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Abstract: The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated
metabolism of small molecules and bioactive lipids has also been associated with disease severity.
To promote understanding of the disease biochemistry and provide targets for intervention, we
applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying
COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune
markers). This is the third publication in a series, and it reports the results of comprehensive lipidome
profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including
glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were
dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the
ward. Patients in the ICU showed 1.3–57-fold increases in ceramides, (lyso-)glycerophospholipids,
diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3–2-fold lower levels of a
cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing
phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically,
phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated
fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated
(PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids
and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q < 0.05.
Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction
of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively
correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic
changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared
to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30–62%;
93 decreased by 1.3–2.8-fold). Overall, these findings support and expand on early reports that
dysregulated lipid metabolism is involved in COVID-19.
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1. Introduction

The coronavirus (COVID-19) pandemic has presented a significant global challenge
due to the rapidly growing number of new variants, and this highlights the urgent need
for the characterization of SARS-CoV-2 pathogenicity and host immune response [1]. Pa-
tients with COVID-19 experience a spectrum of clinical symptoms of differing severity,
ranging from asymptomatic to critical pneumonia, acute respiratory distress syndrome
(ARDS), and death [2]. Furthermore, patients exhibit high inter-individual variability in
response to SARS-CoV-2 infection, which makes it difficult to identify those at risk of
adverse outcomes. The involvement of lipids in COVID-19 is far reaching. Coronaviruses
first react with the host cell membrane for entry and infection, and this has brought novel
insights into the involvement of cellular lipids [3–7]. Lipids are the main building blocks
of cell membranes and play a crucial role in the viral replication process, affecting the
host lipid metabolism [4,8]. Membrane lipids also release precursors of eicosanoids and
docosanoids, polyunsaturated fatty acids (PUFAs), to regulate the immune response during
an infection [9]. Several lipidomic studies have described an altered lipidome profile in
COVID-19 patients [10–13]. In an early pandemic study, patients with varying severity
of COVID-19 (compared to healthy subjects) showed decreased serum levels of sphin-
golipids, glycerophospholipids, and choline, while phosphocholine was increased [10].
Another study reported decreased plasma diacylglycerols (DGs) and increased levels of
sphingomyelins (SMs) and monosialodihexosyl gangliosides (GM3s) in COVID-19 patients
compared to healthy controls [11]. Suggesting an overall alteration in the lipid balance in
COVID-19 patients, additional studies have reported decreased serum total cholesterol,
HDL, and LDL alongside increased triglycerides (TGs) [12,13]. Another study showed
that comprehensive lipid mapping unveils host dependency factors that remain consistent
among various SARS-CoV-2 variants [14].

Previously, we reported the discovery of COVID-19 plasma perturbations in amines
which reflected inflammation and oxidative stress [15], and we also suggested that altered
signaling lipid metabolism reflects excessive immune response and disrupts the resolution
of inflammation [16]. To further study lipidome changes in COVID-19 patients, we ana-
lyzed 103 plasma samples from 44 patients with varying disease severity and conducted
a comprehensive profiling of over 1000 lipids by targeted LC-MS/MS. The measured
lipids underwent differential analysis based on disease severity (i.e., hospitalization status)
and were also correlated with over 30 immune response markers obtained for the same
cohort [17]. The results of this study contribute to the gathering evidence of lipid alteration
in COVID-19 patients and provide further insight into the cellular mechanisms involved in
the progression of the disease.

2. Materials and Methods
2.1. Cohort

In total, 44 patients and 103 blood samples were included in a previous cohort
study [14,15], and the key clinical parameters are summarized in Tables 1 and S1. SARS-CoV-2
infection status was confirmed by PCR.

2.2. Sample Collection

The study collected EDTA blood samples at regular intervals of 3–4 days throughout
the study period (Table S1). A small portion of the collected blood was immediately
used for flow cytometry immune profiling, while the remaining samples were kept on
ice and processed to plasma within 2 h. The plasma samples were then divided into
smaller portions and stored at −20 ◦C until serological analysis or transportation to the
analytical chemistry laboratory. At the laboratory, the samples were stored at −80 ◦C until
sub-aliquoting and analysis.
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Table 1. Demographics of the COVID-19 patients in the lipidomics study. Values are n (%) or median
(full range). Information about comorbidities and medication (4 weeks pre-admission) is missing for
25% of patients (n = 12); smoking status is missing for 9 patients; remaining hospitalization days are
missing for 2 patients. All individual patient data are available in Table S1.

Patients
(n = 44)

Samples
(n = 103)

Age (years) 73 [49–87] 71 [49–87]
Male (%) 30 (68%) 65 (63%)

BMI 27 [19–42] 27 [19–42]
Diabetes mellitus (DM) 9 (20%)

Chronic kidney disease (CKD) 3 (7%)
Cardiovascular disease (CVD) 7 (16%)

Chronic obstructive pulmonary disease (COPD) 8 (18%)
Past smoker 17 (39%)

Pre-admission beta-blockers, ACE inhibitors 14 (32%)
Pre-admission corticosteroids 8 (18%)

Pre-admission chloroquine 27 (61%)
Days with symptoms till hospitalization 8 [1–19]

Total hospitalization days 7 [2–62]
Admitted to ward 37 (84%) 78 (76%)
Admitted to ICU 7 (16%) 25 (24%)

Organ failure 7 (16%)
Deceased 9 (20%)

Unfavorable outcome (ICU or death) 12 (27%) 36 (35%)
Invasive breathing support (intubated) 6 (14%)

Post-admission chloroquine 35 (80%)
Post-admission corticosteroids 2 (5%)

Post-admission antibiotics 38 (86%)
CRP, mg/L (normal < 10) 104.5 [3–577]
IL6, pg/mL (normal < 8) 19.3 [1–397]

Ferritin, ng/mL (normal 10–400) 1035 [84–4807]
Leukocytes, 109/L (normal 4.5–11) 8 [4–20.5]

Lymphocytes, 109/L (normal 0.8–5.0) 0.95 [0.26–3.15]
Neutrophils, 109/L (normal 1.7–6.5) 6.36 [2.3–17.5]

Age (years) 73 [49–87] 71 [49–87]
Male (%) 30 (68%) 65 (63%)

BMI 27 [19–42] 27 [19–42]
Diabetes mellitus (DM) 9 (20%)

Chronic kidney disease (CKD) 3 (7%)
Cardiovascular disease (CVD) 7 (16%)

Chronic obstructive pulmonary disease (COPD) 8 (18%)
Past smoker 17 (39%)

2.3. Sample Analysis

The flow cytometric leukocyte analysis and serological analysis of cytokines and sol-
uble cell surface molecules were performed as in previous studies [14,15,17]. We applied
comprehensive lipidomics profiling platforms covering glycerolipids, glycerolphospho-
lipids, sphingolipids, and sterols [18,19]. The data quality was checked by an in-house
quality control software (mzQuality) (version 1.0.0) using study QC replicates, blank sam-
ples, and internal standards. A total of 1076 lipid features with RSDQC < 30% measured by
the two platforms passed quality control and were utilized in the statistical analysis. The
individual measurement techniques used in this study are comprehensively described in
Supplementary Document S1.

2.4. Statistical Analysis

In total, 37 cytokine and immune markers as well as 1076 lipid features were used and
cuberoot-transformed before statistical analysis. No imputations were performed on the
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lipid features due to the zero missingness. A linear regression correcting for age, sex, and
BMI was applied to distinguish between the changes in ICU and ward patients. Paired
analyses between start and end stages from the same patient were then performed using a
paired t-test assuming unequal variances. The lipid fold change (FC) was calculated based
on the untransformed data. The correlations between lipids and immune markers were
performed on both ICU and ward patients. The Benjamini–Hochberg method was applied
for the FDR correction for the p-values obtained in all tests with a significance cutoff of
|R| ≥ 0.35 and Q < 0.05. All statistical analyses and visualization were performed using R
(version 4.0.3) packages (ggpubr and stats).

3. Results
3.1. Altered Lipid Profiles in COVID-19 Patients in the Ward and ICU

During the first wave of COVID-19, and before the improvements made to the wards of
hospitals during the later waves, the more severely affected patients were transferred to the
ICU for more intensive care, mechanical ventilation, and generally improved monitoring.
The location of the patient is thus a proxy for severity of COVID-19. To determine the
potential relationships between plasma lipids and disease severity, we profiled 25 plasma
samples from 7 patients in the ICU and 78 plasma samples from 37 patients in the ward
using targeted lipidomics approaches. A description of the COVID-19 patient cohort, with
samples collected at varying hospitalization days, is summarized in Table 1 and further
detailed in Table S1.

In order to visualize the distribution of this cohort, all 1076 lipid features that passed
the quality control process were first analyzed using a principal component analysis (PCA),
which showed some separation between the ward and ICU patients (Figure 1). Next, a
linear regression model for univariate analysis was employed, adjusting for age, sex, BMI,
and count of samples per patient, to identify the most important biomarker candidates
distinguishing the patients in the ward from those in the ICU. A total of 531 lipids (includ-
ing the ratio of sphinganine-1-phosphate (Spha1P) 18:0/sphingosine-1-phosphate (S1P)
18:1) across 19 lipid classes with fold changes ≥ 1.3 or ≤0.7 and FDR Q values < 0.05
were considered significant (Table S3), indicating a widely changed lipidome in severe
COVID-19 patients. All significantly changed species in the lipid classes TG, ceramides
(Cer), DG, lysophoshatidylcholines (LPC), lysophosphatidylethanolamines (LPE), lysophos-
phatidylglycerols (LPG), lysophosphatidylserines (LPS), lysophosphatidylinositols (LPI),
phosphatidylcholines (PC), alkyl phosphatidylcholines PC(O-), phosphatidylglycerols (PG),
phosphatidylethanolamines (PE), and lysophosphatidic acids (LPA) increased, while all
significantly changed species in the lipid classes cholesteryl esters (CE), lactosylceramides
(LacCer), S1P, and SM decreased in the ICU patients when compared to the ward pa-
tients, as is shown in the FC plot (Figure 2a) and in the specific examples (Figure 2b–e).
All PS and alkyl phosphatidylethanolamines (PE (O-)) classes increased in the ICU pa-
tients, except for two AA- precursor-containing species, PS 18:1/20:4 and PE O-16:0/20:4,
which were decreased in the ICU patients. The PIs showed strong fatty acid saturation-
dependent behavior, with SFA- and MUFA-derived PI decreasing and PUFA-derived PI
increasing in the ICU patients. Among all these differences, TGs and PE (O-)/alkenyl
phosphatidylethanolamines (PE (P-)) showed the biggest increased levels, with FCs up to
57-fold in the ICU patients (Figure 2a; Table S3).

3.2. Paired Analysis in Ward Patients

To quantify the metabolic changes in recovering COVID-19 patients, a paired analysis
was performed on samples taken from 16 patients in the ward, hence reflecting moderate
disease only. The patients were selected based on sample availability at the start of hospi-
talization (days 1–4 since admission) and towards the end of hospitalization (within 1 day
of release from the hospital), with a minimum interval of three days between the two time
points. The analysis was restricted to ward patients, since there were not enough relevant
samples available from the ICU patients. In contrast with the widely changed lipidome
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profiles in patients in the ICU vs. those in the ward, here only 99 lipids were significantly
altered (FC ≥ 1.3 or ≤0.7 and FDR Q value < 0.05) as patients neared recovery in the ward
(Table S4). Most of the significant changes were found in phospholipids and lysophos-
pholipids, which increased as patients neared recovery (see examples in Figure 3). It is
worth noting that other lipid classes, especially TG and SM, remained mostly unchanged
throughout hospitalization in the ward, suggesting their higher relevance to severe disease.
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Figure 1. PCA scores plot of samples from patients admitted to the ward (blue markers) or ICU (red
markers), based on all lipid features data (cuberoot-transformed and Pareto-scaled). Data points
of samples taken within a day of release from hospital (“recovery”) are depicted by triangles, and
samples taken within 4 days of death are indicated by squares.

3.3. Correlation between Lipids and Immune Response Markers

The concentration of 37 immune response markers, including different leukocytes,
chemokines, cytokines, and others, were also measured (Table S2). We performed a Spear-
man correlation analysis on the lipid and cytokine data from the whole dataset, and a
heatmap summarizing the correlation results of each immune marker with each lipid
class is presented in Figure 4. In total, 3995 significant correlations were observed with a
threshold of |R| ≥ 0.35 and Q < 0.05, among which were 37 with strong associations, i.e.,
|R| ≥ 0.6 and Q < 0.05 (Table S5). We observed that SM and S1P were negatively corre-
lated with clinical indices of systemic inflammation including pro-inflammatory markers
IL-6, CRP, TNFα, neutrophils, CCL2, GM-CSF, CXCL10, IFNG, and macrophage-activation
markers (soluble (s) CD206 and CD163), and positively correlated with the CD8 fraction
of T cells (Figure 4; Table S5). Ceramides were positively correlated with IL-6, IL-8, IL-18,
CD206, CD163, CD8, TNFα, ferritin, and T cell count. Lysophospholipids except for LPA
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were positively correlated with IL-18, IL-8, and IL-7 and negatively correlated with CXCL10
(IP10). Selected plots with strong correlations (|R| ≥ 0.60 and Q < 0.05) are shown in
Figure 5. The correlations of S1P with immune markers were found to be mostly driven
by the dramatic and consistent differences in lipid levels between patients in the ICU and
those in the ward (Figure 5b), while the LPLs and TGs were independent of the hospitaliza-
tion status (Figure 5c–f). The results of the correlation analysis are further utilized in the
biochemical Section 4.
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Figure 2. (a) Distribution of log2-transformed fold changes of 531 significantly changed lipid features
with FC ≥ 1.3 or ≤0.7) and FDR Q value < 0.05 in ICU and ward patients. Different colors represent
different lipid (sub)categories: light blue: CE; yellow: glycerolipids; red: (glyco)sphingolipids;
green: (lyso)phospholipids; purple: phospholipids; (b–e) Box and whisker and scatter plots of lipids
(Q < 0.005) differentiating between hospitalization status: ICU (red) vs. ward (blue). Data points
of samples taken within a day of release from hospital (“recovery”) are depicted by triangles, and
samples taken within 4 days of death are indicated by squares. Prior to plotting, lipid peak area ratios
with internal standards were cuberoot-transformed. Lipids: (b) CE 20:4; (c) LPA 20:5; (d) TG 18:3_54:8;
(e) S1P 18:0. The detailed results are in Table S3.
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Figure 3. Scatter plots (a–c) and box and whisker plots (d–f) of paired changes in lipid levels in
COVID-19 ward patients. A line connects each patient’s paired samples, with the first time point
being not more than 4 days from admission, and last time point occurring during the 24 h before
release from hospital. Lipids: (a,d) LPC 18:2; (b,e) LPA 16:0; (c,f) PE 18:2_18:2. The legend shows each
individual patient by marker color and indicates the patient’s number, sex, age, and the number of
days between time points. Patient information is provided in Table S2. FDR-corrected paired t-tests,
gender differences, and fold changes are provided in Table S5.
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Figure 4. Heatmap of Spearman correlation results for metabolites and immune response markers
(all cuberoot-transformed). The color bars represent the percentages of the lipid species with
significant correlations, i.e., |R| ≥ 0.35 and Q < 0.05 per class, red for positive correlations and blue
for negative correlations. Complete correlation matrices (with R, p, and Q values) are provided in
Table S5.
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4. Discussion

Our study reveals noteworthy changes in the lipidome profiles associated with
COVID-19 disease severity, including sphingolipids, glycerolphospholipids, and glyc-
erolipids. The biochemical processes relevant to the changes in measured lipids and
various immune response markers and their correlations are discussed here.

4.1. Sphingolipids Metabolism

Sphingomyelin itself does not have a direct link to COVID-19. However, sphingolipids
are essential components of membrane lipid rafts, which mediate signal transduction
and immune activation processes [20,21]. Specifically, two protein targets of COVID-19,
ACE2 and TMPRSS2, are embedded in lipid rafts and can actively participate in viral
infection [22,23]. On the other hand, lipoproteins, including those carrying sphingomyelin,
play a role in the body’s immune response. COVID-19 affects multiple systems, including
the cardiovascular and immune systems, and lipoproteins are involved in both. Recent
studies have shown that lipoproteins, especially high-density lipoproteins (HDLs), may
play a protective role against severe complications from COVID-19. HDL particles are
known to possess anti-inflammatory and antioxidant properties that can help modulate
the immune response and potentially mitigate the severity of inflammatory reactions, such
as those seen in severe COVID-19 cases. Sphingomyelin, as a component of these lipopro-
teins, indirectly contributes to their functions. However, the exact relationship between
the sphingomyelin within lipoproteins and COVID-19 is not yet fully understood and
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remains an area of ongoing research. In our study, we observed increases in ceramide
levels and decreases in SM and LacCer in severe COVID cases (ICU) which were consistent
with previously reported serum lipid alterations in COVID-19 patients [19]. Ceramides
exhibited positive correlations with markers of macrophage activation (CD163 and CD206)
that typically increase during the innate immune response in COVID-19 patients. IL-18
was also correlated with ceramides, and this aligns with macrophage activation, as IL-18
can be produced by cells like macrophages. IL-18 plays a role in maintaining the Th1
inflammatory response to viral infection, and it induces the downstream production of
IFNG [24]. It has been suggested that IL-18 is associated with a lower risk of developing
severe COVID-19 [25]. Ceramides also positively correlated with IL-8, which mediates the
inflammatory reaction in the respiratory system (as demonstrated in COVID-19 [26]), pro-
moting neutrophil activation. Positive associations of ceramides with ferritin levels suggest
an interplay between iron metabolism and reactive oxygen species (ROS) production during
the COVID-19 disease process [27,28]. Ferritin is a surrogate marker for a hyper-immune
response, and an elevation in ferritin occurs when intracellular iron concentration and the
production of hepcidin, which can be an indicator of cellular damage, increase [28]. As
expected, SM levels that were higher in patients in the ward compared to those in the ICU
showed negative correlations with an array of immune response markers that characterize
hyper-inflammation (CRP, macrophage activation markers, CXCL10, TNF-α, IL-6). This
further strengthens the link between SMs and better health outcomes.

The gathered results may also be linked to the active role of sphingolipids in the
development of enveloped viruses at the early stage [3,29,30], which leads to cell apop-
tosis and immunoescape by lipid raft remodeling [31–34]. The ceramide–sphingomyelin
signaling system plays a central role in the viral infection of human epithelial cells [35].
Sphingomyelins are derived from ceramides in cell membranes via the activity of sphin-
gomyelin synthase. During an adaptive immune response, the membrane-embedded inert
sphingomyelins will be hydrolyzed by acid sphingomyelinase (aSMase) and cause the
rapid and transient formation of ceramides, which is a hallmark of adaptive responses and
cellular repair [30]. This has been shown to be important in COVID-19 as antidepressants
have been used to diminish the production of ceramide levels via inhibiting the aSMase
levels and preventing SARS-CoV-2 binding in cell models [30]. Furthermore, ceramides
have been described as important biomarkers for metabolic disease, e.g., cardiovascular
disease [36] and diabetes [37], which are co-morbidities associated with a worse outcomes
in COVID-19 patients.

4.2. Sphingoid Base 1-Phosphates

Sphingoid base 1-phosphates (S1Ps) are important immune modulators [38] and can be
found both in plasma and blood cells. They are part of the sphingolipid signaling cascade,
and they play a role in immune cell trafficking and endothelial function, depending also on
the expression of specific cell surface receptors [39]. S1Ps have been described as prognostic
markers for COVID-19 outcome; a lower circulating level of S1Ps in severe patients suggest
the loss of the protective effects of S1Ps [40,41]. S1P 18:1 is the most researched metabolite in
this group [42,43], and its extracellular S1P gradient regulates the excretion of lymphocytes
such as mature dendritic cells from/to lymphoid organs (low S1P concentration) and
into the blood (high S1P concentration) [38,44,45]. This occurs via the binding of S1P to
receptors such as S1PR1 on the surface of T cells, while the receptor expression is induced
by endothelial chemokines (CXCL10, etc.) [46]. S1Ps have been reported to be related to
inflammation resolution, for example via secretion from alveolar macrophages in acute lung
injury [47]. Our results support the link to an adaptive immune response,; we observed
consistent and strong declines in four sphingoid base 1-phosphates in the ICU patients, and
a moderate increase in ward patients nearing recovery. Similar observations were reported
for S1P in patients with COVID-19 [11,40,48]. Aligning with the proposed beneficial
effects of S1P, we found negative correlations between the four metabolites and the acute
immune response markers CRP (Figure 5b), TNF-α, IL-6, ferritin, and others, mostly in a
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homogenous manner across the four metabolites (Table S5). Analogues of sphingosine-1-
phosphate have been suggested for low-risk supportive treatment of COVID-19 patients
to reduce the inflammatory response, mitigate lung damage, and even lower the viral
load [8,31,49,50].

4.3. Glycerophospholipids

We observed an extensive increase in glycerophospholipid levels in the ICU patients.
Glycerophospholipids (PC, PE, PI, PG, and PS) are major components of cell membranes
and play multiple roles in the response to viral infections. Apart from interacting with gly-
coproteins on the plasma membrane, viruses can also utilize host-derived lipid membranes
in their intercellular transmission to conceal and evade the host’s immune system [51,52].
Glycerophospholipids can undergo degradation, producing lysophospholipids and a free
fatty acid. Lysophospholipids are immune modulators and are involved in several patho-
physiological processes such as cell proliferation, migration, and tumorigenesis [53]. Our
study revealed a strong negative correlation between LPCs and leading markers of hyper-
inflammation (GM-CSF, CXCL10, IL-6, CRP). This affinity between better health status and
higher levels of LPCs is also demonstrated by the increased levels we observed in patients
nearing recovery in the ward. Lysophosphocholines (LPCs) produced by phospholipase
A2 (PLA2) can be further metabolized by lysophospholipase D/autotaxin (ATX), leading to
their conversion to LPA, which is involved in the innate immune response [53]. Indeed, we
observed a decrease in LPA in patients nearing recovery in the ward. When LPCs release
a PUFA from their sn2 position, it can serve as a precursor for oxylipins, which play a
significant role in the regulation of the immune response during viral infection [16]. PUFAs
are essential precursors for a diverse array of oxylipins that are stored in an esterified form
and later released by enzymes like COX-1, 12-lipoxygenase (12-LOX), and CYPs found
in platelets [54]. A significant decrease in the levels of AA-containing precursors was
observed in the phospholipids in the ICU patients. Our previous analysis of signaling
lipids in the same cohort found that the ICU patients had significantly lower levels of AA
compared to the ward patients [16], and this may be linked to metabolic requirements or
an altered level of PLA2 activity [48,55]. One study in COVID-19 patients showed signif-
icantly decreased plasma phospholipids alongside increased lysophospholipids, which
may indicate enhanced activity of PLA2 [2]. In contrast, we observed extensive increases in
glycerophospholipids, including PC, PE, PI, PG, and PS, together with the corresponding
lysophospholipids. Disagreement between studies can reflect various cohort differences
and treatments (80% received chloroquine that can increase phospholipid levels [56]; how-
ever, less than 5% received corticosteroids that inhibit PLA2). Other factors include the
analytical methods and the choice of blood product for lipidomics analysis. Plasma is
preferred over serum, as it prevents a skewed profiling of oxylipins, sphingoid-based
compounds, and lysophospholipids, among other lipids altered by coagulation [57].

4.4. Glycerolipids and Other Neutral Lipids

Glycerolipids, including TG and DG, showed higher abundance in the plasma of
the ICU patients compared to those in the ward. TGs also correlated with markers of
innate immune response (TNF-α, neutrophils), markers of macrophage activation, and
ferritin, supporting the link to a worse disease state. Typically, triglycerides serve as energy
reservoirs for free fatty acids, and the liver is heavily involved in triglyceride metabolism
to ensure a steady supply of energy and a proper distribution of lipids throughout the
body [58,59]. Individuals with pre-existing conditions such as diabetes and heart disease,
which are characterized by elevated triglyceride levels and chronic inflammation, are
predisposed to an increased risk of developing severe COVID-19 [60].

Studies have shown hypertriglyceridemia in COVID-19 patients, which highlights the
biochemical significance of TGs, potentially indicating elevated adipose tissue lipolysis [61]
and liver function abnormalities, as indicated elsewhere [62,63]. In addition, this was also
supported by the lower total CE recorded in the ICU patients in our study, which is often
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observed in patients with liver damage [64]. Another study also found increased TG and
decreased CE in patients with severe symptoms or elderly patients, and this is consistent
with the hepatic impairment associated with COVID-19 [7]. Beyond a hypermetabolic
state or under-nutrition, such differences in plasma lipids between ward and ICU patients
can be attributed to various metabolic pathways associated with viral infection and the
host immune response [65]. Triglyceride-rich lipoproteins have been associated with
innate immunity [66], and all lipoprotein classes can sequester and prevent excessive
inflammation [65].

Altogether, the evidence presented in this study suggests that viral infection and
subsequent hospital treatment have a profound impact on the systemic lipid metabolism
in COVID-19 patients. The pathophysiological effects of the disease seem long lasting.
Therefore, it is important to monitor the health state of each patient after discharge. The
blood lipid profile can provide a sensitive array of markers linked to inflammation and
disease severity.

5. Conclusions

In conclusion, our study highlights the fact that the plasma lipidome profiles of
COVID-19 patients differ at different stages of the disease. Our findings also demonstrate
the interplay between pro-inflammatory cytokines and the host metabolism in COVID-19
patients. Despite the relatively small sample size, this work provides insights that could
further assist in drug development and the treatment of COVID-19, and which expands the
essential resources promoting further research on the viral disease’s pathogenesis. Future
investigations should explore the long-term effects of COVID-19 on lipid metabolism, the
utility of metabolic changes as prognostic indicators of disease severity or outcome, and
the efficacy of metabolic-targeted therapies for treating COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom14030296/s1, Document S1: Method details; Table S1: Description of
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