
https://doi.org/10.1177/0011128720981908

Crime & Delinquency
2021, Vol. 67(13-14) 2237 –2253

© The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0011128720981908

journals.sagepub.com/home/cad

Article

Multiple System 
Estimation of Victims 
of Human Trafficking: 
Model Assessment  
and Selection

Maarten Cruyff1 , Antony Overstall2,  
Michail Papathomas3, and Rachel McCrea4

Abstract
Recently, multiple systems estimation (MSE) has been applied to estimate 
the number of victims of human trafficking in different countries. The 
estimation procedure consists of a log-linear analysis of a contingency table 
of population registers and covariates. As the number of potential models 
increases exponentially with the number of registers and covariates, it is 
practically impossible to fit and compare all models. Therefore, the model 
search needs to be restricted to a small subset of all potential models. This 
paper addresses principles and criteria for model assessment and selection 
for MSE of human trafficking with special attention to sparsity which is 
typical to human trafficking data. The concepts are illustrated on data from 
Slovakia and Romania.
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Introduction

In 2016 the United Nations adopted the Elimination of Human Trafficking/
Forced Labor as Target 16.2 of its 2030 Agenda for Sustainable 
Development. In this context, the UN Statistical Commission’s Interagency 
and Expert Group on SDG Indicators (IAEG-SDGs) recommended to 
monitor the number of victims of human trafficking per 100,000 popula-
tion, by sex, age, and form of exploitation. The institution responsible for 
collecting data on this indicator is the United Nations Office on Drugs and 
Crime (UNODC), and according to the UNODC, the indicator is com-
posed of two parts: detected and undetected victims. The detected victims 
can be counted on a national level from activities of criminal justice sys-
tems, NGO’s and other service providing institutions, while the number 
of undetected victims has to be estimated. According to UNODC, the 
methodology for this should allow for estimating the victims’ sex, age, 
and form of exploitation.

The fact that these data are collected by a variety of institutions makes 
multiple systems estimation (MSE; e.g., Silverman, 2020) ideally suited 
for the estimation of the undetected number of victims. In its most simple 
form, the data for MSE consists of a cross-classification of two incom-
plete population registers A and B. This results in a two-by-two contin-
gency table with the cells n10  representing the number of victims that 
have been observed in A but not in B, n01  representing the number of 
victims observed in B but not in A, and n11  representing victims observed 
in both A and B. The cell n00  representing the number of victims not 
observed in A nor in B, is to be estimated. The following assumptions are 
a necessary, but not sufficient, condition for unbiased estimation; ( i ) the 
inclusion probability in one register is independent of the inclusion prob-
ability in the other register, and ( ii ) for at least one register the inclusion 
probabilities are homogeneous in the population, that is, all members of 
the population have the same probability to be observed in that register. If 
these assumptions hold n n n n

00 10 01 11= / . As an example, consider the 
table below. Given the observed frequencies, the estimate of the unob-
served cell 00  is n 00 =100 50 /10 = 500× .

B = 0 B =1

A = 0 ?? 50

A =1 100 10
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Alternatively, the estimation can be performed with the log-linear model 
( , )A B

log( ) = ,0µ λ λ λij i
A

j
B+ +

for i j, {0,1}∈ , where µij is the expectation of nij. The frequencies in the 
table above correspond to the following sets of parameters:

Given that in our example n 00 = 500 , the estimate λ 0 = (500) = 6.125log . 

The estimate exp log( ) = 1.609 = (10 / 50)1λ
A

−  denotes the odds of inclusion in 
A given inclusion in B. Note that these odds are identical to the odds 
100 / 500 = 1/ 5  of inclusion in A and exclusion from B.

If the inclusion odds of one register do not depend on the status on the 
other register, the registers are said to be mutually independent. The log-lin-
ear model that allows for dependence has an additional parameter λij

AB . This 
parameter is called a “two-way” interaction, as it corresponds to two lists. 
However, since the cell n00  is not observed, this parameter is not estimable. 
Consequently, with two registers, the log-linear model necessarily assumes 
mutual independence. The advantage of using log-linear models for popula-
tion size estimation is that they are easily extended to data that include more 
than two lists and covariates.

The mutual independence assumption of the lists can be relaxed when there 
are more than two lists. With a third list C it becomes possible to estimate pair-
wise dependencies between the lists. This becomes possible because the num-
ber of persons not observed in two of the lists is observed for the persons 
observed in the third list. The notation for the log-linear model with three lists 
and all two-way interactions is ( , , )AB AC BC , also known as the homoge-
neous association model. This model assumes that pairwise dependencies 
between two lists do not depend on the level of the third list. The model that 
allows for heterogeneous associations contains three-way interactions and is 
denoted by ( )ABC . But this model cannot be estimated since the cell n000  
denoting the numbers of persons not in A, B, and C is not observed.

B = 0 B =1

A = 0 e
λ
0 e

Bλ λ
0 1
+

A =1 e
Aλ λ

0 1
+

e
A Bλ λ λ

0 1 1
+ +
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The assumption of homogeneous inclusion probabilities can also be 
relaxed by extending the model to include covariates. Covariates may play 
either a passive or an active role in the model (Van der Heijden et al., 2012). 
For example, suppose we have the two lists A and B, and that males have a 
different probability to be included in list A than females. The correct model 
would than be ( , )AS B , where S denote the variable Sex. In this model S 
plays a passive role, since it affects the estimated composition of the popula-
tion, but it does not affect the population size estimate. If S also interacts with 
list B, the correct model would be ( , )AS BS . Now S plays an active role, 
since it affects both the composition of the population and the population size 
estimate. Therefore, if covariates are available it is important to consider 
them in the analysis.

Each unique combination of interactions is referred to as a model. Different 
models can provide very different estimates of the number of victims. For 
this reason, model selection is critical. This is essentially a balancing act 
between model fit (i.e., suitability to observed cell counts) and model com-
plexity (measured by the number of interactions). As a model becomes more 
complex, the fit to observed counts improves, reducing bias in the population 
size estimate. However, at the same time, the chance of including spurious 
interactions increases which can lead to high variability in the estimates, 
observing large changes in the parameter estimates for small changes in the 
data set due to random fluctuations. Furthermore, including a large number of 
interactions in the model increases the likelihood of fitting models with non-
estimable parameters, with very wide associated confidence intervals. This 
typically manifests itself in unrealistically large (exploding) estimates. 
Conversely, a too simple model does not fit the observed counts, providing 
estimates with low variability but with potentially high bias. The aim of 
model selection is to find parsimonious models that are neither too simple nor 
too complex, and thus trade-off between bias and variance (e.g., Hastie et al., 
2009, Chapter 7).

Typically when performing model selection, associations are assessed 
using some measure of statistical significance, with only significant asso-
ciations included in the model. One commonly used approach is to assess 
significance with an information criterion, such as the AIC and BIC, that 
penalize model complexity in order to prevent overfitting of the data (these 
criteria are discussed in more detail in section 2.2). Since different infor-
mation criteria may result in different models (and hence different popula-
tion estimates), the choice of a criterion is of crucial importance. Once the 
criterion is chosen, a strategy for model selection has to be defined. When 
the number of variables in the model is small, this procedure may simply 
consist of fitting all possible models, and choosing the one which performs 
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best with respect to the chosen information criterion. For example, with 
two lists there is only one possible model, and with three lists there are 
seven possible models, and adding a single covariate increases this number 
to 28. However, when the number of variables further increases, it rapidly 
becomes impossible to fit all potential models. There are a large number of 
statistical methods for model selection including hypothesis testing; infor-
mation criteria; and Bayesian methods, each aiming to balance model fit 
and parsimony. However estimating human-trafficking victims brings 
unique challenges to model selection for log-linear models (see Chan 
et al., 2019; Larsen & Durgana, 2017). Most notable of these challenges is 
data sparsity. The human trafficking data of the countries that have taken 
part in the UNODC monitoring project, the Netherlands (Cruyff et al., 
2017; UNODC, 2017), Ireland (UNODC, 2018a), Serbia (UNODC, 
2018b), Romania (UNODC, 2018c), and Slovakia (in press), are typically 
collected over a period of two or more years and include three or more 
lists, and three or more covariates. The numbers of observed victims are 
typically small in relation to the dimension of the contingency table, so the 
majority of the cells are sparsely filled or empty. In the case of the 
Netherlands, for example, the data were collected over a period of 6 years 
and included six lists and five dichotomous covariates (age, gender, form 
of exploitation, nationality, and year), yielding a contingency table with 
2 6 = 12,28811 ×  cells, of which 2 6 = 1925 ×  cells are not observed and are 
therefore structural zeros. The total number of observed cells is therefore 
12,096 , and with a total of 8,324  observations the average number of 
observations per cell is less than 1. This sparseness of data seriously limits 
the potential complexity of log-linear models for human trafficking data. 
Difficulties with model-fitting for multiple systems estimation human traf-
ficking data are detailed in Silverman (2020), along with a discussion on 
the lack of robustness in the estimation of the size of hidden populations, 
for different model choices.

Typically, the scope of models eligible for selection is restricted to models 
that only include pairwise associations between the variables. This means for 
example that with three lists A, B, and C and one covariate S, the model 
( , , , , , )AB AC BC AS BS CS  with 11 parameters is the most complex model 
allowed in the model search, while the more complex model ( , , )ABS ACS BCS  
with 14 parameters could in theory also be fitted. For reasons of uniformity, 
these criteria were applied to all countries.

The aim of this paper is to highlight the importance of model selection in 
estimating human-trafficking. The information criteria approach to model 
selection is adopted as an example, but the arguments also apply to other 
model selection methods. Information criteria provide a score for each model, 
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balancing model fit and complexity, with the chosen model giving the small-
est criterion. The datasets from Slovakia and Romania are considered, and it 
is shown how sparsity can affect model selection.

The remainder of the paper is organized as follows. Section 2 provides a 
technical description of log-linear models and model selection methods. In 
section 3, the results of applying information criteria to the Slovakia and 
Romania datasets are shown. The paper ends in section 4 with a discussion of 
future research directions.

Log-Linear Models and Model Selection for 
Estimating Human-Trafficking

Contingency tables and log-linear models

We provide a brief description of contingency tables and log-linear models 
(e.g., Fienberg, 1972) in the context of MSE. Suppose there are L  lists avail-
able, labeled 1, , L  and C  covariates. If the c th covariate has gc  levels, 
then an incomplete contingency table with 2 1

L
Cg g× × ×  cells is con-

structed. Each cell count gives the number of observed individuals by each 
list and covariate classification. The total population size is given by the sum 
of all cell counts. However the g gC1 × ×  cell counts corresponding to not 
being observed on any of the lists (one for each classification of covariates) 
are unknown.

The basic idea underlying MSE is to fit statistical models to the observed 
cell counts, to identify underlying patterns (associations or interactions 
between lists and/or covariates), and to use this information to estimate the 
total population size.

Let yi  denote the cell count for cell i n=1, , , where n  is the number of 
observed cell counts. Log-linear modeling assumes that, independently

yi i Poisson µ( ) ,

where the expected cell count is given by

logµ βi i
T= ,x

where xi  is a p×1 design vector and β  a p×1 vector of unknown parame-
ters. The design vector identifies the main effects and interactions relevant to 
cell i n=1, , .

The total population size of victims of human trafficking can be estimated 
as follows. First, estimates, denoted by β , for example through the use of 
maximum likelihood, are found for the unknown parameters, β . From this, 
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the maximum likelihood estimate of an unknown cell count with design vec-
tor x0  is given by exp x0

T β( ) . An estimate for the total population size can 
therefore be formed by summing these estimates over all unknown cell 
counts. Finally, a confidence interval should be produced (e.g., Silverman, 
2013), providing a representation of uncertainty in the estimate.

However this approach assumes that the interactions present are known 
which is rarely the case in practice. Different models can provide signifi-
cantly different estimates of the total population size and therefore model 
uncertainty should to be taken into account.

Model Selection

Initially, a set of models   is posited that includes all models under consid-
eration. This is sometimes referred to as the model set. Each model corre-
sponds to a different combination of interactions, and   is typically 
restricted. First, the highest order interaction is usually specified to be much 
less than the theoretical upper limit of L C+ −1 . This is either to aid interpre-
tation (higher-order interactions are non-trivial to interpret) or due to the 
sparsity of the data where it may not be possible to estimate all interactions in 
a given model (e.g., Sharifi Far et al., 2019). Again, for interpretation, the 
interactions present in a model usually obey the effect hierarchy principle 
giving   as a set of hierarchical log-linear models (e.g., Dellaportas & 
Forster, 1999). This means that if a model has a particular interaction present, 
then all lower-order interactions involving the terms in that interaction must 
also be present. For example, a model with the three-way interaction between 
A, B, and C denoted ABC, must also have the two-way interactions AB, AC, 
and BC. There exist more restrictive sets of log-linear models, that is, graphi-
cal and decomposable (see, e.g., Dellaportas & Forster, 1999 for details).

One of the simplest approaches to model selection is hypothesis testing 
(e.g., Davison, 2003, section 4.5). Two nested models are compared: one with 
a given interaction and one without. If the inclusion of the interaction leads to 
a significant increase in likelihood then the model with the interaction is 
retained. The main disadvantage of hypothesis testing is that it can only com-
pare two models. An alternative approach to model selection is that of infor-
mation criteria (Burnham & Anderson, 2002). Information criteria assess 
models in terms of complexity (i.e., the number of parameters in the model) 
and how well they fit the observed cell counts. The likelihood provides a 
measure of the fit of a given model, with higher values indicating superior fit. 
Using the likelihood as the criterion for model selection, however, will result 
in the model including all potential interactions. This model will fit the data 
perfectly, but its predictions will be unreliable due to high variance; the 
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parameter estimates may have large standard errors, and small changes in the 
data may produce large changes in the parameter estimates. By penalizing the 
number of parameters in the model the information criteria search for the 
most parsimonious model, that is, a model that fits the data adequately while 
keeping the variance of the model in check. Each model is given a score, and 
the model with the smallest score is then used to estimate the total population 
size. An information criterion (e.g., Davison, 2003, section 4.7) for a model 
can be written as follows

IC= 2 ( ; ) ( ),− +l c pβ y

where l( ; )β y  is the value of the maximized log-likelihood for the model in 
question, and c p( )  is a penalty function increasing with the number of 
parameters, p. The information criterion decreases as l( ; )β y  increases and 
the model fit improves. However this is balanced against the model becom-
ing more complex, with p  (and c p( ) ) increasing. Different penalties corre-
spond to different information criteria. The two most commonly used are the 
Akaike Information Criterion (AIC; Akaike, 1974) with c p p( ) = 2 , and the 
Bayesian Information Criterion (BIC; Schwarz, 1978) with c p n p( ) = ( )log . 
AIC aims to choose the model which is optimal in terms of prediction. 
Conversely, BIC approximately chooses the model that is “closest” to the 
unknown data-generating process.

Estimation of the total population size is based on the model with the 
smallest information criterion. However even identifying this model can be 
problematic. The gold standard is to fit all models and select the model with 
the smallest criterion (e.g., Davison, 2003, section 8.7.3). However, even 
with the restricted set of models described above, there are typically a large 
number of models that can be fitted to a given contingency table. For exam-
ple, suppose that attention is restricted to models with only pairwise interac-
tions and that there are P L C= +  lists and covariates. Then there are are 

2 2
P( )  hierarchical log-linear models available, for example, if there are five 

lists and two covariates, then there are over two million models. This can 
render fitting all models prohibitively expensive, especially if higher-order 
interactions are also considered. Instead step-wise approaches are taken, that 
is, forward or backward selection (e.g., Davison, 2003, section 8.7.3).

Forward selection is given by completing the following steps.

0. Start by fitting the simplest model under consideration. This is the 
current model and calculate its IC.

1. Construct a proposal set of models by augmenting to the current model 
one interaction term at a time (while obeying effect hierarchy).
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2. Calculate the IC of every model in the proposal set.
3. If the IC for the current model is less than the smallest IC from the 

proposal set, then stop, the current model is the final chosen model. 
Else, set the current model to be the model with the smallest IC from 
the proposal set and return to step 1.

The model chosen as the starting model in step 0 is usually the model with 
all main effects but no interactions.

Backward selection is similar but starts in step 0 with the most complex 
model under consideration and step 1 is replaced by the following step.

1. Construct a proposal set of models by removing from the current 
model one interaction term at a time (while obeying effect hierarchy).

Beyond the computational difficulties of finding the model that mini-
mizes the chosen information criterion, there do exist other disadvantages. 
The theoretical basis of both AIC and BIC are based on a number of 
assumptions and approximations whose validity may be questionable for 
sparse data. Additionally, the estimate of the population size is based on 
the final chosen model. However there may be many models with near 
identical information criteria and these models may give significantly dif-
ferent estimates.

Alternatively, a fully Bayesian approach can be taken (King & Brooks, 
2001; Madigan & York, 1997). This uses Bayes’ theorem to construct a pos-
terior distribution over models, that is, each model is assigned a probability 
of being the true model. These posterior model probabilities are not available 
in closed form but can be approximated using trans-dimensional Markov 
chain Monte Carlo (MCMC) methods. The most common is the Reversible 
Jump MCMC approach, introduced by Green (1995). The Bayesian approach 
does not use one single model to estimate the total population size. Instead 
the estimate of the total population size is averaged over models with a mod-
el’s averaging weight equal to its posterior model probability. There do exist 
non-Bayesian model averaging techniques (Buckland et al., 1997) but we 
defer discussion until section 4.

Note that if the contingency table is sparse then there may be a large num-
ber of observed zero counts and the issue of parameter redundancy can arise. 
As described in section 1, this is a common occurrence in multiple systems 
estimation of human trafficking. In Chan et al. (2020), checks for parameter 
estimability based on a linear programming approach are used. Model selec-
tion is then conducted via a stepwise algorithm based on a predetermined 
threshold p -value. The algorithm fits a main effects model and then adds the 
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most significant interaction terms one-by-one subject to estimability checks, 
until a final model is adopted. An R package titled “SparseMSE” (Chan et al., 
2019) is publicly available for the implementation of their methods to MSE 
data. See also Bales et al. (2020) for an application of this method to data 
from New Orleans-Metairie, USA. Whitehead et al. (2019) demonstrate that, 
under certain conditions, the reliability of estimates for the parameters of 
MSE models suffers when a two-stage procedure is used to identify which 
first order interaction terms to include in the model. A novel Bayesian 
approach is proposed in Silverman (2020) that allows for the inclusion of 
first-order interactions. This approach is based on reducing model parameters 
to zero with the use of a threshold value, and on checking the existence of 
estimates using the Chan et al. (2020) linear programming technique.

Examples

In this section, we present an overview of model selection for Slovakia and 
Romania. To avoid confusion about the definitions of human trafficking that 
were used in these analyses, we start the overview for each with a brief 
description of the organizations that collected the data, and the definitions of 
human trafficking that were used by organizations. For a detailed discussion 
of the definitions of human trafficking, refer to Bales et al. (2020).

Slovakia

The data from Slovakia are collected by the Information Centre to Combat 
Trafficking in Human Beings and Crime Prevention of the Ministry of 
Justice, and cover the period 2016 to 2018. The data used for carrying out 
MSE were composed by linking the registers from the police, support orga-
nizations, the Programme for Support and Protection, and other organiza-
tions on a yearly basis. These registers are denoted by R1 to R3, respectively. 
Over this 3-year period a total number of 189 victims were identified. The 
original registers distinguish between the trafficking categories sexual 
exploitation, forced begging, forced labor, and forced marriage, which in 
turn are subdivided in the primary, secondary, and tertiary type of exploita-
tion. For the analysis, the primary type of exploitation was recoded into 
sexual and non-sexual exploitation. Aside from Exploitation (E), the data 
also includes the covariates Sex (S), Age (A - minors vs. adults), and Year 
of observation (Y).

With three registers and the four covariates S, A, E, and Y, the contingency 
table has 2 3 2 3 = 192 24 = 1686 3× − × −  potentially observed cells. The 
model search was performed using forward selection under both the BIC and 
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AIC information criteria. The starting model was the main effects only model 
( 1, 2, 3, , , , )R R R A S E Y  and   was restricted to pairwise interactions only. 
Table 1 shows the results of this model search where the BIC and AIC values 
are re-scaled so that a value of 0 corresponds to the best model. The first row 
of Table 1 shows the AIC, BIC and population size estimate for the main 
effects model with no interactions. The second line shows the result of the 
first iteration of forwards selection. Inclusion of the interaction between Sex 
and Exploitation reduces both AIC and BIC but this does not affect the popu-
lation size estimate. Subsequently including the interaction between the R2 
and R3 lists reduces both information criteria and significantly affects the 
population size estimate. This procedure carries on until each information 
criteria stops decreasing. It is clear from Table 1 that different models lead to 
different estimates of the population size.

The best model as determined by BIC is ( , 2 3, 2 , 1 , 1 3, )SE R R R A R E R R SA  
has p =14  parameters and yields an estimate of 367, with a 95% parametric 
bootstrap confidence interval (269, 622). The best model as determined by 
AIC has p = 28  parameters, but the model is obviously too complex for the 
data; the population estimate has exploded.

Table 1. Stepwise Model Selection Based on AIC and BIC for Slovakia.

Step Df Deviance
Resid. 

Df
Resid. 
Dev AIC BIC Nhat

— — 159 261.5 179.7 130.5 387.4
+ S:E −1 87.6 158 173.8 94.1 48.1 387.4
+ R2:R3 −1 28.6 157 145.3 67.5 24.8 523.7
+ R2:A −1 15.7 156 129.6 53.8 14.3 523.7
+ R1:E −1 13.0 155 116.6 42.8 6.6 523.7
+ R1:R3 −1 8.6 154 108.0 36.2 3.2 374.7
+ S:A −1 8.4 153 99.6 29.8 0.0 366.8
+ S:Y −2 8.4 151 91.2 25.5 2.2 366.8
+ E:Y −2 7.6 149 83.6 21.8 5.0 366.8
+ R3:E −1 3.2 148 80.4 20.7 7.1 369.3
+ A:Y −2 4.6 146 75.8 20.1 13.0 369.7
+ R1:Y −2 5.5 144 70.3 18.6 18.0 373.9
+ R2:Y −2 10.4 142 59.9 12.1 18.0 543.9
+ R3:Y −2 12.5 140 47.4 3.6 16.0 26844358178.0
+ R1:R2 −1 3.5 139 43.9 2.2 17.8 328.5
− R2:R3  1 0.3 140 44.2 0.4 12.8 712367104.0
+ R3:A −1 2.5 139 41.7 0.0 15.6 2316938752.7
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Romania

The data from Romania are maintained by the National Agency against 
Trafficking in Persons (ANITP) of the Ministry of the Interior, and include 
registers form the Police/NATP plus Border Police, IOM, NGOs, foreign 
authorities (mainly police forces) and other (mainly diplomatic missions). 
These are designated as R1 to R5. The data for the MSE were collected on a 
yearly basis over the years 2015 and 2016, and included a total of 1636 obser-
vations. The types of exploitation used for the MSE are sexual exploitation, 
beggary, and forced labor. Aside from type of Exploitation, the data included 
the covariates Sex, Age (minors vs. adults), Destination (D - transnational vs. 
domestic exploitation), and Year. With five registers and the five covariates 
S, A, D, E, and Y the contingency table consists of 2 3 2 3 = 1,4889 4× − ×  
potentially observed cells. The model search procedure was performed analo-
gously to that for Slovakia. Table 2 shows the results of the model search.

The model supported by BIC has p = 36  parameters, and yields a popula-
tion estimate of 2541 with a 95% confidence interval (2011, 4153). The 
model supported by AIC has 11 more parameters, and yields an estimate of 
2112.

Discussion

This paper has investigated the issue of model selection for multiple systems 
estimation models using two commonly used information criteria. The moti-
vation for such work is a result of different models resulting in substantially 
different estimates of population size, which is of course the primary param-
eter of interest. The paper has focused on the use of two information criteria; 
AIC and BIC. However there are many alternative methods of model selection 
which have not been considered in this paper, in addition to those discussed in 
the Introduction. For some applications it is possible to fit all models in a pre-
specified model set, however it is sometimes necessary to take a practical 
exploration of model space, and one approach using information criteria has 
been described. Step-wise strategies using alternative test statistics have been 
considered in many fields. A step-up approach utilizing score tests has been 
applied in the related field of ecological capture-recapture models (McCrea & 
Morgan, 2011), and has the advantage that only the simpler model has to be fit 
to the data for the evaluation of the test statistic, thus avoiding the need to fit 
models which are not supported by the data. Disadvantages of such an 
approach however include the issue of multiple testing and the associated 
decision about significance levels and reliance on statistical significance has 
been heavily criticized in recent statistical articles (Wasserstein & Lazar, 
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2019). Further, the calculation of the expected information matrix, which is 
required for the evaluation of the score test statistic, is not always straightfor-
ward and approximations using the observed information matrix have been 
found to be flawed for some applications (Morgan et al., 2007).

Table 2. Stepwise Model Selection Based on AIC and BIC for Romanian Data.

Step Df Deviance
Resid. 

Df
Resid. 
Dev AIC BIC Nhat

— — 1476 3600.8 3031.5 2850.1 2330.0
+ S:E −2 858.6 1474 2742.2 2176.8 2006.2 2330.0
+ A:D −1 586.0 1473 2156.1 1592.8 1427.6 2330.0
+ R2:R4 −1 344.9 1472 1811.3 1249.9 1090.1 2578.3
+ E:D −2 237.9 1470 1573.4 1016.0 867.0 2578.3
+ R4:R5 −1 190.8 1469 1382.6 827.2 683.6 2937.2
+ R3:R4 −1 179.6 1468 1203.0 649.6 511.4 3500.0
+ R4:D −1 155.9 1467 1047.0 495.7 362.9 3500.0
+ R1:R5 −1 107.1 1466 940.0 390.6 263.2 2169.0
+ A:E −2 87.0 1464 853.0 307.7 191.1 2169.0
+ R5:E −2 67.1 1462 785.9 244.6 138.8 2169.0
+ R1:R3 −1 40.6 1461 745.3 206.0 105.6 1855.9
+ E:Y −2 43.1 1459 702.2 166.8 77.2 1855.9
+ R2:R5 −1 28.1 1458 674.1 140.8 56.6 1857.2
+ R1:R4 −1 22.7 1457 651.4 120.1 41.3 2777.3
+ R5:D −1 20.4 1456 631.0 101.7 28.3 2777.3
+ R2:E −2 24.3 1454 606.7 81.4 18.8 2787.9
+ D:Y −1 11.7 1453 595.0 71.7 14.5 2787.9
+ R3:Y −1 11.7 1452 583.3 62.0 10.2 2750.2
+ R1:D −1 10.2 1451 573.1 53.8 7.4 2952.9
+ R1:R2 −1 8.2 1450 565.0 47.6 6.6 2632.7
− R2:R5  1 0.7 1451 565.7 46.4 0.0 2540.6
+ R3:E −2 12.5 1449 553.2 37.9 2.3 2260.8
+ R5:S −1 7.2 1448 546.0 32.6 2.4 2260.8
+ S:A −1 6.0 1447 540.0 28.6 3.8 2260.8
+ S:D −1 7.0 1446 532.9 23.6 4.2 2261.0
+ R2:R3 −1 5.5 1445 527.5 20.1 6.1 2435.0
+ R2:Y −1 7.2 1444 520.3 14.9 6.3 2437.7
+ R4:Y −1 12.6 1443 507.7 4.4 1.2 2454.6
+ A:Y −1 4.4 1442 503.3 1.9 4.1 2456.2
+ R5:Y −1 3.5 1441 499.8 0.5 8.1 2443.4
+ R3:R5 −1 2.5 1440 497.3 0.0 13.0 2112.2
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An exploration of the model set in a classical paradigm has been pro-
posed by Brooks et al., (2003), implementing a trans-dimensional simu-
lated annealing approach. This is the classical counterpart to the Bayesian 
reversible jump MCMC approach (King et al., 2001) described in section 
2.2. Generally however such approaches need tuning, and therefore do not 
offer a model selection solution which will work for all applications. 
Therefore this paper has focused on two approaches which can be easily 
implemented for all MSE applications. As mentioned earlier, it is possible 
to provide model-averaged estimates of the population size accounting for 
model-uncertainty. A decision on whether to model-average based on AIC 
or BIC is well-debated in the literature. Fletcher (2019) suggests that AIC 
weights should be better than BIC weights, as model averaging is about 
estimation and prediction and this is the goal of AIC. In contrast, BIC is 
focused on identifying the true model. For a fuller discussion of this, see 
Yang (2005). Some alternative criteria for model-averaging have been 
reviewed in Dormann et al. (2018) and a systematic review of the state of 
the art is given in Chapter 3 of Fletcher (2019).

This paper has shown that model assessment and selection play a crucial 
role in MSE of victims of human trafficking. It has also alluded to the alterna-
tive strategies that can be followed to arrive at a population size estimate. 
With the growing number of publications on MSE of human trafficking, —
aside from the above mentioned UNODC studies there have also been studies 
in the UK (Bales et al., 2015), the US (Bales et al., 2020), and Australia 
(Lyneham et al., 2019)—our knowledge and understanding of the intricacies 
of human trafficking data will grow. From a methodological point of view, 
we envisage that future research will lead to a better understanding on how 
sparsity affects the estimability of model parameters for this type of data, and 
the prospect of modeling higher order interactions and more complex depen-
dencies between the lists and covariates. All this will help us to optimize our 
strategies for model assessment and selection for MSE of human trafficking 
victims. This in turn will help national governments to formulate more sub-
stantiated policies on resource allocation for detection and prevention of 
human trafficking.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, 
authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publi-
cation of this article.



Cruyff et al. 2251

ORCID iD

Maarten Cruyff  https://orcid.org/0000-0002-6808-8518

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE 
Transactions on Automatic Control, 19, 716–723.

Bales, K., Hesketh, O., & Silverman, B. (2015). Modern slavery in the UK: How 
many victims? Significance, 12, 16–21.

Bales, K., Murphy, L. T., & Silverman, B. W. (2020). How many trafficked people 
are there in Greater New Orleans? Lessons in measurement,. Journal of Human 
Trafficking 6, 375–387.

Brooks, S. H., Friel, N., & King, R. (2003). Classical model selection via simulated 
annealing, Journal of the Royal Statistical Society Series B, 65, 503–520.

Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An 
integral part of inference. Biometrics, 53, 603–618.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel infer-
ence: A practical information – Theoretic approach (2nd ed.). Springer.

Chan, L., Silverman, B. W., & Vincent, K. (2019). “SparseMSE: Multiple systems 
estimation for sparse capture data,” R Package Version 2.0.1.

Chan, L., Silverman, B.W., & Vincent, K. (2020). Multiple systems estimation for 
sparse capture data: Inferential challenges when there are nonoverlapping lists. 
Journal of the American Statistical Association. https://doi.org/10.1080/016214
59.2019.1708748

Cruyff, M. J. L. F., Van Dijk, J., & Van der Heijden, P. G. M. (2017). The challenge 
of counting victims of human trafficking not on the record: A multiple systems 
estimation of the numbers of human trafficking victims in the Netherlands in 
2010–2015 by year, age, gender, and type of exploitation. Chance 30, 41–49.

Davison, A. C. (2003). Statistical models. Cambridge University Press.
Dellaportas, P., & Forster, J. J. (1999). Markov chain Monte Carlo model determina-

tion for hierarchical and graphical log-linear models. Biometrika, 88, 317–336.
Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., 

Barton, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, K., Guelet, J., Keil, P., 
Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., 
Thuiller, W., Warton, D. I., . . . Hartig, F. (2018). Model averaging in ecology: A 
review of Bayesian, information-theoretic, and tactical approaches for predictive 
inference. Ecological Monographs, 88, 485–504.

Fienberg, S. E. (1972). The multiple recapture census for closed populations and 
incomplete 2k contingency tables. Biometrika, 59, 591–603.

Fletcher, D. (2019). Model averaging. Springer.
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and 

Bayesian model determination. Biometrika, 82, 711–732.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. 

Springer.

https://orcid.org/0000-0002-6808-8518
https://doi.org/10.1080/01621459.2019.1708748
https://doi.org/10.1080/01621459.2019.1708748


2252 Crime & Delinquency 67(13-14)

King, R., & Brooks, S. P. (2001). On the Bayesian analysis of population size. 
Biometrika, 86, 615–633.

King, R., Morgan, B., Gimenez, O., & Brooks, S. P. (2009). Bayesian analysis for 
population ecology. Chapman & Hall/CRC.

Larsen, J. J., & Durgana, D. P. (2017). Measuring vulnerability and estimating preva-
lence of modern slavery. Chance, 30, 21–29. https://doi.org/10.1080/09332480.
2017.1383109

Lyneham, S., Dowling, C., & Bricknell, S. (2019). Estimating the dark figure of 
human trafficking and slavery victimisation in Australia. Statistical Bulletin No. 
16 Canberra: Australian Institute of Criminology. https://www.aic.gov.au/publi-
cations/sb/sb16

Madigan, D., & York, J. C. (1997). Bayesian methods for estimation of the size of a 
closed population. Biometrika, 84, 19–31.

McCrea, R. S., & Morgan, B. J. T. (2011). Multi-state mark-recapture model selection 
using score tests. Biometrics, 67, 234–241.

Morgan, B. J. T., Palmer, K. P., & Ridout, M. S. (2007). Negative score test statistic. 
The American Statistician, 61, 285–288.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 
461–464.

Sharifi Far, S., Papathomas, M., & King, R. (2019). Parameter redundancy and the 
existence of the MLE in Log-linear models. Statistica Sinica. In press. https://doi.
org/10.5705/ss.202018.0100

Silverman, B. (2013). Modern slavery: An application of multiple systems estimation. 
Home Office.

Silverman, B.W. (2020). Multiple-systems analysis for the quantification of mod-
ern slavery: Classical and Bayesian approaches (with discussion). Journal of the 
Royal Statistical Society, Series A, 183: 691–736.

UNODC. (2017). Monitoring Target 16.2 of the United Nations Sustainable 
Development Goals: A multiple systems estimation of the numbers of presumed 
victims of trafficking in persons in the Netherlands in 2010–2015 by year, age, 
gender, form of exploitation and nationality. Research Brief. Vienna: UNODC.

UNODC. (2018a). Monitoring Target 16.2 of the United Nations Sustainable 
Development Goals: Multiple systems estimation of the numbers of presumed 
victims of trafficking in persons: Ireland. Research Brief. Vienna: UNODC.

UNODC. (2018b). Monitoring Target 16.2 of the United Nations Sustainable 
Development Goals: Multiple systems estimation of the numbers of presumed 
victims of trafficking in persons: Serbia. Research Brief. Vienna: UNODC.

UNODC. (2018c). Monitoring Target 16.2 of the United Nations Sustainable 
Development Goals: Multiple systems estimation of the numbers of presumed 
victims of trafficking in persons: Romania. Research Brief. Vienna: UNODC.

Van der Heijden, P. G. M., Whittaker, J., Cruyff, M. J. L. F., Bakker, B., & Van der 
Vliet, R. (2012). People born in the Middle East but residing in the Netherlands: 
Invariant population size estimates and the role of active and passive covariates. 
Annals of Applied Statistics, 6, 831–852.

https://doi.org/10.1080/09332480.2017.1383109
https://doi.org/10.1080/09332480.2017.1383109
https://www.aic.gov.au/publications/sb/sb16
https://www.aic.gov.au/publications/sb/sb16
https://doi.org/10.5705/ss.202018.0100
https://doi.org/10.5705/ss.202018.0100


Cruyff et al. 2253

Wasserstein, R. L., & Lazar, N. A. (2019). Editorial: The ASA’s statement on p-val-
ues: Context, process and purpose. The Americam Statistician, 70, 129–133.

Whitehead, J., Jackson, J., Balch, A., & Francis, B. (2019). On the unreliability of 
multiple systems estimation for estimating the number of potential victims of 
modern slavery in the UK. Journal of Human Trafficking. https://doi.org/10.108
0/23322705.2019.1660952

Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between 
model identification and regression estimation. Biometrika, 92, 937–950.

Author Biographies

Maarten Cruyff is Associate Professor at Methods & Statistics at Utrecht University. 
His research interest are population size estimation and randomized response.

Antony Overstall is Associate Professor at Mathematical Sciences at University of 
Southampton. His research interest are optimal experimental design and the analysis 
of categorical data, particularly incomplete contingency tables.

Michail Papathomas is Senior Lecturer in Statistics at the School of Mathematics 
and Statistics of the University of St Andrews. His research interests are linear model-
ing, model comparison, parameter identifiability and Bayesian inference.

Rachel McCrea is a Senior Lecturer in Statistics at the School of Mathematics, 
Statistics and Actuarial Science at the University of Kent. She is also Director of the 
National Centre for Statistical Ecology. Her research interests include model assess-
ment methods, in particular for integrated population models, multi-state models, 
capture-recapture models and removal modeling.

https://doi.org/10.1080/23322705.2019.1660952
https://doi.org/10.1080/23322705.2019.1660952

