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A B S T R A C T

Micromagnetic tomography (MMT) is an emerging technique in rock and paleomagnetism to determine
individual magnetic moments of tomographically defined magnetic source regions within a natural sample by
means of surface scans of the magnetic field above the sample. MMT relies on combining large high-resolution
data sets from X-ray tomography and magnetic scanning devices, like quantum diamond magnetometers,
together with advanced inversion algorithms potentially capable to solve for millions of individual magnetic
moment vectors. We here provide an overview of existing algorithms that have been developed to tackle
different aspects of MMT-related problems and discuss recent advances and future challenges of MMT.
1. Introduction

1.1. Micromagnetic tomography

Micromagnetic Tomography (MMT) is a novel technique to extract
the remanent magnetization signal in rocks. Natural remanent magneti-
zation (NRM) is initially imprinted in magnetic rocks at the time of their
formation. Above an individual threshold temperature, the magnetic
moments of magnetic grains in a rock statistically align with the direc-
tion and strength of the local Earth’s magnetic field. On cooling, this
orientation freezes in and forms a statistical magnetic signal recorded
in the rock. In paleomagnetic studies, this signal is the main source of
information to estimate direction and strength of the Earth’s magnetic
field from ancient to modern times. Standard paleomagnetic methods
measure the bulk average over all magnetic grains in a rock sample.
Hence, it is advantageous to select samples with narrow magnetic grain-
size distributions with a majority of grains having optimal recording
properties. Nevertheless, stepwise demagnetization of bulk magnetic
measurements cannot always reliably separate primary from secondary,
or stable from unstable remanence carriers (Dunlop and Özdemir,
1997). The MMT method solves this problem by analyzing the magnetic
signal of a rock sample at the individual grain level. In particular,
reliable magnetic carriers with similar properties, such as grain size or
composition can be selected after the measurement to obtain optimal
statistical ensembles for refined estimations of the Earth’s magnetic
field.

The MMT technique is founded in an experimental routine, a the-
oretical model and a computational implementation (de Groot et al.,

∗ Corresponding author.
E-mail address: l.v.degroot@uu.nl (L.V. de Groot).

2018a, 2021). The experimental side of MMT requires measuring the
locations and geometries of the magnetic grains in a rock sample using
high-resolution computed tomography (Sakellariou et al., 2004). The
current limit is about 50 nm voxel size in synchrotron facilities (Pat-
tammattel et al., 2020). The second experimental step is to measure
the magnetic signal generated by these grains on a surrounding surface
using a highly sensitive magnetometer, such as a Quantum Diamond
Microscope (QDM) (Glenn et al., 2017; Levine et al., 2019). The the-
oretical part of the MMT method is based on a forward model of the
experimental setup, in which the magnetic flux, detected at the sensors
of the magnetometer, is calculated from the magnetic potential of the
grain sources in the measured magnetic sample. The corresponding in-
version problem uses both, the defining forward matrix that depends on
the locations of the magnetic sources, and the data from the magnetic
signal of the sources. The solution of the inversion problem provides
the magnetic dipole moments of the magnetic sources, which can be
used to calculate their magnetization. The precondition that the inverse
problem is well-posed is substantiated by a unique-source-assignment
theorem (Fabian and de Groot, 2019) which requires that the source re-
gions are topologically separated. In the MMT technique, the magnetic
moment solutions of every magnetic source are obtained numerically
from the theoretical model. This requires optimized inversion algo-
rithms and routines to generate the forward matrix, in particular for
large samples on length-scales that are relevant for paleomagnetic
applications.

In this work, we discuss the theoretical and computational aspects
of the MMT technique. Specifically, we focus on the numerical imple-
mentation of the forward model and compare the results using two
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different formulations of the problem: a cuboid aggregation model of
the grains assuming uniform magnetizations per grain, which means
dipole order magnetic moment solutions; and a multipole expansion
of the magnetic potential of the grains by modeling them as magnetic
point sources (Cortés-Ortuño et al., 2021). On the one hand, this
latter model produces more accurate magnetization solutions for grains
hosting complex magnetic configurations, since higher order magnetic
moments improve the fitting of their magnetic signal. On the other
hand, this requires a larger number of fitting parameters, making the
numerical solutions more challenging to calculate.

Finally, we discuss the implementation of a newly developed mi-
cromagnetic modeling technique of the magnetic grains (Cortés-Ortuño
et al., 2022a). This method makes it possible to infer the magnetic
configurations hosted in the grains by comparing multipole magnetic
moment solutions of computational grain models, with the magnetic
moments obtained from multipole inversion of experimental data.

2. Micromagnetic tomography and the inversion problem

MMT exploits knowledge about magnetic source locations and ge-
ometries acquired by computed tomography to define a unique inver-
sion problem using a suitable forward model. Namely, a surface mag-
netic anomaly from the sources, obtained via magnetometry, uniquely
determines the individual potentials of the sources if their location
is known, and they are spatially disjointed, which is assured by the
tomographic data. As a result, individual magnetic moments can be
uniquely determined, with the limitation that a distribution of moments
within a source cannot be resolved (Fabian and de Groot, 2019). There
are two approaches to the forward model: (1) the homogeneously
magnetized particle (HMP) approach uses an exact voxel or cuboid
model of the source and assumes homogeneous magnetization; (2) the
multipole expansion (MPE) approach uses only topological information
about the source regions and represents the magnetic potential of each
separate source region by a spherical harmonic or multipole expansion
with a center inside the source region. In both approaches the forward
calculation of the magnetic field on a planar or even curved surface
above the source region is relatively straightforward. An important
difference is that the MPE approach requires that all measurement
points lie outside the near-field expansion regime of the spherical
harmonic expansions.

In both forward models, the experimental setup is described by a
scanning surface on which the magnetic anomalies produced by the
grains are measured. This scanning surface here is devised as a regular
grid, and the sensor systems detects the out-of-plane magnetic field
component integrated over the sensor. For the HMP model the sensor
is a rectangular area, and for the MPE model one can choose between
point, rectangular and cuboid sensor systems.

Forward modeling can optionally account for imperfect co-
registration between the two coordinate systems used for the tomog-
raphy and the magnetic anomaly measurements. Altogether, there
are three coordinate systems that need to be considered: (a) The
tomographic voxel system VOX, (b) the magnetometer scanning sys-
tem SCAN, and (c) the spherical harmonic expansion system EXP.
The co-registration defines a generally nonlinear coordinate transform
VOX→SCAN, 𝑇 ∶ R3 → R3, (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) ↦ (𝑥, 𝑦, 𝑧). For instance, if
the SCAN system is considered fixed and the VOX system is simply
rotated around the out-of-plane SCAN axis by an angle 𝜃𝑠, with respect
to the 𝐫rot reference point in SCAN, the systems can be co-registered
by a transformation 𝑇 (𝐫vox) = 𝑅(𝜃𝑠) ⋅ (𝐫vox − 𝐫rot ), with 𝑅(𝜃𝑠) as a two-
dimensional rotation matrix, applied to the coordinates of the voxel
data. In the case of the MPE model, each multipole expansion requires
a coordinate transform from the EXP system relative to the expansion
center 𝐶 to the SCAN system, 𝑆 ∶ R3 × R3 → R3, (𝑐𝑥, 𝑐𝑦, 𝑐𝑧, 𝑟, 𝜃, 𝜙) ↦
(𝑥, 𝑦, 𝑧). To retain linearity, it may be ideal to use an independent pre-
processing step to optimize co-registration. For this work we do not
2

focus on the details of the co-registration. We assume that the VOX
and SCAN coordinate systems are aligned. For the MPE system, the
expansion is performed from the grain centers in the VOX system, and
the spherical harmonic formalism is expressed in Cartesian coordinates,
which is adequate to the rectangular geometry of the scan surface.
Hence, the expansion depends only in the distance from the expansion
centers to the sensor positions in the VOX system.

3. The homogeneously magnetized particle model

The first proof of concept of the MMT technique was applied to a
synthetic sample containing a few magnetic particles (de Groot et al.,
2018a). Here, computed X-ray micro-tomography was employed to
compute the grain locations and grain profiles. Additionally, SQUID
magnetometry was used to scan the magnetic field signal of the parti-
cles. By modeling the grains as homogeneously magnetized, the mag-
netic signal was numerically inverted into the grains to calculate their
magnetizations. The HMP model and algorithms to process and invert
this data have been developed in the mmt_dipole_cuboid_inversion
library, and are detailed in the following section.

3.1. Theoretical model

Computed tomography data produces three-dimensional contrast
images that can be used to distinguish different material composi-
tions within a sample. By extracting the sections with magnetic ma-
terial, individual magnetic grains can be distinguished via segmenta-
tion algorithms. The algorithms produce both the locations and three-
dimensional shape profiles of the particles by converting single-pixel
data into voxels. In order to optimize the inversions, the voxelated
grain profiles can be processed with an aggregation algorithm, known
as cuboid decomposition, that finds the largest possible cuboids within
a geometry, substantially reducing the number of elements to describe
a single grain.

Using the grains decomposed into cuboids, a forward model is
formulated starting from the magnetic potential of the cuboids. With
the assumption that cuboids belonging to a single grain are uniformly
magnetized, the potential is computed only from the surface magnetic
charges at the cuboid faces 𝜕𝛺. For an individual cuboid, the potential
reads

𝜙(𝐫) = 1
4𝜋 ∫𝜕𝛺

𝐌 ⋅ d𝐒′
|𝐫 − 𝐫′|

. (1)

Here d𝐒′ = �̂� d𝑆′ is the surface element, with �̂� as the unit vector normal
o the cuboid faces, 𝐌 is the cuboid magnetization, 𝐫 is the location
f the reference point, and the vectors 𝐫′ point to the locations of the
agnetic sources, which in this case means an infinitesimal element

rom a cuboid face. The magnetic field is defined as

(𝐫) = −𝜇0𝛁𝜙(𝐫). (2)

A scanning magnetometer registers the magnetic signal from the
agnetic particles in a two-dimensional grid made of individual sen-

ors. The theoretical model for these sensors can be either a point
ource, a two-dimensional rectangle or a cuboid volume, which record
he magnetic flux from the magnetic field of the grains. For the
mt_dipole_cuboid_inversion code, the sensor grid is defined in
he 𝑥𝑦-plane and the sensors are modeled as rectangles with area 𝜕𝛺s
hat register the magnetic flux normal to the sensor plane, i.e. the
-component of the magnetic field. This model reproduces the exper-
mental setup used for the SQUID measurements in de Groot et al.
2018a). According to this, by defining 𝛾𝐵 = 𝜇0∕(4𝜋), and an infinites-
mal sensor area vector d𝐒 = d𝑥 d𝑦 �̂�, the field flux through a single
ensor is calculated as

flux = −𝜇0 ∬𝜕𝛺s

d𝐒 ⋅ 𝛁𝜙(𝐫) (3)

= −𝜇0 d𝑥 d𝑦 𝜕
(

1 𝐌 ⋅ d𝐒′
′

)

(4)
∬𝜕𝛺s 𝜕𝑧 4𝜋 ∫𝜕𝛺 |𝐫 − 𝐫 |
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Fig. 1. Overview of the modeling of magnetic grains as aggregations of cuboids (HMP method) and the forward model used for a dipole order inversion. In the picture, grain data
is obtained from tomographic images by converting two-dimensional pixel data into three-dimensional voxel data. This information is optimized by decomposing the voxels from
a single grain into the largest possible cuboids that represent the grain geometry. For a single grain, the model assumes that all its cuboids have the same uniform magnetization.
Finally, it is shown the coordinate system used to formulate the forward model for a single cuboid. In this model the magnetic field of an infinitesimal area of one face of the
cuboid is detected by an infinitesimal area of a sensor unit in the scan surface of the magnetometer. An integration of the associated equations allows computing the total flux
through the scan surface and to invert the magnetic signal into the magnetization of the grain. Because of the assumption of a uniform magnetization for a single grain, the
magnetic moments from the inversion are only of dipole order.
= −𝛾𝐵 ∬𝜕𝛺s

d𝑥 d𝑦 ∫𝜕𝛺
𝐌 ⋅ d𝐒′ 𝜕

𝜕𝑧

(

1
|𝐫 − 𝐫′|

)

(5)

= 𝛾𝐵 ∬𝜕𝛺s

d𝑥 d𝑦 ∫𝜕𝛺
𝐌 ⋅ d𝐒′ 𝜕

𝜕𝑧′

(

1
|𝐫 − 𝐫′|

)

(6)

In Eq. (6) the derivative variable was changed, which is more conve-
nient for two of the cuboid faces. The integral limits can be simplified
if the integration variable is changed to the coordinate system of the
cuboid center 𝝃c = (𝜉c, 𝜂c, 𝜁c) by noticing that 𝐫′ = 𝝃c + 𝐫c, as shown in
Fig. 1. In this case d𝐒′ = d𝐒c and 𝜕𝑓

𝜕𝑧′ = 𝜕𝑓
𝜕𝑧c

for an arbitrary function 𝑓 ,
hence the field can be expressed as

𝛷flux = 𝛾𝐵 ∬𝜕𝛺s

d𝑥 d𝑦 ∫𝜕𝛺
𝐌 ⋅ d𝐒c

𝜕
𝜕𝑧c

⎛

⎜

⎜

⎝

1
|

|

|

𝐫 −
(

𝝃c + 𝐫c
)

|

|

|

⎞

⎟

⎟

⎠

(7)

= 𝛾𝐵 ∬𝜕𝛺s

d𝑥 d𝑦 ∫𝜕𝛺
𝐌 ⋅ d𝐒c

𝜕
𝜕𝑧c

(

1
|

|

𝐗 − 𝐫c||

)

(8)

with 𝐗 = 𝐫 − 𝝃c. Alternatively, the field can also be written as

𝛷flux = −𝛾𝐵
𝜕
𝜕𝑧 ∬𝜕𝛺s

d𝑥 d𝑦 ∫𝜕𝛺
𝐌 ⋅ d𝐒c

(

1
|

|

𝐗 − 𝐫c||

)

(9)

To perform the integrations with respect to the sensor area we
follow a similar procedure as before, by changing the integration
variables to the reference system at the sensor center. This means
using the fact that 𝐫 = 𝝃s + 𝐫s (see Fig. 1), with 𝐫s = (𝑥s, 𝑦s, 0), and
integrating with respect to d𝑥s and d𝑦s within the sensor area limits.
The fourfold integration can be calculated by referring to Hubert and
Schäfer (1998, p. 122), based on systematic integrations of the source
function 𝐹 (𝑟) = 1∕𝑟. Details about the solutions have been published
3

000
in the Supporting Information of de Groot et al. (2018a) and Cortés-
Ortuño et al. (2022a). Notice that the magnetization in the flux term
can be separated from the integration, for instance, the cuboid face
plane normal to the 𝑥-direction contains the 𝑀𝑥 term. For this case
𝐫c = (𝛥𝑥c, 𝑦c, 𝑧c) and the flux is computed as

𝛷�̂�=+�̂�
flux = −𝛾𝐵𝑀𝑥𝐹12−1

(

𝝃s + 𝐫s − 𝝃c − 𝐫c
)

|

|

|

|

|

𝑥s=+𝛥𝑥s

𝑥s=−𝛥𝑥s

|

|

|

|

|

𝑦s=+𝛥𝑦s

𝑦s=−𝛥𝑦s

|

|

|

|

|

𝑧c=+𝛥𝑧c

𝑧c=−𝛥𝑧c

|

|

|

|

|

𝑦c=+𝛥𝑦c

𝑦c=−𝛥𝑦c

= −𝛾𝐵𝑀𝑥𝐹12−1
(

𝜉s + 𝑥s − 𝜉c − 𝛥𝑥c, 𝜂s + 𝑦s − 𝜂c − 𝑦c, 𝜁s − 𝜁c − 𝑧c
)

×
|

|

|

|

|

𝑥s=+𝛥𝑥s

𝑥s=−𝛥𝑥s

|

|

|

|

|

𝑦s=+𝛥𝑦s

𝑦s=−𝛥𝑦s

|

|

|

|

|

𝑧c=+𝛥𝑧c

𝑧c=−𝛥𝑧c

|

|

|

|

|

𝑦c=+𝛥𝑦c

𝑦c=−𝛥𝑦c

We have defined here that the cuboid has dimensions 2𝛥𝑥c, 2𝛥𝑦c and
2𝛥𝑧c, and similarly for the two-dimensional sensor dimensions. The
result for the face plane normal to the −𝑥-direction follows the same
structure. If we group the flux components from surface normals with
opposite sign, with the corresponding magnetization terms in the same
direction, 𝑀𝑥, 𝑀𝑦, and 𝑀𝑧, we can write, in general,

𝛷flux =
∑

𝛼∈{𝑥,𝑦,𝑧}
𝛷𝛼

flux𝑀𝛼 , (10)

where 𝛷𝛼
flux = 𝛷�̂�=+�̂�

flux +𝛷�̂�=−�̂�
flux . For a magnetic particle decomposed into

C cuboids having the same magnetization, the magnetic flux can be
written as the sum of their contributions

𝛷flux =
∑

(

C
∑

𝛷𝛼,𝑖
flux

)

𝑀𝛼 (11)

𝛼∈{𝑥,𝑦,𝑧} 𝑖=1
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For N magnetic grains, the flux contribution can be written as a
matrix multiplication,

𝛷flux =

[

C
∑

𝑖=1
𝛷𝑥,𝑖

1

C
∑

𝑖=1
𝛷𝑦,𝑖

1

C
∑

𝑖=1
𝛷𝑧,𝑖

1

C
∑

𝑖=1
𝛷𝑥,𝑖

2 …
C
∑

𝑖=1
𝛷𝑧,𝑖

N

]

⋅𝐌, (12)

ith the column vector of 3N magnetization components,

𝐌
𝑇
=
[

𝑀𝑥,1𝑀𝑦,1 …𝑀𝑧,N
]

. (13)

Since the surface measurement is made of P sensors, the total
lux can be written as a forward matrix 𝜱 of size (P × 3N ), with

components ∑C
𝑖=1 𝛷

𝛼,𝑖
𝑝,𝑞 representing the flux contribution from the faces

normal to the 𝛼-direction, from grain 𝑞, to the sensor 𝑝. Hence, every
row of this matrix contains the contribution from all the magnetic
sources, detected by a specific sensor 𝑝. Using the forward matrix, the
inverse problem is expressed as

𝜱 ⋅𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑C
𝑖=1 𝛷

𝑥,𝑖
1,1

∑C
𝑖=1 𝛷

𝑦,𝑖
1,1 …

∑C
𝑖=1 𝛷

𝑧,𝑖
1,

∑C
𝑖=1 𝛷

𝑥,𝑖
2,1 ⋱ ⋮

⋮

∑C
𝑖=1 𝛷

𝑥,𝑖
P,1 …

∑C
𝑖=1 𝛷

𝑧,𝑖
P,N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑀𝑥,1
𝑀𝑦,1
⋮
⋮

𝑀𝑧,N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐵1
𝐵2
⋮
⋮

𝐵P

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐁, (14)

ith 𝐁 as a column vector of size P which has the scanning surface
measurements for every sensor. If the number P of scanning sensor
measurements is larger than the number of independent magnetiza-
tion components 3N , a least squares minimization results in a linear
inversion equation. Accordingly, the forward matrix 𝜱 has a pseudo-
nverse that can be used to calculate the magnetization vector. A
tandard method to compute the inverted matrix is the Moore–Penrose
seudo-inverse.

The HMP formalism allows the calculation of the magnetization
f all the grains in the sample. Notice that this model only provides
olutions at the dipole order for the magnetic potential, owing to
he single-domain particle assumption. Therefore, the residual of the
nverted forward field (Zhdanov, 2015)

𝐁
res

= 𝐁
inv

− 𝐁 (15)

ill exhibit strong anomalies of multipole character if the grains are
ot uniformly magnetized, which occurs frequently for grains above
he pseudo-single-domain size range (Cortés-Ortuño et al., 2021). The
esidual error of the magnetic field data can be quantified using the
elative error, 𝐵err, by computing the Frobenius norm ‖⋅‖𝐹 of the field
atrices as

err =
‖

‖

‖

𝐁
res

‖

‖

‖𝐹
‖

‖

‖

𝐁‖‖
‖𝐹

. (16)

3.2. Code

The mmt_dipole_cuboid_inversion library (Out et al., 2023) is
written in Python and contains a main class named
DipoleCuboidInversion to load both tomographic data and mag-
netometry data. The former, ideally, has to be pre-processed with
a cuboid decomposition algorithm to speed up the inversion. The
mmt_dipole_cuboid_inversion library contains a module to decom-
pose a grain from raw pixel format to coarser cuboids, for a single grain,
as shown in Code 1. For a full sample, either the raw or decomposed-
cuboid data from all the grains has to be compiled into a single file with
seven columns: x y z dx dy dz index, which are the cuboid center
4

1 from mmt_dipole_cuboid_inversion.tools
import CuboidDecomposition

2
3 # Process a single grain in a text file
4 my_data = ’grain_voxel_data.txt’
5 CuboidDecomposition(my_data,

’cuboid_decomposed_data.txt’,
format_output=True)

Code 1: Code snippet for the decomposition of the voxel
representation of a grain into the largest possible cuboids that

represent the same grain geometry.

coordinates, the half lengths in the three spatial directions and the
index of the grain where the cuboid belongs to.

In the case of the magnetometry data, it must be formatted as
a text file or two-dimensional Numpy array that can be passed to
the read_files method of the DipoleCuboidInversion class. In
addition to the data files, the following properties of the scanning mag-
netometer are required when instantiating the class: the scan domain
(either from the sensor center positions or the scan surface limits), the
distances between two adjacent sensors from their centers, the sensor
area and the magnetometer height from the top of the sample, which
is defined with position 𝑧 = 0.

A diagram with the structure of the
mmt_dipole_cuboid_inversion library is shown in Fig. 2. The main
module, dipole_cuboid_inversion, contains the inversion class
DipoleCuboidInversion which can call three different methods to
populate the forward matrix. Two of these methods are parallelized
using OpenMP and CUDA (if available) and are compiled using the
Cython compiler (Behnel et al., 2011). The third method is compiled
from C to Python using the Numba compiler (Lam et al., 2015). For the
inversion, the main class contains Moore–Penrose pseudo inverse algo-
rithms from the Numpy and Scipy libraries, and a least squares solution
via LAPACK libraries. These methods can be extended in the future
using other singular value decomposition algorithms, such as dgesvj
based on Jacobi plane rotations, from the LAPACK library. The tools
modules contain the cuboid decomposition code and several functions
to plot the sample and the inversion results. The inversion_tools
module was developed by Out et al. (2022) to analyze the accuracy of
the inversion solutions via a covariance matrix, when the noise level of
the field signal is known.

In Code 2 we show an example of using the
DipoleCuboidInversion class to invert a 102 μm × 102 μm scanning
surface measuring the signal of two single dipole point sources. The
surface domain, in this case, is specified using the coordinates of
the center of the lower left and upper right sensors. The library also
allows specifying the scan domain using the corners of the full surface.
The first dipole is located at a depth of 𝑧 = −10 μm, has a volume
of 8 μm3 and is oriented in the (0, 1, 1) direction, with a saturation
magnetization of 𝑀s = 0.48 MA∕m. The second dipole is below the
first one at a depth of 𝑧 = −20 μm, with a volume of 1 μm3 and
oriented in the (−1,−1, 0) direction. The magnetic field of the dipoles is
calculated analytically at every sensor center position of the scanning
surface located at 𝑧 = 2 μm. The inversion considers the average
signal over a sensor area of 2 μm × 2 μm, thus a small error between
the inverted magnetizations is expected. For the inversion, two cubes
are specified centered at the dipole positions with corresponding side
lengths to match the dipole volumes. This information is stored in the
files ending in _cuboids.txt. The population of the forward matrix
that is inverted, is specified with the OpenMP optimization, and the
inversion is done using the Scipy library.

For the case of Code 2, the relative error for the inverted magnetiza-
tions, compared to the true value, is 1.25% for dipole 1 and 12.45% for

dipole 2. The larger error of the second dipole is caused by the dipole on
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Fig. 2. Diagram for the code structure of the mmt_dipole_cuboid_inversion Python library. Every node represents a module (which is either a directory or a file)
named in bold letters. Each module includes: submodules, functions specified with the (Fn) label, classes specified with the (Class) label, and external modules specified with the
(ext) label. For this library, three different optimization modules are available for the DipoleCuboidInversion class, which can be called from one of its methods.
Fig. 3. Relative error of the norm of the inverted magnetization of two single dipoles, as a function of their separation. In the model, one dipole is located directly above the
other. The dipole at the top is kept fixed at 𝑑 = 10 μm, while the dipole below it is moved deeper into the sample. The two dipoles have a magnetization of 0.485 MA/m with
volumes equivalent to cuboids of 1 μm3 for the bottom dipole, and 8 μm3 for the top dipole. The scan surface is located at a height of 𝑧scan = 2 μm. The magnetic signal is
computed analytically from the dipole field of the magnetic sources into a square surface of side length 102 μm divided into a grid of point sensors spaced by 2 μm distance.
The performance of the DipoleCuboidInversion class is tested by numerically inverting the surface signal to obtain the magnetizations of the dipoles. The bottom dipole
signal exhibits an exponential error due to an ill-conditioned forward matrix caused by its weak signal at the scan surface.
top of it, which has a larger volume and shadows its signal, generating
an ill-conditioned matrix. Code 2 has been utilized to observe the error
tendency as the distance of dipole 2 from dipole 1, increases. The result
is illustrated in Fig. 3, where we observe that the relative error for
dipole 2 increases exponentially, while it decreases for dipole 1 in a
similar exponential fashion for depths above 10 μm. An analysis of the
condition number of the forward matrix reveals that it also increases
exponentially with the depth of dipole 2.

4. The multipole expansion method

To improve the accuracy of the inverted magnetization solutions,
particularly from complex magnetic anomalies, Cortés-Ortuño et al.
(2021) developed a multipole expansion (MPE) of the magnetic po-
tential by considering that the scanning surface measurements are
sufficiently far away from the magnetic sources. The MPE uses fully
5

orthogonal (see the Supporting Information of Cortés-Ortuño et al.
(2021)) real spherical harmonic polynomials. These polynomials are
obtained by changing the non-orthogonal Maxwell-Cartesian polyno-
mial basis that arises from the far-field expansion of the magnetic
potential, and which might lead to numerical instabilities. Using the
orthogonal basis, a numerical inversion computes quadrupole, octupole
and higher order magnetic moments per grain. For the MPE the mag-
netic grains are modeled as point sources, thus only the location of
the grains from the tomographic data is necessary. On the other hand,
to compute the magnetizations the grain volumes are still required. In
contrast to the HMP method, the MPE method introduces more free
parameters (magnetic moments) that need to be fitted during the in-
version. Nonetheless, it can reconstruct complex magnetic signals more
accurately under certain conditions, such as grains being sufficiently
close to the measurement sample surface having a strong signal. Recent
experimental setups have set the scanning surface 2 μm (SQUID, de
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1 import numpy as np
2 import mmt_dipole_cuboid_inversion as dci
3 from pathlib import Path
4
5 # Data generated by the generate_two_dipoles.py script:
6 datadir = Path( " ./two_dipoles_sep_data " )
7 dipole_sep = 10 # micro-m
8 scanfile = datadir / f’two_dipoles_sep_{dipole_sep:02d}_Bzgrid.txt’
9 cuboidfile = datadir / f’two_dipoles_sep_{dipole_sep:02d}_cuboids.txt’

10
11 # Use the coords of lower-left and upper-right sensors to define scan surface:
12 sensor_domain = np.array([[0, 0], [100., 100.]]) * 1e-6
13 (scan_spacing , scan_deltax , scan_deltay ,
14 scan_area , scan_height) = (2e-6, 1e-6, 1e-6, 4e-12, 2e-6)
15 # First parameter contains the surface scan corner coords, but here we
16 # use the sensor positions instead:
17 dip_inversion = dci.DipoleCuboidInversion(None, sensor_domain , scan_spacing ,
18 scan_deltax , scan_deltay ,
19 scan_area , scan_height)
20
21 dip_inversion.read_files(scanfile, cuboidfile , cuboid_scaling_factor=1e-6)
22 dip_inversion.set_scan_domain(gen_sd_mesh_from=’sensor_center_domain’)
23 dip_inversion.prepare_matrix(method=’cython’)
24 dip_inversion.calculate_inverse(method=’scipy_pinv’)

Code 2: Code snippet for the inversion of the two dipoles system of Fig. 3, using the mmt_dipole_cuboid_inversion library.
Fig. 4. Overview of the forward model for the MPE formalism. The coordinate system is shown with the origin located at an expansion center specified at the centroid of the
grains. Three different models for the scan surface sensors are depicted, based on the sensor dimensions. For a point sensor, a distance 𝐑 from the source to the sensor center
is used. For larger sensor dimensions, this distance points to an infinitesimal sensor area or volume, and it is easier to integrate the magnetic flux equations with respect to the
distance to the sensor center 𝝃s and sensor center to sensor unit 𝐫s. Numerical inversions of the scan surface signal, using the mmt_multipole_inversion code, are used
to calculate dipole and higher order magnetic moments for every grain in a sample. Unique individual magnetic moment solutions for every grain are guaranteed by topologically
separated grain volumes, i.e. with non-overlapping grain bounding spheres.
Groot et al. (2018a)) or 6 μm (QDM, Kosters et al. (2023)) above the
sample surface, with grains located from 6 to 50 μm below the sample
surface. For these cases grains are sufficiently separated from the scan
surface and a far-field multipole expansion can be applied. Although
shallow grains usually exhibit a strong signal that is useful for reliable
inversions, if they are located too close to the surface, such that a sphere
enclosing their volume reaches the scan surface, a near-field multipole
expansion might be more accurate.
6

The forward model for the MPE method starts from the magnetic
potential of Eq. (1), considering a distribution of volume charges from a
magnetic source rather than the magnetic surface charges. A multipole
expansion is more effectively described with respect to a reference
point within the magnetic source, for instance, its geometric center, as
shown in Fig. 4. Based on this, it is possible to write the denominator
of Eq. (1) as |𝐑 − 𝜼|, with 𝐑 = (𝑥, 𝑦, 𝑧) and 𝜼 as the positions of the sen-
sor center and an infinitesimal volume charge, respectively, measured
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rom the expansion center. For this case, we are considering that the
ensors are point detectors. A far-field expansion of the potential of a
ingle magnetic grain, when |𝐑| = 𝑅 ≫ 𝜂 = |𝜼|, results in

𝜙(𝐑) = 1
4𝜋

3
∑

𝑛=1

2𝑛+1
∑

𝛼=1
𝛩𝑡(𝑛)
𝛼 𝑄𝛼(𝑛)(𝐑) + 

(

𝜂4
)

. (17)

The sum shows the expansion terms up to octupole order. The term
𝛩𝑡(𝑛)
𝛼 denotes the components of the traceless magnetic multipole tensor

of rank 𝑛, which contains the magnetic moment information about
the magnetic source. The functions 𝑄𝛼(𝑛)(𝐑) represent the orthogonal
pherical harmonic polynomials proportional to 𝑅−(𝑛+1). Notice that
(1) =

(

𝛩𝑡(1)
1 , 𝛩𝑡(1)

2 , 𝛩𝑡(1)
3

)

is the magnetic dipole moment vector that
defines the net grain magnetization 𝐌 = 𝜣(1)∕𝑉 , where 𝑉 is the grain
volume.

The magnetic field is, therefore, computed from the gradient of the
potential and contains 𝑛th-order multipole terms that decay as 𝑅−(𝑛+2).
If the magnetic sensor is modeled as a point sensor detecting the field
component normal to the scanning surface in the 𝑥𝑦-plane, the field is
obtained by the 𝑧-derivative of Eq. (17). According to this, for a sample

ith N magnetic grains and P sensors, the forward model in block
atrix notation reads
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In Eq. (18), each magnetic moment tensor 𝜣𝑖, corresponding to grain 𝑖,
in the column vector 𝜣 contains 𝑛(𝑛+2) components, depending on the
maximal multipole order 𝑛. The 𝐁 column vector contains the scanning
signal at every sensor. And 𝐏𝑧|𝑖,𝑗 is the row vector containing the 𝑧-
component of the gradient of the spherical harmonic polynomials, at
sensor 𝑖 from grain 𝑗, and which has 𝑛(𝑛+ 2) components. Specifically,
it is defined as

𝜱𝑖,𝑗 = 𝛾𝐵𝐏𝑧|𝑖,𝑗 = −𝛾𝐵
𝜕𝐐𝑖,𝑗

𝜕𝑧
. (19)

For an octupole order inversion, i.e. 𝑛 = 3, the gradient of the polyno-
ial row vector has 15 elements and reads (see Eq. (20) which is given

n Box I).
Up to octupole order, 𝑛 = 3, the multiplication of the sub-matrices

n Eq. (18), using Eq. (19), means

𝑧|𝑖,𝑗 ⋅𝜣𝑗 = −
3
∑

𝑛=1

2𝑛+1
∑

𝛼=1

𝜕𝑄𝛼(𝑛)
𝑖,𝑗

𝜕𝑧
𝛩𝑡(𝑛)
𝛼|𝑗 . (21)

In this model the 𝜱 matrix has size (P ,N × 𝑛(𝑛+2)). Equivalently,
in block notation it has size (P ,N ).

In the case that the sensor is modeled as a two-dimensional rect-
angle of area 𝜕𝛺s, detecting the out of plane magnetic signal from the
grains, the 𝐑 vector will point to an infinitesimal unit of sensor area
(see Fig. 4). In this model, the flux matrix block components change to

𝜱𝑖,𝑗 = 𝛾𝐵 d𝑥 d𝑦𝐏𝑧|𝑖,𝑗 = −𝛾𝐵 d𝑥 d𝑦
𝜕𝐐𝑖,𝑗
7

∬𝜕𝛺s
∬𝜕𝛺s

𝜕𝑧
= −𝛾𝐵
𝜕
𝜕𝑧 ∬𝜕𝛺s

d𝑥 d𝑦𝐐𝑖,𝑗 . (22)

s in the case of the cuboid aggregation model, it is easier to switch
o a coordinate system with respect to the sensor center by defining
= 𝝃s+𝐫s, with 𝐫s = (𝑥s, 𝑦s, 0), and integrating within the sensor limits.

he flux now has units of Tesla per meter squared, hence the average
lux within the sensor can be computed by averaging by the sensor area.

Similarly, the sensor can be modeled as a three-dimensional cuboid.
gain, we change to the coordinate system of the sensor center, where
n infinitesimal unit of sensor volume is described with 𝐫s = (𝑥s, 𝑦s, 𝑧s).
he simplest case is where only the 𝑧-component of the field is detected
ithin the cuboid volume defining the sensor, 𝛺s. As a result, the flux
atrix components become

𝜱𝑖,𝑗 = 𝛾𝐵 ∭𝛺s

d𝑥 d𝑦 d𝑧𝐏𝑧|𝑖,𝑗 = −𝛾𝐵 ∭𝛺s

d𝑥 d𝑦 d𝑧
𝜕𝐐𝑖,𝑗

𝜕𝑧
. (23)

Note that the 𝑧-integral can be simplified if the spherical harmonic
olynomials are used instead of their gradient. The integrals in Eqs. (22)
nd (23) are not straightforward and could only be computed up
o quadrupole order using a symbolic computation library, such as

olfram Mathematica.

.1. Code

The MPE formalism has been implemented in the Python library
mt_multipole_inversion (Cortés-Ortuño et al., 2022c), which con-
ains two main classes. One of them is the MagneticSample class,
hich generates samples of point magnetic sources with given or

andom locations and magnetic moments, and which specifies the
roperties of the scanning surface. This information can be saved in
umpy arrays and json files to be inputted into the second main
lass of the library called MultipoleInversion. This class is the core
f the mmt_multipole_inversion library because it calculates the
agnetic moments of all the grains in a sample by computing the

orward flux matrix and solving the inversion problem numerically.
he MultipoleInversion module can both accept the files from
he MagneticSample class or work independently. The latter means
pecifying the scan and sample properties directly from the user. The
opulation of the forward flux matrix can be done using a vectorized
ode based on the Numba library (Lam et al., 2015), or a highly parallel
PU code written in the CUDA language.

A diagram of the mmt_multipole_inversion code is shown in
ig. 5. The susceptibility_modules contain the functions to pop-
late the forward matrix using different polynomial basis and scan
ensor models. The latter are currently implemented for the spherical
armonics polynomial basis only, since it is fully orthogonal. A similar
esign is implemented for the field functions of the magnetic_sample
odules. A multipole_field module includes functions to calculate

he radial component of the magnetic field at different multipole orders
f the corresponding multipole moments are known. These functions
ave been used by Cortés-Ortuño et al. (2021) to show the radial
ield around a bounding sphere containing the grains, since this field
ontains all the information about the magnetic sources within the
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Fig. 5. Diagram for the code structure of the mmt_multipole_inversion Python library. Every node represents a module (which is either a directory or a file) named in
bold letters. Each module includes: submodules, functions specified with the (Fn) label and classes specified with the (Class) label. For the multipole inversion, the susceptibility
matrix can be computed via functions optimized with the Numba library, which are in the susceptibility_modules module, or via a function optimized with CUDA. The
former implements three different models for the sensors: point, area and volume; and three different polynomial basis: fully orthogonal spherical harmonics, Maxwell Cartesian
polynomials, and spherical harmonics directly transformed to the Cartesian coordinate system. Functions to compute the radial field using different polynomial basis are contained
in the multipole_field module.
sphere and uniquely determines the spherical harmonic expansion of
the potential. Plotting functions for the inversion results are provided
in the plot_tools module.

In Code 3 we show the inversion of a quasi-quadrupole from a
source defined at the location (10, 10,−10) in micrometer units, with a
scanning surface of 20 μm×20 μm located at 𝑧 = 1 μm. The quadrupole
field is generated using the MagneticSample class to define two dipole
sources at the 𝑥-axis separated by a 2 μm distance. These dipoles are
oriented in the ±�̂� directions and have magnetic moments of |𝜣(1)

| =
4.8 × 105 × 10−18 A m2 magnitude, which are associated to particles of
1 μm3 volume. Then, for the inversion, we define a single magnetic
source of 1 μm3 volume, with an expansion center at the middle of
the sample, instead of the two dipoles, with the idea of obtaining
quadrupole moment solutions (see Code 3). The data is saved in two
files: a json file containing a dictionary with the scanning surface
properties; and a Numpy npz file containing arrays with the particle
positions, the magnetic signal and, optionally, other information about
the system that is not required for the inversion. These arrays can also
be assigned manually in a class instance.

To perform the inversion we load the data saved previously and use
a quadrupole order expansion. Notice that the inversion is specified
first using the function argument ’spherical_harmonics_basis’,
which means the expansion of the magnetic potential is done with
the orthogonal spherical harmonic polynomials. For this option the
sensors are modeled as point detectors, thus the signals are measured at
every sensor center. The resulting inverted magnetic moments are given
by the array [-4.00e-17, -8.20e-17, 6.61e-19, -2.98e-24,
1.57e-22, 3.21e-22, -1.23e-24, -1.95e-18]. The first three
values are the dipole magnetic moments. Using the source’s volume,
its magnetization has magnitude of |𝐦| = 91.23 A/m. Compared to
the magnetization of each of the original two dipole sources, which
were defined with a magnetization of 4.8 × 105 A/m, the inverted
magnetization of the single source is negligible. The same applies
for its dipole moments since the single source was define with the
same volume of each of the original sources. The next five values
in the array are the quadrupole tensor components, where the latest
has the largest magnitude, and which is the prefactor of the field
polynomial 𝜕𝑄5(2)∕𝜕𝑧 = 5

√

2𝑥𝑦𝑧∕𝑅7 (see Eq. (20)). We assess the
error of the inverted field, compared to the measurement, using its
8

relative error given by Eq. (16), which results in a small value of
𝐵err = 4.52% for both polynomial basis. The quadrupolar field is
given primarily by a single quadrupole moment, however a physical
interpretation of its associated polynomial term is not straightfor-
ward. In the code we have implemented other polynomial basis, for
instance the Maxwell Cartesian polynomials, that are specified with
the argument ’maxwell_cartesian_basis’. On the one hand, these
polynomials are not orthogonal (for quadrupole and higher orders)
and, thus, they are not numerically stable (Cortés-Ortuño et al., 2021).
On the other hand, they can be used to interpret simple models.
In this example, they generate the inverted magnetic moment val-
ues [-4.00e-17, -8.20e-17, 6.61e-19, 3.46e-25, -1.38e-18,
1.11e-22, 2.09e-24, 2.27e-22]. The second quadrupole compo-
nent, 𝛩(2)

𝑥𝑦 =−1.38e−18 A m3 (in the non-orthogonal basis; see Cortés-
Ortuño et al. (2021)), is the largest and corresponds to a pure
quadrupole oriented in the 𝑥𝑦-direction, which is the case here, and
thus proves that the inversion is producing the right components of the
multipole tensor.

5. Benchmark problem: synthetic sample

We define a benchmark problem to compare the performance of
our two inversion codes using the open data of a synthetic sample
investigated by de Groot et al. (2018a) and Cortés-Ortuño et al. (2021),
and which is hosted in de Groot et al. (2018b). We set this problem as
a reference for the verification of the performance of new inversion
codes, and alternative inversion algorithms.

The synthetic sample contains magnetite grains with diameters
ranging from 5 μm up to 35 μm. The data includes both the locations
and sizes of the aggregations of cuboids composing the magnetic grains,
which were obtained via microCT. The cuboid data was processed with
the cuboid decomposition algorithm in order to optimize the number of
elements describing a single grain. The magnetic signal image data was
obtained using a SQUID magnetometer and co-registered with a bird’s-
eye view of an image of the sample depicting the grains. Three areas
of the magnetic signal image were selected and studied in de Groot
et al. (2018a), and here we focus on the so-called Area 1 for the case
of unknown magnetic states. An overview of the sample and chosen
scanning surface area are shown in Fig. 6.
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1 from mmt_multipole_inversion import MagneticSample
2 from mmt_multipole_inversion import MultipoleInversion
3 import numpy as np
4
5 # Scan height, Scan area x and y, sensor half-legth x and y (meter)
6 Hz, Sx, Sy, Sdx, Sdy = 2e-6, 20e-6, 20e-6, 0.1e-6, 0.1e-6
7 Lx, Ly, Lz = Sx * 0.9, Sy * 0.9, 5e-6 # Sample lengths (meter)
8 hLx, hLy, hLz = sample.Lx * 0.5, sample.Ly * 0.5, sample.Lz * 0.5
9

10 # Initialise class to create a sample (with user-defined or random particles)
11 sample = MagneticSample(Hz, Sx, Sy, Sdx, Sdy, Lx, Ly, Lz)
12
13 Ms = 4.8e5
14 # Set the positions and dipole magnetic moments of two dipoles
15 # Put them at the middle of the sample, separated in the x-axis
16 dipole_positions = np.array([[hLx - 1e-6, hLy, -hLz],
17 [hLx + 1e-6, hLy, -hLz]])
18 # Magnetic moments
19 mu_s = Ms * (1 * 1e-18) * np.array([[0., 1., 0], [0., -1, 0]])
20 volumes = np.array([1e-18, 1e-18])
21
22 sample.generate_particles_from_array(dipole_positions , mu_s, volumes)
23 # Generate the dip field: the Bz field flux through the measurement surface
24 sample.generate_measurement_mesh()
25
26 # Redefine positions to make a single particle at the centre (ideal quadrupole)
27 sample.dipole_positions = np.array(
28 [[sample.Lx * 0.5, sample.Ly * 0.5, -sample.Lz * 0.5]])
29 # Update the N of particles in the internal dict
30 sample.N_particles = 1
31
32 sample.save_data(filename=’quadrupole_y -orientation’)
33
34 # Inversions ------------------------------------------------------------------
35
36 shinv = MultipoleInversion(’./MetaDict_quadrupole_y -orientation.json’,
37 ’./MagneticSample_quadrupole_y -orientation.npz’,
38 expansion_limit=’quadrupole’,
39 sus_functions_module=’spherical_harmonics_basis’)
40 shinv.generate_measurement_mesh()
41 shinv.compute_inversion(method=’sp_pinv’)
42
43 mcinv = MultipoleInversion(’./MetaDict_quadrupole_y -orientation.json’,
44 ’./MagneticSample_quadrupole_y -orientation.npz’,
45 expansion_limit=’quadrupole’,
46 sus_functions_module=’maxwell_cartesian_polynomials’)
47 mcinv.generate_measurement_mesh()
48 mcinv.compute_inversion(method=’sp_pinv’)

Code 3: Code for the inversion of the magnetic signal of an ideal quadrupole point source using the mmt_multipole_inversion library.
We show in Code 4 the script to perform the inversion of the chosen
scanning surface area using the mmt_dipole_cuboid_inversion li-
brary. The sensors of the SQUID measurement have a square geometry
with 1 μm side length, and are separated by a distance of the same
dimension. The scan surface has a size of 350 μm × 200 μm and is
located at 2 μm above the sample. The cuboid and scanning surface data
are already formatted for the DipoleCuboidInversion class, thus the
piece of code for the inversion requires only a few lines. In this case,
we have used Scipy’s pseudo-inverse function.

For the MPE inversion code we have also modeled the SQUID mag-
netometer sensors as squares by specifying the argument
’spherical_harmonics_basis_area’, in order to make the results
comparable to those of the cuboid aggregation model. The scanning
surface and sensor dimensions are defined in a Python dictionary
containing the properties of the scanning surface and sensors, which
is stored in a json file. For the code we use dipole and quadrupole
inversions. For the MPE inversions, a small cutoff for the singular
9

values is particularly important because of the small magnitude of
higher order multipole moments. In the ’scipy_pinv’ method, a
relative threshold can be specified by the rtol parameter, which is
proportional to the maximum singular value of the forward matrix.

A comparison of the results of the two codes, together with the
original results published by de Groot et al. (2018a), are shown in Code
output 6. Both the magnetization strength and spherical angles of the
magnetization are computed. For a dipole order inversion, the three
codes are in agreement. In Cortés-Ortuño et al. (2021) it was shown that
large residuals are observed in the inverted magnetic signal when using
a dipole approximation for the forward model. Although, in principle,
a quadrupole expansion should improve the inverted magnetization
values, this optimization is affected by multiple factors. Firstly, both
grain depth and size, which affect the grain signal. Shallow grains
usually have a stronger signal but the far-field approximation fails if
they are too close to the measurement surface. Larger grains might
have stronger signal, although it might be weaker if they host mag-
netic structures with a flux-closure pattern, such as three-dimensional

vortices. Secondly, grain superposition, i.e. one grain above another,
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1 from pathlib import Path
2 import mmt_dipole_cuboid_inversion as dci
3 import numpy as np
4
5 # Load data from the synthetic sample of de Groot et al. (2018)
6 data_dir = Path(’deGroot2018_data/PDI-16803’)
7
8 # Location and name of SQUID scan data, and tomog. cuboid file
9 ScanFile = data_dir / ’Area1-90-fig2MMT.txt’

10 CuboidFile = data_dir / ’FWInput-FineCuboids -A1.txt’
11 # Define sensor area using sensor center positions
12 SQUID_sensor_domain = np.array([[0, 0], [350, 200]]) * 1e-6
13 SQUID_spacing = 1e-6
14 SQUID_deltax , SQUID_deltay , SQUID_area = 0.5e-6, 0.5e-6, 1e-12
15 SQUID_height = 2e-6
16 # Use lower-left and upper-right sensors to define the scan domain
17 mag_inv = dci.DipoleCuboidInversion(
18 None, SQUID_sensor_domain , SQUID_spacing ,
19 SQUID_deltax , SQUID_deltay , SQUID_area , SQUID_height)
20 # Read files and define scan area
21 mag_inv.read_files(ScanFile, CuboidFile , cuboid_scaling_factor=1e-6)
22 mag_inv.set_scan_domain(gen_sd_mesh_from=’sensor_center_domain’)
23 # We then compute the forward (Green’s) matrix to be inverted
24 mag_inv.prepare_matrix(method=’cython’)
25 # And we do the inversion
26 mag_inv.calculate_inverse(method=’scipy_pinv’, rtol=1e-20)

Code 4: Code for the inversion of Area 1 of the synthetic sample of de Groot et al. (2018a), in the case of unknown magnetic states, using the
mmt_dipole_cuboid_inversion library.
1 import numpy as np
2 from pathlib import Path
3 import mmt_multipole_inversion as minv
4
5 # -----------------------------------------------------------------------------
6 # INVERSION
7
8 data_dir = Path(’deGroot2018_data/PDI-16803’)
9 SaveDir = Path(’SyntheticSampleFiles’)

10 SaveDir.mkdir(exist_ok=True)
11
12 # The area sensor formalism is implemented up to quadrupole order only
13 # The Area1_UMS_NPZ_ARRAYS.npz numpy file contains: grain centers and volumes
14 # The AREA1_UMS_METADICT.json contains: scanning surface properties
15 inv_area1_ums = minv.MultipoleInversion(
16 SaveDir / " AREA1_UMS_METADICT.json " ,
17 SaveDir / ’Area1_UMS_NPZ_ARRAYS.npz’,
18 expansion_limit=’quadrupole’,
19 sus_functions_module=’spherical_harmonics_basis_area’)
20 # Load the scanning array manually:
21 inv_area1_ums.Bz_array = np.loadtxt(data_dir / ’Area1-90-fig2MMT.txt’)
22 # Compute the inversion with a small relative tolerance
23 inv_area1_ums.compute_inversion(method=’sp_pinv’, rtol=1e-20)
24
25 # Compute magnetizations - each row has the magnetic moments of a single grain
26 # We get the first 3 columns for every row
27 mag_area1_ums = inv_area1_ums.inv_multipole_moments[:, :3]
28 mag_area1_ums /= inv_area1_ums.volumes[:, None]
29 mag_area1_ums = np.sqrt(np.sum(mag_area1_ums[:, :3] ** 2, axis=1))

Code 5: Code for the inversion of Area 1 of the synthetic sample of de Groot et al. (2018a), in the case of unknown magnetic states, using the
mmt_multipole_inversion library.
can lead to shadowing of the signal of one of the grains due to an
ill-conditioned matrix. Thirdly, the scan signal quality, which directly
affects the accuracy of the numerical inversion. In the case of Area 1,
grain 5 was found to be one of the most optimal solutions because of
10

its strong signal-to-noise ratio (Cortés-Ortuño et al., 2021).
6. Micromagnetic modeling

Computational models of individual grains using the micromagnetic
formalism can be used together with the inverted magnetic moments of

the grains, to infer their internal magnetic state. This was demonstrated
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1 Magnetization in units of A / m
2 ---------------------------------------------------------------------------------------
3 Grain MultInv[dipole] MultInv[quadrup] DipCubInv de Groot (2018)*
4 ---------------------------------------------------------------------------------------
5 1 3384.149 4612.276 3467.090 3544.300
6 2 4384.657 6318.841 3876.450 3923.700
7 3 15265.621 19826.988 15131.965 15346.800
8 4 4190.415 4273.237 3740.296 3770.700
9 5 28120.792 39414.447 27753.220 28147.800

10 6 2119.661 15929.647 3059.004 2845.900
11 7 88682.365 75612.761 92531.810 92191.200
12 8 6796.900 14666.921 7430.479 7154.400
13
14 Pairs of (azimuthal ,polar) magnetization angles in degrees.
15 Polar angles positive above the equator
16 ---------------------------------------------------------------------------------------
17 Grain MultInv[dipole] MultInv[quadrup] DipCubInv de Groot (2018)*
18 ---------------------------------------------------------------------------------------
19 1 ( 16.43, 21.74) (352.35, 51.27) ( 14.49, 23.71) ( 14.30, 24.11)
20 2 (248.23, 49.06) (237.77, 40.34) (251.59, 53.90) (251.38, 53.80)
21 3 (194.18, 28.63) (172.70, 25.99) (194.99, 30.48) (194.79, 30.46)
22 4 (337.27, -51.26) ( 11.23, -44.09) (333.52, -50.79) (333.69, -50.68)
23 5 ( 64.34, -67.41) ( 2.05, -50.60) ( 64.00, -67.16) ( 63.35, -67.14)
24 6 (305.30, 22.81) (259.86, -24.03) (313.24, 20.86) (311.68, 21.32)
25 7 (343.95, -50.71) ( 96.51, 62.14) (350.26, -53.11) (348.09, -50.41)
26 8 (210.85, -53.10) (181.80, -31.04) (200.50, -48.71) (200.76, -51.84)
27
28 * Positive z-axis in de Groot (2018) point towards depth.
29 Polar values here are inverted. Azimuthal values are re-computed.

Code 6: Results of the inversions of Area 1 of the synthetic sample of de Groot et al. (2018a), in the case of unknown magnetic states. Sensors
are defined as two-dimensional square areas of 1 μm side length.
Fig. 6. Overview of the benchmark problem defined by a synthetic sample containing magnetite grains. To the left is shown a three-dimensional view of the location and size of
the grains using the tomographic data. Depths and volumes of the grains are detailed in the table at the bottom. To the right of the figure it is shown the magnetometry data
with the out-of-plane magnetic signal of the grains at a surface located at 𝑧 = 2 μm. A bird’s eye view of the grain profiles are shown here.
by Cortés-Ortuño et al. (2022a) by modeling both synthetic and natural
grains, and it was shown that for the grain sizes used in the study, three-
dimensional vortex structures, with left- or right-handed chirality, are
commonly found as the stable internal configurations that minimize the
magnetic energy locally.

Within the set of MMT numerical libraries, we have implemented
the mmt_micromagnetic_demag_signature code (Cortés-Ortuño
et al., 2022b) to generate the magnetic signal from the micro-
magnetic model of a grain obtained with the micromagnetic code
MERRILL (Ó Conbhuí et al., 2018). The inversion of the magnetic
11
signal of multiple stable states from the computational model can be
corresponded to those obtained from a natural sample and unveil what
is the internal magnetic configuration of natural grains.

6.1. Method

Micromagnetism is the approximation of the magnetization field
in the continuum and to model a system numerically it is discretized
using, for instance, finite elements (FEs). The FE method consists of
partitioning the material into a mesh of tetrahedral units wherein unit
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Fig. 7. Overview of the micromagnetic modeling technique applied to a natural magnetite grain with its shape characterized using a tomographic method. The grain profile is
converted to a finite element mesh and then simulated using the micromagnetic code MERRILL in order to find states of local or global energy minimum. For every magnetic
state, it is possible to calculate its stray field, or magnetic signal, at a surface above the sample. This signal can be numerically inverted to obtain the magnetic moments of the
grain.
1 import mmt_micromagnetic_demag_signature as mds
2 import numpy as np
3 nm, mum = 1e-9, 1e-6
4
5 # Load the MERRILL files from random state 2 of Cortes et al. (2022):
6 FILE_energy = ’./grain_OPX042_rnd2.log’ # To read the magnetization
7 SAVENAME = ’scan_signal_rnd2_scan -height_1000nm.npy’
8 VBOXFILE = ’./mag_vol_rnd2.vbox’ # data of FE mesh and M field
9 # Scan limits are given by lower-left and upper-right sensor positions

10 scan_spacing = (10 * nm, 10 * nm)
11 scan_limits = np.array([[-1.5, -1.5], [1.5, 1.5]]) * mum
12 scan_height = 1000 * nm
13 demag_signal = mds.MicroDemagSignature(scan_limits , scan_spacing , scan_height ,
14 VBOXFILE , FILE_energy)
15 # Shift the geom center of the grain to the origin
16 demag_signal.read_input_files(origin_to_geom_center=True)
17 # Compute stray field signal
18 demag_signal.compute_scan_signal(method=’cython’)
19 np.save(SAVENAME , demag_signal.Bz_grid)

Code 7: Code for computing the stray field signal of a natural magnetite grain, using a micromagnetic model of the system obtained with the
MERRILL code. The grain is labeled OPX042 in Nikolaisen et al. (2020), and its internal state is named random state 2 in Cortés-Ortuño et al.

(2022a).
magnetization vectors 𝐦𝑖, with ‖𝐦𝑖‖ = 1, are located at the tetrahe-
dra vertices 𝑖. The discretization allows the numerical calculation of
the total energy from the magnetic interactions of the magnetization,
which include the exchange, anisotropy, stray field, external field and
magnetoelastic interactions. The total energy can be minimized using
a suitable algorithm such as gradient descent methods, in order to find
local, and possibly the global, states of minimum energy. For details
12
of the formalism, refer to Cortés-Ortuño et al. (2022a) and Ó Conbhuí
et al. (2018).

The code MERRILL uses the FE micromagnetic formalism to create
models of rock magnetic grains, and implements energy minimization
algorithms to find stable magnetic configurations. The
mmt_micromagnetic_demag_signature library uses both the mag-
netization at the mesh nodes 𝐦 , and the associated volume at the nodes
𝑖
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𝑉𝑖, of a finite element mesh to compute the nodal dipole moments,
𝜣(1) = 𝑀s𝑉𝑖𝐦𝑖. The two properties can be extracted from MERRILL’s
vbox output files, which contain the location, magnetization and
volume of every mesh node. Using the dipole moments, the dipole-
order magnetic field of the system is computed at a scanning surface
whose dimensions and location, above or below the sample, are defined
by the user.

The workflow of micromagnetic modeling applied to a single grain
is shown in Fig. 7, using the data from the public repository of Niko-
laisen (2020). This database contains an extensive record of FE meshes,
in stl format, of natural magnetite grains from a pyroxene volume that
was milled and imaged by Nikolaisen et al. (2020) using focused-ion-
beam nanotomography (FIB-nt). In the case of Fig. 7, we chose the grain
labeled OPX042, which was analyzed by Cortés-Ortuño et al. (2022a).
Alternatively, it is possible to obtain the grain profile from micro- or
nano-tomography and apply a numerical surface reconstruction method
to generate a FE mesh, as detailed in Cortés-Ortuño et al. (2022a). The
grain model is converted from stl to tec format using the meshio
ython library (Schlömer, 2021), and then inputted into MERRILL to
ind states of minimum energy, such as the single vortex configuration
f Fig. 7. Finally, the stray field signal of the stable states is computed
sing the MMT library. For the case of Fig. 7, a scan surface is specified
t a height of 𝑧 = 1 μm. The grain is centered at the origin with its top
urface reaching 𝑧 = 0.11 μm. The magnetic configuration shown in
he Figure corresponds to the state labeled 2 in Cortés-Ortuño et al.
2022a). This configuration was simulated at room temperature and
ts energy was minimized by initializing the system with randomly
riented magnetization vectors. From the simulation the expected mag-
etization of this magnetic state is |𝐌| = 3.5048 × 105 A/m. The MPE
ibrary was applied to numerically invert the magnetic signal of this
tate using an octupole order expansion. As a result, the dipole mo-
ents obtained are [4.96e-16, 1.60e-15, -4.36e-16] in units of
m2, with a magnetization of magnitude |𝐌inv| = 3.5029×105 A/m. The

imulated dipole and higher order magnetic moments can be compared
o the moments obtained from inversion of experimental data.

In the work of Cortés-Ortuño et al. (2022a) the micromagnetic
odeling technique was theoretically proved by obtaining unique mag-
etic moment solutions for different magnetic states in a magnetite
phere model and in grains modeled from tomographic data of natural
nd synthetic samples. A direct comparison of the modeled magnetic
oments with magnetometry scan signals was not feasible because,

or example, the natural magnetite grains were destroyed by FIB-
t. Additional challenges to test the micromagnetic modeling with
agnetometry scans, include measuring grains with sizes that can be

omputed with our current computational equipment, analyzing the
orrect anisotropy axes direction from individual grains, and study-
ng how the magnetometry noise levels affect the inverted moment
olutions. With the rapid progress in magnetometry and tomography
echnology, particularly in increasing measurement resolution, e.g. a
DM, it will be possible to fully prove the micromagnetic modeling
ith experimental data.

The mmt_micromagnetic_demag_signature library can be ex-
ended in the future to support simulations of finite-difference mi-
romagnetic codes. In the case of FEs, alternative methods for the
alculation of the stray field in a measurement surface, include (i) using
he magnetic scalar potential of the system, which is computed by the
icromagnetic code when solving the demagnetizing field boundary
roblem, and (ii) the fast multipole method. The search of local mini-
um states can also be optimized, by adding a boundary condition to

he energy minimization, related to the spherical harmonics obtained
rom the inversion of the experimental data.

. Conclusions

An essential prerequisite of the MMT technique is the implemen-
ation of numerical libraries that allow to obtain the magnetizations,
13
and higher order magnetic moments, of individual magnetic grains.
Here we described the theoretical formulation of two different forward
models (HPE and MPE) to retrieve magnetic moments via numerical
inversions. Moreover, we presented open source Python libraries based
on these models, which process the MMT experimental data. These
libraries have been applied to obtain solutions in both synthetic and
natural samples.

Refined magnetization solutions are obtained by considering higher
order magnetic moments in the inversions with the multipole inversion
method (MPE). Because these MPE solutions are more versatile and
provide a better description of magnetic moments in the near field,
future works will likely focus on the application of this technique to
large natural samples, for example, the volcanic sample data studied
by Kosters et al. (2023), which is publicly available (Kosters et al.,
2023). Such multipole inversions, however, are challenging because
of the large number of fitting multipole moment parameters required,
making the calculations limited by computer memory. Inverting a
larger number of multipole parameters, or increasing sample sizes,
may be achieved by applying alternative, memory optimized, numerical
inversion methods, such as iterative methods, in the future (Zhdanov,
2015).

It was recently shown that MMT inversion methods combined with
micromagnetic modeling enable unveiling the internal magnetic con-
figurations hosted by magnetic grains (Cortés-Ortuño et al., 2022a).
To obtain the magnetic moments associated to these stable states from
computational modeling, we have developed a code that computes the
magnetic signal of the grains in a surface using the stray field of the
grain. This emulates the data obtained through magnetometry. A direct
comparison of the inversion using the micromagnetic model and the
magnetometry data, makes it possible to infer the most likely internal
magnetic configuration in the grain.

Our results illustrate that MMT and micromagnetic modeling are
promising techniques to improve measurements of paleomagnetic data.
These methods are now underpinned by a series of robust Python
libraries that facilitate the process of obtaining unique magnetization
solutions and also internal magnetic configurations.
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Code availability section

All the codes are publicly available and hosted in the Github repos-
itory at the Micromagnetic Tomography organization website https:
//github.com/Micromagnetic-Tomography. Every code has a Zenodo
DOI that can be cited according to the library version. The codes
are written in the Python, Cython, C, and CUDA programming lan-
guages. The codes utilize robust Python numerical libraries which
include Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020),
Pyvista (Sullivan and Kaszynski, 2019), Meshio (Schlömer, 2021),
matplotlib (Hunter, 2007), Jupyter notebooks (Kluyver et al., 2016),
Cython (Behnel et al., 2011) and Numba (Lam et al., 2015).

All the codes and results from this study are published in the public
GitHub repository (Cortés-Ortuño et al., 2022d).
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