phosphoglycerate dehydrogenase (PHGDH), the rate-

limiting enzyme of the SSP, were found to be increased in MM cell

lines (54) and in MM patient cells compared to normal B-cells (35).

In both plasma and BM of MM patients, serine levels decrease

inversely proportional to the stage of the disease (55), which could

be indicative of increased serine consumption as disease progresses.

When MM cells become resistant to BTZ, glycolysis (45, 56, 57),

PPP (26, 50, 53) and SSP (26, 35, 54) are even further upregulated.

This metabolic remodeling of BTZ-resistant MM cells (Figure 1B) is

characterized by higher glucose uptake and lactate secretion (26, 45,

58), with upregulation of MCTs being related to low treatment

response (59). Also hypoxic environment, a characteristic of MM

tumors in vivo, increases the expression of several glycolytic

enzymes (60) and has been related to drug resistance in MM (45,

56, 57). Furthermore, the SSP enzyme PHGDH is upregulated in

MM cells from BTZ refractory patients and in BTZ-resistant cell

lines (26, 35). In line with these findings, overexpression of PHGDH

induces BTZ resistance and cell growth (35), whereas PHGDH

inhibition or serine starvation enhance BTZ toxicity (26, 54). BTZ

exposure is linked to the overproduction of reactive oxygen species

(ROS), which triggers cell death. Since both PPP and SSP play

important roles in the antioxidant response, these pathways are

likely to counteract BTZ-induced oxidative stress (26, 35, 54, 58).
2.2 Mitochondrial energy metabolism and
associated pathways

Pyruvate can be converted to acetyl-CoA and further oxidized

in the mitochondrial tricarboxylic acid (TCA) cycle to generate

reducing equivalents, which in turn are used for OXPHOS to

produce ATP (61). Intermediates of the TCA cycle can also serve
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https://doi.org/10.3389/fonc.2023.1155621
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Matamala Montoya et al. 10.3389/fonc.2023.1155621
as building blocks for the biosynthesis of lipids and nucleotides. In

addition to pyruvate, other sources can replenish the TCA cycle,

such as fatty acids and amino acids, such as glutamine.

OXPHOS has been described as an important energy source for

MM (21, 62, 63) (Figure 1A). Several studies show that high

expression of mitochondrial enzymes of TCA cycle and OXPHOS

are correlated with poor survival (21, 26, 58). MM cells mostly

depend on glutamine to feed the TCA cycle (64, 65), supported by

overexpression of Glutaminase-1 (GLS1) and glutamine

transporters ASCT2, LAT1 and SNAT1 (65). Interfering with

glutamine availability through inhibition of glutamine

transporters or GLS or via glutamine starvation hampered cell

viability in MM cells (64–66). In addition, lipid metabolism is

emerging as an important pathway for MM proliferation. Acetyl-

CoA synthetase 2 (ACSS2; involved in b-oxidation) expression is

increased in MM patients (67) and inhibition of b-oxidation with

Etomoxir (a CPT1 inhibitor) and/or Orlistat (a Fatty acid synthase

(FASN) inhibitor), decreased MM proliferation (68). Furthermore,

the membrane transporter fatty acid binding protein (FABP) (69,

70) as well as fatty acid import (55, 71) are also increased in MM.

Support of biosynthetic pathways appears to be another important

function of the TCA cycle. For example, inhibition of de novo

pyrimidine synthesis from aspartate resulted in MM cell death (72).

Pyrroline-5-carboxylate reductase 1 (PYCR1), involved in proline

synthesis, showed increased expression in MM patients, which

correlated with poor survival (73). In line, combinational

treatment of BTZ and paragyline (PYCR1 inhibitor) showed a

synergistic effect on MM (73).

OXPHOS and ATP production are especially high in BTZ-

resistant cells (21, 62, 74) (Figure 1B). In addition, the mevalonate

pathway is upregulated in BTZ-resistant MM cells, which generates

the electron carrier coenzyme Q10 (CoQ10) and is thereby

important for electron transport chain (ETC) function (21). This
Frontiers in Oncology 03
dependence of resistant MM cells on OXPHOS makes them

susceptible to its inhibition. The mevalonate pathway inhibitor

simvastatin lowered CoQ10 levels in BTZ-resistant cells, which is

accompanied by decreased levels of TCA cycle metabolites and an

enhanced BTZ-induced cell death both in vivo and in vitro (21). In

line with these findings, the use of statins in MM patients is

associated with reduced mortality (75) and lower levels of serum

M protein, an indicator of MM remission (76). Glutamine addiction

is a second signature that is further enhanced in BTZ resistance (21,

77) as is GOT1 expression (58). In line, GLS1 inhibition in MM cells

resulted in a decrease of PI resistance (72), further underscoring the

importance of glutaminolysis and associated biosynthetic pathways

in MM drug resistance.
3 Metabolic interactions in the MM
tumor microenvironment could
enhance drug resistance

MM resides in a complex permissive niche of heterogeneous

cells, forming the TME (78, 79), which is composed of cellular and

non-cellular components (1, 20, 80) and plays a pivotal role in

promoting tumorigenesis and drug resistance (81–84). Within the

MM TME, bone-marrow stromal cells (BMSCs) are thought to be

crucial in promoting MM drug resistance, which has been described

to be induced through direct cell adhesion (84–90) and soluble

factors (79, 91–94), as well as via different signaling pathways.

BMSCs, especially fibroblasts, can be activated by soluble factors

and turn into cancer-associated fibroblasts (CAFs). For example, it

was observed that mesenchymal stromal cells (MSCs) express

tumorigenic markers such as alpha smooth muscle actin (aSMA)

when co-cultured with MM cells or by addition of MM-derived
BA

FIGURE 1

Overview of MM metabolism. Altered metabolic pathways in MM cells (A) and the most prominent metabolic alterations in BTZ-resistant MM cells
(B). Pathways involved in central carbon metabolism are presented in red boxes and width of the arrows indicate increased flux in BTZ-resistant
cells. Metabolism of MM cells is further upregulated during BTZ resistance, with special importance in the SSP, PPP, TCA cycle, OXPHOS and GSH
synthesis. PPP, pentose phosphate pathway; R5P, ribose 5-phosphate; ROS, reactive oxygen species; GSH, glutathione; Antiox, antioxidative
response; SER, serine; FFAs, free fatty acids; ASN, asparagine; ASP, aspartate; GLU, glutamate; PRO, proline; OXPHOS, oxidative phosphorylation;
CoQ10, coenzyme Q10; MM, multiple myeloma; BTZ, bortezomib.
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factors (95). In addition, aSMA expression was increased in BM

and MSCs of resistant MM patients (96). The expression of

fibroblast activation protein (FAP) increases in stromal cells after

co-culture with MM cells (88) or with MM exosomes (97).

Together, this suggests that the presence of MM cells induces a

CAF-like phenotype in BMSCs.

It is known from other tumor types that cells in the TME can

engage in metabolic crosstalk and cross-feeding with tumor cells in an

adaptable manner and according to the tumor’s needs. For example,

autophagy in CAFs has been described to feed cancer cells via the

excretion of several amino acids, including proline, alanine or

glutamine (98–102), and other fuel molecules such as fatty acids,

ketone bodies, pyruvate and lactate (103, 104). In MM, autophagy in

BM fibroblasts has been linked to drug resistance. Proteomics data

indicate that upon BTZ exposure, BM fibroblasts from BTZ-resistant

patients upregulate proteins and markers that are associated with

cellular stress and autophagy (105). Autophagy in these fibroblasts is

induced by TGFb, a factor secreted by both BM fibroblasts and MM

cells (106, 107) and inhibition of TGFb could overcome BMSCs

derived-BTZ resistance (105). Furthermore, bidirectional

mitochondrial transfer can take place in direct contact between

BMSCs and MM cells, enhancing mitochondrial activity and drug

resistance in MM cells (82, 91, 108, 109). Recent reports also suggest

that BMSCs can engage in metabolic crosstalk with MM cells. For

example, glutamine demand in MM cells induced glutamine

synthesis in the neighboring MSCs (110). MM-BMSCs exosomal

crosstalk is positively regulated by an increased glutamate secretion

and fine-tuned according to the metabolic demands (111). Such

cross-talk will likely result in metabolic changes in MM cells.

Moreover, many of the signaling pathways that are regulated by

MM-BMSCs interactions are known to regulate downstream

metabolic pathways (45, 112–119). However, little is known about

the specific metabolic changes that occur in MM upon interaction

with BMSCs and, importantly, how these changes contribute to the

observed drug-resistance phenotype.

To better understand the metabolic interactions between MM

and BMSCs, we developed a non-direct co-culture system using

BMSCs (HS5 and HS27a) and MM (RPMI8226) cell lines

(Figure 2A). Flow cytometry-based cell viability assays confirmed

that MM cells in co-culture become resistant to BTZ treatment,

consistent with previous reports (120, 121) (Figure 2B). We next

questioned whether metabolic changes induced in MM cells by

BMSCs co-culture match those changes known to be involved in

the development of BTZ resistance. Previous studies have shown that

direct contact between MM and BMSCs increases mitochondrial

metabolism as measured with oxygen consumption rate (OCR) (108,

109), which is also known to be important in BTZ resistance (21).

Seahorse experiments in our system proved that indirect co-culture

also significantly induces ATP-coupled OCR respiration (ATP-linked

OCR), confirming the occurrence of a metabolic switch in MM cells

upon co-culture with BMSCs (Figure 2C). To study this BMSCs-

induced metabolic rewiring in more detail, MM cells were cultured

alone or together with BMSCs in media containing [U-13C]–glucose

to track glucose metabolism under these conditions (Figure 2A).

Pathway enrichment analysis of total metabolite levels (i.e. the sum of
Frontiers in Oncology 04
all isotopologues) showed that BMSCs co-culture induces significant

changes in MM cells (Figure 2D). Of note, amino acid metabolic

pathways ranked amongst the most impacted pathways in co-

cultured MM cells. Alanine, aspartate and glutamate metabolic

pathways, which are linked to TCA cycle metabolism, were

enriched in co-cultures with both HS27a and HS5 cells, whilst

glycine and serine metabolism were significantly impacted in MM-

HS5 co-cultures (Figure 2D). Additionally, PPP, TCA cycle and

glutathione (GSH) metabolism were significantly upregulated in

both co-cultures (Figure 2D). These data show that many pathways

previously described to be of importance for BTZ-resistance are also

significantly altered when MM cells are co-cultured with BMSCs.

To understand the contribution of glucose to these pathways,

we analyzed the isotopologue distribution in SSP and TCA cycle

metabolites (Figures 2E, F). When cells are cultured in [U-13C]–

glucose, the SSP produces 13C3-serine (M+03). Serine (M+03) can

be converted into glycine and subsequently into the antioxidative

tripeptide GSH, both predominantly presenting the M+02 isotope

(Figure 2E). Co-culture of MM cells with BMSCs, and particularly

with HS5 cells, resulted in an increased synthesis of serine from

glucose compared to MM mono-culture, as evidenced by higher

absolute and fractional levels of 13C-labeled serine (Figure 2F).

Downstream from serine, co-culture also increased the synthesis of

glycine and GSH from [U-13C]–glucose (Figure 2F), as we also

observed before in BTZ-resistant MM cells (26). In the TCA cycle,

labelling from [U-13C]–glucose results in the formation of

(predominantly) 13C2-citrate, -a-ketoglutarate and -malate

(Figure 2E). Indeed, co-culture of MM with BMSCs increased

both the levels of 13C-labelled TCA cycle metabolites, as well as

the fractional contribution of glucose to this pathway, indicative of a

higher glucose flux towards the TCA cycle (Figure 2F). Together,

these results indicate that (metabolic) interactions between MM

cells and BMSCs enhance SSP, TCA cycle and OXPHOS, which are

key metabolic pathways in the adaptive response to BTZ.
4 Future prospects

Despite the interest in unveiling the crosstalk between MM and

BMSCs, little is currently known about the metabolic interaction

between these two cell types, especially in the context of drug

resistance. So far, metabolic alterations related to BTZ resistance

have mainly been studied in BTZ-resistant MM cell lines in mono-

culture, in which drug resistance is induced by continuous drug

exposure (122). Drug resistance in MM can be multiparametric, but

the importance of the MM TME and especially BMSCs in driving

drug resistance is widely accepted. In fact, recent studies showed the

importance of targeting CAFs (123) and stroma interactions (124)

to overcome drug resistance in MM. Here, we provide proof-of-

concept data that demonstrate a previously unappreciated

metabolic MM-BMSCs network in which indirect co-culture

induces metabolic reprogramming and drug resistance-like

metabolism in MM cells. This clear correlation between metabolic

rewiring and BTZ resistance in the MM TME encourages further

studies to determine the causal mechanism and further metabolic
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effects, which will benefit novel therapeutic paradigms, ultimately

improving the treatment of relapsed MM.

First, to understand which metabolic vulnerabilities can be

targeted in the MM TME, there is a need to unveil both
Frontiers in Oncology 05
commonly and differentially altered pathways induced by direct

and indirect co-culture of MM with BMSCs. Most studies in terms

of MM-BMSCs interaction have been performed in direct co-

culture systems (86, 121), in which also metabolic alterations
B C

D

E F

A

FIGURE 2

MM-BMSCs co-culture induces metabolic reprogramming and drug resistance-like metabolism. (A) Experimental layout for indirect co-culture of
MM and BMSCs and overview of performed experiments. HS27a and HS5 human BMSCs were seeded in 12-well plates and allowed to attach
overnight. Medium was replaced and RPMI8226 human MM cells were introduced in the upper chamber of Transwells® (TWs) (Corning, 0.4um, 12
well, polystyrene plates) with a seeding density of 1e5 cells/well, with a total volume of 3 mL/well. After 48h co-culture, MM cells were harvested for
metabolomics or Seahorse assays or treated with Bortezomib (BTZ) for viability assays. For metabolomics experiments, media consisted of DMEM
media containing 25 mM [U-13C]–glucose, 2mM glutamine and Penicillin Streptomycin. Metabolite extraction and LC-MS (pHILIC-QExactive)
analysis were performed as described (26). For Seahorse experiment, MM cells were resuspended in Base DMEM Sigma D-5030 pH 7.4
supplemented with the same concentration of glucose, glutamine and Penicillin Streptomycin as metabolomics media and adding 5mM HEPES-
NaOH and 21mM NaCl. After co-culture, MM cells were harvested and seeded and experiment was performed as previously described (21). For
viability assays, different concentrations of BTZ (0, 5, 10 nM) were added for an additional 24h, after which MM cells were harvested, stained with the
cell death die eFluor506 (BioScience; according to the manufacturer’s instructions) and then analyzed by flow cytometry (CytoFLEX). (B) Viability in
MM cells after BTZ exposure in co-culture conditions: mc, mono-culture MM (light pink); cc-HS27a, co-culture MM with HS27a (orange); cc-HS5,

co-culture MM with HS5 (dark pink). Data was analyzed with FlowJo™ and normalized to untreated cells (0 nM BTZ). Error bars depict SD of 3
independent wells from a representative experiment. (C) ATP-linked OCR of MM cells after co-culture conditions; mc: mono-culture MM (light
pink); cc-HS27a: co-culture MM with HS27a (orange); cc-HS5: co-culture MM with HS5 (dark pink). The OCR was measured over time using the
XFe24 Analyzer and ATP-linked OCR was calculated as the difference in OCR at basal conditions and after the addition of Oligomycin A. Error bars
depict SD of 6-7 wells from a representative experiment. (D) Pathway enrichment analysis comparing mono- with BMSCs (HS5 or HS27a) co-
cultured MM cells. Analysis was performed using Metaboanalyst package in R studio. A bigger pathway impact with smaller combined p-value (y-
axis) is indicated as orange points (cc-HS27a) and dark pink points (cc-HS5) and it represents more reliably perturbed pathways in co-cultured vs.
mono-cultured MM cells. (E) Schematic diagram of fluxomics, depicting the fate of 13C carbon into glycolysis, SSP, TCA cycle and GSH synthesis
following [U-13C]–glucose uptake. Labeled and unlabeled C are represented with colored versus uncolored circles, respectively. (F) Metabolomic flux
of [U-13C]–glucose into selected SSP and TCA cycle metabolites under mono- and co-culture conditions. Quantification of 13C-labeled peak areas
(upper) and 13C-labeled fraction of total levels (lower) of serine (SER), glycine (GLY), glutathione (GSH), citrate, a-ketoglutarate (a-KG) and malate.
Peaks were analyzed using TraceFinder software and isotopologue distribution was corrected for natural abundance of 13C. Data are presented as
mean ± SD. Different colors represent the different isotopologues, whereby unlabeled metabolites (M+00) are grey, and 13C-labeled isotopologues
are represented with yellow to red colors. Statistical significance was determined with TWO-way ANOVA. * P < 0.05, ** P < 0.01, *** P < 0.001. ALA,
alanine; ASP, aspartate; GLU, glutamate; GLY, glycine; SER, serine; PPP, pentose phosphate pathway; TCA cycle, tricarboxylic acid cycle; a-KG, a-
ketoglutarate; GLN, glutamine; GSH, glutathione; THR, threonine; BTZ, bortezomib; MM, multiple myeloma; mc, mono-culture MM; cc-HS27a, co-
culture MM with HS27a; cc-HS5, co-culture MM with HS5; OCR, oxygen consumption rate.
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associated with mitochondria transfer have been reported (108,

109). Since cells in our co-culture system have no direct contact, our

data point to a role for soluble factors in mediating MM metabolic

rewiring. Indeed, several studies suggest that direct and indirect

metabolic communication between MM and BMSCs could show

common features and induce similar changes at the transcriptome

and regulome level (115), as well as similar pathway activation (116,

117) and secretion of soluble factors (89).

A second open question is the precise mechanism underlying

soluble factors-triggered metabolic changes in MM. Cytokines and

growth factors released by MM cells or BMSCs can induce

activation of metabolic enzymes, including the ones involved in

antioxidant response and mitochondrial metabolism (60, 112, 125,

126), promoting drug resistance (127). Metabolites released by

BMSCs may also directly feed into the metabolism of MM cells,

as has been described in MM adipocytes (71, 128, 129). MSCs from

MM patients showed increased glycolytic rate and lactate export

compared to healthy donors (130). As (TME-derived) lactate can be

used as a fuel for OXPHOS in MM cells (131), such metabolic cross-

feeding could explain the higher ATP-linked OCR observed in MM

cells under co-culture.

Finally, we here focused on energy metabolism and associated

pathways, but many more metabolites are linked to MM drug

resistance, including amino acids such as glutamate, proline (73,

113) or aspartate (72, 132). Lipid metabolism and b-oxidation have

also been reported to be further enhanced in MM drug resistance

(133–137), making interfering with lipid metabolism an interesting

strategy to target resistance (68, 134). In addition, metabolites with

immunosuppressant properties and that can also affect MM

development are increased in MM in the context of the BM,

including adenosine (138) and 2-deoxy-D-ribose (139, 140).

Further elucidation of the BMSCs-induced metabolic rewiring in

MM, including using different 13C/15N-labelled tracers and

metabolomic and lipidomic approaches, will therefore likely

unveil additional metabolic vulnerabilities in the MM TME.

In conclusion, this Perspective highlights the metabolic

interactions within the TME that play a substantial role in drug

response. Understanding this metabolic crosstalk will ultimately

open new avenues to improve MM therapy.
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