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Introduction
Locked-in Syndrome (LIS) is a condition in which a person is unable to make (voluntary) muscle 
movements (American Congress of Rehabilitation Medicine, 1995). A common cause for LIS is 
brain stem stroke, in which a lesion in the brain stem prevents the motor commands sent by the motor 
areas in the brain from passing down to the muscles. Another common cause for LIS can be found in 
motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), a disease in which motor neurons 
in the brain and brainstem are a#ected (Smith & Delargy, 2005). !e loss of motor abilities due to LIS 
can render communication impossible. !is is a frustrating experience and can cause social isolation. 
Questionnaires show that communication is a determining factor for quality of life for people with 
LIS (Rousseau et al., 2015). Restoring communication is therefore crucial for their well-being.

To re-enable the means communication for people with LIS, assistive technologies have been 
developed. !ese communication devices can be controlled with residual voluntary movements. Eye 
movements or blinking are o"en the only voluntary movements that remain (American Congress of 
Rehabilitation Medicine, 1995). Eye trackers have been successfully deployed to allow individuals 
with LIS to control a mouse cursor on the screen, typing a text editor, or control dedicated so"ware 
developed for communication. In the severe case of ‘complete LIS’, one has been deprived of all 
voluntary movements, including that of the eyes. However, even for indiviuals without complete LIS 
controlling an assistive device can be challenging: a Japanese survey among people with ALS found 
that 85.1% of assistive device users experienced troubles in using the device (Kageyama et al., 2020).

Brain-computer interfaces
If no motor output is le", signals directly from the brain can be used as a communication channel 
via a brain-computer interface (BCI). !e term BCI refers to a variety of techniques involving 
the recording of brain signals and translating those signals in some useful control signal for a 
(communication) device (Wolpaw, 2007). !is recording of brain signals can be done from outside 
the scalp or by implanting sensors, requiring surgery.

Non-invasive BCIs
Electro-encephalography (EEG) is a widespread, easy and relatively cheap non-invasive technique, 
measuring the electrical %elds resulting from brain activity using electrodes on the scalp. !ere 
are several ways to turn the measured brain activity into a signal for controlling a communication 
device (Machado et al., 2010).

!e %rst method is based on event related potentials (ERPs), the brain’s response to a given stimulus, 
o"en a visual or auditory cue (Farwell & Donchin, 1988; Rezeika et al., 2018; Sellers & Donchin, 
2006). A practical application is the control of a ‘graphical keyboard’, presented on a computer screen. 
!e user is required to pay attention to the letter that he or she intends to type. All letters are successively 
highlighted. Once the letter of choice is highlighted, an ERP occurs and is detected using the scalp 
electrodes (Farwell & Donchin, 1988). !is way, the letter is typed, and the user can focus on a new letter.
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!e second method is using brain signals directly re&ecting the intentions of the user. Using the 
graphical keyboard as described above, the user can type a letter by activating the targeted brain 
area when the desired letter is highlighted on the screen (Rezeika et al., 2018). Examples of such 
target areas are the motor area, which becomes active when executing or attempting movements, 
or prefrontal brain areas involved in higher-level functions such as working memory, which can 
be voluntarily activated by performing a demanding task, such as making mental calculations.

Other non-invasive neural signal recording techniques include magneto-encephalography (based 
on the magnetic %elds generated by brain activity) (Mellinger et al., 2007), functional near-infrared 
spectroscopy (based on the oxygenation level of blood, related to brain activity) (Naseer & Hong, 
2015), and functional magnetic resonance imaging (functional MRI) (Andersson et al., 2011; 
Sorger & Goebel, 2020). !ese latter techniques can not be practically implemented for daily life 
activities, due to the size and technical requirements of the equipment. However, they can be useful 
for research purposes.

All techniques have their bene%ts and downsides. For EEG, due to the in&uence of tissue (mostly 
the skull) on the electric %elds, the spatial detail and speci%city is low compared to functional MRI. 
However, EEG is superior in temporal resolution compared to functional MRI. All non-invasive 
recording methods share the problem that they need to be set up every time the user wishes to use it. 
A survey has shown that set-up time is an important factor in user satisfaction and their willingness 
to use the device (Huggins, Wren, & Gruis, 2011).

Invasive BCIs
Brain signals can also be recorded directly from the brain using surgically implanted electrodes. 
!ey come in a wide variety, ranging from electrodes for recording the activity of a single locus, to 
microelectrode arrays with many electodes, able to measure activity from a patch of cortical activity 
up to an area of several square millimeters (Jacobs & Kahana, 2010). In electro-corticography 
(ECoG), electrodes do not penetrate the cortex, but only measure potentials from the cortical 
surface. !ese electrodes are commonly arranged into a grid (n × m) or a strip (1 × n), with a space 
between the electrodes in the order of millimeters to a centimeter. Although these o#er a lower 
spatial resolution than microelectrode arrays, they are able to cover a larger area of cortex.

!e main advantage of ECoG electrodes is their direct placement on the brain, eliminating the 
e#ects of the skull on the electric %elds. !is makes the signal quality, spatial detail and speci%city 
superior to that of EEG. Also, once implanted and successfully set up, a BCI based on implanted 
electrodes is always available to the user. !is comes at the costs of having a brain surgery, although 
some implementations allow for minimally invasive surgery.

"e Utrecht NeuroProsthesis
!e Utrecht NeuroProsthesis (UNP) is an invasive BCI developed in the University Medical Center 
Utrecht (Vansteensel et al., 2016). People with LIS caused by progressive ALS or brainstem stroke 
were implanted with ECoG electrode strips covering the prefrontal and the motor cortex. Neural 

Binnenwerk Mark - V2.indd   9Binnenwerk Mark - V2.indd   9 11-03-2024   13:1311-03-2024   13:13



10

signal changes from the motor cortex, resulting from the individual’s attempted hand movements, 
allow for controlling spelling so"ware on a tablet computer.

Although the UNP o#ers a reliable communication channel for people unable to communicate 
otherwise, the possibilities to control the computer (the degrees of freedom) are few: the recorded 
brain signal is used for selecting letters on a graphical keyboard through attempted movement of the 
hand, and therefore is used as a ‘click’ signal that is either on or o#. Increasing the degrees of freedom 
allows for extracting more than a binary signal and therefore faster BCI-based communication, 
and is one of the aims of BCI research.

Functional MRI in BCI research
While for a practical BCI applications an implantable device is superior to non-invasive solutions, 
non-invasive techniques such as functional MRI are essential for reseach. In contrast to recording 
direct electrical neural activity, functional MRI is an imaging technique that measures brain 
activity indirectly through oxygenation levels of the supplying blood. Oxygenation levels are 
measured in small volume elements (voxels), going down to sub-millimeter resolution. As active 
brain cells require more oxygen, voxels in an active brain region show increased oxygenation levels. 
Functional MRI therefore mainly provides a spatial activation pattern; the temporal resolution is 
low compared to recordings of electrical activity.

It has been shown that the spatial activity patterns measured with functional MRI are in agreement 
with patterns obtained using electrophysiological recordings, such as from the gamma frequency 
band in ECoG (Siero et al., 2014). !erefore, functional MRI is an ideal tool for both surgical 
planning (that is, the planning of placements of implantable electrodes) as well as for research on 
%nding new successful targets for increasing the degrees of freedom for a BCI.

"e primary sensorimotor cortex
!e primary sensorimotor cortex comprises the primary motor cortex (M1) and the primary sensory 
cortex (S1). M1 is the brain area that is mainly responsible for controlling voluntary movements. 
It is commonly identi%ed as Brodmann area 4 or the precentral gyrus, located in the frontal lobe 
of both hemispheres. M1 lies at the origin of the corticospinal tract, and contains pyramidal cells, 
the axons of which (the pyramidal %bers) run from M1 through the brain stem to the spinal cord.

!e primary motor cortex is organised in a somatotopic way: the pyramidal cells within M1 are layed-
out grouped by the body part they control (Pen%eld & Boldrey, 1937). Neurons controlling foot 
movements are located at the dorsal end of the precentral gyrus, and neurons controlling muscles in the 
face area are located ventrally. !e hand is represented halfway, in a region that is o"en easy to recognise 
based on its anatomical shape, and is sometimes referred to as the “hand knob” (Yousry et al., 1997).
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A large part (90%) of the pyramidal %bers in the corticospinal tract decussate, meaning that they 
cross over to the other hemisphere (Kim et al., 1993). !is implies that the le" motor cortex is 
controlling the right body parts, and vice versa.

Although both the concepts of the somatotopic map and contralateral control have been practically 
useful, especially in the %eld of BCI development, recent studies found that in reality, the story on 
the organization of M1 is likely to be more nuanced. For example, the borders between di#erent 
body parts cannot always be drawn unambiguously, and some movements are accompanied by brain 
activity in multiple loci. Also, since part (10%) of the pyramidal %bers do not decussate (Alawieh, 
Tomlinson, Adkins, Kautz, & Feng, 2017), the motor areas are also suspected to play a role in ipsilateral 
movement control, that is: the le" hemisphere a#ects body movements on the le" side of the body.

In addition to the primary motor cortex, the primary sensory cortex (S1) is increasingly thought to 
be involved in movement control. It is located on the posterior side of the central gyrus, largely on 
the postcentral sulcus (or Brodmann areas 1, 2 and 3). !is is the area to which sensory receptors in 
the skin, as well as the proprioceptors in the muscles, project. Similar to M1, S1 has a somatotopic 
organization. For planning and executing movements, information of both sensory and motor 
cortices is integrated, which makes S1 an interesting target for a BCI as well.

Decoding movements from the sensorimotor cortex
!e somatotopic organization of the sensorimotor cortex can be exploited when designing a BCI 
based on voluntary movements. A"er all, if activity is measured somewhere in the cortex, it should 
be possible to deduce which body part was moved (or intended to move).

Not only does the topographic lay-out of the sensorimotor cortex exist for the body as a whole, 
also within regions dedicated to a single limb an orderly organization can be found. For example, 
using both functional MRI and intracranial brain recordings, it has been shown that in the hand 
area, the areas controlling each %nger can be identi%ed (Dechent & Frahm, 2003). Using this 
feature, we should be able to read (decode) from the cortex which %nger was &exed and which 
%nger was extended, and the recorded signal should reveal the hand gesture that has been made. 
If the measurements were sensitive and accurate enough to distinguish between the activation 
patterns of all 26 gestures associated with the letters of the alphabet, this could be used as a BCI 
for communication. !e user could then just hand-spell the words to type.

In previous work of our group, several hand gestures from the sign lanuage alphabet were successfully 
decoded from the motor cortex, based on ECoG (Bleichner, Jansma, Sellmeijer, Raemaekers, & 
Ramsey, 2013; Branco et al., 2017) as well as functional MRI recordings (Bleichner et al., 2016). 
Brain activity patterns were recorded while the participants were instructed to make several hand 
gestures, with multiple trials per gesture. A so-called classi!er was then used to investigate whether 
brain activity patterns for di#erent gesture types could be discriminated from one another.
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A classi%er is a machine-learning algorithm able to discriminate between brain activity patterns 
elicited by, for example, di#erent hand gestures. A classi%er is %rst ‘trained’ by feeding it with brain 
activity patterns and telling it to which gesture each pattern belongs. A"er training, when presented 
with a new and unknown brain activity pattern, the classi%er will %nd the best matching class, 
thereby ‘predicting’ which gesture was associated with the new unknown pattern.

As functional MRI provides spatial activity patterns, a relatively simple classi%er can be constructed 
using so-called ‘template matching’. For each gesture, a ‘template pattern’ is generated by averaging 
the activity patterns of all trials for that gesture. !en, a new and unknown trial is classi%ed as the 
gesture whose template shows the highest correlation to the activity pattern of the unknown trial.

In template matching, all voxels contribute equally in calculating the correlation. !is has the e#ect 
that if many non-informative voxels are included, the classi%cation performance will drop, as the 
correlation between the trial and the templates will generally be lower. !erefore, an important 
step in training a classi%er is feature selection. In this step, only the voxels that are expected to be 
informative are used for classi%cation. Feature selection should be done using a separate dataset, 
such as a localiser task, or using a separate part of the data set that is then le" out of the rest of the 
classi%er training step.

Besides template (pattern) matching, more sophisticated classi%ers can be used which take into 
account di#erent weights for di#erent features. A support vector machine is a versatile classi%er 
that considers each activation pattern as a single point in a higher dimensional space and tries to 
%nd borders between classes (gestures). Although this automatically takes care of voxels that carry 
less discriminative power, feature selection remains an important step.

"e sensorimotor cortex a!er denervation
People with LIS can attempt to make a movement, which does not result in overt motor output. 
However, it does elicit brain activity in the motor and sensory cortices. !is activity can be 
recorded and used to control a BCI. However, for increasing the degrees of freedom, or the 
speed of communication, it is essential to investigate what happens if the sensorimotor cortex is 
detached from the body parts, and whether these attempted movements elicit the same detailed 
and somatotopically organized activation in the sensorimotor cortex.

Cortical reorganisation
!ere is evidence that the sensorimotor cortex adapts its organization a"er denervation. Denervation 
can occur in LIS a"er in brain stem lesion, but could also be a consequence of amputation. In both 
cases, motor output is blocked, while the cortex remains intact. !e e#ects of denervation have 
been found especially regarding the somatotopic organisation. In animal studies on animals with 
an amputated limbs, it has for example been observed that the regions representing other body 
parts ‘invade’ the area that was formerly representing the (now missing) limb. !is has also been 
found in humans, were functional MRI studies demonstrated a shi" of the lip, chin and shoulder 
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areas into the region controlling a missing hand (Elbert et al., 1994; Lotze, Flor, Grodd, Larbig, & 
Birbaumer, 2001; Ramachandran, 1993).

Although cortical reorganization has been observed in numerous studies, there is growing evidence 
that the representation of a missing limb is not completely lost. Research using functional MRI 
shows activity in the sensorimotor cortex when amputees attempted to move their missing hand 
(Lotze et al., 2001; Roux et al., 2003; Turner et al., 2001). Even a detailed topographical map of 
individual %ngers has been found in S1 of amputees (Kikkert et al., 2016). However, it is unknown 
whether such a detailed represention also remains present in M1 a"er denervation.

Representation of movement activity in the sensorimotor cortex
!e aim of the studies presented in this thesis is to investigate the e#ects of denervation on the 
representation of movements, or, in other words, whether it still possible to infer what hand gesture 
is made by a person who has become unable to execute hand motion.

To study the e#ect of denervation, we %rst developed a new method for representing spatial brain 
activation patterns in the human sensorimotor cortex: Cartesian geometric representation with 
isometric dimensions (Cgrid, Chapter 1). !is method uses anatomical landmarks to apply a 
rectangular grid on a region of interest on the brain. Brain activity patterns from functional MRI 
can then be projected to this new grid accordingly. !e sensorimotor cortex, with its clearly de%ned 
boundaries, was particularly suitable for this new visualisation. We have veri%ed the validity of this 
new method by correlation within- and between-subject activation patterns. Cgrid allows for an 
easy to interpret visualisation and the possibility of quantitative comparisons of brain activation 
patterns, for example in longitudinal studies of activity change a"er denervation.

Decoding movements in amputees
Although BCIs are currently mainly targeted at the LIS population, the prevalence of people with 
LIS is low. In addition, they require intensive medical care. !is makes doing research in this 
population challenging, especially when multiple subjects need to be included. !erefore, for the 
studies described in chapters 2-4 of this thesis, people with arm amputation were recruited. In 
amputees, the motor cortex is still intact, but motor output is absent.

As a measure of ‘intactness’ (integrity) of the hand representation, we designed a study in which 
amputees were taught six di#erent hand gestures from the American Sign Language Alphabet. 
While in the MRI scanner, amputees were instructed to make the hand gestures corresponding to 
the character that was presented to them on the screen. Gestures were attempted with the phantom 
hand and (in a separate task) executed with the intact hand (Chapter 2). A control group (subjects 
without amputation) performed the tasks by executing movements with their le" and right hand (in 
separate tasks). To study whether attempted movements can still be decoded from the denervated 
sensorimotor cortex in amputees, a classi%er was trained on fMRI activation patterns in the 
contralateral sensorimotor area to discriminate between the di#erent gestures.
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Decoding movement from the ipsilateral hemisphere
!e majority of %bers in the sensorimotor pathways cross the midline to the contralateral side of 
the body. !at implies that for example the le" hand is mostly controlled by motor areas in the 
right hemisphere. However, not all %bers cross the midline. !is means that also the ipsilateral 
sensorimotor area plays a role in movement control. However, its function is not fully understood.

In Chapter 3, the task and classi%er training, as described for Chapter 2, were applied to brain 
activation patterns of the ipsilateral cortex during executed movements of the non-amputated 
controls (Chapter 3). In addition to discriminating between gestures from the same hand, we have 
also trained the classi%er on activations of both the ipsilateral and contralateral hand in one data 
set. Finally, the classi%cation approach was applied on movements (or attempted movements) of 
the ipsilateral hand in subjects with arm amputation (Chapter 4). !is provides an important step 
forward in studying the feasibility for a BCI to be implanted in one hemisphere and being able to 
decode both hands, even in people unable to perform movements.
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Abstract
For some experimental approaches in brain imaging, the existing normalization techniques are 
not always su(cient. !is may be the case if the anatomical shape of the region of interest varies 
substantially across subjects, or if one needs to compare the le" and right hemisphere in the same subject.

Here we propose a new standard representation, building upon existing normalization methods: 
Cgrid (Cartesian geometric representation with isometric dimensions). Cgrid is based on imposing 
a Cartesian grid over a cortical region of interest that is bounded by anatomical (atlas-based) 
landmarks. We applied this new representation to the sensorimotor cortex and we evaluated its 
performance by studying the similarity of activation patterns for hand, foot and tongue movements 
between subjects, and similarity between hemispheres within subjects. !e Cgrid similarities were 
benchmarked against the similarities of activation patterns when transformed into standard MNI 
space using SPM, and to similarities from FreeSurfer’s surface-based normalization.

For both between-subject and between-hemisphere comparisons, similarity scores in Cgrid were 
high, similar to those from FreeSurfer normalization and higher than similarity scores from SPM’s 
MNI normalization. !is indicates that Cgrid allows for a straightforward way of representing and 
comparing sensorimotor activity patterns across subjects and between hemispheres of the same subjects.
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Introduction
In functional brain imaging (functional MRI; fMRI), spatial normalization is o"en applied, where 
scans are transformed into a common space, so that the same coordinates in di#erent subjects 
correspond to the homologous anatomical location in the brain. !is makes statistics at a group 
level possible, allowing for the comparison of brain activity patterns between groups of subjects, for 
example patients and healthy controls. !e quality of the normalization is a central determinant of 
the quality of the group-level statistics (Pizzagalli, Auzias, Delon-Martin, & Dojat, 2013), making 
accurate normalization a crucial part of the processing pipeline.

To join multiple brain images together for comparison of brain activation between groups (for 
example patients versus controls) or determining common areas of activation (mapping), several 
options are available and widely used. One is 3D normalization either using a single image (for 
example Talairach template), an average of co-registered images from multiple individuals unrelated 
to the study (for example MNI templates), or an average of study participants themselves (for 
example DARTEL (Ashburner, 2007)). Alternatively, activity can be mapped on an in&ated brain, 
where sulci are projected to a spherical surface or a &attened cortex map (Fischl, Sereno, & Dale, 
1999), both of which allow for subsequent normalization (Qiu & Miller, 2007; Van Essen e.a., 2001).

For certain research questions, the existing techniques for representing brain activity patterns 
do not su(ce, due to the fact that borders between regions (de%ned by gyral and sulcal patterns) 
re&ect the natural 3D folding patterns of the brain (Pizzagalli e.a., 2013). Some applications, for 
example a quantitative comparison of topographical mapping of sensory and motor functions, 
would bene%t from a representation in the form of a 2D rectangular mesh. !is constitutes an 
easy to interpret and uniform space, and would allow for easy comparison of activation patterns 
and distances between foci, while accounting for individual di#erences in the shape and size of 
sensorimotor cortex. Moreover, such a representation could make cross-hemispheric comparisons 
more direct and accurate, something which is not possible using existing normalization methods, 
as they typically do not conduct a registration of the two hemispheres. It also would accommodate 
a more direct comparison or combination of data from di#erent studies.

A two-dimensional, grid-shaped representation has been described for the central sulcus, which was 
obtained by extraction of a 3D mesh of the central sulcus, which was subsequently reparametrized 
with the y axis along the direction of the central sulcus, and the x axis along the direction of the sulcal 
depth (Coulon e.a., 2011). Although Coulon’s method elegantly maps the sulcus onto a grid, the 
sensorimotor cortex in fact extends also into the adjacent gyri, which is not included in their approach. 
!erefore, it is worthwhile transforming the whole pre- and postcentral gyrus into a Cartesian grid.

Here, we propose a novel extension to existing methods for standardization of regions in the 
human brain allowing for quantitative comparisons, which maps the whole gyri to a Cartesian 
grid: Cgrid (Cartesian geometric representation with isometric dimensions). Cgrid builds upon 
methods for in&ating the cortex, and constitutes imposing a Cartesian grid on the region of interest 

1
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using anatomical (atlas-based) landmarks. One brain region that seems particularly suitable for 
transforming into a rectangular mesh are the primary sensory and motor areas (S1 and M1), 
because of their more or less rectangular shapes with clear top, bottom and side boundaries. Cgrid 
is therefore %rst applied and validated on the precentral and postcentral gyrus. !is special case is 
called ‘Cgrid-SMX’, where SMX stands for ‘sensorimotor cortex’.

Cgrid is meant to extend upon standard data preprocessing, and adding the possibility to easily 
compare patterns between subjects and between hemispheres. !e presented implementation 
requires segmentation and atlas-based parcellation in FreeSurfer (Fischl, 2012) and &at mapping 
with Caret (Van Essen e.a., 2001), but accommodates any similar method.

!e Cgrid-SMX mapping was evaluated using data from 20 healthy volunteers who each performed 
four motor tasks (moving le" hand, right hand, feet, and tongue). As activation patterns for 
these basic motor tasks are expected to be similar across subjects, and within subjects across 
hemispheres, the similarities of the patterns of activity were calculated as a measure of validity of 
the transformation. !e results were compared to the similarities obtained by SPM’s normalization 
to MNI space (a commonly used normal space) as well as to the similarity of activation patterns a"er 
FreeSurfer normalization. !is was to provide a benchmark for the performance of our new method.

Methods
Subjects
Twenty healthy volunteers participated in this study (age 26.7±8.8 years, 9 females, all right 
handed). Subjects had no history of neurological or psychiatric disorders. Data acquisition was 
approved by the medical-ethical committee of the University Medical Center Utrecht and all 
subjects gave their written informed consent in agreement with the declaration of Helsinki (2013).

MRI data acquisition and analysis
MRI data were recorded using a Philips 3T Ingenia system. A structural T1-weighted MRI image 
was acquired (TR/TE = 8.4/3.8 ms, voxel size: 1.00 × 1.00 × 1.00 mm3), followed by functional 
EPI images (TR/TE = 2500/39 ms, &ip angle = 75°, axial orientation, FOV (AP, FH, LR) = 235 × 
120 × 200 mm3, interleaved slice ordering, acquisition matrix 80 × 40 × 80, voxel size: 2.94 × 3.00 
× 2.94 mm3). For data preprocessing, we used the so"ware packages FreeSurfer (Fischl, 2012), Caret 
(Van Essen e.a., 2001) and SPM (Friston, Ashburner, Kiebel, Nichols, & Penny, 2007). Custom 
scripts for the Cgrid-SMX normalization were written in Matlab (!e MathWorks Inc., Natick, 
MA) and IDL (Exelis Visual Information Solutions, Boulder, Colorado).
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Figure 1: Applying Cgrid to the sensorimotor cortex. A: Brain parcellation #om FreeSurfer. B: Flatmap 
representation, with the !ve borders that were extracted using labels #om FreeSurfer’s cortical parcellation 
according to Eq. 2-6 (solid lines: “vertical borders” and dashed lines: “ horizontal borders”). A vertex was considered 
to be part of a border if it had a neighboring vertex with another FreeSurfer label. C: 10th-order polynomials were 
!tted through the three vertical borders, and in-between vertical curves were created by interpolation between 
y_min and y_max. Each curve C_i was then truncated using the horizontal dorsal and ventral borders (drawn in 
red in the inset) by selecting the node points closest to any node on these horizontal borders. D: Truncated vertical 
curves were divided into vertical segments, resulting in N×M “tiles”. To map beta values #om statistical maps to 
Cgrid, a beta value for each tile is calculated by averaging the beta values of vertices inside that tile. E: A Cgrid 
can be visualized as a rectangular grid, where the central sulcus is the middle, the anterior aspect (A) on the le% 
side, posterior (P) on the right side, ventral (V) at the bottom and dorsal (D) at the top.

Structural MRI preprocessing
For each subject, the cortical surface was reconstructed from the T1-weighted image using 
FreeSurfer, and automatically parcellated into ROIs using the Desikan-Killiany atlas (Desikan 
e.a., 2006) (Figure 1A). Each individual’s surface was then &attened using Caret, making sure 
that the central sulcus was oriented vertically (that is, dorsal aspect at the top, ventral aspect at the 
bottom, which is necessary for the Cgrid procedure).

1
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De#nition of the Cgrid standard space
!e &attened cortex was represented as a face-vertex mesh in 2D. Each vertex �
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on the &at map will not exactly correspond to distances on the brain. !erefore we will consider 
distances on the &at map to be measured in arbitrary units (a.u.), although 1 a.u. will approximate 
1 mm. Each vertex was tagged with the ROI label indicating the underlying Desikan-Killiany atlas 
region, and 
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!e %rst step in de%ning the Cgrid standard space was the extraction of %ve anatomical borders. 
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(Eq. 4)

Two ‘horizontal borders’ were de%ned, constraining the sensorimotor cortex at the dorsal (
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(Eq. 5)

�
�� 
�� 
�)�*
�
�� 
�
��
��


 �)��	 ��* $ +��)�* $ ��	 � � ��
 �) * $ ��, ������

���
��� 
����� 
��


 ��� � � �������	��������� ���������	��������! ������
 ���� � � �������	��������� "��	���������	����� ��	��	�������������	��� ��������������	��#! ������
 ����	 � � ���������	��������� "�����	�	����	��� ���������	���	��#! ������
���� 
���
 ���� � � "�������	�������� ���������	�������#� ��	�	����	���
����! ������
 �
�� � � "�������	�������� ���������	�������#� ������	��! ����	�


�� 
�� 

!���
!�
� 

 !��� $ ���%��� � ���& ����
�
 !�
� $ ���%��� � ����& ������

� " �
�
�� 
!���
!�
� 
�� 
�
�� $ %��� $ �� � ��&�� $ '�� 	 ��(
�� 
������ 
������� 
���
���� 
�)�	 �*
���
���

(Eq. 6)

!e next step consisted of %tting a 10th order polynomial through each of the three vertical borders. 
!e order 10 was chosen empirically and was found to result in a good balance between capturing 
the shape of the borders and still allowing for extrapolation, which is needed in a next step. For 
generating these %ts, the vertical coordinate of the vertices (
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, the coordinate on the dorsal-ventral 
axis) was treated as the independent variable, and the horizontal coordinate (
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on the anterior-posterior axis) as the dependent variable. !e vertical curves were resampled and 
extrapolated such that they ran from 
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(Eq. 7)
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In-between vertical polynomial curves were then created by linear interpolation of each of the 11 
polynomial coe(cients regularly at 
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sensorimotor cortex. !erefore, they needed to be truncated at the dorsal and ventral borders. Let 
the 
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(Eq. 9)
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(Eq. 10)
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(Eq. 11)

Each of the vertical curves was then resampled again, where the distances between the nodes equaled 
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columns, denoted as 
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 “tiles”.

!e %nal step consisted of mapping all vertices from the cortical surface into the newly de%ned 
standard space, by treating each tile as a polygon and determining which vertices are enclosed by 
that polygon. As a result, each vertex was associated with one tile in Cgrid. !is association allows 
for mapping any kind of MRI data to Cgrid space, for example anatomical data, such as cortical 
thickness, or functional data. !is mapping consists of two steps: %rst, the MRI data needs to be 
projected onto the cortical surface reconstruction vertices (using tools from the FreeSurfer package). 
Second, per tile a value (thickness, functional beta, etc.) can be calculated by taking the mean of 
all vertices for that tile (Figure 1D). In the Evaluation section, the mapping to Cgrid-SMX space 
is demonstrated with task-based functional data.

By convention, Cgrid visualizations in this paper are displayed (and processed) such that the 
precentral sulcus border is always on the le", and the postcentral border is always on the right. 
!is means that the le" half of the Cgrid images represents the precentral gyrus (M1), and the right 
part represents the postcentral gyrus (S1), regardless of the hemisphere (Figure 1E).

1
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Evaluation
Task-based fMRI activation maps for the 20 subjects were mapped to Cgrid-SMX. Activation 
patterns were generated for four movement tasks (see ‘Task design’, below). Cgrid-SMX space 
was evaluated by calculating the within-subject (le"-right) and between-subject similarities of 
activation patterns in Cgrid space. For this, a Pearson correlation between Cgrid-SMX activation 
patterns was used. To benchmark the results, Cgrid-SMX pattern similarities were then compared 
to within- and between-subject pattern similarities in MNI space from SPM. We focused on four 
regions of interest (ROIs): le" M1, le" S1, right M1, and right S1.

Task design
Subjects executed four separate movement tasks: following a visual cue, subjects were instructed 
to move their right hand (“Hand-Right task”, opening and closing), their le" hand (“Hand-Le" 
task”, opening and closing), their tongue (“Tongue task”, moving from le" to right), or both feet 
(“Feet task”, rotating both feet about the ankle simultaneously). Each task was set up as a block 
design, with pseudorandom block durations ranging from 15 to 45 seconds followed by rest blocks 
ranging from 15 to 45 seconds.

Cgrid activation maps
Task data was slice-time corrected, realigned and coregistered to the subject’s anatomical scan to 
correct for movements using SPM12 (http://www.%l.ion.ucl.ac.uk/spm/). A GLM analysis with one 
regressor for movement was applied to the task data using the contrast ‘movement versus baseline’, 
resulting in one statistical map (beta map) per task. !ese beta maps were then projected onto the 
cortical surface reconstruction vertices using FreeSurfer (with projection fraction 0.5 and a smoothing 
of 6 mm FWHM). A beta value was then computed per tile by taking the mean of the beta values for 
all vertices within that tile. !is resulted in beta maps in Cgrid-SMX space for each of the four ROIs.

MNI activation maps
To benchmark the performance of Cgrid space, functional scans were also normalized to MNI 
for all subjects using SPM12, and likewise smoothed with 6 mm FWHM Gaussian kernel. A"er 
normalization and smoothing, a GLM with one regressor for movement was %t to the task data 
and statistical maps were created using the contrast ‘movement versus baseline’.

Four ROI masks in MNI space (le" M1, le" S1, right M1, and right S1) were initially taken from 
the Brainnetome Atlas (Fan e.a., 2016). Since the method of calculating similarities between 
hemispheres requires le" and right ROIs to be symmetrical, the right M1 was &ipped to the le" 
hemisphere, and combined with le" M1 (voxel-wise union). !e resulting ROI was then &ipped 
back to the right hemisphere. !e same was done for S1. !e resulting ROIs were used to mask the 
beta map and obtain activity patterns for the four tasks in each of the four ROIs.
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Within-subject pattern similarity (le!-right)
As the Cgrid-SMX space is expected to minimize anatomical di#erences between the le" and right 
motor cortex, le" and right activation patterns should demonstrate high similarity within subjects. 
For the Feet task and Tongue task, the similarity between le" and right Cgrid patterns was calculated 
using Pearson correlation. For the hand tasks, the correlation between contralateral activation 
patterns was calculated, that is: the similarity between the le" pattern from the Hand-Right task and 
the right pattern from the Hand-Le" task. All Pearson correlations were transformed to ‘similarity 
(z-)scores’ using the Fisher z-transform (which is equal to the hyperbolic function arctanh), to allow 
averaging and statistical testing across subjects. !e 6 similarity scores for each subject (Tongue, 
Hand and Feet for M1 and S1) were then averaged per subject over ROIs and tasks to obtain a single 
within-subject (le"-right) similarity per subject for Cgrid. Similarity scores can be transformed back 
to (group-averaged) correlations using the inverse Fisher z-transform (the hyperbolic function tanh).

Similarity scores for MNI space were calculated similarly, and di#erences in similarity scores 
between Cgrid-SMX and MNI space were assessed using a paired-samples t-test.

Between-subject pattern similarity
To assess between-subject pattern similarity, a per-subject similarity score was calculated using a 
leave-one-out approach, where a pattern of the subject under investigation was correlated with the 
mean patterns of the other subjects. !is resulted in similarity scores per task and ROI for every 
subject, which were then averaged to obtain a mean similarity score per subject. !e same approach 
was applied to the patterns in MNI space, and a paired-samples t-test was conducted to compare 
the between-subject similarity scores for Cgrid and MNI space.

Since MNI is a 3D space and Cgrid is a 2D space, the di#erences in the dimensionality of the 
approaches might bias the performance. FreeSurfer includes surface based normalization through 
spherical registration, using the FS-average as template. All subjects were normalized using this 
approach. !en, activation patterns in FS-average space were extracted by selecting the beta valvues 
in the nodes of the pre- and postcentral gyrus. A between-subject similarity was calculated per 
subject following the same scheme as for the Cgrid and MNI, using a leave-one-out approach.

Figure 2: Group activation map of the movement tasks (contrasts used: Feet > baseline, Tongue > baseline, Le% 
hand > baseline, and Right hand > baseline). Contrasts are displayed on a standard MNI brain with threshold t > 8.

1
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E$ect of smoothing on between-subject correlations
For the within- and between-subject similarities, a Gaussian smoothing kernel of 6 mm FWHM was 
used. However, since the impact of a smoothing kernel can be di#erent between Cgrid (2D space) 
and MNI space (3D), we tested the e#ect of the smoothing kernel on the similarities. !is was done 
by repeating the between-subject analysis described above, using di#erent smoothing kernels both 
in MNI space and on the cortical surface in the Cgrid pipeline (see above). Kernel sizes of 4, 6, 8, 10, 
12, 18, 25 and 35 mm FWHM were used. A two-way repeated measures ANOVA was conducted to 
compare the e#ects of method and smoothing kernel size on the between-subject similarity score.

Results
De#ning Cgrid space
Surfaces reconstructions of all 20 subjects were generated using FreeSurfer. !e %ve borders (central 
sulcus, precentral sulcus, postcentral sulcus, ventral border, and dorsal border) were extracted and 
visual inspection of the %tted curves con%rmed that a 10th order polynomial %t was su(cient to 
capture the shape of the borders accurately in all subjects.

A Cgrid standard space was de%ned and resulted in a 28×84 tiled mesh per hemisphere in all subjects. 
A tile covered 2.62±0.71 mm2 (mean±sd) and contained 6±1 vertices. On average, 21±10 tiles (1.8% 
of all tiles) did not contain any vertices that were labelled as being part of the sensorimotor cortex; these 
tiles were mostly located at the edges of the Cgrid and were excluded from the correlation analyses.

Mapping beta maps to Cgrid space
Volumetric statistical group maps of the tasks showed sensorimotor activation in distinctive foot, 
hand, and tongue areas (see Figure 2). !e feet and tongue tasks activated both the le" and right 
sensorimotor cortex. !ere was no excessive motion (mean absolute translation over all subjects 
and tasks: 0.17 ± 0.10 mm; mean rotation: 2.8×10-3 ± 2.3×10-3 degrees).

Visual inspection of the resulting Cgrid group-mean activation maps, averaged over subjects, 
con%rmed that Cgrid was capable of capturing the di#erent activation hotspot patterns associated 
with movement of the respective body parts (Figure 3). Feet activation was located at the dorsal 
side of the sensorimotor cortex, tongue activation was located towards the ventral side, and hand 
activation was located mostly contralaterally at approximately 1/3 of the dorsal-ventral axis.
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Figure 3: Beta maps in Cgrid, averaged over 20 subjects, for every task in both hemispheres. "e dashed line 
indicates the central sulcus. "e le% border lies in the precentral sulcus, the right border on the postcentral sulcus 
(see !g 1B). Note that for all Cgrid-SMXs the le% side is anterior in the brain.

1
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Figure 4: Beta maps in Cgrid for every subject (N=20) and every task in both hemispheres.
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Figure 5: A: Within-subject similarities (averaged over tasks and hemispheres) per subject, for Cgrid (red dots) 
and MNI space (blue dots). Similarities in Cgrid space were signi!cantly higher than in MNI space. B: Between-
subject similarities (averaged over tasks and hemispheres) per subject, for Cgrid (red dots) and MNI space (blue 
dots). Similarities in Cgrid space were signi!cantly higher than in MNI space.

Average activation hotspots for all tasks were mostly located within the central sulcus. Whereas 
the group average of Cgrid patterns demonstrated strong hotspot-like activation, task activation 
patterns per individual did not necessarily consist of only a single hotspot, but were sometimes 
complex patterns, varying somewhat across subjects (Figure 4).

Within-subject pattern similarity (le!-right)
!e similarities between le" and right hemispheric patterns within subjects from feet, hand, and 
tongue tasks were computed using Fisher z-transformed Pearson correlations for both Cgrid and 
MNI space. A second-level paired t-test demonstrated a signi%cantly higher similarity in Cgrid 
(Fisher Z = 0.80 ± 0.09, mean ± standard deviation) than in MNI space (Fisher Z=0.67 ± 0.08); 
t(19) = 6.70, p < 0.001 (Figure 5A).

Between-subject pattern similarity
!e similarity of patterns between subjects was calculated per task and per ROI using Pearson 
correlations using a leave-one-out approach. A paired t-test demonstrated a signi%cantly higher 
correlation in Cgrid (Fisher Z = 0.92 ± 0.09) than in MNI space (Fisher Z = 0.84 ± 0.16); 
t(19) = 8.25, p < 0.001 (Figure 5B).

Similarity scores were also calculated directly using FreeSurfer surfaces in averaged space (FS-
average). !ere was no signi%cant di#erence between similarity scores Cgrid and FS-average (Fisher 
Z = 0.93 ± 0.10); t(19) = -1.84, p = 0.082 (Figure 6).

E$ect of smoothing on between-subject correlations
Calculating between-subject similarities with di#erent smoothing kernels resulted in higher 
similarity scores with larger smoothing kernels for both Cgrid-SMX and MNI space (Figure 7). A 
two-way repeated measures ANOVA showed a signi%cant e#ect of method on the between-subject 
similarity score, indicating that Cgrid similarities are higher than similarities in MNI space for 
all smoothing kernel sizes.

1
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Figure 6: Between-subject similarities in Cgrid-SMX and in the FreeSurfer normalized space (FS-average). 
"ere was no signi!cant di'erence in similarity scores between the two methods.

Figure 7: Between-subject correlations (averaged over tasks and ROIs) as a function of smoothing kernel size. 
"e dashed line indicated the kernel size used for smoothing in both the Cgrid-SMX and MNI space analyses 
throughout the text (6 mm FWHM).
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Discussion
We introduce Cgrid-SMX as a Cartesian representation of the sensorimotor cortex, based on 
anatomical atlas-based landmarks and building upon existing data processing methods. Cgrid 
imposes a grid on the sensorimotor areas, thereby e#ectively transforming them into a rectangular, 
tiled mesh. Cgrid was successfully applied to 20 healthy subjects on both the le" and right 
hemisphere. Results of comparing sensorimotor activity patterns between individuals and between 
hemispheres yielded high similarity scores, exceeding those obtained with analysis of the same data in 
MNI space, but equal to similarity scores calculated in FreeSurfer space. Nevertheless, these %ndings 
indicate that Cgrid yields a representation that allows for a straightforward way of comparing 
activity patterns in sensorimotor cortex, which performs at least as good as representations 
from the more standard FreeSurfer and MNI approaches in terms of pattern similarities.

Transforming regions of the brain into a grid-like representation has also been reported in literature. 
It has been applied to the visual cortex, based on statistical modelling of the borders using visual 
stimuli (Corouge, Dojat, & Barillot, 2004). Also the central sulcus has been transformed into a 2D 
grid mesh (Coulon e.a., 2011), and even the whole cortex has been parametrized using the alignment 
of sulci (Auzias e.a., 2013). However, there are some key di#erences between these approaches 
and Cgrid. First, the method described by Coulon only covers the cortex inside the central sulcus, 
vwhereas our method maps the surface of the whole gyrus. Second, the Cgrid method is described 
in such a way that it can be applied on any brain region, as long as clear borders can be de%ned. It 
does not statistically model the borders, but rather extracts them from existing atlases. !is makes 
Cgrid a versatile tool, since it is easy to select a di#erent set of borders if desired. !ird, the simple 
geometry of the Cgrids allows for an easy to interpret visualization, which was one of the goals for 
the development of Cgrid.

!e validity of using Cgrid was con%rmed by multiple %ndings. First, analysis of Cgrid-transformed 
group-averaged activity patterns associated with movement (feet, le" hand, right hand, and 
tongue) resulted in focal activation hotspots. !e location of these hotspots allowed for a clear 
di#erentiation between the studied motor functions and preserved the topographical distinction 
between body parts, according to what is known from literature: feet activity was located near 
the medial wall, tongue activity was bilaterally located in the ventral sensorimotor area, and 
hand activation was located about halfway the dorsal-ventral axis, mainly on the contralateral 
hemisphere. Second, as Cgrid is designed as a representation accounting for anatomical di#erences, 
we expected a high similarity between the le" and right Cgrid activation patterns within a subject, 
and also a high similarity between Cgrid activation patterns across subjects. Indeed, averaged over 
tasks and ROIs, similarity scores were high both for within- (Fisher Z = 0.8, corresponding to a 
Pearson correlation of R = 0.66) and between-subject (Fisher Z = 0.97, R = 0.75) comparisons. !is 
indicates that there is a good correspondence of the functional localization in Cgrid both between 
le" and right cortex within subjects, and between subjects, supporting the utility of the common 
space transformation. Finally, we compared the within-subject similarities and between-subject 
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similarities of Cgrid activation patterns to those in MNI space, as this is the most widely used 
standard space for normalization.

When benchmarking Cgrid activity patterns against those from MNI, both within- and between-
subject similarities were higher for Cgrid than for MNI space. It should be noted, however, that the 
comparison of these two methods should be taken with some caution. First, di#erent spaces (2D 
&at map and 3D MNI volume) required the use of di#erent atlases. !e Desikan-Killiany atlas is 
provided with FreeSurfer and is the atlas from which borders for Cgrid are detected, but this atlas 
has been developed for surface-based analysis and can therefore not be used in 3D volumes. While 
a volumetric version of the Desikan-Killiany atlas exists, it only labels the grey matter voxels of the 
FreeSurfer average, rendering it unsuitable as an atlas for SPM volumetric normalization. Although 
the use of di#erent atlases is not optimal, the labels used by these two di#erent atlases (precentral 
and postcentral) indicate highly similar brain areas. Any di#erence in results that originates from 
di#erences in labels would be small. Second, although smoothing kernels with the same sizes were 
used in both Cgrid and MNI, the e#ect of smoothing may di#er, as in Cgrid smoothing was done 
in 2D on the surface, and in MNI in 3D on the whole volume. Smoothing in 3D can possibly also 
include signals from for example white matter, or even from areas that are relatively remote when 
measures across the surface of the cortex, but proximate in 3D space. Comparison of the two 
normalization methods over a wide range of smoothing kernels, however, revealed that correlations 
were generally higher in Cgrid than in MNI space, even with larger kernels. !ird, calculating a 
similarity between patterns from both hemispheres in MNI space was only possible when mirroring 
the masks for the somatosensory cortex across the longitudinal %ssure. !is is because for the 
correlation, le" and right ROIs need to be symmetrical (with the same number of voxels and same 
spatial con%guration), which is not necessarily the case in an atlas. !erefore, we mirrored the ROIs, 
although this does not yield an ROI that is perfectly anatomically aligned and possibly a#ects the 
correlation between le" and right. Note that the limitation in this approach re&ects one of the 
advantages of Cgrid, where coordinates within the le" and the right hemisphere are automatically 
matched. Forth and %nally, the comparison between MNI and Cgrid was performed only using 
the default settings for normalization in SPM12, and therefore indicate that Cgrid yields higher 
pattern similarities than normalization to MNI space in a commonly used implementation. Results 
of the comparison might di#er when alternative settings are used. However, the aim was not to 
optimize the MNI normalization, but to provide a benchmark that re&ects a well-known and 
commonly used normalization method.

In testing validity of the Cgrid approach it is assumed that the topographical organization of the 
sensorimotor cortex is in proportion to its shape. !is means that even if the absolute location 
of an activity hotspot di#ers from one subject to another, the hotspot’s relative location—that 
is, the location relative to the dimensions of the sensorimotor cortex—is assumed to be the same 
across subjects. Likewise, this assumption applies also to the le" versus the right hemisphere. Cgrid 
exploits this postulated relative organization of the sensorimotor cortex, and e#ectively places 
the sensorimotor cortex of each individual in a proportional space. As a result, the anatomical 
di#erences between subjects are discounted for, as well as di#erences between the le" and right 
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sensorimotor cortex. Subjects displayed some variations in not only the magnitude and location of 
activity, but also in the extent of activation along the sensorimotor cortex (compare for example the 
tongue activity on the right hemisphere in subjects 4 and 6). !ese di#erences may re&ect variations 
in cortical representation, but may also well re&ect di#erences in how tasks (even simple tasks) are 
performed. !e calculated similarity scores are derived from Pearson correlations of the complete 
Cgrid pattern, and thus include areas that should not activate during the task. !is makes this 
measure sensitive to engagement of additional body parts in a given task.

Cgrid employs several cumulative preprocessing steps that may increase the chances of biasing 
results for individual subjects. It is however di(cult to evaluate on theoretical grounds the impact 
of each individual processing step and its interaction with the other steps. Similarities from Cgrid 
representations were compared to other methods for brain normalization, where biases should have 
similar e#ects. If individual results would be excessively biased, such bias would negatively impact the 
similarity across subjects, and our method would perform worse than the others, which was not the case.

Given a &attened surface reconstruction, the Cgrid method is automatic. We used Caret to generate 
these, which requires some manual steps, but this could be automated as well. Although the current 
implementation of the mapping is fully automatic, manual adjustments on the procedure may 
be needed in cases where the integrity of gyri and sulci is compromised, for example in patients 
su#ering from brain atrophy or lesions. An algorithm monitoring the deviation of precentral and 
postcentral borders with respect to the central sulcus could be devised to notify the user if a manual 
adjustment is needed.

Cgrid is particularly suitable for studying activity patterns on the le" and right sensorimotor cortex 
within subjects, and for the comparison of groups of subjects (for example healthy and diseased), 
as well as for longitudinal studies on for example normal development or disease-related processes, 
where it can be used to quantify and visualize changes in activation hotspots over time. It might be less 
bene%cial in cases where very detailed patterns in individual subjects are studied, as transformation 
of these patterns could be disruptive. Advantages of Cgrid are that it provides a clear, easy to 
interpret and consistent representation of the sensorimotor cortex. It allows for a straightforward 
comparison of activation patterns between groups of subjects, but also for quanti%cation of possible 
alterations (for example shi"s and focality) in activation patterns in longitudinal studies, for example 
in the areas of development, progressive disease or plasticity (Bruurmijn, Pereboom, Vansteensel, 
Raemaekers, & Ramsey, 2017). As the sensorimotor cortex for each individual is mapped onto 
the same space, Cgrid allows for comparing whole activity patterns at once, even if they consist of 
multiple distributed hotspots. In principle, the Cgrid approach can be extended to other primary 
anatomical regions, and perhaps even to associative cortex where topography is less consistent. 
Moreover, Cgrid allows for mapping of any cortical parameter, and can accommodate weighing 
of tile values by the number of included vertices to better represent their quantity where relevant.

In conclusion, we present a Cartesian representation of the anatomical sensorimotor cortex in 
humans, with the aim to facilitate quantitative comparisons of brain activity within and between 
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subjects and visualize results. Results of data from 20 subjects show that the Cgrid performs equal 
or better than comparisons in MNI space, while carrying the bene%t of enabling spatial quantitative 
comparisons of activity patterns.

Information sharing statement
!e Cgrid method has been put into a toolbox and can be downloaded from https://github.com/
mathijsraemaekers/Cgrid-toolbox.

!e ethics protocol limits data publication from a public repository, but does allow data sharing 
upon request. Please contact the corresponding author.
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Abstract
Denervation due to amputation is known to induce cortical reorganization in the sensorimotor 
cortex. Although there is evidence that reorganization does not lead to a complete loss of the 
representation of the phantom limb, it is unclear to what extent detailed, %nger-speci%c activation 
patterns are preserved in motor cortex, an issue which is also relevant for development of brain-
computer interface solutions for paralyzed people. We applied machine learning to obtain a 
quantitative measure for the functional organisation within the motor and adjacent cortices in 
amputees, using high-resolution functional MRI and attempted hand gestures.

Subjects with above-elbow arm amputation (n = 8) and non-amputated controls (n = 9) made 
several gestures with either their right or le" hand. Amputees attempted to make gestures with 
their amputated hand. Images were acquired using 7 tesla functional MRI. !e sensorimotor cortex 
was divided into four regions, and activity patterns were classi%ed in individual subjects using a 
support vector machine.

Classi%cation scores were signi%cantly above chance for all subjects and all hands, and were highly 
similar between amputees and controls in most regions. Decodability of phantom movements 
from primary motor cortex reached the levels of right hand movements in controls. Attempted 
movements were successfully decoded from primary sensory cortex in amputees, albeit lower than 
in controls but well above chance level despite absence of somatosensory feedback. !ere was no 
signi%cant correlation between decodability and years since amputation, or age.

!e ability to decode attempted gestures demonstrates that the detailed hand representation 
is preserved in motor cortex and adjacent regions a"er denervation. !is encourages targeting 
sensorimotor activity patterns for development of brain-computer interfaces.
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Introduction
!e sensorimotor areas of the human brain are somatotopically organized, with regions of the 
primary motor cortex (M1) and primary sensory cortex (S1) being associated with movement and 
sensory representations of various body parts. It has become clear that this somatotopic organization 
is quite detailed and that representations of individual %ngers (Dechent and Frahm, 2003; Siero et 
al., 2014) and even separate muscles (Hadoush et al., 2011) can be identi%ed.

Denervation due to amputation or nerve damage disrupts normal sensorimotor function. 
Subsequent cortical reorganization in the sensorimotor area has been reported in numerous animal 
studies, where intact body parts ‘invade’ areas associated with the missing limb (Donoghue and 
Sanes, 1987; Merzenich et al., 1984; Wu and Kaas, 1999). Sensorimotor reorganization occurs 
also in humans, as evidenced by transcranial magnetic stimulation studies in amputees describing 
increased excitability of motor areas contralateral to the amputated limb, where stump muscles 
demonstrate higher response amplitudes which can be induced from a larger scalp area than 
responses in the intact arm (Cohen et al., 1991; Röricht et al., 1999). Also, magnetoencephalography 
and fMRI studies with upper limb amputees have reported a shi" of lip (Lotze et al., 2001), chin 
(Elbert et al., 1994), and shoulder (Dettmers et al., 2001) representation into the dea#erented 
cortical hand area has been demonstrated.

Increasing evidence demonstrates that denervation does not result in a complete loss of 
representation of the a#ected limb, as the sensorimotor cortex still appears to be engaged in so-called 
‘attempted movements’. When amputees attempt moving their phantom limb, the corresponding 
sensorimotor areas show fMRI activation similar to executed movements in able-bodied subjects 
(Lotze et al., 2001; Roux et al., 2003; Turner et al., 2001). Moreover, for postcentral and parietal 
regions, it has been shown that this persistent representation is relatively detailed. For example, 
in a tetraplegic patient using intracranial recordings, movement goals and trajectories have been 
successfully decoded from posterior parietal cortex (A&alo et al., 2015). Using microstimulation, 
a persistent hand representation in S1 was also found in a long-term spinal cord injury patient 
(Flesher et al., 2016). In amputees, an individual %nger topography of the phantom hand has been 
reported in the somatosensory cortex (Kikkert et al., 2016).

Although abovementioned studies provide evidence that a persistent hand representation still exists 
a"er denervation, they primarily focus on somatosensory areas, using simple (one-%nger or coarse 
hand) movements. It is unknown whether the intact representation also applies to for example the 
primary motor cortex (M1), and to what extent it allows for the decoding of composite (multiple-
%nger) movements a"er denervation. !is is not only relevant for understanding plasticity, but 
also for development of clinical brain-computer interface (BCI) solutions for severe paralysis, the 
feasibility of which was recently reported (Vansteensel et al., 2016).

We have previously shown that the sensorimotor organization in able-bodied subjects allows for 
a quantitative discrimination of four gestures from the American Manual Alphabet, based on 
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electrocorticography and on 7T fMRI activation patterns (Bleichner et al., 2013; 2016). Gestures 
are especially suitable for testing persistent hand representations, because their di#erentiation 
constitutes a comprehensive evaluation of discrimination between spatial activity patterns. In 
the current 7T fMRI study, we investigated the discriminability of cortical representations of 
attempted gestures in arm amputees, to study and quantify the detailed integrity of the denervated 
sensorimotor cortex. Similar to our previous studies with able-bodied subjects (Bleichner et al., 
2013; 2016), we used a machine learning method for ‘decoding’, which refers to identifying 
movements based on their cortical activation pattern. Such decoding is highly sensitive to the 
discriminability, hence spatial integrity, of cortical hand representations and can be used not only to 
reveal e#ects of denervation, but also to quantitatively compare discriminability to control subjects. 
Since all %ngers are represented in the relatively small hand knob on M1 (Siero et al., 2014), any 
change in representation is likely to cause an increase in correlations between individual %nger 
foci, resulting in reduced discriminability of di#erent gestures and thus in a decline in decoding 
performance. Another advantage of a decoding approach is that it does not require an a priori 
model of the cortical organisation, which is known to be challenging especially in M1 (Graziano 
and A&alo, 2007; Hluštík et al., 2001). We speci%cally investigated four regions of the sensorimotor 
system: the primary motor cortex, the primary sensory cortex, the anterior precentral gyrus, and 
the posterior postcentral gyrus.

Materials and Methods
Subjects
Eight subjects with arm amputation were recruited (age 52 ± 12 years, 1 female). All subjects had 
transhumeral arm amputation (7 right arm, 1 le" arm amputation), acquired 16.4 ± 11.5 years 
ago (range: 1.7–31.1 years ago). Nine control subjects were also recruited (no arm amputation, age 
44 ± 21 years, 4 females). All subjects were right-handed or were right-handed before amputation 
according to the Edinburgh Handedness Inventory (Old%eld, 1971). An overview of all subjects 
is given in Table 1.

!e study was approved by the medical-ethical committee of the University Medical Center Utrecht and 
all subjects gave their written informed consent in agreement with the declaration of Helsinki (2013).
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Table 1. Subject details.

Code Sex Age Amputation 
side

Years since 
amputation [yrs]

Phantom 
paina

Reason for amputation

Controls C1 m 50

C2 f 23

C3 m 28

C4 m 21

C5 f 20

C6 f 63

C7 m 60

C8 f 75

C9 m 53

Amputees A1 m 52 Right 1.7 2 tra(c accident

A2 f 67 Right 6.2 4 cancer

A3 m 62 Right 37.1 1 tra(c accident

A4 m 60 Right 6.3 6 cancer

A5 m 49 Right 21.8 8 machine accident

A6 m 30 Right 23.1 0 accident

A7 m 52 Right 17.1 2 post-traumatic dystrophy

A8 m 40 Le" 17.7 4 machine accident
a On the day of scanning, subjects rated their momentary phantom pain on a scale #om 0 (no pains) to 10 (heavy pains).

Experimental design
Data acquisition
MRI data were recorded using a Philips Achieva 7T MRI system with a 32-channel head coil. Anatomical 
T1- and PD-weighted images were acquired %rst (TR/TE = 6/1.4 ms, FA = 8º, voxel size = 1 × 1 × 1 
mm3). A functional Localizer task was performed to ensure the hand area was within the imaging %eld of 
view, followed by the Gesture task. Prism glasses allowed subjects to look at the screen located at the end of 
the scanner bore, on which the tasks were presented. Finger positions of both hands in control subjects and 
of the intact hand in amputees were recorded using MRI-compatible data gloves (5DT Inc., Irvine, USA).

Localizer task and analysis
Subjects were instructed to repeatedly open and close their hands during presentation of a green 
cue (‘move block’), and rest during a red cue (‘rest block’). Control subjects were asked to open 
and close both hands, while amputated subjects only used their intact hand. !e task consisted of 
3 rest blocks and 2 move blocks (30 seconds each).

EPI images were acquired (TR/TE = 2000/27 ms, FA = 70º, acquisition matrix size = 104 × 129, 
33 slices, voxel size = 1.6 × 1.6 × 1.6 mm) during this task. !e results were analyzed in real time 
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using Philips IVIEWBOLD analysis so"ware, and were used to optimally position the fMRI %eld 
of view for the Gesture task. For two subjects (C1 and C2), the Localizer task was not yet part of 
the protocol. For these two subjects, the positioning of the Gesture task EPI scans was based on 
the anatomical location of the hand knob in transversal and sagittal planes.

Gesture task
Six gestures, shown in Figure 1, were selected from the American Manual Alphabet. !ese gestures 
were chosen for maximum di#erences in &exion-extension combinations.

One of the six characters was presented every 15.6 seconds for subjects C1 and C2, and 16 seconds 
for all others. !e character was presented for 6 seconds, followed by a %xation cross. Subjects were 
instructed to make the corresponding gesture as soon as a character appeared and hold it until the 
character disappeared. Subjects performed 4 runs (each with 60 trials; 10 per character): two with 
their right hand (runs ‘R1’ and ‘R2’) and two with their le" hand (runs ‘L1’ and ‘L2’). Control 
subjects (C1-9) used executed movements, whereas amputated subjects (A1-8) used attempted 
movement with their phantom hand, and executed movements with their intact hand. All subjects 
were naive to sign language and practiced at home daily for 15 minutes during one week.

An EPI sequence was used (TR/TE = 1300/27 ms for subjects C1 and C2, TR/TE = 1600/27 
ms for all other subjects, FA = 70º, acquisition matrix size = 104 × 129, 26 slices, no gap, voxel 
size = 1.6 × 1.6 × 1.6 mm3). All EPI scans were acquired in transversal orientation, such that both 
the le" and right hand region were in the %eld of view.

Data analysis
FMRI preprocessing and Statistical maps
Preprocessing and %rst level analysis were performed with SPM12 (http://www.%l.ion.ucl.ac.uk/
spm/) for each combined pair of runs (L1 with L2, and R1 with R2). Functional images were slice-
time corrected, realigned to the mean functional image, and coregistered with the T1-weighted 
anatomical scan. For a group visualization, the data was smoothed using an 8 mm kernel and 
normalized to MNI using SPM12. For the decoding analysis, no normalization and no smoothing 
was applied, to preserve the detail required for classi%cation. A design matrix was %tted using a 
general linear model (GLM), entering the two runs as separate sessions. Twelve regressors were used 
(one for each of the six gestures for each run), from which six t-maps for the six gestures were derived.

Regions of interest
Gestures were classi%ed from four parallel regions of interest (ROIs) per hemisphere. !e main focus 
was on the primary motor (M1) and primary sensory (S1) cortices, which were de%ned as the walls 
of the pre- and postcentral gyrus inside the central sulcus, as we know from our previous work that 
most informative voxels for classi%cation are located in the central sulcus (Bleichner et al., 2013). 
To prevent the risk of missing information located futher from the central sulcus (Martuzzi et al., 

Binnenwerk Mark - V2.indd   44Binnenwerk Mark - V2.indd   44 11-03-2024   13:1411-03-2024   13:14



45

Preservation of hand movement representation in the sensorimotor areas of amputees

2012), two additional ROIs were de%ned: the anterior part of the precentral gyrus (pre-M1), and 
the posterior part of the postcentral gyrus (post-S1, roughly corresponding with Brodmann area 2).

!e ROIs were obtained from volumetric parcellation using FreeSurfer (http://surfer.nmr.mgh.
harvard.edu/), by combining the Desikan-Killiany atlas (Desikan et al., 2006), with regions 
‘PrecentralGyrusDKA’ and ‘PostcentralGyrusDKA’, and the Destrieux atlas (Destrieux et al., 2010), 
with regions ‘PrecentralSulcusDA’, ‘PrecentralGyrusDA’, ‘CentralSulcusDA’, ‘PostcentralGyrusDA’, and 
‘PostcentralSulcusDA’. For the de%nition of ROIs in this paper, see Table 2. A combined mask ‘GRAND’ 
was de%ned as the union of M1, S1, pre-M1, and post-S1. In individuals, the exact boundary between 
M1 and S1 may not always be located exactly in the fundus of the central sulcus. !erefore, to verify 
that classi%cation scores from M1 are not due to S1 activity, we also calculated the classi%cation scores 
for a conservative de%nition of M1, M1no-fundus, where a substantial part of the central sulcus was le" out.

Classi#cation procedure and statistics
Patterns of BOLD activation were classi%ed using a multi-voxel pattern analysis approach with a 
support vector machine (SVM) classi%er (Haxby et al., 2001). Classi%cation was performed for each 
of the four ROIs and ‘GRAND’ contralateral to the hand that the subject was instructed to move. For 
classi%cation the number of voxels was constrained to avoid inclusion of voxels not involved in the task 
(Bleichner et al., 2013). !erefore, for each ROI separately, as well as for ‘GRAND’, we only kept the 
250 voxels with the highest t-values across the t-maps for the di#erent gestures (Mitchell et al., 2004). 
!e BOLD signal in each included voxel was subsequently detrended and transformed into z-scores. 
!e amplitude of the BOLD response for each trial was calculated for each of the 250 voxels by taking 
the mean signal over scans 5, 6, and 7 for subjects C1 and C2, and scans 4, 5, and 6 for all other subjects. 
!ese windows were chosen because previous decoding studies have shown maximum decodability 
around 6 to 8 seconds a"er stimulation onset (Andersson et al., 2011; Bleichner et al., 2013).

Because an SVM is a binary classi%er, six SVMs were combined in a ‘one versus all others’ approach: 
the SVMs were trained to distinguish each gesture from the combined set of all other gestures. 
In this approach, when testing an unknown sample, the class for which the distance from the 
data point to the decision boundary is largest wins. All SVM classi%ers used a linear kernel with 
regularization parameter (‘so" margin’) C = 1.

Table 2. ROI de%nitions based on the Desikan-Killiany atlas (subscript DKA) and Destrieux atlas (subscript 
DA), where  denotes the voxel-wise union, and ת the intersect of ROIs.

ROI name De#nition

M1 PrecentralGyrusDA  (CentralSulcusDA ת PrecentralGyrusDKA)

S1 PostcentralGyrusDA  (CentralSulcusDA ת PostcentralGyrusDKA)

pre-M1 PrecentralSulcusDA

post-S1 PostcentralSulcusDA

‘GRAND’ M1  S1  pre-M1  post-S1

M1no-fundus PrecentralGyrusDA

2
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!e classi%er was trained and validated using a leave-6-out cross validation scheme (20 folds), in which 
for each fold, one trial for each gesture was le" out (validation set), while the classi%er was trained 
on the remaining trials (the training set). Classi%cation results are reported as mean and standard 
deviation. To evaluate the e#ects for ROI, hand, and group, we applied a three-way repeated-measures 
GLM, with two within-subject factors (ROI: 4 levels, and Hand: 2 levels) and two groups (amputees 
and controls) at signi%cance level 0.05. To investigate whether there was an e#ect of amputation 
in any ROI of the denervated hemisphere in amputees, only signi%cant interactions were followed 
with a post-hoc two-way GLM and individual two-sample t-tests for comparing between ROIs.

Spatial extent of features inside ROIs
To assess the spatial layout of the selected features, the ROIs (M1 and S1 only) were %rst mapped 
to a normalised space as follows. !e borders of the sensorimotor cortex were extracted from a 
&at map parcellation, and three polynomials were %tted: through the central sulcus, through the 
anterior border of the precentral gyrus, and through the posterior border of the postcentral gyrus. 
Interpolating between these polynomials resulted in a 28 × 84 tiled mesh of the sensorimotor area. 
!e volumetric M1 and S1 ROIs, used for classi%cation, were remapped onto the normalized tiles. 
Spatial extent of activity was quanti%ed for M1 and S1 by calculating the median distance of each 
selected voxel to its ROI’s center of mass. !e spatial extent of features was compared between 
hemispheres and groups, using a repeated measures GLM with two measures (S1 and M1), with 
hemisphere as within-subject factor (two levels: le" and right) and group as between-subject factor.

BOLD response analysis
We assessed the e#ect of denervation on the BOLD response amplitude. Per voxel and per trial, 
each time point in the detrended BOLD signal was converted into percent signal change with 
respect to the BOLD signal of the %rst scan of each trial. Per subject, BOLD responses were then 
averaged over trials for each of the ROIs.

!e BOLD responses were then averaged between 4 and 8 seconds (comparable to the window used 
for classi%cation) and were statistically compared using a three-way repeated-measures GLM and 
post-hoc tests analogous to the analysis of the classi%cation scores.

Correlation with phantom pain, age, and years since amputation
Amputees rated their ability to make the gestures with their phantom hand on a score from 0 (“very 
di(cult”) to 10 (“very easy”). !ey rated their average everyday phantom pain on a score from 0 (“no 
pain”) to 10 (“heavy pains”). To investigate any relationship between phantom movement ability, 
phantom pain, age, or years since amputation and the classi%cation of the phantom hand, Pearson 
correlations were calculated using a signi%cance level of 0.05 (Bonferroni corrected for %ve tests).

Gesture execution performance and data glove amplitude
Excessive movements of the hand that should be kept still during a task could possibly in&uence classi%cation 
scores. !erefore, the amount of motion of the still hand was compared to the amount of motion of the moving 
hand. !e amplitude of the %nger &exion sensors of the data glove was chosen as measure for movement.
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Figure 1. "resholded t-maps for hand activation. A: Hand gestures used for this study. "ese gestures were chosen 
for maximum mutual di'erences in (exion-extension combinations. B: Activation for right/phantom hand. 
C: Activation for le%/intact hand. "e contrast used for this image was ‘8’+‘F’+‘L’+‘S’+‘W’+‘Y’>baseline. In all 
subjects, there is clear activation inside the contralateral central sulcus, which is associated with hand control. 
T-values are set per subject for visualization purposes. Images are in neurological orientation.

2
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Results
GLM analysis
Signi%cant activity was found for all subjects for the contrast of all gestures versus baseline in M1 
and S1 (P < 0.05, Bonferroni corrected for total numbers of voxels in the imaged volume). Figure 
1B displays activity at individually tailored thresholds to indicate foci with strongest activity.

Support vector machine classi#cation
Mean classi%cation scores for the six gestures were signi%cantly above chance level (binomial test, P < 
0.001) for all contralateral ROIs, in controls and in amputees, for both hands (Figure 2). For le" and 
right hands of controls, classi%cation scores ranged from 23% to 91%, depending on ROI. Intact hand 
scores of amputees ranged between 35% and 96%, and phantom hand scores between 25% and 84%.

"ree-way repeated-measures GLM
!e three-way repeated measures GLM revealed a signi%cant main e#ect of ROI [F(3,13) = 29.7, P 
< 0.001], a signi%cant two-way interaction between ROI and Group [F(3,13) = 4.29, P = 0.026] and 
a signi%cant three-way interaction between Hand, ROI, and Group [F(3,13) = 20.64, P < 0.001].

As post-hoc test, a two-way repeated-measures GLM was performed on each of the two hands 
separately. For the le"/intact hand, there was a signi%cant e#ect of ROI [F(3,13) = 24.79, P < 
0.001], but no signi%cant interaction between ROI and Group [F(3,13) = 1.38, n.s.]. For the right/
phantom hand, there was a signi%cant e#ect of ROI [F(3,13) = 20.37, P < 0.001], and a signi%cant 
interaction between ROI and Group [F(3,13) = 14.70, P < 0.001].

Lastly, independent t-tests were used post-hoc to compare the decodability between controls and 
amputees for each ROI in the right/phantom hand. !e ROIs that demonstrated a signi%cant 
di#erence in decodability were S1 [t(15) = 2.77, P = 0.014] and pre-M1 [t(15) = -2.18, P = 0.046]. 
Other ROIs did not signi%cantly di#er between groups [M1: t(15) = -0.49, n.s.; post-S1: 
t(15) = -1.30, n.s.].

Classi#cation on ROI ‘GRAND’
Gestures were also decoded from the combined ROI ‘GRAND’. In controls, decodability was 77% 
± 13% for the right hand and 70% ± 15% for the le" hand. In amputees, scores were 64% ± 14% 
for the phantom hand and 79% ± 11% for the intact hand. A two-way repeated-measures GLM 
indicated a signi%cant interaction between Group and Hand [F(1,15) = 12.95, P = 0.003].
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Figure 2. Classi!cation scores per ROI for both groups and both hands. Bars indicate mean classi!cation scores 
and 95% con!dence intervals. "e dashed line at 16.7% indicates chance level. Signi!cant post-hoc independent 
t-tests are indicated by a star (P < 0.05).

Spatial extent of features inside ROIs
Figure 3 displays the spatial characteristics of cortical activity. !e standardized location of the 
center of mass within M1 and S1 was highly comparable across hands and groups (Figure 3B-C). 
GLM analyses demonstrated no e#ect of group or hand on the extent of features in M1 and S1, 
indicating that there was no di#erence in extent of spatial distribution of the highest activated 
voxels between hemispheres, or between controls and amputees (Figure 3D).

BOLD response analysis
All subjects showed comparably shaped BOLD responses in all ROIs (Figure 4). BOLD response 
amplitudes were compared per ROI between and within groups.

!e three-way repeated measures GLM revealed a signi%cant main e#ect of ROI [F(3,13) = 24.6, 
P < 0.001], signi%cant two-way interactions between ROI and Group [F(3,13) = 5.39, P = 0.012] 
and ROI and Hand [F(3,13) = 5.58, P = 0.011], and a signi%cant three-way interaction between 
Hand, ROI, and Group [F(3,13) = 6.36, P = 0.011].

A two-way repeated-measures GLM was performed to follow up e#ects within each of the two 
hands separately. For the le"/intact hand, there was a signi%cant e#ect of ROI [F(3,13) = 33.7, P < 
0.001], but no signi%cant interaction between ROI and Group [F(3,13) = 2.17, n.s.]. For the right/
phantom hand, there was a signi%cant e#ect of ROI [F(3,13) = 11.9, P = 0.001], and a signi%cant 
interaction between ROI and Group [F(3,13) = 4.50, P = 0.022].

2
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Figure 3. Spatial extent of selected features inside M1 and S1. A: Mapping of features (250 most activated voxels) 
for one representative subject (subject A5), for M1 and S1 on le% and right hemisphere grids. "e dashed line 
indicates the central sulcus. Around the central sulcus, M1 and S1 ROIs may overlap due to the transformation 
into tile space and partial volume e'ects. Triangles indicate the center of mass of M1 and S1, and the number 
represents the ROI’s ‘spatial extent’, measured in mesh tiles. B: ROIs of all subjects. "e color per tile indicates 
the number of subjects having that tile selected as a feature for classi!cation. C:centers of mass for all subjects for 
both M1 and S1 on the le% and right hemispheres. D: Spatial extent of features per hemisphere in M1 and S1 for 
controls and amputees (mean with 95% con!dence interval). "ere was no signi!cant di'erence in spatial extent 
between le% and right hemispheres, or between controls and amputees.
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Figure 4. BOLD responses for each of the four ROIs and each hand for controls and amputees. BOLD responses 
are expressed in percent signal change, averaged over all trials. Time point 0 indicates the start of the trial. Only 
S1, there was a signi!cant di'erence in the BOLD response between the phantom hand of amputees and the intact 
hand of controls within the interval of 4–8 seconds (indicated by the grey shading).

Independent t-tests to compare the BOLD responses between controls and amputees for each 
ROI only in the right/phantom hand revealed that only S1 demonstrated a signi%cant di#erence 
[t(15) = -2.24, P = 0.040], whereas the other ROIs did not [M1: t(15) = -0.60, n.s.; pre-M1: 
t(15) = 0.81, n.s.; post-S1: t(15) = -0.69, n.s.].

Correlation with phantom pain, age, and years since amputation
We did not %nd signi%cant correlations in any ROI between the ‘phantom movement ability score’ 
or the ‘phantom pain score’ and the classi%cation score of the phantom hand (Pearson correlation, 
Figure 5). !ere was no signi%cant correlation between age and classi%cation score in any of the 
groups, hands, or ROIs. Although all ROIs showed a negative trend, with higher classi%cation 
scores found for people with the most recently acquired amputation, no ROI showed a signi%cant 
correlation of classi%cation score with years since amputation, using a signi%cance level of P = 0.05, 
Bonferroni corrected for %ve tests.

Gesture execution performance and data glove amplitude
Gesture execution performance was assessed by classi%cation of the data glove recordings of the 
intact hand in amputees, and of both hands in control subjects. !e classi%cation scores were 
signi%cantly above chance level (94% ± 6%, P < 0.001) with a minimum score of 79%.

Analysis of the data glove &exion sensor amplitude demonstrated minimal motion in the hand that 
should be kept still during the task compared to the hand that should be moving, with subject A2 
as the only exception (Figure 6). In both amputees and controls, there was no signi%cant correlation 
between still hand amplitude and classi%cation score from ROI ‘GRAND’.

2
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Figure 5. Classi!cations scores for the di'erent ROIs as a function of time since amputation. Altough a negative 
trend can be observed in all ROIs, no ROI showed a signi!cant correlation when Bonferroni corrected for multiple 
(!ve) comparisons.
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Figure 6. Data glove amplitudes for the le% and right hand glove during a right (phantom) hand task. "ere 
was no right glove recording for amputees. Amplitudes of the le% (intact) hand, which should remain still during 
the task, are small compared to amplitudes of the moving hand, with amputee subject A2 being an exception.

Conservative de#nition of M1
To verify that M1 activity was not due to S1 activity, classi%cation scores were calculated from a 
conservative de%nition of M1, M1no-fundus. !e resulting classi%cation scores (controls le": 46% ± 
12%, controls right: 43% ± 15%, amputees intact: 55% ± 12%, amputees phantom: 48% ± 19%) 
all remained well above chance level, as with the ‘full’ M1.

Discussion
We investigated whether the detailed topographic representation of the hand is preserved in 
people with above-elbow arm amputation. As a measure of (preserved) representation, we used 
the decodability of attempted complex hand gestures from four di#erent contralateral ROIs of 
the sensorimotor hand area in amputees (M1, S1, pre-M1, post-S1), and compared this to the 
decodability of gestures executed with the intact hand. Data of able-bodied controls were used as 
an extra reference. In controls and amputees, classi%cation scores for both hands were signi%cantly 
above chance in all ROIs.

M1 hand representation a!er amputation
For M1, there was no di#erence between the classi%cation scores for attempted movement of the 
phantom hand in amputees and executed right hand movement in controls. BOLD responses of 
amputees were similar to those of the control subjects. Previous fMRI studies have shown that 
phantom hand movements result in a clear activation of the contralateral M1, similar to executed 
intact hand movement in amputees and controls (Ersland et al., 1996; Ra(n et al., 2012; 2016; Roux 
et al., 2003), but did not investigate whether also the representation of composite %nger movements 
in M1 remains intact. Although our classi%cation approach does not directly assess topography in the 
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traditional sense, it does provide an insight in the representation of hand movements, as it inherently 
relies on spatial patterns. Moreover, we cannot entirely exclude the possibility that the representations 
of complex hand movements change a"er denervation, but since we are able to decode composite hand 
movements from the cortex, the most straightforward conclusion is that the hand representations in 
M1 contralateral to the phantom hand are una#ected by denervation, also at the high level of detail 
associated with complex hand movements involving multiple %ngers simultaneously.

!e exact border between M1 and S1 can vary between subjects and does not necessarily have to be 
located exactly at the fundus of the central sulcus, leading to a possible contribution of S1 activity on 
the decodability of M1. However, we tested the classi%cation on ROI M1no-fundus, where the fundus 
of the central sulcus has been le" out, and they remained well above chance level, indicating that 
decoding is not due to activity in S1 cortex.

Decodability and BOLD response in S1
Interestingly, S1 demonstrated the highest decodability, with classi%cation scores being signi%cantly 
higher than from other ROIs for both hands of controls, and for the intact hand of amputees. Even 
for the phantom hand in amputees, S1 decodability was similar to that of the other ROIs, albeit 
signi%cantly lower than S1 scores of the right hand of controls. As such, our %ndings con%rm and 
extend previous studies that showed persistent body part representation (at a more coarse level) 
a"er amputation or spinal cord injury by 1) activation within S1 during attempted foot (Cramer 
et al., 2005; Hotz-Boendermaker et al., 2008; 2011) and hand (Gharabaghi et al., 2014; Ra(n et 
al., 2012) movement and 2) preserved %nger somatotopy of the phantom hand in S1 by moving the 
phantom hand (Kikkert et al., 2016) or by microstimulation (Flesher et al., 2016).

We hypothesize that the preservation of decodability is associated with the role of S1, which is 
thought to re&ect not only somatosensory feedback, but also anticipatory information necessary 
for rapid movement correction (Helmholtz, 1924). Indeed, activity in S1 has been found in subjects 
whose proprioceptive feedback has been disabled by an ischemic nerve block (Christensen et al., 
2007). Moreover, a movement-associated activity increase in S1, preceding M1 activation and 
the actual movement, has been demonstrated using electrocorticography (Sun et al., 2015). Our 
results support the notion that the decodability of complex hand movements in S1 can be viewed 
as a combination of feed-forward and feedback processes. !e fact that the attempted gestures in 
amputees, which only generate feed-forward in&uences on S1 activity, could be decoded from S1 
at the same level as decoding from M1 in phantom and actual movements, further strengthens the 
notion that primary sensorimotor cortex is hardly (if at all) a#ected by amputation.

!e di#erence between decodability and BOLD amplitude for the phantom hand compared to 
actual movements may also be associated with amputation-induced structural changes. Indeed, it 
has been demonstrated that grey matter volume is reduced in the denervated cortex of amputees 
(Makin et al., 2013), and that reduced BOLD responses may be associated with grey matter 
thinning (Taylor et al., 2009). Future studies may elucidate the in&uence of structural changes on 
the decodability of complex movements.
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Delayed reorganization a!er amputation
!ere is evidence for both immediate and delayed reorganizational changes a"er amputation 
(Pearson et al., 2003; Wall et al., 2002). Animal studies have indicated that within minutes to hours 
a"er amputation, the receptive %elds of an amputated digit become responsive to stimulation of 
neighbouring parts of the hand (Calford and Tweedale, 1988). !e few human studies on this topic 
suggest that reorganization occurs rapidly as well (Weiss et al., 2000). Delayed e#ects of amputation 
have been demonstrated in the case of a new shoulder representation in denervated forelimb cortex 
of rats over a period of weeks (Pearson et al., 2003). In addition, for human lower-limb amputees, a 
negative correlation between cortical thickness in V5/MT+, as well as white matter integrity in areas 
involved in visuospatial processing, and years since amputation have been described (Jiang et al., 
2015; 2016), suggesting that slow reorganizational processes continue to occur long a"er amputation. 
Although the ROIs showed a negative trend in the correlation between post-S1 decodability and years 
since amputation, this correlation was never signi%cant when corrected for multiple comparisons. 
!erefore, the data suggest that the e#ect of time (if any) on the phantom hand representation in 
M1 and S1 is small, keeping in mind that the number of subjects limits the power of the analysis.

Maximizing classi#cation scores
!e data of our control subjects agree with, and extend, a previous fMRI study from our group that 
showed that it is possible to classify multiple executed hand gestures from the sensorimotor areas in 
able-bodied people with high accuracy (Bleichner et al., 2016). !e above-chance classi%cation we 
observed for all ROIs is suggestive for the presence of a detailed hand representation in each of the 
four studied regions of the sensorimotor system in controls and amputees. Whether or not a discrete 
somatotopy for individual %ngers exists in M1 is subject to debate [see for example (Graziano 
and A&alo, 2007) for an overview of possible organization principles of M1]. In cases where 
within-limb somatotopy was found in M1 and compared to that of S1, the latter demonstrated a 
more discrete and segregated organization (Cunningham et al., 2013; Hluštík et al., 2001). !is 
di#erence in organization has been attributed to the more integrative role M1 plays in motor 
control (Cunningham et al., 2013) and could explain why, in the present study, classi%cation 
scores were highest in S1, as the method used here is inherently based on spatial activity patterns. 
Unfortunately, straightforward inference of the di#erent organisational principles in M1 and S1 
is not possible in our study due to the nature of machine learning.

We are aware of several potential confounds that can contribute to the classi%cation accuracy and 
their comparisons between controls and amputees. First, it is known that stump muscles even in 
above-elbow amputees can be activated when attempting to move the phantom hand, and that these 
activations are reproducible and di#erent from activation patterns of the stump itself (Reilly et al., 
2006). However, it is unknown whether the same e#ect of this peripheral reorganisation is present for 
the %ne-grained %nger movements like the ones that were used here. !erefore, we cannot completely 
rule out the possible in&uence of this confound. Second, the control group is overall younger than 
the amputee group. However, since we were still able to decode successfully in amputees, we believe 
that our conclusions would remain valid in spite of this age di#erence. !ird, we compared the 
phantom hand of amputees with the dominant (right) hand of controls. Although it can be argued 
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that the dominant hand of amputees is now their intact hand by de%nition, we did not want to 
make any assumptions about the e#ects of change of hand dominance on decoding from both 
hemispheres, especially since all amputees (except for one) acquired their amputation in adulthood.

Compared to our previous gesture decoding study in able-bodied volunteers, we observed better 
classi%cation scores. When combining all ROIs, the mean score for 4 gestures was 63% (chance level 
25%) (Bleichner et al., 2013), whereas we now obtained 64 – 79 % (depending on hand and group) 
for a chance level of 16.7%. An interesting aspect is whether the subjects’ movements or activation 
patterns would become better decodable a"er a period of training. For this report, subjects practised 
the task daily in the week before scanning, to gain &uency in making the gestures. A longer training 
session might reveal a learning curve in decoding accuracy. Also, training can be o#ered using fMRI 
neurofeedback, a technique in which information about brain activity patterns is provided to the 
subject in real-time. Neurofeedback has proven to be an e#ective method to shape brain activity 
in certain areas (Weiskopf, 2012), and may improve discriminative power of activity patterns.

!e high classi%cation scores we obtained for attempted gestures in amputees, especially from the 
combined ROI, indicate that the sensorimotor hand region of these patients may be, and remain, 
a suitable source of signals for BCI applications, such as multidimensional arm prosthesis control, 
also years a"er denervation. For such a BCI application, signal acquisition methods need to be 
wearable and accommodate high spatial detail, both of which can be accomplished with high 
density electrocorticography (ECoG) (Bleichner et al., 2016; Branco et al., 2017). We have shown 
previously that fMRI BOLD activation demonstrates good spatial correspondence with ECoG 
(Hermes et al., 2012; Siero et al., 2014). For an ECoG-based BCI application, decoding from either 
M1 or S1 separately may be of interest, since limiting the size of an implant is bene%cial in terms of 
limiting the surgical risk. Since the classi%cation scores from both areas is high, it means that they 
both serve as promising targets for ECoG-based BCI.

In conclusion, our results demonstrate that complex attempted hand movements can be decoded well from 
primary motor cortex in people with arm amputation, suggesting that even years a"er denervation, this 
area has not lost its detailed spatial representation integrity associated with combined %nger movements, 
and still contain a su(cient level of information for decoding. !e same holds for adjacent sensory and 
premotor regions. Given the similar classi%cation results for amputees and able-bodied subjects, it may 
be speculated that when having to resort to able-bodied people for BCI research (when inclusion of the 
target population is di(cult because of low numbers or vulnerability), the use of executed movements 
provides useful insight in the organization and behaviour of the cortical hand region in patients.
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Abstract
!ere is ample evidence that the contralateral sensorimotor areas play an important role in 
movement generation, with the primary motor cortex and the primary somatosensory cortex 
showing a detailed spatial organization of the representation of contralateral body parts. 
Interestingly, there are also indications for a role of the motor cortex in controlling the ipsilateral 
side of the body. However, the precise function of ipsilateral sensorimotor cortex in unilateral 
movement control is still unclear. Here we show hand movement representation in the ipsilateral 
sensorimotor hand area, in which hand gestures can be distinguished from each other and from 
contralateral hand gestures. High-%eld fMRI data acquired during the execution of six le" and six 
right hand gestures by healthy volunteers showed ipsilateral activation mainly in the anterior section 
of precentral gyrus and the posterior section of the postcentral gyrus. Despite the lower activation 
in ipsilateral areas closer to the central sulcus, activity patterns for the twelve hand gestures could 
be mutually distinguished in these areas. !e existence of a unique representation of ipsilateral 
hand movements in the human sensorimotor cortex favors the notion of transcallosal integrative 
processes that support optimal coordination of hand movements.
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Introduction
In the last decades, the role of the contralateral hemisphere in the generation of limb movement 
has been vastly studied (Vulliemoz et al. 2005). It has been shown that the majority of the 
sensorimotor pathways cross the midline towards the contralateral side of the body, and the 
strongest sensorimotor cortex activation is associated with contralateral movements (Kim et al. 
1993). However, there are strong indications that not all human motor %bers decussate in the 
brainstem (Alawieh et al. 2017) and that both hemispheres are connected by callosal pathways 
(Aboitiz et al. 1992), suggesting a role of the ipsilateral sensorimotor cortex in movement control, 
both in non-human (Donchin et al. 1998; Kermadi et al. 1998, 2000; Soteropoulos et al. 2011) 
and in humans primates (Debaere et al. 2001; Diedrichsen et al. 2013). Indeed, the corpus 
callosum and several cortical areas, including the premotor cortex, primary motor cortex (M1) 
and supplementary motor area (SMA), are thought to be involved in coordinating bimanual hand 
movements (Eliassen et al. 2000; Debaere et al. 2001; Diedrichsen et al. 2013). Additionally, the 
ipsilateral sensorimotor areas seem to play a role in unimanual movement control. Evidence for 
such function comes, among others, from transcranial magnetic stimulation studies (Kobayashi 
et al. 2003) and from studies showing task-related modulation of sensorimotor activity during 
movements of the ipsilateral hand (Seidler et al. 2004; Verstynen 2004; Buete%sch et al. 2014). 
Another recent study found that in ipsilateral M1, BOLD activity increases when the task required 
more precise motor movements (Barany et al. 2020). Furthermore, similar to the contralateral 
homunculus representation, the sensorimotor cortex contains a detailed and organized spatial 
representation of movements of di#erent ipsilateral body parts (Scherer et al. 2009; Hotson et al. 
2014; Fujiwara et al. 2017; Downey et al. 2020). However, although ipsilateral representation has 
been found even for individual %ngers (Diedrichsen et al. 2013), it is also known that, in general, 
activation patterns elicited from complex hand movements, consisting of simultaneous &exion 
and extension of multiple %ngers, are not simple a linear combination of these single-digit patterns 
(Hamed et al. 2007). We therefore studied ipsilateral activation patterns for complex, multi-digit 
hand movements, and the role of the sensorimotor areas in ipsilateral hand movement control, by 
directly investigating whether complex unilateral movements of the le" and right hand could be 
distinguished from each other within one hemisphere.

We investigated the representation of complex hand gestures with high-%eld (7 tesla) functional 
magnetic imaging (fMRI). Nine healthy, able-bodied volunteers performed six unimanual hand 
gestures associated with the characters ‘8’, ‘F’, ‘L’, ‘S’, ‘W’, and ‘Y’ of the American Manual Alphabet, 
with their right and le" hand (in separate runs). As in our previous work (Bruurmijn et al. 2017), 
we divided the sensorimotor cortex into four regions-of-interest (ROIs: M1, S1, pre-M1, post-S1) 
to study the hand gesture representations in detail, where M1 represented the posterior part of the 
precentral gyrus (primary motor cortex), pre-M1 the anterior part of the precentral gyrus, S1 the 
anterior part of the postcentral gyrus (primary somatosensory cortex) and post-S1 the posterior 
part of the postcentral gyrus.

3
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Methods
Subjects
For the current study, we re-analysed data recorded for an earlier study (Bruurmijn et al. 2017). 
Nine healthy, able-bodied control subjects (mean age 44 ± 21 years, 4 females, all right handed as 
con%rmed by the Edinburgh Handedness Inventory (Old%eld 1971)) performed a hand gesture 
task, while functional brain images were acquired using 7 Tesla MRI. All subjects gave written 
informed consent to participate in this study, which was approved by the Medical Research Ethics 
committee Utrecht, according to the Declaration of Helsinki (Association 2013).

Gesture Task
In a single 7T fMRI scan session, subjects performed a unimanual hand gesture task. Prior to 
scanning, subjects were familiarized with the hand gestures, which were associated with the 
characters ‘8’, ‘F’, ‘L’, ‘S’, ‘W’, and ‘Y’ of the American Manual Alphabet. In the week before 
scanning, subjects practiced at home for 15 minutes per day in making the gestures with each hand.

One task run consisted of 10 trials per gesture. During the task, one of the six characters was 
presented pseudo-randomly on the screen every 15.6 seconds for subjects C1 and C2, and every 
16 seconds for the other subjects. Subjects made the gesture corresponding to the character shown 
and held the gesture for 6 seconds before relaxing. Each subject performed 4 task runs: 2 runs 
with the right hand (R1 and R2), and 2 runs with the le" hand (L1 and L2). Before each run, the 
subject was instructed which hand to use. !is yielded a total of 20 trials per gesture for each hand.

Data acquisition
MRI data were recorded using a Philips Achieva 7T MRI system with a 32-channel head coil. 
Anatomical T1- and PD-weighted images were acquired %rst (TR/TE = 6/1.4 ms, FA = 8º, voxel 
size = 1 × 1 × 1 mm3). For scans during the Hand Gesture Task, an EPI sequence was used (TR/
TE = 1300/27 ms for subjects C1 and C2, TR/TE = 1600/27 ms for all other subjects, FA = 70º, 
acquisition matrix size = 104 × 129, 26 slices, no gap, voxel size = 1.6 × 1.6 × 1.6 mm3).

Task preprocessing
Functional scans from the hand gesture task were preprocessed using SPM12 (http://www.%l.ion.
ucl.ac.uk/spm/). Scans were aligned and coregistered with the anatomical T1. For each subject, 
a beta-map and a t-map were calculated per run (L1, L2, R1, and R2) by %tting a general linear 
model (GLM), using the contrast “movement versus rest”, without making a distinction between 
the di#erent gestures. All statistical maps were calculated in subject space.

Regions of interest
M1 and S1 are the primary regions of interest, obtained in subject space using the Destrieux Atlas 
(Destrieux et al. 2010) and Desikan-Killiany Atlases (Desikan et al. 2006). However, to also assess 
higher level motor cortex as well, the areas anterior to M1 (pre-M1, part of the premotor area) and 
posterior to S1 (post-S1, roughly corresponding with Brodmann area 2), were also included as ROIs. 
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!ese four ROIs are therefore de%ned as follows, in which we have used the names of the regions 
in DKA and DA, and where ‘+’ denotes the voxel-wise union, and ‘̂ ’ denotes the intersection of 
two regions. M1 consists of the primary motor cortex and the posterior part of the precentral 
gyrus (PrecentralGyrusDA + [CentralSulcusDA ^ PrecentralGyrusDKA]). S1 consists of the primary 
sensory cortex, the anterior part of the postcentral gyrus (PostcentralGyrusDA + [CentralSulcusDA ^ 
PostcentralGyrusDKA]). Pre-M1 covers the anterior part of the precentral gyrus (PrecentralSulcusDA) 
and post-S1 the posterior part of the postcentral gyrus (PostcentralSulcusDA).

Decoding twelve gestures from one hemisphere
To assess the discriminability of hand gestures in the sensorimotor cortex of both the contralateral 
and ipsilateral hemisphere, a decoding approach was used similar to that of previous work from our 
group (Bleichner et al. 2013; Bruurmijn et al. 2017). !is analysis consists of several steps: voxel 
selection, classi%er training, classi%er testing, applied on volumetric data in subject space, and on 
the right and le" hemisphere separately.

Data were split in training and test sets. Per subject, two le" and two right hand task data sets 
were acquired in four separate fMRI runs (L1, L2, R1, and R2), whereas the classi%er was trained 
on contralateral and ipsilateral movements simultaneously. !is may have an e#ect on the overall 
activation patterns for both hands. !is e#ect was minimized by varying the order of the tasks 
across subjects. Moreover, the training and test sets were strictly separated. !is was done by 
selecting one run per hand as training set, resulting in four training sets consisting of one le" and 
one right hand run (L1&R1, L1&R2, L2&R1 and L2&R2). In each case, the remaining runs 
constituted the test set for validation. For each choice of the training set, the voxel selection was 
done separately, to prevent any bias that would be introduced by the test set.

Per training set, a combined t-map was compiled by taking, from the L and R “movement versus 
rest” t-maps described above, for each voxel the highest t-value from either the le"- or right-hand 
t-map. Subsequently, from each of the four principal ROIs, the 250 voxels with the highest absolute 
t-values were selected from the training set. !e BOLD signal in these voxels was detrended and 
transformed into z-scores for each separate run. For each trial, the BOLD amplitude was averaged 
around its peak, which occurs roughly between 6 to 8 seconds, by taking the mean of scans 5, 6, 
and 7 for subjects C1 and C2, and scans 4, 5, and 6 for other subjects (due to their di#erence in 
fMRI repetition time). !is resulted in a ‘feature vector’ of 250 features per trial.

For the classi%er, a support vector machine (SVM) was used, using a linear kernel and parameter C 
set to a %xed value of 1. Since an SVM is a binary classi%er, multiple SVMs needed to be combined. 
For each pair of gestures, a separate SVM was trained to distinguish between those two gestures (for 
example, to distinguish a ‘right hand 8’ from a ‘le" hand F’). !is results in 66 binary classi%ers. For 
classifying a single trial, each of the binary SVMs then casts a vote for the ‘winning’ gesture. !e 
gesture with the most votes from all binary classi%ers was chosen as the classi%er result (‘prediction’). 
All 66 binary SVMs had an equal weight in the voting process.

3
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Training a classi%er on the training set and applying it on the test set results in a ‘predicted’ gesture 
for each trial in the test set. !e classi%cation accuracy was calculated as the percentage of correctly 
classi%ed gestures. Since four training sets were created per subject (together with four associated 
test sets), the classi%cation procedure was repeated for each training/test set combination, resulting 
in four independent classi%cation scores. !ese four classi%cation scores were averaged resulting in 
one classi%cation score per ROI per subject.

To obtain the chance level (and associated con%dence interval) for the classi%cation, the classi%er was 
also trained on data with random permutations (Combrisson and Jerbi 2015) of the gesture label for 
each subject, hemisphere and ROI. !is procedure was repeated 500 times to obtain a distribution of 
the chance level. Averaging over these iterations yielded a chance level of 8.3% ± 0.06% (which is in 
agreement with the theoretical chance level for 12 classes). If the con%dence interval of the classi%cation 
scores does not contain the chance level of 8.3%, the classi%cation is considered to be better than chance.

As a post-hoc test, the e#ects of hemisphere and ROI were evaluated using a two-way repeated 
measures ANOVA with ROI and hemisphere as within-subject factors, at a signi%cance level of 0.05.

Confusion matrices give insight not only in the accuracy of classi%cation, but also in the nature 
of errors. !e confusion matrices were constructed as a cross-table, in which each cell indicates in 
percentages how many trials from a particular gesture (‘actual gesture’) were classi%ed as another 
gesture (‘predicted as …’). Separate confusion matrices were assembled per subject, hemisphere and 
ROI. Per hemisphere and ROI, one confusion matrix was calculated by averaging across subjects.

Each confusion matrix can be viewed as composed of four quadrants (sub-matrices). !e upper 
le" and bottom right quadrant re&ect the ‘within-hand’ confusion: values on the diagonal denote 
correct classi%cations, and o#-diagonal values re&ect confusions with a di#erent gesture from the 
same hand (e.g. between WL and FL). !e top right and bottom le" quadrant re&ect the ‘between-
hands’ confusion: the values on the diagonal of these sub-matrices indicate trials that were classi%ed 
as the correct gesture type, but with the wrong hand (e.g. between WL and WR).

For each subject, confusion matrices for all ROIs were averaged. A mean within-hand confusion 
score was calculated by averaging all the o#-diagonal values in the top le" and bottom right 
quadrant. A mean between-hands confusion score was calculated by averaging all the diagonal 
values of the top right and bottom le" quadrant. A paired-samples t-test was then conducted to 
compare the mean scores between within-hand and between-hand errors.
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Results
For both the le" and the right hemisphere, activation maps associated with contralateral hand 
gestures showed a hotspot in both the pre- and the post-central areas, mainly inside the central 
sulcus (Figure 1). During ipsilateral hand movements, however, activation was generally lower 
in regions around the central sulcus (right M1 and le" and right S1), but not in regions further 
away from the central sulcus, both in anterior and posterior direction. !is di#erence in mean 
activation was tested by paired-samples t-tests on average beta value per ROI for ipsilateral minus 
contralateral activity with Bonferroni-corrected alpha of 0.05/8 = 0.006, as there were 4 ROIs in 
each hemisphere: le" pre-M1: t8 = -2.40, P = 0.04; le" M1: t8 = -3.38, P = 0.01; le" S1: t8 = -6.15, 
P < 0.001; le" post-S1: t8 = -2.11, P = 0.07; right pre-M1: t8 = -2.41, P = 0.04; right M1: t8 = -4.02, 
P = 0.004; right S1: t8 = -4.77, P = 0.001; right post-S1: t8 = -4.24, P = 0.003.

For ROIs M1, S1, and post-S1 of both the le" and the right hemisphere, the classi%cation scores 
for decoding twelve gestures were signi%cantly higher than chance level (Figure 2A, group-
mean scores ranging from 14.0% to 35.4%, chance level 8.33%), indicating that it is possible to 
discriminate between the representation of hand gestures for the le" and right hand from the same 
subareas of the sensorimotor cortex. Two-way repeated measures ANOVA revealed that there was a 
signi%cant main e#ect of ROI (F3,6 = 10.8, P = 0.008), with M1 and S1 demonstrating the highest 
classi%cation scores. !ere was no signi%cant main e#ect of hemisphere (F3,6 = 1.06, P = 0.43) and 
no signi%cant interaction e#ect of ROI and hemisphere on the classi%cation score (F3,6 = 3.77, 
P = 0.08). !is indicates that, although sample sizes are small, there is currently no evidence that 
there is a di#erence between hemispheres.

Figure 1. Group activation patterns for contralateral and ipsilateral hand gestures. Colors indicate beta values 
averaged over subjects and are displayed on the average FreeSurfer brain, in which light and dark gray re(ect 
gyri and sulci, respectively. "e central sulcus and ROIs for classi!cation are delineated. A: Beta maps for 
contralateral movement (right hand activity plotted on the le% hemisphere and le% hand activity plotted on the 
right hemisphere). B: Beta maps for movement of the ipsilateral hand. Ipsilateral activity is mostly located anterior 
and posterior to the central sulcus, whereas activity inside the sulcus is low.
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Figure 2. A: Classi!cation scores for all 12 classes (contralateral and ipsilateral hand movements), per ROI. 
"e red line indicates chance level for 12 classes (8.3%, as simulated by the random permutation test). B and C: 
Confusion matrices for decoding ipsilateral and contralateral gestures #om four ROIs in the le% (B) and right (C) 
hemisphere, averaged across subjects. "e rows of the matrix re(ect how the trials for each gesture were classi!ed 
(in percentage). "e diagonal thus shows the percentage of correctly classi!ed trials for each gesture. Subscripts 
indicate gestures of the le% (‘L’) and the right (‘R’) hand.
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Figure 3. Activity in voxels selected for classi!cation, for ipsilateral and contralateral gestures on the le% 
hemisphere for one subject (C4). A: in(ated brain surface #om FreeSurfer, where light gray indicates gyri, and 
dark indicates sulci. "e red box indicates the zoom window in the lower panels. B: Beta pattern for each ipsilateral 
gesture (le% hand movement). "e ROIs used for classi!cation are delineated. C: Beta values for each contralateral 
gesture (right hand movement). D: di'erential beta pattern per gesture (contra - ipsi).

Confusion matrices (Figure 2B and C) reveal that gestures from the contralateral hand generally 
demonstrated higher classi%cation scores than gestures from the ipsilateral hand. A paired-samples 
t-test showed a signi%cant di#erence between within-hand and between-hands confusion scores 
(t8 = 2.63, P = 0.03), indicating that confusion is more likely to happen between di#erent gestures of 
the same hand (for example, WL with FL) than between the same gestures of the le" and right hand (for 
example, WL with WR). !is result may be explained by the di#erence in amplitude between ipsilateral 
and contralateral activations mentioned above. Since the tasks involved only moving one hand at a time, 
it is possible that the activity that was found for the ipsilateral hand is just a ‘mirrored’ version of the 
representation on the contralateral hemisphere, with only a lower amplitude, which in itself would drive 
classi%cation (Scherer et al. 2009). However, if this were true, the BOLD patterns for a gesture made 
with the ipsilateral and contralateral hand would be highly similar. To investigate this, we plotted the 
average beta patterns per gesture (see Figure 3 for the le" hemisphere of one representative subject C4). 
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Figure 4. Data glove amplitudes (averaged over all trials and subjects in arbitrary units) for both hands during 
the le% hand task and the right hand task. "e amplitudes of the hand that needs to be kept still are small with 
respect to the amplitudes of the hands with which the tasks were executed.

!ese patterns show that the same gesture generates di#erent spatial patterns for the contralateral 
and ipsilateral hand, supporting the notion of a distinct and independent representation of the 
ipsilateral hand gestures within the sensorimotor cortex. A potential bias for the presence of 
ipsilateral activity could be uninstructed movement of the contralateral hand during ipsilateral 
trials. However, %nger &exion measurements using a data glove worn during the tasks con%rmed 
that gestures were executed unimanually (Figure 4).

Discussion
Our present results reveal the existence of a detailed representation of ipsilateral hand gestures in 
the human sensorimotor cortex that can be distinguished from the representation of contralateral 
hand movements in this area, indicating that (subpopulations of) neurons within the human 
sensorimotor cortex are distinctly associated with ipsilateral hand movement. Importantly, 
the di#erence in representation is not merely the result of di#erent levels of activation between 
ipsilateral and contralateral hand gestures, but is associated with spatially distinct activation 
patterns, especially in primary somatosensory and motor cortex.

Observations about the activity of ipsilateral hand movement activity are in line with earlier reports 
(Verstynen 2004; Hanakawa et al. 2005; Diedrichsen et al. 2013; Buete%sch et al. 2014), as well 
as with single-cell studies in non-human primates that demonstrated that the sensorimotor cortex 
contains subsets of neurons that activate speci%cally during ipsilateral movement (Tanji et al. 1988; 
Donchin et al. 1998; Kermadi et al. 1998). !e current study extends these %ndings to humans 
and shows ipsilateral hand movement representation at the level of mm-sized neuronal ensembles, 
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which may indicate higher concentrations of ipsilateral neurons responding in speci%c foci. !e 
ROIs M1 and S1 demonstrated the highest classi%cation scores, despite relatively low activity levels. 
!is %nding shows that to the ability to decode detailed movements from the cortex does not 
require high activity in the target regions and agrees with previous %ndings from Diedrichsen et 
al. (Diedrichsen et al. 2013).

We propose that the observation that both hands activate di#erentiable patterns in the same 
hemisphere re&ects the presence of at least a subset of cross-callosal projections that conveys 
information about movements of one hand from the contralateral to the ipsilateral sensorimotor 
area and that exhibits a convergence on speci%c foci within the ipsilateral hand area that are distinct 
from foci in the same region activated during contralateral hand movements. !ese %ndings indicate 
that at least part of the cross-callosal projections are concentrated in foci that are at a spatial scale 
that is detectable with fMRI (1.5-2 mm). If ipsi- and contra-lateral hand movement representations 
are in reality more detailed than this range (smaller ensemble sizes than 1.5-2 mm), the current 
resolution may have led to averaging across adjacent ensembles, and classi%cation may improve 
with increasing fMRI resolution.

Transcallosal projections have been attributed both inhibitory and excitatory roles (Knaap and 
Ham 2011). !e speci%city of ipsilateral patterns for di#erent gestures shown in the current study, 
only visible with a classi%cation algorithm, cannot be explained by the concept of cross-callosal 
inhibition of the hand region. Given the reports on inhibitory function (Beaulé et al. 2012), 
however, we argue that both excitatory and inhibitory projections exist, but that the former bears 
functional relevance in terms of informing one hemisphere of the movements of the ipsilateral hand, 
thereby integrating information from both hemispheres, and contributing to optimal coordination 
of hand movements with respect to the rest of the body. !is mechanism may also explain why 
unilateral stroke o"en a#ects contralateral and ipsilateral movements (Colebatch and Gandevia 
1989; Sainburg and Du# 2006).

According to recent work, examining active %nger presses and passive %nger stimulation of one hand 
in both hemispheres, ipsilateral representations are mostly associated with planning and initiation 
of motor acts and less with feedback control, since ipsilateral %nger-speci%c representation was 
most clear in premotor and parietal regions (Berlot et al. 2019). However, despite the lower activity 
in the M1 and S1 ROIs, we found the highest decoding accuracy in these areas, indicating that 
ipsilateral and contralateral representations are especially distinct in these primary sensorimotor 
areas, which would be in line with a role for ipsilateral areas during the actual execution phase of 
the hand gestures. Di#erent levels of complexity of the movements performed in this study and the 
work of Berlot et al. (Berlot et al. 2019) may be associated with this discrepancy. Indeed, increasing 
movement complexity is known to be associated with increased activation of ipsilateral M1 (Seidler 
et al. 2004; Verstynen 2004; Buete%sch et al. 2014) and transcallosal integration and ipsilateral 
movement control have been suggested to be especially relevant or pronounced for more complex 
movements (Knaap and Ham 2011).
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However, there are several shortcomings to the current study. First, performance of the support 
vector machine could have been made worse by requesting subjects to only move a single hand 
during each task run. For recording all hands, the task run was repeated to obtain two runs for the 
right hand and two runs for the le" hand. When decoding both hands from the same hemisphere, 
runs for di#erent hands needed to be combined. !e recalibration at the start of each run of fMRI 
scans may have made the BOLD estimates within runs slightly more similar, which could bias the 
classi%er toward correct identi%cation of at least the hand. !erefore, the training set did not include 
trials from within the same run as the test set. if all data were acquired in a single run, which would 
have allowed a leave one out training scheme, increasing the size of the training set. A single run is 
however impractical due to excessive challenging of the subject and scanner hardware.

A second limitation lies in the possibility of ipsilateral decoding to be driven by variations in 
di(culty between the movements. Whereas the gestures 8 and F, and W and Y are similar in 
terms of complexity of movement execution (8 and F are each other’s mirrored version in terms 
of &exion and extension of the %ngers, and so are W and Y), the gesture S amounts to making a 
%st and can be regarded as less demanding. However, the confusion matrices of the classi%cation 
scores for each gesture, demonstrated that the classi%cation results were not exclusively driven by 
this di#erence in complexity, since the diagonal pattern (indicating correct classi%cation) was also 
present for the other gestures.

Lastly, the choice of parameters for training the support vector machine may have been suboptimal. 
In this study, classi%ers were trained and tested on each subject individually. !is was done 
because activity distributions vary between subjects, and it is crucial to capture minute variations 
for discriminating between complex gestures. !e training of the classi%er is a#ected by a priori 
choices of hyperparameters or a training kernels and ideally, these choices are optimized for every 
subject. !is however requires substantial amounts of data for independently tuning and testing 
the classi%er, which were not available due to the limitations of an fMRI design. !is process would 
become more accessible with using other recording techniques, such as intracranial recordings, 
which have a superior temporal resolution.

Taken together, we here provide support for the existence of patches of sensorimotor cortex that 
are uniquely associated with the execution of complex ipsilateral hand gestures, and propose 
transcallosal interhemispheric information transfer as a mechanism for the generation of such 
activity. Our %ndings shed light on the importance of ipsilateral activity beyond the coordination 
of bimanual movements.
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Abstract
Objective
!e sensorimotor cortex is o"en selected as target in the development of a Brain-Computer 
Interface, as activation patterns from this region can be robustly decoded to discriminate between 
di#erent movements the user executes. Up until recently, such BCIs were primarily based on activity 
in the contralateral hemisphere, where decoding movements still works even years a"er denervation. 
However, there is increasing evidence for a role of the sensorimotor cortex in controlling the 
ipsilateral body. !e aim of this study is to investigate the e#ects of denervation on the movement 
representation on the ipsilateral sensorimotor cortex.

Approach
Eight subjects with acquired above-elbow arm amputation and nine controls performed a task in 
which they made (or attempted to make with their phantom hand) six di#erent gestures from the 
American Manual Alphabet. Brain activity was measured using 7T functional MRI, and a classi%er 
was trained to discriminate between activation patterns on four di#erent regions of interest (ROIs) 
on the ipsilateral sensorimotor cortex.

Main results
Classi%cation scores showed that decoding was possible and signi%cantly better than chance level for 
both the phantom and intact hands from all ROIs. Decoding both the le" (intact) and right (phantom) 
hand from the same hemisphere was also possible with above-chance level classi%cation score.

Signi#cance
!e possibility to decode both hands from the same hemisphere, even years a"er denervation, 
indicates that implantation of motor-electrodes for BCI control possibly need only cover a single 
hemisphere, making surgery less invasive, and increasing options for people with lateralized damage 
to motor cortex like a"er stroke.

Binnenwerk Mark - V2.indd   78Binnenwerk Mark - V2.indd   78 11-03-2024   13:1411-03-2024   13:14



79

Decoding Attempted phantom hand movements "om ipsilateral sensorimotor areas a#er amputation

Introduction
When investigating brain activity associated with movements in the context of brain-computer 
interfaces (BCIs), it is intuitive to consider sensorimotor activity contralateral to the side of 
movement, since the vast majority of axons of the corticospinal tract cross the midline in the 
brainstem (Kim et al., 1993). However, the ipsilateral hemisphere may also contain detailed 
information on motor movements. In the context of implantable BCIs, being able to decode 
movement information also from the ipsilateral hemisphere opens the possibility of electrode 
implantation on a single hemisphere. However, it is required that the ipsilateral movement 
representation is still intact a"er denervation. !is is the topic we address in this study.

!e primary sensorimotor cortex (primary motor cortex M1 and primary sensory cortex S1) 
reveals a somatotopic organisation, in which the di#erent body parts are orderly layed out along 
the cortex (Pen%eld & Boldrey, 1937). For di#erent movements, this organisation yields di#erent 
(spatial) activation patterns (Grodd et al., 2001), even on the level of within-limb movements, such 
as individual %nger movements (Dechent & Frahm, 2003; Hadoush et al., 2011; Diedrichsen et al., 
2013; Siero et al., 2014). !e existence of these spatially distinguishable patterns and the fact that the 
activity is under voluntary control makes the sensorimotor cortices an ideal target area for implanted 
BCIs (Leuthardt et al., 2004; Wolpaw, 2007; Vansteensel et al., 2016). Machine learning algorithms 
can then be trained using activation patterns in the sensorimotor cortex for particular movements, 
with the aim of identifying the movement that was made by the participant, which can then be 
used to drive an actuator or communicative device (Hochberg et al., 2006; Collinger et al., 2013).

In addition to movement representations on the contralateral hemisphere, the ipsilateral hemisphere 
may also contain detailed information on motor movements, as not all axons pathways cross the 
midline (Alawieh et al., 2017), and because the two hemispheres are connected via the corpus 
callosum (Aboitiz et al., 1992). Indeed, the ipsilateral sensorimotorcortex is shown to activate during 
movements, albeit less strongly than the contralateral hemisphere (Seidler et al., 2004; Verstynen, 
2004). By a virtual lesion using transcranial magnetic stimulation, the ipsilateral M1 has been 
found to play a role in the timing of muscle recruitment (Davare et al., 2006). Also, the amount of 
ipsilateral activity correlates with task di(culty and skill (Seidler et al., 2004; Buete%sch et al., 2014).

!e presence of activity ipsilateral to the side of movement has the potential for doubling the 
degrees of freedom obtainable from a single hemisphere, and thus from a unilateral BCI implant. 
!is would be relevant for people who lost hand function following contralateral stroke. Indeed, 
decoding movements from the ipsilateral cortex, both coarse arm movements as well as %ne-
grained individual %nger articulations, has been successfully applied using di#erent modalities, 
such as electrocorticography (Scherer et al., 2009; Bundy & Leuthardt, 2019), functional MRI 
(Diedrichsen et al., 2013; Gallivan et al., 2013; Berlot et al., 2019) and microelectrode arrays 
(Downey et al., 2020). However, the context of these studies does not match the conditions under 
which BCIs would be applied in practise, which would typically involve people who are paralysed 
or who have lost limbs. !ese clinical conditions could challenge the well-ordered somatotopic 
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mapping through brain plasticity causing shi"s in movement- or sensory-based brain activation 
patterns. Studies in individuals with upper-limb amputation have reported an ‘invasion’ of lip, 
chin and shoulder activity patterns into the former hand area (Elbert et al., 1994; Dettmers et 
al., 2001; Lotze et al., 2001). However, by applying decoding techniques to attempted gestures 
with the phantom (missing) hand in people with amputation, it has been found that functional 
representations in the hand area contralateral to the amputation are still intact (Kikkert et al., 
2016; Bruurmijn et al., 2017).

It is yet unknown wether ipsilateral activity is still usable for decoding motor movements in 
people who have been unable to move their limbs for an extended period of time. Similar to the 
contralateral cortex, the ipsilateral activity seems subject to change a"er denervation: structural 
and functional di#erences have for example been observed in people with amputation compared 
to controls (Hamzei et al., 2001) and expanded ipsilateral activation has been found in an athlete 
long jumper with lower-limb amputation (Mizuguchi et al., 2019). In addition, ipsilateral activity 
in people with arm amputation who moved their intact hand is higher than that of non-amputated 
control subjects (Bogdanov et al., 2012; Philip & Frey, 2014). Also on a network level, the functional 
inter-hemispheric connectivity has been found to be reduced a"er denervation (Bramati et al., 2019).

To investigate if denervation is consequential for the use of ipsilateral movement representations 
for BCI control, we expand our previous work on decoding six (attempted) hand gestures from the 
sensorimotor cortex (Bleichner et al., 2013; Bruurmijn et al., 2017). Subjects with acquired above-
elbow arm amputation were instructed to attempt making detailed gestures with their phantom 
hand while in a 7T MRI scanner. A control group performed a similar task with only executed 
hand gestures. A classi%er was trained for predicting which gesture was made based on the fMRI 
activity patterns from the sensory and motor areas ipsilaterally to the moving hand. Parts of the 
dataset presented here have been published elsewhere, but are included here for reference purposes. 
!is concerns the classi%cation scores from the contralateral hemisphere for both the amputation 
and control groups (Bruurmijn et al., 2017), and the classi%cation from the ipsilateral hemisphere 
in the amputation group (Bruurmijn et al., 2020). !e results from this study could contribute to 
improving the speed and e(ciency of BCIs that require only an unilateral implantation procedure.

Methods
Subjects
Eight subjects with an amputated arm were recruited (age 52 ± 12 years [M ± SD], 1 female), with 
transhumeral amputation of their right (N=7) or le" hand (N=1). Amputations were acquired 
between 1.7 and 31.1 years ago (mean and standard deviation 16.4 ± 11.5 years). Nine control 
subjects were also recruited (no arm amputation, age 44 ± 21 years [M ± SD], 4 females). !ere 
was no signi%cant di#erence in age between the amputation and control group (Mann-Whitney 
U test, U=28.5, p=0.50). All subjects were right-handed or were right-handed before amputation 
according to the Edinburgh Handedness Inventory (Old%eld, 1971). !e study was approved by 
the medical-ethical committee of the University Medical Center Utrecht and all subjects gave 
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their written informed consent in agreement with the declaration of Helsinki (2013) (Association, 
2013). We have previously published on part of this data set with a di#erent research question 
(Bruurmijn et al., 2017).

Gesture task
One week prior to the scanning session, all subjects were familiarized with six hand gestures selected 
from the American Manual Alphabet: ‘8’, ‘F’, ‘L’, ‘S’, ‘W’, and ‘Y’. Subjects were supplied with an 
online training video and were instructed to practice daily with both their intact hand and their 
phantom hand (independently).

During the fMRI scanning session, one character was presented on the screen every 16 seconds, 
and subjects were instructed to make the corresponding gesture with either their intact hand, or 
to attempt making the gesture with their phantom hand. !e task (60 trials, 10 trials per gesture) 
was run two times for each hand. On their intact hands, subjects wore data gloves to record %nger 
&exion and extension (5DT Inc., Irvine, USA).

Functional MRI
Data was acquired using a 7T functional MRI (fMRI). Anatomical T1- and proton density-
weighted images were acquired %rst (repetition time [TR]/echo time [TE] = 7.0/1.4 ms, &ip 
angle = 8º, voxel size = 1 × 1 × 1 mm3 for T1-weighted image; repetition time/echo time = 5.0/1.4 
ms, &ip angle = 1º, voxel size = 1 × 1 × 1 mm3 for proton density-weighted image). Prior to the 
Gesture Task, subjects performed a localiser task in which they opened and closed their intact 
hand during a ‘move cue’, and kept their hand still during a ‘rest cue’ (blocks of 30 seconds each; 
4 blocks in total). During this task 120 echo-planar imaging (EPI) images were acquired (TR/
TE = 2000/27 ms, &ip angle = 70º, acquisition matrix size = 104 × 129, 33 slices, voxel size = 1.6 
× 1.6 × 1.6 mm). !e results were analyzed in real time using Philips IVIEWBOLD analysis 
so"ware, and were then used to optimally position the fMRI %eld of view for the Gesture task.

For the Gesture Task, an EPI sequence was used with TR/TE = 1600/27 ms, FA = 70º, acquisition 
matrix size = 104 × 129, 26 slices, no gap, and voxel size = 1.6 × 1.6 × 1.6 mm3. All EPI scans were 
acquired in transversal orientation, such that both the le" and right hand region were in the %eld 
of view. A total of 2400 images were acquired in 4 runs of 600 images.

FMRI statistical maps and regions of interest
Preprocessing and %rst level analysis were performed with SPM12 (Statistical Parametric Mapping, 
http://www.%l.ion.ucl.ac.uk/spm/). Functional images were slice-time corrected, realigned to the 
mean functional image, and coregistered with the T1-weighted anatomical scan. A general linear 
model (GLM) was %tted using six regressors per run (one for each gesture: ‘8’, ‘F’, ‘L’, ‘S’, ‘W’, and 
‘Y’). For each gesture, a t-map was calculated based on the contrast ‘gesture versus rest’, yielding 
six di#erent t-maps for each hand: ‘8 versus rest’, ‘F versus rest’, et cetera.

4
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!e T1-weighted image was corrected for %eld inhomogeneities by dividing the T1-weighted 
image by the proton density weighted image (Moortele et al., 2009). A surface reconstruction was 
made of the resulting image using Freesurfer (Fischl et al., 1999). !e sensorimotor cortex of each 
hemisphere was divided into four regions of interest (ROIs) (Bruurmijn et al., 2017), based on the 
FreeSurfer parcellation according to the Desikan-Killiany atlas (DKA) and Destrieux atlas (DA) 
(Desikan et al., 2006; Destrieux et al., 2010). !e four ROIs are de%ned as follows, in which we have 
used the names of the regions in DKA and DA, and where ‘+’ denotes the voxel-wise union, and ‘̂ ’ 
denotes the intersection of two regions. M1 consists of the primary motor cortex and the posterior 
part of the precentral gyrus (PrecentralGyrusDA + [CentralSulcusDA ^ PrecentralGyrusDKA]). S1 
consists of the primary sensory cortex, the anterior part of the postcentral gyrus (PostcentralGyrusDA 
+ [CentralSulcusDA ^ PostcentralGyrusDKA]). Pre-M1 covers the anterior part of the precentral gyrus 
(PrecentralSulcusDA) and post-S1 the posterior part of the postcentral gyrus (PostcentralSulcusDA).

Decoding gestures from the ipsilateral hemisphere
First, we wanted to assess if activity from the ipsilateral hemisphere of people with arm amputation 
who attempted to move their phantom hand still contained su(cient information to decode the 
di#erent gestures. !e results of decoding from the ipsilateral hemisphere were compared to the 
results of decoding from the contralateral hemisphere. !is was done for the phantom and intact 
hand in subjects with arm amputation, and for both hands in controls. For this purpose, a support 
vector machine (SVM) classi%er was trained and tested using the activation-levels of voxels of the 
ipsilateral and contralateral hand as features, for each hemisphere and each ROI.

In each ROI, the 250 voxels that showed the highest t-value in any of the six t-maps for gestures 
of the ipsilateral hand were selected. !e blood-oxygen-level dependent signal (BOLD signal) in 
these voxels were linearly detrended and converted into z-scores. !e BOLD signal is indicative of 
neuronal activity, but it is delayed and dispersed in time. As the peak of the BOLD response is most 
likely to contain the most discriminative information (Andersson et al., 2011; Siero et al., 2011), the 
mean BOLD signal around the peak of the BOLD response (corresponding to scans 4, 5, and 6 of 
each trial) was used as feature in training the classi%er (Bleichner et al., 2013; Bruurmijn et al., 2017).

For each hand, the two runs were concatenated into a single set of 120 trials (right hand runs R1 and 
R2, and le" hand runs L1 and L2). !e classi%er was trained on a data set created by leaving out 6 
trials from the task (one gesture of each type). !ese le"-out trials were then used as the validation 
set. !is process was repeated 20 times for each hand, so that each set of 6 gestures served as the 
validation set once, yielding a leave-6-out cross validation scheme. !e accuracy of the classi%er is 
represented by the percentage of correctly predicted gestures.

For distinguishing between six classes, six binary SVMs are required in a ‘one-versus-all’ approach: Each 
SVM is trained to classify between one gesture and all other gestures. When using the classi%er on the 
validation set, the class with the largest distance to the decision boundary is selected as the prediction.
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!e classi%cation scores for ipsilateral gestures were assessed using a repeated-measures ANOVA 
using Group (amputation or control) as between subject factor, the four ROIs (pre-M1, M1, S1, 
post-S1) as separate within-subject measures, and Hand (le" or right hand, or intact and phantom 
hand in amputation group) and Side (contralateral or ipsilateral hemisphere) as repeated within-
subject factors. Results were deemed signi%cant when α < 0.05.

We conducted a separate analysis to assess to what extent ipsilateral movement activity can be used 
to classify movements from both hands from a single hemsiphere. For that purpose, we repeated the 
decoding analysis on both hemispheres of both the amputation and control group, but now with 
using 12 instead of 6 classes. As training sets we used any combination of the le" and right hand (L1 
& R1, L1 & R2, L2 & R1, and L2 & R2), which was used to classify the data of the remaining run 
of each hand. In contrast to the one-versus-all approach for the 6-classes case (for which drawing 
the borders can be challenging as the number of classes grows), here we used a ‘one-versus-one’ 
approach, in which each SVM was trained to choose between two classes. For 12 classes, this 
results in a combination of 66 SVMs (“12 choose 2”). Results were tested using a GLM with four 
dependent variables (classi%cation scores in M1, S1, preM1, and postM1) and group (amputation 
and control subjects) as between subjects factor.

Testing against chance level
For each subject and each hemisphere, the chance level of classi%cation was calculated using 
500 iterations of randomly assigned class labels. !is chance level was then subtracted from the 
classi%cation scores before conducting the ANOVA. !is way, the signi%cance of the intercept 
re&ects whether classi%cation scores were signi%cantly above chance for each ROI.

Data glove amplitudes
All subjects wore data gloves on their (intact) hands, measuring %nger &exion and extension. Data 
acquired with the data glove was used to assess any confounding e#ects of hand movement of the hand 
that should be kept still during the task. For this purpose, the mean data glove amplitude for each hand 
was correlated with the mean 12-class classi%cation scores (averaged over ROIs and hemispheres).

Results
Classi#cation of the ipsilateral hand (6 classes)
Classi%cation scores (Figure 1) for decoding from the contralateral hemisphere ranged from 20.8% 
to 95.8% (mean and standard deviation for all subjects, ROIs and hemispheres: 50.9%±17.8%). 
For decoding from the ipsilateral hemisphere, the classi%cation scores ranged from 20.0% to 
83.3% (mean and standard deviation for all subjects, ROIs and hemispheres: 41.1±12.6%). !e 
random permutation test yielded a chance level of 16.7% (overall, averaged over subjects), which is 
in accordance of the theoretical chance level using six classes. When subtracting the chance level 
from the classi%cation scores, the intercept of the multivariate test was signi%cantly higher than 
0% (F(4,12)=44.8, p<0.001), meaning that classi%cation in general was higher than chance level. 
Post-hoc tests revealed that classi%cation scores were signi%cantly higher than chance level in all 
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ROIs (pre-M1: F(1,15)=165, p<0.001; M1: F(1,15)=177, p<0.001; S1: F(1,15)=202, p<0.001; post-
S1: F(1,15)=183, p<0.001). Interestingly, classifaction was in general higher in the ampution than 
in the control group (main e#ect of ‘Group’; (F(4,12)=4.0, p=0.027).

Figure 1. Classi!cation scores for the le% and right hands (or intact and phantom hands in subjects with arm 
amputation) when decoded #om the contralateral hemisphere (A) and #om the ipsilateral hemisphere (B). "e 
bars show the average score per group and per ROI, and the whiskers indicate the standard deviation. Data #om 
decoding the contralateral hemisphere (presented before in (Bruurmijn et al., 2017)) and data for the controls 
(presented in (Bruurmijn et al., 2020)) are shown in this !gure for comparison.

Classi%cation scores also depended on whether gestures were decoded from the ipsilateral or 
contralateral hemisphere (main e#ect of ‘Side’; F(4,12)=20, p<0.001). Post-hoc tests showed that 
classi%cation was better from the contra than the ipsi-lateral hemisphere in M1 (F(1,15)=15.5, 
p=0.001), S1 (F(1,15)=76.7, p<0.001), and post-S1 (F(1,15)=5.46, p=0.034), but not pre-M1 
(F(1,15)=3.09, p=0.099). !e di#erence in classi%cation scores between the ipsi and contralateral 
hemispere varied between amputation and control subjects (‘Side*Group’ interaction; F(4,12)=4.75, 
p=0.016), with larger di#erences in the control group in S1 (S1: F(1,15)=14.7, p=0.002), but not 
in the other ROIs (M1: F(1,15)=4.5, p=0.05; p=0.002; pre-M1: F(1,15)=0.063, p=0.81; post-S1: 
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F(1,15)=0.48, p=0.50). For subjects with amputation the classi%cation scores for S1 in the ipsi- and 
contralateral hemisphere were thus more similar for both hands.

!ere was also a signi%cant three-way interaction between Side, Group, and Hand (F(4,12)=9.66, 
p=0.001), which was caused by M1 (F(1,15)=32.28, p<0.001) and S1 (F(1,15)=8.59, p=0.010), but 
not preM1 (F(1,15)=0.00, p=0.979) and post-S1(F(1,15)=1.67, p=0.215). !e combination of the 
Side*Group and the Side*Group*Hand interactions can be most straightforwardly conceptualized 
by the notion that classi%cation is better from the contralateral than the ipsilateral hand, but 
that this e#ect is absent for the phantom hand of people with amputation, where classi%cation is 
similar for ipsi- and contralateral hand movements. Furthermore, there was a signi%cant interaction 
e#ect of ‘Hand*Group’ (F(4,12)=7.25, p=0.003), which indicates that the di#erence between the 
hands varied between amputation and control subjects. While one would expect such di#erences 
to arise as a result of di#erences between the hands that are present in subjects with amputation 
but absent in control subjects, we could not support this using any of the post-hoc tests for the 4 
ROIs (M1: F(1,15)=0.62, p=0.44; S1: F(1,15)=2.8, p=0.11; pre-M1: F(1,15)=1.75, p=0.21; post-S1: 
F(1,15)=0.012, p=0.91). !ere was no signi%cant main e#ect of ‘Hand’ (F(4,12)=0.66, p=0.63) 
and no signi%cant interaction e#ect of ‘Hand*Side’ (F(4,12)=3.21, p=0.52).

Classi#cation of both hands from one hemisphere (12 classes)
When focussing on one hemisphere and training a classi%er to distinguish between 12 gestures (6 for 
each hand), the classi%cation scores overall ranged from 8.3% to 60.2% (mean and standard deviation 
for all groups, hemispheres and ROIs together: 26.3±10.0%). Chance level from the random 
permutation test was 8.3%, which was in accordance with the theoretical chance level for 12 classes.

Figure 2. Classi!cation scores for the decoding of both hands #om a single hemisphere, per ROI and per group. 
"e bars show the average score for each ROI. "e whiskers indicate the standard deviation. Data for controls are 
also presented in (Bruurmijn et al., 2020).

Again, chance level was subtracted from the classi%cation scores, so that the intercept can be used 
to test the classi%cation scores against chance level. Indeed, there was a multivariate e#ect for the 
intercept (F(4,12)=27.34, p<0.001), which conforms above chance-level classi%cation in all ROIs 
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(M1: F(1,15)=121.4, p<0.001; S1: F(1,15)=113.4, p<0.001; pre-M1: F(1,15)=81.83, p<0.001; post-
S1: F(1,15)=121.4, p<0.001).

!ere was a main e#ect of ‘Group’ on the classi%cation scores (F(4,12)=3.74, p=0.034). Post-hoc 
univariate tests reveal that this e#ect was mainly caused by the two ROIs pre-M1 (F(1,15)=12.37, 
p=0.003) and post-S1 (F(1,15)=6.52, p=0.022), where classi%cation was better in subjects with 
amputation than in control subjects. !ere was no signi%cant di#erence between controls and 
amputated subjects for the other two ROIs (M1: F(1,15)=1.46, p=0.245; S1: F(1,15)=0.081, p=0.780).

!ere was also a signi%cant main e#ect of ‘Hemisphere’ (F(4,12)=4.87, p=0.016). Post-hoc 
univariate tests show that this e#ect was mainly located in the ROI pre-M1 (F(1,15)=9.16, p=0.009). 
!e other ROIs do not show a signi%cant di#erence between hemispheres (M1: F(1,15)=2.60, 
p=0.128; S1: F(1,15)=0.822, p=0.379; post-S1: F(1,15)=1.42, p=0.253).

Finally, there was a signi%cant interaction e#ect of ‘Hemisphere*Group’ (F(4,12)=5.06, p=0.013). 
!is suggests that there is a di#erence in classi%cation scores between the hemispheres in control 
subjects compared to subjects with amputation. !is interaction e#ect was only signi%cant in 
S1 (F(1,15)=18.13, p=0.001), not in the other ROIs (M1: F(1,15)=0.384, p=0.545; pre-M1: 
F(1,15)=2.19, p=0.160; post-S1: F(1,15)=0.022, p=0.885).

Figure 3. Mean data glove amplitudes (!nger (exion and extension; averaged over all !ngers) for the hand that 
should move making the gestures and for the hand that should be kept still during the ‘ le% hand task’ (A) and the 
‘right hand task’ (B). "e mean data glove amplitude was calculated over the two runs for each hand combined. 
Data in B have been presented before in (Bruurmijn et al., 2017).
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Data glove amplitudes and correlation with classi#cation scores
Hand movements were measured using a data glove to assess the presence of confounding motion 
of the still hand. Data glove mean &exion and extension amplitudes for both the ‘moving’ and 
‘still’ hands are shown in Figure 3. As expected, data glove amplitudes were lower in the hand that 
should be kept still during the task (with the exception was subject A2). For neither hand there 
was a signi%cant correlation with the 12-class classi%cation scores (task ‘Le" hand’, moving hand: 
r(15)=0.20, p=0.44; still hand: r(15)=-0.30, p=0.47; task ‘Right hand’, moving hand: r(15)=0.44, 
p=0.28; still hand: r(15)=0.36, p=0.16). !e between-subject variations in classi%cation accuracy 
could therefore not be accounted for by unwanted movements of the still hand.

Discussion
In this study, we decoded attempted gestures of a phantom hand in people with arm amputation from 
the ipsilateral sensorimotor cortex, and compared the results to a control group. Classi%cation scores 
showed that decoding was signi%cantly better than chance level for both the phantom and intact 
hands, from both hemispheres in all ROIs of the sensorimotor cortex (M1, S1, pre-M1, and post-S1).

As in our previous work, where we focused on contralateral decoding (Bruurmijn et al., 2017), 
classi%cation from the ipsilateral hemisphere was possible even years a"er denervation. Overall, 
classi%cation was better when decoding gestures from the contralateral hemisphere than from the 
ipsilateral hemisphere. However, in subjects with arm amputation, the di#erence in classi%cation 
scores between the two hemispheres was smaller for the phantom hand than for the intact hand. !is 
%nding suggests that in people with amputation, compared to the intact hand, the phantom hands 
show an ipsilateral representation that is stronger with respect to the contralateral representation. 
Further research is needed to investigate the nature of this %nding.

!e two ROIs in the amputation group that were notably succesful (relative to control subjects) 
in distinguishing between the two hands from one hemisphere were pre-M1 and post-S1. !ese 
ROIs were de%ned to be more anterior and posterior from M1 and S1. Indeed, it has been shown 
that information about movements can not only be found in the primary sensorimotor cortex, 
but also in adjacent regions, such as the premotor area (Chouinard & Paus, 2006; Ojakangas et 
al., 2006). However, also in the amputation group, classi%cation was still best from the primary 
sensorimotor areas M1 and S1, which implies that these generally carry the most information even 
for ipsilateral decoding.

As attempted movement of a phantom hand could be challenging for people with hand amputation, 
especially the detailed articulations that were required for this task, it is possible that subjects 
unconsciously mirrored the requested movements with their intact hand. To monitor this e#ect, 
all subjects wore data gloves that measured &exion and extension of all %ngers. During the tasks in 
which the subjects were instructed to attempt moving their phantom hand, the data glove showed 
that the intact hand (which should be kept still during this task) was also slightly moved: generally, 
these amplitudes were higher than those of the still hand in controls. However, there were no 
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signi%cant correlations between data glove amplitudes and classi%cation accuracy in either group. 
It is therefore unlikely that these minor hand movements can account for the high classi%cation 
accuracy when decoding activity of the phantom hand using the ipsilateral hemisphere.

Application to Brain-Computer Interfaces
Our results build upon the increasing evicence that the sensorimotor cortex holds information 
about the ipsilateral movements (Hotson et al., 2014; Downey et al., 2020) and extends these 
%ndings by also showing ipsilateral decoding of %ne-grained hand gestures in subjects with arm 
amputation. Especially the ability to also discriminate between the hands, is an important %nding 
for the development of implantable BCIs, speci%cally those using subdurally implanted electrode 
grids (Vansteensel et al., 2016). !is suggest the possibility of a unilaterally implanted grid to decode 
bilateral hand movements, thereby e#ectively doubling the number of states that can be decoded 
from a single hemisphere by performing hand movements.

!e development of invasive BCIs is most relevant for people with so-called locked-in syndrome 
(LIS), unable to execute motor commands at all. In this study, we included individuals with 
arm amputation. For the rehabilitation of this group, multiple solutions have been developed, 
including prosthetic devices controlled by recording signals from the peripheral nervous system, 
even providing sensory feedback using a#erent signals (for reviews on this topic, see (Navarro et al., 
2005; Ghafoor et al., 2017)). However, the results of the present study, and the choice for individuals 
with arm amputation as subjects, should be understood in the context of implantable BCIs for LIS. 
While there are di#erences between people with amputation and people su#ering from LIS (as the 
former were still able to execute hand gestures with their intact hand), we included people with 
arm amputation because of their ability to perform attempted movements rather than executed 
movements and therefore display the expected similarities in the e#ects caused by denervation. !is 
study therefore represents a necessary step to establish a solid proof of principle for the possibility to 
decode motor activity in cortex that is potentially reorganized. How ipsilateral activation patterns 
develop a"er denervation of both hemispheres is a topic for future research.

In addition to LIS patients, the current results may also be relevant for people who have hemiparesis 
following a unilateral stroke a#ecting the sensorimotor cortex. Grasping of the ipsilateral hand has 
already successfully been decoded using electrocorticography (ECoG) in patients with tetraplegia 
and spinal cord injury (Downey et al., 2020) and from patients with a lesion in the motor areas 
(Hotson et al., 2014). As current results indicate the the ipsilateral hemisphere contains a detailed 
representation of ipsilateral movements, the non-a#ected hemisphere could in theory be a target for 
a BCI that helps a patient to perform movements normally initiated by the damaged hemisphere. 
However, a currently unknown factor is the nature of the ipsilateral representation, which might 
also originate from interhemispheric projections from the contralateral motor cortex through the 
corpus callosum. In that case, the ipsilateral representation could be a#ected by the stroke. Further 
research is thus needed on the exact nature and origin of the ipsilateral movement representations 
and the potential e#ect of stroke on these representations.
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For classi%cation of both hands from the same hemisphere, scores were signi%cantly above chance 
level. Although this is an indication that meaningful information is present, it should be noted that 
the chance level threshold is a low bar for a BCI to be e#ective. In practice, for the users of a BCI, 
decoding accuracy should be much higher to be of practical use. However, the results presented 
here are based upon classi%cation of fMRI patterns. For a practical BCI, fMRI is not suitable 
as a recording modality, as it is costly and not portable, and has a limited temporal resolution. 
However, it is known that there is a good correspondence between BOLD activity in fMRI and 
high-frequency band activity in ECoG (Siero et al., 2014). !is renders fMRI an eligible non-
invasive research tool. Because of other inherent limitations of BOLD measurements, such as 
scanner noise or head motion, one might expect some gain in classi%cation accuracy when using 
subdurally implanted electrodes. Bleichner et al. (Bleichner et al., 2016) and Branco et al. (Branco 
et al., 2017) have shown that gestures can be decoded from the sensorimotor cortex using ECoG 
with close to perfect accuracy. !is indeed indicates the presence of a performance gap between 
ECoG and fMRI, suggesting the ultimate practical feasibility of an implantable BCI that relies on 
decoding bilateral movements from a single hemisphere.

In summary, we showed that information for ipsilateral classi%cation is still present in the 
sensorimotor cortex a"er denervation. Moreover, we showed that it is possible to decode gestures 
made with both hands from the same hemisphere, also a"er denervation. !ese results open new 
possibilities for unilaterally implanted BCI solutions.

4
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Summary and Discussion
A Brain-Computer Interface (BCI) o#ers the opportunity to restore lost functions for people 
with severe paralysis, as in the case of ‘locked-in syndrome’ (LIS), in which case no motor output 
is possible at all. A BCI records brain signals and translates those into a useful control signal. For 
example, brain signals from the sensorimotor areas of the brain can be used to drive a robotic arm 
or a communicative device.

Searching for useful and reliable brain signals is one of the challenges in BCI research. !e primary 
motor cortex (M1) and neighbouring primary sensory cortex (S1) are known to comprise detailed 
information about movements. !ese areas are thefore excellent targets for a BCI. For a variety of 
modalities, such as electroencephalography (EEG), intracranial recordings (electrocorticography, 
ECoG) and functional magnetic resonance imaging (fMRI), it has been shown that brain activity 
in these areas can be decoded to infer the detailed movements a person makes, or tries to make. 
However, BCIs are developed for people without motor output. An important question for BCI 
research is therefore whether the detailed movement representations in M1 and S1 are still intact 
in case activity in these areas no longer generates actual movements. In this thesis, I investigated 
this topic with the help of people with arm amputation.

Cgrid: visualizing brain activity from the sensorimotor cortex
Decoding movements from the brain relies on the movement-related activity patterns, which 
are both temporal and spatial. A trained classi%er is able to distinguish between these patterns. 
With functional MRI as the recoding modality for this project, the spatial aspect is prominent. 
As classi%ers can seem a black box for the human viewer, it is useful to develop a way to visualize 
these spatial patterns. !is allows for simple comparison even by visual inspection of activation 
patterns over subjects.

!erefore, in Chapter 1, we developed an intuitive representation of the sensorimotor cortex, 
‘Cartesian geometric representation with isometric dimensions of the sensorimotor cortex’ (Cgrid-
SMX). !is novel method allowed for straightforward visualization and assessment of activity 
patterns in the sensorimotor cortex. We used the observation that the shape of the sensorimotor 
cortex can be roughly sketched as a trapezoid. !e algorithm we described used the anterior border 
of the motor cortex, the central sulcus, and the posterior border from the &attened sensory cortex as 
starting points. Polynomials were %tted though these borders in a &at map, and the %tted curves were 
interpolated to divide the cortex into 24 ‘columns’ (small areas running from dorsal to ventral). !ese 
columns were then divided into 84 ‘rows’. !is constituted a 24 ´ 84 tiled mesh. !is mesh can be 
populated by taking the average beta (activity) map of a given movement task. Activation patterns that 
are transformed into Cgrid-SMX space can be easily visualized as a 2D colored matrix, and patterns 
for di#erent tasks and di#erent subjects can therefore be compared in a straightforward manner.

We applied Cgrid-SMX on the data of 20 healthy subjects, and compared sensorimotor activity 
patterns between hemispheres and across subjects. !is yielded similarities that were comparable 
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to those obtained with MNI normalization. !is assessment demonstrated that Cgrid-SMX yields 
a consistent representation of the sensorimotor cortex, and we have used it in parts of the research 
on decoding attempted movements from the sensorimotor cortex described in the other chapters.

For the studies described in Chapters 2-4, we recuited eight people with acquired arm amputation, 
and in addition nine control subjects without amputation. !ey were instructed to attempt making 
several gestures from the American Manual Alphabet with their phantom hand, while brain activity 
from the sensorimotor cortex was recorded using 7T functional MRI. We de%ned four ROIs on 
each hemisphere: M1, S1, and the areas anterior to M1 (pre-M1) and posterior to S1 (post-S1). A 
machine learning algorithm was trained on each ROI (and on the combination of all ROIs) to 
discriminate between the activation patterns, thereby predicting the gesture that the subjects had 
attempted to make.

Decoding gestures of the phantom hand from the contralateral hemisphere
In Chapter 2, we found brain activity in the ROIs that controlled the now-missing hand, which is 
in agreement with what has been reported previously in fMRI studies of movements of amputated 
lower limb (Hotz-Boendermaker, Hepp-Reymond, Curt, & Kollias, 2011), attempted %ngertapping 
in amputees (Ersland et al., 1996), intracranial recordings of attempted movements of the phantom 
hand (Gharabaghi et al., 2014). Also, an intact %nger topography has been demonstrated in S1 
(Kikkert et al., 2016). We showed that it is possible to discriminate between the di#erent activation 
patterns from the phantom hand. In M1, there was no di#erence between the classi%cation scores 
from the phantom hand and from the intact hand. Neither was there a di#erence between the results 
obtained for the phantom hand and the dominant hand of the control group without amputatation. 
Classi%cation was also possible from pre-M1 and post-S1. !is is also in agreement with previous 
work, where it has been demonstrated that regions adjacent to the primary sensorimotor cortices play 
a role in movement planning and execution (Martuzzi, Zwaag, Farthouat, Gruetter, & Blanke, 2012).

In S1 of participants with amputation, the classi%cation scores for the phantom hand were 
signi%cantly lower than those for the intact hand, and than those from controls. We postulate that 
this is due to the dual nature of S1: it has been shown before that this region is involved in feedback 
loops for sensory processing, but also in feed-forward loops for motor planning and execution. Due 
to denervation, the feedback contribution of the network alters, but the planning and execution 
part remains. !erefore, so remains the possibility to decode movements from S1 a"er denervation, 
albeit at lower accuracy than in the intact situation. For the intact hand of amputees and both 
hands in controls, S1 is the region with the highest classi%cation scores (albeit that the di#erence 
in score is not signi%cant in all comparisons with other ROIs). A"er amputation, the classi%cation 
scores drop to the level of M1.

Decoding gestures from the ipsilateral hemisphere in controls
Studies on movement representation in the brain typically focus on the contralateral sensorimotor 
cortex, as the strongest movement-related activity is found there. However, there is increasing 
evidence that the ipsilateral cortex also plays a role in movement planning and execution. Not all 
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motor %bers cross the midline (Alawieh, Tomlinson, Adkins, Kautz, & Feng, 2017), and there 
are trans-callosal connections between the two hemispheres (Aboitiz, Scheibel, Fisher, & Zaidel, 
1992). !erefore, in Chapter 3, we also tried an ipsilateral decoding approach: a new classi%er was 
trained on the activity patterns of the same ROIs as with the contralateral study, but this time on 
patterns from the ipsilateral hemisphere.

As with contralateral decoding, decoding six gestures from the ipsilateral hemisphere in controls 
was possible with a classi%cation score above chance level. In general, the classi%cation scores of the 
ipsilateral hemisphere were, however, lower than those of the contralateral side. We then pooled all 
trials for the le" and right hand tasks together, and we trained a classi%er to discriminate between 
six gestures from both hands (12 gestures) from the same hemisphere. !is also proved to be possible 
with above-chance classi%cation scores. Visual inspection of the activity patterns for the di#erent 
gestures suggest that the patterns for the ipsilateral hand were not merely a ‘mirrored’ version of the 
contralateral hand. !is suggests a distinct representation movements in the ipsilateral motor areas.

Decoding gestures from the ipsilateral hemisphere in amputees
Studying the e#ects of denervation on the movement representations in the ipsilateral sensorimotor 
cortex is also important for the development for (implantable) BCI. Indeed, if it would be possible 
to decode both hands from the same cortical area, implantation is only needed on one hemisphere, 
thereby minimizing the risks associated with surgery. !erefore, in Chapter 4, we trained the 
classi%er on the data of the attempted gestures in amputees and decoded the attempted movements 
from the ipsilateral hemisphere. !ese ipsilateral classi%cation scores were then again compared to 
the classi%cation scores from the contralateral hand.

Similar to executed movements of people without amputation, decoding from the ipsilateral 
hemisphere was also possible for attempted movements of the phantom hand of amputees. As 
with all our decoding results, the classi%cation score was highest in M1 and S1, and contralateral 
decoding was still better than ipsilateral decoding. However, interestingly, the di'erence between 
contralateral and ipsilateral classi%cation scores was lower in the phantom hand than in the intact 
hand of amputees, and lower than in both hands of the control group. !is suggests that a"er 
amputation, the ipsilateral representation of the phantom hand is stronger than the ipsilateral 
representation of the intact hand.

Cortical plasticity a!er denervation
Contralateral representation of (attempted) movements
!e ability to decode between six attempted gestures made with the phantom hand demonstrates 
that there is still a detailed representation of the hand, even years a"er denervation. !is %nding 
contrasts with earlier studies reporting a change in activity a"er amputation (Calford & Tweedale, 
1988; Merzenich et al., 1984). For example, it has been demonstrated that a"er arm amputation, 
receptive %elds for other limbs such as the shoulder or face areas ‘invade’ the region that was 
formerly associated with the hand area. However, a growing body of evidence shows that the process 
of adaptability is more complicated than only a takeover by other limbs. !e engagement of the 
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sensorimotor areas in attempted movement of phantom limbs has been shown already at the start 
of this millenium (Lotze, Flor, Grodd, Larbig, & Birbaumer, 2001; Roux et al., 2003; Turner et al., 
2001). !ese results have been extended, for example with the recent discovery—using a di#erent 
approach—of representations of the individual %ngers a"er arm amputation (Diedrichsen, Wiestler, 
& Krakauer, 2013; Kikkert et al., 2016). We instead have chosen for an approach in which we classify 
complex, multi-%nger hand con%gurations, as these gestures are directly usable in a practical BCI. 
Despite this di#erent approach, our results contribute to and strenghten the notion of a meaningful 
representation of the phantom limb: if the denervated areas were taken over fully or partially 
by encroaching neighbouring activation, or if the representation of phantom movements would 
become weaker a"er denervation, decoding with high classi%cation scores would be impossible.

Some studies on cortical change a"er denervation reported rapid changes: within ten days a"er 
amputation of the middle and ring %nger, the dipoles (as measured with magnetoencephalography) 
had moved closer together, which indicates a reorganisation (Weiss et al., 2000). Also delayed 
changes have been reported, such as a reduced gray matter volume of the denervated cortex (Makin 
et al., 2013), and thinning of cortical layers in the premotor and visual cortices, correlating with 
time since amputation (in the order of years) (Jiang et al., 2016, 2015). !is correlation is important 
in the context of a BCI, as it is undesirable that performance and usability decrease over time. 
However, although we observed a negative trend between classi%cation scores and time since 
amputation in post-S1, this correlation was not signi%cant.

Ipsilateral representation of (attempted) movements
!e signi%cant classi%cation scores from the ipsilateral hemisphere, especially in the case of S1 
of the phantom hand, is remarkable. We expected that the higher ipsilateral classi%cation would 
be found in the intact hand instead: a"er all, the ipsilateral hemisphere of the intact hand is the 
contralateral hemisphere of the phantom hand, and since there are no actual hand movements 
anymore for this area, our initial intuition was that it would take more part in controlling the 
intact hand. However, our results point in the opposite direction. Several factors could explain this 
result. First, it is possible that when trying to move the phantom hand, amputees unconsciously 
also mirrored the movements with their intact hand and thereby generated meaningful activity 
in the hemisphere contralateral to this moving hand (and thus ipsilateral to the phantom hand). 
!is was monitored by measuring %nger &exion and extension during the task using a data glove 
on the intact hand of amputees and both hands of controls. In the task where amputees were 
instructed to attempt moving their phantom hand, we observed small %nger motion from the 
intact hand compared to the task in which the subjects were instructed to move the intact hand. 
We therefore believe it is unlikely that subconscious movements of the intact hand have contributed 
to the ipsilateral classi%cation scores of the phantom hand. Second, it has been demonstrated that 
ipsilateral activation increases with increasing task di(culty (Buete%sch, Revill, Shuster, Hines, 
& Parsons, 2014). Since moving the phantom hand was not equally easy for all recruited amputees 
(based on a self-reported ability score), the relatively high activity and classi%cation scores obtained 
for the ipsilateral hemisphere of amputees could be a re&ection of this increased e#ort.
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$e use of decoding approaches to investigate brain function
Our decoding approach is a useful technique to assess whether the denervated cortex still contains 
information about attempted movements. As the selected hand gestures are combinations of %nger 
articulations, the activation patterns re&ect the muscle constellations needed to make the gestures. 
!e di#erences in patterns between gestures are therefore likely to be small, and distinguishing 
them requires a sensitive classi%er. In contrast to a general linear model (GLM), as used commonly 
in fMRI analysis, a support vector machine is able to distinguish between these small di#erences. 
However, there are some limitations of this approach. First, our classi%er acts a black box: it 
discriminates between classes based on the activity pattern as a whole, and is therefore not able 
to decompose it into separate patterns for di#erent movement parameters that are known to be 
encoded in the sensorimotor cortex, such as limb position and speed of movement (Ebner, Hendrix, 
& Pasalar, 2009). In our approach, we are unable to investigate the decodability of these movement 
parameters separately. Second, whereas the classi%er is appropriate to distinguish between spatial 
patterns, it is less suitable for studying the exact topology. !is also implies that we could not fully 
study the di'erences in the representations a"er denervation. Although we propose that there is still 
a detailed representation a"er denervation, it is di(cult to assess whether (and how) these spatial 
patterns have changed a"er denervation. Finally, spatial patterns are highly individual, and there 
was no measurement before the amputation. It is therefore impossible to assess the longitudinal 
developments of the movement patterns of the phantom hand. However, despite this limitation, 
by visual inspection of the activation patterns, we did not observe any drastic shi"s of activation 
in amputees compared to controls.

Application to Brain-Computer Interface research
In BCI research, there is a desire for increasing the degrees of freedom by recording increasingly 
complex brain signals. More degrees of freedom allow for a larger reportoire of responses, which will 
bene%t for example the speed of BCI-based communication. Increasing the degrees of freedom asks 
for implanted devices that can record with higher density from a smaller area of the cortex, but it 
also requires these brain activity patterns to be meaningful and reliable. !e existence of a detailed 
representation of a phantom hand years a"er denervation is important in this development. Also, 
we have demonstrated that it is possible to decode both ipsilateral and contralateral hands from the 
same hemisphere. In the context of an implantable BCI, this feature can be bene%cial, as it in theory 
allows for implantation on a single hemisphere. !is reduces the risks associated with surgery.

For the studies presented in this thesis, we recruited participants with acquired arm amputation. 
Although BCI technology can be used to drive an advanced arm prosthetic, the BCI research at 
the UMC Utrecht focuses on people with the locked-in syndrome (LIS). An important di#erence 
between the people with amputation in our study and the LIS target population is that the latter 
can have brain damage as a consequence of amyotrophic lateral sclerosis (ALS) or stroke. Changes 
in brain structure can a#ect the representation of detailed movement, or the ability to distinguish 
between these altered patterns from the cortex.
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Another di#erence between the two groups is that people with LIS have lost (nearly) all motor 
output, whereas in amputees only the sensorimotor cortex is denervated. !is implies that, 
although amputees had to attempt moving their hand, they still were able to move other body parts. 
However, we did not %nd excessive motion of the intact hand during attempted movements of the 
phantom hand. Also unconscious or unintentional movements of the stump may have a#ected the 
classi%cation results. Indeed, a surgical precedure called ‘targeted muscle reinnervation’ (TMR) is 
sometimes applied, in which muscles on or near the stump are reinnervated with residual nerves 
from the amputated limb, allowing for better control of prosthetic devices (Cheesborough, Smith, 
Kuiken, & Dumanian, 2015). Unfortunately, we did not assess whether our participants had 
undergone TMS, and we did not use stump muscle activity measurements.

!ere are some considerations when translating the present results into a practical BCI. First, 
we have used functional MRI recordings only as a proof of principle, as this method is relatively 
accessible and easy to conduct in volunteers, non-invasive, and still o#ers unparalleled high 
resolution brain recordings. However, the recoding modality needs to be exchanged for one that is 
wearable and suitable for everyday use. Implantable electrocorticography (ECoG) grids, for example, 
are much more suitable for a BCI, as they can o#er a solution that is available 24 hours a day with 
minimum set-up time. Complex hand gestures have been decoded using ECoG recordings before 
in able-bodied participants (Bleichner et al., 2016; Branco et al., 2017). It has also been shown that 
BOLD activity from functional MRI has an excellent correspondence with gamma signals from 
ECoG (Hermes et al., 2012; Siero et al., 2014). !erefore, we believe that our decoding results a"er 
denervation will translate well to this modality.

Second, the number of classes must be increased. Because our main focus is restoring 
communication, we have in this work (and in our previous work (Bleichner et al., 2016; Bleichner, 
Jansma, Sellmeijer, Raemaekers, & Ramsey, 2013; Branco et al., 2017)) chosen for gestures from the 
sign language alphabet. !is way, the user could just hand-spell words, which can then be typed. 
However, we have only selected six signs. !ese signs have also been chosen in such a way that they 
maximally di#er in %nger &exion and extension (for example, ‘W’ and ‘Y’ are each others inverse). 
A future end-user will need all letters, and possibly numbers, to be able to communicate, although 
it should be noted that the correspondence of gestures and letters is not a necessity: it is also possible 
to attach other commands to gestures, such as moving a cursor around on a virtual keyboard.

!ird, it is crucial to take into account the demands that are put forward by the (potential) user 
group, for example on the topic of speed and accuracy. !e trials in our experiment had a %xed 
length of 15 seconds. !is equals 4 characters per minute, whereas a typing speed of 15-19 letters 
per minute would be acceptable to 72% of potential BCI users (Huggins, Wren, & Gruis, 2011). 
!erefore, an increase in speed compared to out study is essential. Also, since an implanted BCI 
will be available to the user 24 hours per day, it is important to pay attention to false positives, 
such as typing letters when the user did not mean to do so. From potential BCI users, 84% were 
satis%ed if unintentional exits from standby mode would occur no more than once per 2-4 hours 
(Huggins et al., 2011). However, in the present research, rest trials were not included in the task, and 
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the classi%er was not trained on the condition of ‘no gesture’. Our classi%er training and learning 
paradigm can therefore not directly be transferred into a practical BCI.

Accuracy is considered one of the most important characteristics of a BCI, according to potential 
users in the aforementioned survey (Huggins et al., 2011). Classi%cation scores of between 40% 
and 80% are well above chance level and suggest that there is a meaningful representation. We 
believe that these classi%cation scores obtained by functional MRI translate well to decodability 
in intracranial recordings, as we have already observed in previous research by our group (Bleichner 
et al., 2016, 2013; Branco et al., 2017). But although we like to view this as successful, a big leap 
still has to be made until this approach o#ers a usable solution in terms of high accuracy decoding. 
One needs to %nd a trade-o# between the degrees of freedom and the error rate. !is will also be 
directed by the practical situation, which can vary hugely over subjects, and is dependent on factors 
like implantation site and the quality of the recorded brain signals.

In conclusion, translating our results to a practical BCI requires additional research. Nevertheless, 
our %nding that there is an intact representation of the phantom hand, both ipsilateral and 
contralateral, is promising in the development of BCIs that o#er many degrees of freedom for 
restoring communication.
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Het locked-in-syndroom (LIS) is een toestand waarin iemand (grotendeels) niet meer in staat 
is om vrijwillige bewegingen te maken (American Congress of Rehabilitation Medicine, 1995). 
LIS kan verschillende oorzaken hebben, zoals een hersenstamberoerte of een neurodegeneratieve 
aandoening zoals amyotrofe laterale sclerose (ALS), waarbij motorneuronen in de hersenen en 
hersenstam worden aangetast (Smith & Delargy, 2005). Als gevolg van LIS is het voor personen 
soms geheel onmogelijk om te communiceren, terwijl communicatie juist een belangrijke factor is 
in het welbevinden van personen met LIS (Rousseau et al., 2015).

Voor het herstellen van de communicatie zijn diverse hulpmiddelen ontwikkeld die bestuurd 
kunnen worden met de (geringe) bewegingen die nog wel mogelijk zijn. In veel gevallen zijn 
oogbewegingen de enige vrijwillige bewegingen die nog intact zijn. In dat geval kunnen zogenoemde 
eye-trackers uitkomst bieden. Eye-trackers kunnen de kijkrichting a&eiden uit de stand van de 
pupillen en daarmee valt bijvoorbeeld de gebruikersinterface op een computer te besturen. Toch 
werkt dat niet voor iedereen: soms zijn zelfs oogbewegingen onmogelijk geworden, maar ook in 
andere gevallen rapporteren gebruikers van hulpmiddelen moeilijkheden bij het gebruik ervan.

Het besturen van hulpmiddelen kan ook door direct gebruik te maken van de hersensignalen. Dit 
wordt een Brain-Computer-Interface (BCI) genoemd (Wolpaw, 2007). In het UMC Utrecht wordt 
de Utrecht Neuroprothese (UNP) ontwikkeld voor mensen met LIS (Vansteensel et al., 2016). Dit 
is een BCI op basis van electro-corticogra%e (ECoG), waarbij elektroden tijdens een operatie direct 
op de cortex worden geplaatst. Voor het UNP zijn er elektroden geplaatst op de prefrontale cortex 
en op de motorcortex (het bewegingsgebied). Als de patiënt probeert een hand te bewegen leidt 
dat niet tot daadwerkelijke bewegingen (door de LIS), maar de gemeten hersensignalen kunnen 
wel succesvol gebruikt om een tablet met communicatieso"ware te besturen.

Het besturingssignaal van het UNP is binair: het is ‘aan’ of ‘uit’ (beweging of geen beweging). En 
dat terwijl het corticale handgebied rijke informatie bevat over gedetailleerde handbewegingen. 
Uit voorgaand onderzoek is gebleken dat het mogelijk is om de bewegingen van individuele vingers 
af te lezen (te decoderen) (Dechent & Frahm, 2003) en om af te lezen welk handgebaar iemand 
maakte (Bleichner, Jansma, Sellmeijer, Raemaekers, & Ramsey, 2013; Branco et al., 2017).

Bij personen met LIS is er weliswaar hersenactiviteit, maar leidt dit niet meer tot daadwerkelijke 
bewegingen. Uit de literatuur is bekend dat het ontbreken van zulke output de hersenactiviteit 
kan veranderen. Bij mensen die een amputatie ondergingen is bijvoorbeeld waargenomen dat 
het activatiegebied van het geamputeerde lichaamsdeel kleiner werd en dat dit gebied werd 
‘overgenomen’ door naastgelegen activatiegebieden (Lotze, Flor, Grodd, Larbig, & Birbaumer, 
2001; Ramachandran, 1993). Er is echter ook bewijs gevonden dat deze veranderingen niet volledig 
destructief zijn: zo is er bij mensen met armamputatie nog steeds hersenactivatie waar te nemen in 
het handgebied (Roux et al., 2003; Turner et al., 2001) en is er zelfs een gedetailleerde representatie 
van individuele vingers waargenomen in de sensorische cortex (Kikkert et al., 2016).
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Het doel van de artikelen in dit proefschi" is het onderzoeken of het mogelijk is om hersenactiviteit 
te decoderen na verlies van bewegingsoutput. Met andere woorden: of het mogelijk is om uit de 
hersenactiviteit af te lezen welke handgebaren iemand hee" proberen te maken, terwijl zij dit niet 
meer echt konden. Hoewel mensen met LIS uiteindelijk het meeste belang hebben bij de resultaten, 
is het voorliggende onderzoek uitgevoerd bij mensen met een armamputatie. De reden hiervoor is 
dat het aantal mensen met LIS slechts klein is en dat zij specialistische zorg vergen. Voor mensen met 
armampuatie is het eenvoudig om mee te doen aan MRI-onderzoek. Een belangrijke overeenkomst 
tussen personen met armamputatie en met LIS is dat bij beide groepen de motorgebieden intact 
blijven, maar dat er er geen daadwerkelijke bewegingen meer zijn.

Allereerst presenteren we in hoofdstuk 1 een nieuwe methode om de hersenactivatie uit functionele 
MRI-scans in de motorgebieden te visualiseren: Cartesian geometric representation with isometric 
dimensions (Cgrid, hoofdstuk 1). Op basis van anatomische hersenscans wordt een rechthoekig 
raster op sensorische en motorcortex geprojecteerd. Hierdoor ontstaat een coördinatensysteem 
dat gelijkvormig is tussen proefpersonen, ondanks de individuele anatomische vormverschillen. 
Dat maakt het gemakkelijker om activatiepatronen tussen proefpersonen te vergelijken. Om de 
nauwkeurigheid en reproduceerbaarheid te toetsen, is de methode toegepaste op functionele 
MRI-data van 20 proefpersonen. De correlatie van de Cgrid-patronen tussen proefpersonen was 
vergelijkbaar met de correlatie tussen activatiepatronen in MNI-ruimte. Hieruit concludeerden we 
dat Cgrid een stabiele representatie van hersenactivatie oplevert en bruikbaar is in verder onderzoek.

In de hoofdstukken 2 tot en met 4 onderzochten we de representatie van handbeweging na 
amputatie. Hiervoor werden proefpersonen met een amputatie van de onderarm geworven. In 
de 7 tesla MRI-scanner kregen de proefpersonen de opdracht om met hun geamputeerde hand 
(fantoomhand) zes verschillende gebaren te maken (of in elk geval zo goed mogelijk te proberen). 
De gebaren correspondeerden met de tekens 8, F, L, S, W en Y uit het Amerikaanse hand-
alfabet. Vervolgens werd een classi!er getraind om de functionele-MRI-activatiepatronen van 
de verschillende handgebaren uit het hand-spellingsalfabet te onderscheiden. Deze classi%er werd 
getraind op hersenactivatiepatronen van de primaire motorcortex (M1), de primaire sensorische 
cortex (S1) en anterieure en posterieure gebieden (pre-M1 en post-S1) van de hemisfeer contralateraal 
aan de bewogen hand. Het resultaat van deze classi%er (de decodeerbaarheid) diende als maat 
voor de integriteit van de handrepresentatie in de motor- en sensorische cortex.

In hoofdstuk 2 beschrijven we de decodeerbaarheid van de fantoomhand ten opzichte van 
de intacte hand en van de niet-geamputeerde controlegroep. In de primaire motorcortex (M1) 
vonden we geen verschillen in decodeerbaarheid tussen de intacte hand en de fantoomhand, of 
tussen de fantoomhand en de dominante hand van de (niet-geamputeerde) controlegroep. Ook 
van pre-M1, post-S1 en de primaire sensorische cortex (S1) konden gebaren worden gedecodeerd 
met een nauwkeurigheid boven kansniveau, maar de S1-decodeerbaarheid van de fantoomhand 
was wel signi%cant lager dan de decodeerbaarheid van de intacte hand, en ook lager dan de S1-
decodeerbaarheid in de controlegroep. Het gebrek aan sensorische input van de fantoomhand kan 
een mogelijke verklaring zijn voor dit e#ect.
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In hoofdstuk 3 is de methode van het decoderen van handgebaren nogmaals toegepast, maar 
ditmaal op hersengebieden van de ipsilaterale hemisfeer in de groep van niet-geamputeerde 
proefpersonen. Want hoewel de meeste motorbanen de middellijn kruisen doet een aanzienlijk 
deel (10%) dat niet (Alawieh, Tomlinson, Adkins, Kautz, & Feng, 2017). Bovendien bestaan er 
door het corpus callosum verbindingen tussen de twee hersenhel"en (Aboitiz, Scheibel, Fisher, & 
Zaidel, 1992). Het is daarom voorstelbaar dat er ook beweginsinformatie zit in het motorgebied 
aan dezelfde zijde als de aangestuurde hand (de ipsilaterale zijde). Daarom werd er ook een 
classi%er getraind op activatiepatronen van deze ipsilaterale sensorische en motorgebieden. Dit 
leverde ook een classi%catiescore op die signi%cant hoger was dan kansniveau, zij het iets lager dan 
de classi%catiescore van de contralaterale gebieden. Omdat er dus waardevolle informatie over 
handgebaren valt af te lezen uit beide hersenhel"en, onderzochten we de decodeerbaarheid van 
beide handen vanaf dezelfde hersenhel". Ook dit bleek mogelijk met signi%cate classi%catiescores.

De decodeerbaarheid van ipsilaterale handgebaren bij personen met armamputatie is beschreven in 
hoofdstuk 4. Net als bij de contralaterale classi%catie en de ipsilaterale classi%catie in hoofdstuk 3 
bleek ook hier de decodeerbaarheid het hoogst in de gebieden M1 en S1 en was de decodeerbaarheid 
vanaf de contralaterale hersenhel" hoger dan die van de ipsilaterale hersenhel". Interessant is wel 
dat de verschilscore (contra-minus-ipsilateraal) voor de fantoomhand kleiner was dan voor de intacte 
hand, of dan de verschilscores voor beide handen van de controlegroep.

De resultaten van dit onderzoek wijzen op een bruikbare representatie van hersensignalen voor het 
a&ezen van handgebaren, ook in het geval van gepoogde handgebaren, als er geen daadwerkelijke 
beweging meer kan worden gemaakt. Dit opent de weg voor vervolgonderzoek, dat zich kan richten 
op de vertaling van de resultaten naar een praktische BCI voor de doelgroep (personen met LIS).
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Woord van dank
Jullie hebben er lang op moeten wachten. Maar daar is het dan toch. Ein-de-lijk. (Dit zal niet de 
eerste en ook niet de laatste verwijzing zijn naar de lange duur van mijn promotie.) Het is niet dat 
ik mijn promotie vergeten was, hoor. Dat kon ook niet, want op gezette tijden werd er door jullie 
naar geïnformeerd. Het is dan ook mede daardoor dat dit boekje er nu alsnog ligt. Was het niet voor 
mijn eigen wetenschappelijke trots, dan toch wel om niet steeds met het schaamrood op de kaken 
te moeten stamelen dat het wel bijna af is. Vanwege jullie tomeloze interesse en onvermoeibare 
aansporingen ben ik daarom dan ook verplicht om enkele woorden van dank aan jullie te richten.

Allereerst natuurlijk mijn grote dank aan mijn promotor Nick. Er was oorspronkelijk nog geen 
openstaande vacature toen ik je benaderde, meer dan een X aantal jaren geleden (en die X moet 
worden gelezen in Romeinse betekenis). Toevallig stond er net een groot nieuw project op het punt 
van beginnen en bood je me de kans om onderzoek te komen doen. Ik weet niet of je na al die jaren 
inmiddels spijt hebt van die beslissing, maar dat durf ik niet te vragen.

Tijdens het sollicitatiegesprek vroeg je me waar ik nog niet zo goed in was. Ik weet eerlijk gezegd 
niet meer wat ik toen antwoordde, maar inmiddels kan ik wel een hele lijst opnoemen. “Jezelf leren 
kennen” heet dat dan, geloof ik. Maar dat was gelukkig niet het enige. Je hebt me de kans gegeven 
om mee te draaien in een inspirerende omgeving met een groep betrokken wetenschappers, die 
vanuit slechts een handjevol kantoren in het Stratenum bijzondere dingen doen.

Mariska, mijn eerste werkdag was bij jou. Ik kon direct aan de slag met real-time feedback 
van activiteit van de DLPFC. Daardoor kreeg ik snel de kans om ervaring op te doen met het 
programmeren van een taak en met dataverzameling op de 7T-MRI-scanner. Ik waardeer je kritische 
blik en directe feedback, vooral ook op de manuscripten van artikelen en bij het begeleiden van 
studenten. Dat was altijd opbouwend en hee" me veel geholpen.

Mathijs (“O hé, Mathijs!”), jij hebt me er in de laatste periode doorheen gesleept. Dat zal soms 
zwaar zijn geweest. Een kleuter door de supermarkt sleuren is makkelijker. Als ik weer eens mijn 
zwartgallige kijk op dingen leverde, zorgde jouw nuchtere houding ervoor dat het iets minder zwart 
werd (donkergrijs). De onschuldige appjes die je zo nu en dan stuurde (“Hi Mark, gaat alles goed 
met de voorbereidingen?” of, iets vileiner: “Hi Mark, enige progressie?”) bezorgden me weliswaar 
wat stress, maar hebben er toch voor gezorgd dat er uiteindelijk wel wat beweging in bleef zitten. 
Bedankt voor discussies met jou en voor je aanhoudende betrokkenheid!

En dan zijn daar natuurlijk mijn illustere kantoorgenoten. Nou ben ik op afspraken graag op tijd 
(te vroeg) aanwezig en ga ik vaak laat (te laat) weer weg, maar dat ik hier van ons als eerste startte 
en als een van de laatsten eindig staat daar volledig los van. Et bene pendentes!

Elmar, ik heb je in de afgelopen jaren leren kennen als iemand die makkelijk dingen regelt, niet 
bang is om mensen te bellen (o, gruwel) en met af en toe een goeie duidelijke mening. Tijdens ons 
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befaamde tripje naar San Francisco heb je een onmisbare rol gespeeld die ik niet snel zal vergeten. 
Zie dat maar als een soort toelatingsexamen voor het paranimf-schap, want ook daarvoor wil ik je 
natuurlijk hartelijk bedanken!

Efraïm, ook jij bent als paranimf essentieel in het voltooien van deze periode. Je bent ook nog eens 
de grote aanjager, tourmanager en leider van de Gamma-band, hoewel ze door die naam bij dB’s 
waarschijnlijk steeds dachten dat we elkaar kenden van de bouwmarkt. Je hebt in gesprekken de 
gave om zaken rustig te analyseren en volstrekt logisch te laten klinken, iets waar mijn cynisme 
niet tegenop gewassen is.

Max, zijn wij nou heel verschillend of lijken we juist op elkaar? Dat zouden we kunnen 
bediscussiëren, want daar houden we allebei van en dat hebben we ook veel gedaan. Om er aan 
het eind achter te komen dat we allebei advocaat van de duivel speelden. Maar ja, je moet wat als 
je met z’n tweeën ’s nachts in de auto naar Tsjechië rijdt. Bedankt voor je tegendraadse, eigenwijze 
maar waardevolle samenwerking!

Sacha, bedankt voor je gezelligheid en je altijd behulpzame instelling. En ik heb bewondering voor 
je eetlust, waarvan zelfs het personeel in Amerikaanse all-you-can-eatrestaurants onder de indruk is.

Mariana, your optimism is catching. You are truly able to motivate people to become as enthusiastic as you 
are, about anything. You are always ready to help other people. !anks for the wonderful collaboration!

Natuurlijk zijn er talloze andere groepsgenoten die ik wil bedanken. Erik, voor je brede kennis en 
kunde. Zac, voor je diepgaande specialistische kennis. Martin, als mijn voorganger in mijn project 
en een van de eersten (met Zac) die ik sprak voordat ik in de groep kwam. Wouter, voor je werk aan 
Cgrid. En natuurlijk Annemiek, Julia, Meron, Anouk, Miek, Maria en iedereen op wiens werk ik 
mocht voortbouwen en iedereen die met het werk doorgaat!

Ik heb ook het geluk gehad om enkele studenten met hun stageproject te mogen begeleiden. Irina, 
Isabelle, Laura en Philippe, bedankt dat jullie je project bij ons (bij mij) hebben gedaan. Jullie 
dwongen mij steeds om ook goed na te denken over de doelstelling van mijn eigen project. Ik heb 
dat als heel waardevol ervaren!

Zonder de deelnemers aan het onderzoek was er geen data geweest. Ik wil daarom ook alle 
proefpersonen (met en zonder armamputatie) bedanken voor hun deelname, het thuis oefenen 
van de handgebaren en het doorstaan van de lange sessie in de MRI-scanner. Voor het werven 
van de deelnemers met armamputatie gaat mijn dank naar de revalidatieartsen Michael Brouwers 
(De Hoogstraat) en Anne Visser-Meily (UMC Utrecht). Ook bedank ik graag de vereniging 
KorterMaarKrachtig voor hun hulp bij de zoektocht naar deelnemers voor het onderzoek.

Ook buiten het UMC Utrecht heb ik mensen jarenlang beziggehouden met “die promotie die ik 
nog moet afronden”.
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Esther en Marjolein, onze intensieve samenwerking begon op hetzelfde moment als mijn 
promotieproject. De start van die promotie lijkt voor mij korter geleden, maar voor wat betre" 
onze samenwerking is het alsof we nooit anders hebben gedaan. We hebben door onze verschillende 
expertises een taakverdeling die als vanzelf lijkt te zijn ontstaan. Jullie weten ook dat ik meestal 
niet ver vooruit werk. Het meeste krijg ik gedaan op het laatste moment, het liefst diep in de nacht. 
Gelukkig blijf ik daar tot nu toe bij jullie mee wegkomen. Bedankt voor jullie vriendschap, steun, 
professionaliteit, creativiteit en al jullie aansporingen!

Toen mijn aanstelling bij het UMC Utrecht erop zat, kon ik aan de slag bij het YOUth-onderzoek. 
Zo bleef ik dichtbij en kon ik nog een dag in de week gebruiken voor het publiceren van de artikelen 
en het afronden van het proefschri". In theorie. In de praktijk gebeurde dat ook wel, maar met lange 
tussenpozen. Die treuzelachtigheid kwam niet door mijn YOUth-collega’s, want ook jullie bleven 
mij onafgebroken aansporen. Lilli, bedankt voor je vele gevraagde en ongevraagde adviezen. Femke: 
ko(e en joie de vivre! Gwen, voor onder andere het spontane Scandinavische-%lm-uitje. Juliëtte, 
bedankt dat je me een tijdje lang aan het einde van de dag naar het UMC hebt gestuurd om een 
artikel af te maken. Ook bedankt aan alle andere leden van het kippenhok met wie ik het elitekant… 
ehm, tuinkantoor mocht delen: Marieke, Liset, Ivonne, Laura, Ron, Jolien, Leon, Myrthe plus de 
vele, vele betrokkenen van het zo gezellige KinderKennisCentrum. Als ik weer eens bleef hangen in 
een monoloog op maandag, hoefde iemand maar te zeggen “Hoe is het eigenlijk met je promotie?” 
om me weer tot de orde te roepen. Al is het YOUth-onderzoek nu óók weer ten einde, jullie zijn 
inmiddels minstens net zo blij als ikzelf dat dit proefschri" nu toch eindelijk klaar is.

Op mijn huidige werkplek in het Langeveldgebouw voel ik me inmiddels ook thuis door mijn %jne 
collega’s. Jim, bedankt voor je humor, adviezen (al dan niet op academisch vlak) en je openheid. 
Boris, Son, Michael, Dennis, Django, Wouter, Halim, Martin, Martijn, Rens, Chris, Sanne, Elise 
en Oscar, bedankt voor jullie %jne collegialiteit!

Als laatste is natuurlijk een dankwoord voor mijn familie op z’n plaats. Dank aan mijn ouders, Cees 
en AnneMarie, en aan mijn broer Coen samen met Hanneke en Maud. Bij rapportgesprekken op de 
basisschool hoefde ik meestal niet veel te vrezen, behalve steevast voor één aspect: het werktempo. 
Inmiddels is wel gebleken dat ze gelijk hadden, die ju#en. Desondanks is het nu wel ten einde, mede 
door jullie steun en niet-a&atende interesse. Ik ben jullie dankbaar dat jullie me altijd de mogelijkheden 
hebben gegeven om mijn interesses te volgen. Ook als dat net even wat langer duurt dan gepland.
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