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A B S T R A C T   

This literature review had two objectives: to identify models for predicting the risk of coronary heart diseases in 
patients with diabetes (DM); and to assess model quality in terms of risk of bias (RoB) and applicability for the 
purpose of health technology assessment (HTA). We undertook a targeted review of journal articles published in 
English, Dutch, Chinese, or Spanish in 5 databases from 1st January 2016 to 18th December 2022, and searched 
three systematic reviews for the models published after 2012. We used PROBAST (Prediction model Risk Of Bias 
Assessment Tool) to assess RoB, and used findings from Betts et al. 2019, which summarized recommendations 
and criticisms of HTA agencies on cardiovascular risk prediction models, to assess model applicability for the 
purpose of HTA. As a result, 71 % and 67 % models reporting C-index showed good discrimination abilities (C- 
index >= 0.7). Of the 26 model studies and 30 models identified, only one model study showed low RoB in all 
domains, and no model was fully applicable for HTA. Since the major cause of high RoB is inappropriate use of 
analysis method, we advise clinicians to carefully examine the model performance declared by model developers, 
and to trust a model if all PROBAST domains except analysis show low RoB and at least one validation study 
conducted in the same setting (e.g. country) is available. Moreover, since general model applicability is not 
informative for HTA, novel adapted tools may need to be developed.   

1. Introduction 

Coronary heart disease (CHD) is a heart disease featured by nar-
rowing or blockage of coronary arteries [1,2]. CHD is one of the major 
complications of diabetes mellitus (DM), and it is diagnosed in more 
than one-fifth of patients with type-2 diabetes across all socioeconomic 
statuses [3]. Previous reviews show that CHD is the leading cause of 
diabetes mortality, and it doubles the economic burden of patients with 

diabetes [4,5]. 
To reduce CHD morbidity, mortality, and relevant costs in DM pa-

tients, early recognition of high CHD risks and appropriate selection of 
prevention strategies are highly needed [6,7]. To achieve this, clinicians 
need to take into account as many risk factors as possible, including the 
traditional ones (e.g. age and gender) and those gaining popularity (e.g. 
C-reactive protein and coronary artery calcium) [8]. Due to the exis-
tence of a number of risk factors, risk prediction models have been 
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widely used by clinicians to take into account all relevant risk factors 
when estimating probabilities of the occurrence of CHD in DM patients 
[9,10].In addition, risk prediction models, especially those developed 
for estimating outcomes occurring within a specified time frame (i.e. 
prognostic model) [11], can be applied for the purpose of health tech-
nology assessment (HTA). More specifically, by functioning as a part of a 
microsimulation cost-effectiveness model, risk prediction models allow 
estimation of resource use of a healthcare intervention and estimation of 
heterogeneous costs and outcomes among different subpopulations of 
interest [12–15]. Such models can be utilized to inform clinicians and 
patients on the cost burden of an intervention within a time frame (e.g. 
10 years), or to inform HTA agencies on whether costs of a healthcare 
intervention should be reimbursed [16,17]. 

As prognostic risk prediction models for DM patients started to 
emerge, the variety in techniques used for developing the models 
increased as well. The most frequently used technique is statistical 
modelling, which can be further categorized into Cox regression anal-
ysis, Logistic regression analysis, Weibull regression analysis, Gompertz 
regression analysis, etc. [18,19]. Another modelling technique that 
emerges is machine learning (ML), including but not limited to neural 
networks, random forest, decision-tree, support vector machine, etc. 
[19]. ML models are gaining popularity in the field of diabetes due to 
their capability to capture the complex relationships among a vast 
number of predictors from different data sources [20,21]. 

However, the ever-increasing number of models and variety of 
modelling techniques have placed a heavy burden on model evaluation 
and raised concerns about model quality in terms of risk of bias (RoB) 
and applicability. A high RoB, which is pervasive among risk prediction 
models [21], could increase the likelihood that models yield inaccurate 
prediction, and decrease the confidence of users (e.g. clinicians, HTA 
researchers and agencies, patients, etc.) in model performance [22]. In 
addition, model users are at risk of selecting and applying a suboptimal 
model for their own purposes, as they often miss information on ther-
apeutic, geographic, or temporal settings in which the models can be 
applied [23]. 

To assess quality of CHD risk prediction models for DM patients, Van 
Dieren et al. conducted a systematic review to summarize the structure 
and predictive performance of existing models for predicting type 2 
diabetes published before May 2012 [24]. More recently, Galbete et al. 
updated the review conducted by Van Dieren et al. by searching for the 
models published before July 2021 [25]. They summarized model per-
formance and assessed RoB and generic model applicability. However, 
these two reviews adopted similar search strategies using a single data 
source (either Medline or PubMed) and did not systematically search for 
risk prediction models developed with ML techniques. Also, they did not 
provide an assessment of model applicability for the purpose of HTA, 
which requires special considerations, such as appropriateness of sub-
group populations [26]. 

Hence, the aim of our study was to identify the prognostic risk pre-
diction models developed recently with statistical or machine learning 
techniques, and to assess their RoB and applicability for HTA. This 
research was performed as part of the HTx project [27]. The project has 
received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 825162. 

2. Material and methods 

2.1. Protocol 

A research protocol of this study was registered in the PROSPERO 
database (ID CRD42021273240), then rigorously followed. To conduct 
the systematic review, we followed the PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) statement [28] and 
the guidance developed by Debray et al. 2017 [29]. 

2.2. Data source & search strategy 

We searched PubMed, Embase, Scopus, Web of Science, and IEEE 
Xplore for journal articles and conference papers predicting CHD risks in 
DM patients, in two rounds (published from 1st January 2016 to 31st 
May 2021; published from 1st June 2021 to 18th December 2022). We 
used a search strategy (Appendix 1) with three concepts (i.e. risk pre-
diction, CHD, and diabetes), which was developed from published 
strategies to retrieve relevant publications for CHD [30,31] or prediction 
models [32,33]. The search strategy was developed by two reviewers (LJ 
& JW), then edited by an experienced librarian in document retrieval 
from Utrecht University. We also checked citations in all identified 
relevant studies. In addition to the database search, we searched three 
recently published systematic reviews (i.e. Galbete et al. 2022 [25], 
Faizal et al. 2021 [34], and Lenselink et al. 2022 [35]) which identified 
models predicting the risk of cardiovascular diseases, in DM patients or 
general population. 

2.3. Eligibility criteria 

A study was eligible if (1) it described the development of a pre-
diction model; (2) the target population was patients with diabetes; (3) 
the outcome of prediction was CHD or a CHD component (i.e. myocar-
dial infarction, acute coronary syndrome, and/or angina); (4) the study 
was published in English, Dutch, Spanish, or Chinese, based on the re-
view team’s language proficiencies; (5) the study was published after 
2012;(6) the full-text was available. Exclusion criteria included non- 
human studies or studies only describing model validation. Studies 
using heart or cardiovascular disease as a combined outcome only were 
also excluded because the risk of CHD could not be predicted. 

2.4. Study selection & data collection 

For study selection, one reviewer (LJ) screened titles and abstracts of 
all identified studies, while another (GGS) independently screened a 
random set of 20 %. Then two reviewers (LJ and FJSS or JTG) inde-
pendently scanned full texts of studies that might be eligible. Any 
disagreement between reviewers was solved through consensus. For 
each model identified, one reviewer (LJ) extracted model characteristics 
(e.g. target population, outcome, and number of predictors, etc.), based 
on a data collection form developed from the CHARMS (CHecklist for 
critical Appraisal and data extraction for systematic Reviews of predic-
tion Modelling Studies) [36]. 

2.5. Quality assessment 

For assessing RoB, several appraisal tools can be used, such as the 
PROBAST (Prediction model Risk Of Bias Assessment Tool) [22], 
TRIPOD (Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis) [37], and STROBE (Strengthening 
the Reporting of Observational studies in Epidemiology) [38]. We 
determined to use the PROBAST, because it was carefully and specif-
ically designed for evaluating RoB of prediction models. It consists of 
four RoB domains (i.e. participants, predictors, outcomes, and analysis), 
and each domain-specific RoB is graded as low, high, or unclear. 

For assessing model applicability for the HTA purpose, we did not 
use PROBAST, because it mainly addressed applicability concerns 
regarding medical settings, i.e., whether population, predictors, or 
outcomes of a study differed from those specified in a systematic review 
question [22]. Additionally, we did not find any specifically designed 
tool but only a review conducted by Betts et al. [26], which summarized 
reasons why HTA agencies recommended or criticized models for pre-
dicting cardiovascular diseases. Betts et al. mentioned three aspects of 
concern regarding applicability for the purpose of HTA, including 
geographic and therapeutic generalizability, whether the model was up- 
to-date, and appropriateness of model covariates. According to Betts 
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et al., seven signaling questions (SQs) were formulated by two reviewers 
(LJ and JW), and then edited by five reviewers (GGS, FJSS, JTG, XL, LJ) 
after a pilot quality assessment of one-third of the eligible models. The 
questions and their rationales are attached in Appendix 2. 

Quality assessment was conducted independently by two reviewers 
(LJ and FJSS, JTG, or XL), and any discrepancy was solved through 
discussion with at least three reviewers. Before the formal RoB assess-
ment, two training sessions with three example modelling studies (e.g. 
Covid-19) were conducted by six reviewers (JW, LJ, FJSS, JTG, GGS). 

2.6. Data analysis 

For data analysis, we narratively synthesized characteristics of the 
eligible models by presenting all variables as numbers and percentages, 
and summarized the model discrimination (i.e. C-index) reported by the 
identified studies. We did not conduct a meta-analysis to summarize 
model performance, because a meta-analysis is only needed when the 
aim is to summarize the predictive performance of the model being 
validated across different settings and populations [29]. In the current 
review, we focused on the methodological quality of model development 
studies, and model validation studies were out of the scope. The results 
were presented separately for ML and statistical models in both tables 
and graphs. 

3. Results 

3.1. Study selection 

Among a total of 12,784 records identified from the five databases, 
1381 were eliminated as duplicates, leaving a total of 11,403 initial 
records (Fig. 1). After adding records from the three published reviews 
and reviewing titles and abstracts, we selected 183 records for full-text 
screening, then excluded 157 records with the reasons such as inap-
propriate population (n = 58). No new references were obtained 
through the reference lists of the remaining articles. Therefore, 26 
studies, which described 30 models, were included for data extraction. 

Twenty-one, three, and two of the studies were identified from database 
search only, published reviews only, or both. Since RoB of the three 
studies [39–41], which were identified from the published reviews, had 
been previously assessed [24,42], we included 23 model studies for RoB 
assessment and all the 30 models for applicability assessment. 

3.2. Model characteristics 

The summary of study and model characteristics is presented in 
Table 1, and the reference list and model details can be found in Ap-
pendix 3 & 4. The model discrimination, which was reported as C-index 
by the identified studies, was listed in Appendix 5. 

Regarding model characteristics, models developed with the statis-
tical approaches, such as Cox (17, 57 %) and Logistic (4, 13 %), 
accounted for the most, while the other five used various ML techniques, 
that is, Multi-task Learning [43], Random Forest [44], Neural Network 
[45], Recurrent Neural Network Gated Recurrent Unit [46], and K- 
nearest Neighbor models [47]. Regarding outcomes, about half of the 
models predicted CHD, while other predicted MI or acute coronary 
syndrome. Also, only 16 (53 %) models reported the duration of risk 
they could predict (e.g. 5-year CHD risk), and only four models provided 
the equations to predict the annual risk. In addition, 11 variables were 
included as final predictors in at least three models, and the most 
common predictors were age, history of disease, gender, and smoke. 
Regarding model discrimination (Appendix 5), 15 (71 %) and four (67 
%) models reporting the C-index showed good discrimination (C-index 
>= 0.7). 

3.3. RoB assessment - PROBAST 

The quality assessment in terms of RoB is shown in Fig. 2. In Ap-
pendix 6 & 7, the results were split if the model studies were developed 
with statistical or ML techniques. In summary, only one model, i.e., the 
model by Quan et al. 2019 [48], was graded as having low RoB in all the 
four PROBAST domains, and seven models were graded as having low 
RoB in all domains except the analysis. 

Fig. 1. Flowchart of included studies.  
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In the Participants domain (SQ 1.1–1.2), three (60 %) ML model 
studies and 12 (67 %) statistical model studies were rated as having low 
RoB. Appropriate data sources, such as prospective cohort and ran-
domized controlled trial data, were used (SQ 1.1) in four (80 %) ML 
model studies and 16 (89 %) statistical model studies. The included 
patients were considered representative of the target population (SQ 
1.2) in four (80 %) ML model studies and 13 (72 %) statistical model 
studies. A total of four models included patients who were already 
known to have the CHD-related outcomes at the time of predictor 
measurement (e.g. patients with CHD history), and one model excluded 
sicker patients based on number of hospitalization [46]. Consequently, 
the predictive performance of these models could be overestimated or 
underestimated, respectively. 

In the Predictors domain (SQ 2.1–2.3), four (80 %) ML model studies 
and 15 (83 %) statistical model studies were rated as low RoB. Predictors 
were defined and assessed in a similar way for all participants (SQ 2.1) in 
four (80 %) ML model studies and 17 (94 %) statistical model studies. 
Predictor assessments were made without knowledge of outcome data 
(SQ 2.2) in 21(91 %) studies. All predictors were considered available at 
the time the model is intended to be used (SQ 2.3) in all ML models, but 
only in 15 (83 %) statistical models. The remaining three statistical 

Table 1 
Characteristics of eligible models.   

Number Percentage 
(%) 

Study characteristics (n ¼ 26)   
Study design   
Observational study 21 81 
Trial + Observational study 4 15 
Trial 1 4 
Disease   
Type-2 diabetes 22 85 
Type-1 diabetes 1 4 
All diabetes 3 12 
Region   
Asia 12 46 
North America 8 31 
Europe 5 19 
Intercontinental 1 4 
Whether a reporting guideline was followed?   
Transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) 
2 8 

NR 24 92 
Handling of continuous predictors  
Continuous 8 31 
Continuous or categorized 10 38 
Not reported 8 31 
Non-linearity  
Restricted cubic splines 2 8 
Logarithm transformation,linear plus splines, or 

quadratic functions 
1 4 

Continuous spline function 1 4 
Not reported 22 85 
Handling of missing data  
Complete case analysis 11 42 
Multiple imputation 7 27 
Not reported 8 31 
Method for selection of predictors for inclusion in 

multivariable modelling   
All candidate variables 18 69 
Based on literature 3 12 
Based on literature & expert opinion 1 4 
Based on previous models 1 4 
Not reported 2 8 
Method for selection of predictors during 

multivariable modelling   
Full model approach 7 27 
Backward selection 5 19 
Forward selection 4 15 
Not reported 10 38 
Method of internal validation  
Cross-validation 6 23 
Bootstrapping 5 19 
Sample split 7 27 
Sample split & Cross-validation 1 4 
Not reported 7 27 
Model calibration  
Calibration plot & Hosmer-Lemeshow test 8 31 
Calibration plot 6 23 
Hosmer-Lemeshow test 1 4 
Not reported 11 42 
Model discrimination  
C-statistic 12 46 
C-statistic & Area under the receiver operating 

characteristic curve 
4 15 

Area under the receiver operating characteristic curve 3 12 
C-statistic & Bayesian information criteria 1 4 
Not reported 6 23 
Model presentation  
Hazard ratio 9 35 
Full equation 9 35 
Odds ratio 2 8 
Not reported 6 23 
Alternative model presentation  
Nomogram 4 15 
Sum score 3 12 
Web server 2 8 
Nomogram & Web server 2 8  

Table 1 (continued )  

Number Percentage 
(%) 

Not reported 15 58 
Analysis done in reviewed study  
Development and internal validation 14 54 
Development and external validation 8 31 
Development only 4 15 
Median sample size (development) 5521 (74–––891095) 
Median sample size (external validation) 3803 (962–––386425) 
Model characteristics (n ¼ 30)   
Model type   
Machine learninga 5 17 
Cox 17 57 
Logistic 4 13 
Other (e.g. Linear) 4 13 
Outcome of interestb   

CHD 16 53 
MI 11 37 
ACS 3 10 
Age of simulated individuals   
All 17 57 
With a range (e.g. 40–64) 8 27 
Not reported 5 17 
Time cycle of prediction   
> 1 year 12 40 
1 year at maximum 4 13 
Not reported 14 47 
Events per variable   
>=20 18 60 
<20 6 20 
Not reported 6 20 
Final predictors included by at least 3 models  
Age 20 67 
History of disease (e.g. cardiovascular disease) 17 57 
Gender 14 47 
Smoke 14 47 
HbA1c 13 43 
Cholesterol 13 43 
Blood pressure 12 40 
Diabetes duration 7 23 
Use of drugs (e.g. Statins) 7 23 
Ethnicity 6 20 
Body mass index 5 17  

a “Machine learning” indicates the machine learning techniques used for devel-
oping the included prediction models, including Multi-task Learning (MTL), Random 
Forest (RF), Neural Network (NN), and Recurrent Neural Network Gated Recurrent 
Unit (RNN GRU). 

b “CHD” indicates coronary heart disease, “MI”, myocardial infarction, “ACS”, 
acute coronary syndrome. 
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models were considered high RoB, because two of them included pre-
dictors that were unlikely to be available in clinical practice (e.g. 
anthropometric measurement) [48,49], and one did not mention when 
the model would be used [50]. 

In the Outcome domain (SQ 3.1–3.6), all the ML model studies (100 
%) were rated as low RoB, and were considered high-quality in Signaling 
questions from 3.1 to 3.6. Comparably, 10 (56 %) statistical model 
studies were rated as low RoB. Only one statistical model [41] did not 
use appropriate methods to determine the outcome, thus increasing the 
risk of misclassification (SQ 3.1). Similarly, only two statistical model 
studies [51,52] missed prespecified or standard definitions to determine 
the outcome (SQ 3.2). Likewise, predictors were mistakenly included in 
the outcome definition (SQ 3.3) in two statistical model studies [53,54]. 
Outcomes were defined and measured in a similar way (SQ 3.4) in 15 
(83 %) statistical model studies, except three which provided no infor-
mation [55–57]. According to SQ 3.5, prediction information was 
known only in one statistical model [53] when determining the outcome 
status. In SQ 3.6, the time interval between predictor assessment and 
outcome determination was considered too short in two statistical 
models [48,51]. 

In the Analysis domain (SQ 4.1–4.9), most concerns regarding RoB 
were identified. All the ML model studies and 16 (89 %) statistical model 
studies were rated as high RoB. SQ 4.7 showed that three (60 %) ML 
model studies and six (33 %) statistical model studies did not 

appropriately evaluate model performance, because they missed cali-
bration evaluation [44,46,50,54,57–60], only used the Hos-
mer–Lemeshow test for calibration evaluation [61], or presented 
classification measures with predicted probability thresholds derived 
from the data set at hand [45]. According to SQ 4.4, two (40 %) ML 
model studies [43,47] and nine (50 %) statistical model studies handled 
missing data inappropriately by simply excluding them, while three (60 
%) ML model studies [44–46] and six (33 %) statistical model studies 
suffered from no information. SQ 4.2 revealed that continuous and 
categorical predictors were handled appropriately in all ML model 
studies, but only in 11 (61 %) statistical models. Six (33 %) studies did 
not examine non-linearity for continuous variables [53,58,60,62] or 
categorized continuous variables [58,61]. Similarly, model overfitting 
and optimism were considered (SQ 4.8) in four (80 %) ML model studies, 
but only in eight (44 %) statistical model studies. Six (33 %) studies did 
not use internal validation techniques [50,58–62], or the validation did 
not include the whole model development procedures [48,51]. Ac-
cording to SQ 4.3, two (40 %) ML models [43,46] and five (28 %) sta-
tistical models [50,51,53,60,63] inappropriately excluded patients due 
to uninterpretable findings, outliers, or missing data. SQ 4.6 finally 
showed that none of the ML model studies but six statistical model 
studies inappropriately addressed censoring or competing risks. Three 
models simply used logistic regression for censoring [53,58,62] and 
three ignored competing risks [48,58,63]. Also, five studies provided no 

Fig. 2. PROBAST signaling questions for the 23 studies investigating models developed with statistical or machine learning techniques. Note ML indicates machine 
learning models; Statistical indicates statistical models. The signaling questions 1.1–1.2, 2.1–2.3, 3.1–3.6, and 4.1–4.9 corresponds to the risk of bias domain of 
participants, predictors, outcome, and analysis, respectively. 
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information. In response to SQ 4.1, two ML model [44,47] and six (33 %) 
statistical models did not have a reasonable number of participants with 
the outcome (i.e. event per predictor parameter < 10). 

The remaining questions contributed relatively less to the overall 
RoB. Only one model [61] selected predictors based on univariable 
analysis, and another [45] provided no information (SQ 4.5). Based on 
SQ 4.9, information was missing on whether predictors and their 
assigned weights in the final model correspond to the results from 
multivariable analysis in three (60 %) ML models [43,45,46] and two 
(11 %) statistical models [53,62]. Additionally, in only one statistical 
model [61], the predictors did not correspond to the results. 

3.4. Applicability to HTA assessment 

The assessment in terms of applicability for the purpose of HTA is 
shown in Fig. 3 and Appendix 8. 

In summary, the applicability of the models for HTA was quite 
limited, as none of the 30 models were fully applicable (i.e. “Yes” or 
“Probably Yes” in all the seven signaling questions). Only six models in 
three studies [39,63,64] had an “Yes” or “Probably Yes” in at least four 
signaling questions. The major barrier of model applicability was the 
lack of feasibility to calculate the annual risk of CHD or its component, 
either directly or indirectly (SQ f & SQ g), as only three models [39,64] 
could provide the option. The direct calculation indicates that, an 
equation or tool (e.g. an online user interface) is provided in the original 
study to calculate the annual risk of disease. The indirect calculation 
indicates that, though equations or a tool for predicting the annual risk 
are not provided, users could calculate the risk, using evidence provided 
in the original study (e.g. using hazard functions to calculate the accu-
mulated risk). Another barrier of model applicability was inappropriate 
exclusion of major CHD risk factors as candidate predictors (SQ d),as 
only one model [50] considered all the factors as candidate predictors. 
The CHD risk factors or features refer to those defined by a recently 
published overview, Hajar 2017 [65], including blood pressure, high 
blood cholesterol levels, smoking, overweight or obesity, lack of phys-
ical activity, unhealthy diet and stress, age, gender, family history, and 
race. Additionally, external validation was performed within the same 
study in only one ML [43] and eight statistical models (SQ a). Although 
all the identified models were published from 2013 onwards, one ML 

[32] or 12 statistical models were considered relatively obsolete (SQ b), 
because all the follow-ups of their target populations ended before 2012. 
Additionally, about one-third of models were attached with examples on 
how these models could be used. For example, the model from the 
United Kingdom Prospective Diabetes Study (UKPDS) [39] and from Ye 
et al. 2022 [64] created an artificial patient with assumed value on its 
characteristics, and illustrated how the CHD-related risk was calculated 
using the model. Finally, according to SQ c, four (22 %) statistical 
models [50,55,56,62] included predictors that were not likely to be 
reported as trial outcomes, such as biomarkers. 

4. Discussion 

4.1. Findings 

We conducted a literature review of prognostic models which pre-
dicted CHD risk in patients with diabetes to assess quality, in terms of 
risk of bias, and applicability for the purpose of HTA. We identified 25 
statistical and five ML models, with overall relatively poor model 
quality. Only one study [48] showed low RoB in all domains of the 
PROBAST checklist, and none of the 30 models were fully applicable for 
HTA. The models with low RoB in at least three RoB domains and a user- 
friendly presentation (e.g. nomogram) included those by Quan et al. 
2019, Choi et al. 2020, and Zhong et al. 2022 [47,48,61]. Additionally, 
the models with relatively wide HTA applicability included the UKPDS 
model, and the models by Hirai et al. 2019, and Ye et al. 2022 
[39,63,64]. 

We discovered that most of the major contributors of high RoB were 
located in the analysis domain. Similar findings were also reported by 
Galbete et al., Haider et al., and Van der Heijden et al., who assessed RoB 
of 65, 14, and 16 models, respectively, for predicting the risk of car-
diovascular disease or retinopathy in general or DM populations 
[22,42,66]. This finding is as expected, because the analysis domain, 
which addresses statistical considerations of model development, is the 
most complicated, with the most (n = 9) signaling questions [22]. We 
did not identify similar research that assessed the model applicability for 
the HTA purpose. Since use of inappropriate analysis methods may lead 
to biased estimates on model performance, we advise clinicians to 
carefully examine the model performance declared by model developers 

Fig. 3. Model applicability for the purpose of HTA. Note ML indicates machine learning models; Statistical indicates statistical models.  
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(e.g. good discrimination based on the C-index). Clinicians might trust 
the models developed by Quan et al. 2019, Choi et al. 2020, and Zhong 
et al. 2022 [47,48,61], if at least one validation study conducted in the 
same setting (e.g. country) is available. 

The overall high RoB of the identified model studies implied that 
PROBAST might not be strictly followed by model developers. To go one 
step further, we could speculate that, model developers did not fully 
comply with some other published appraisal tools either, because, as 
mentioned in the method part, these tools also highlighted similar RoB 
concerns that were not adequately addressed by the identified models. 
For example, the CHARMS discouraged the complete-case analysis for 
addressing missing data, emphasized the importance of recoding model 
performance in terms of calibration and discrimination, and recom-
mended the use of bootstrapping and cross-validation against overfitting 
[36]. Also, the STROBE guideline emphasized the importance of 
reporting missing data in modelling studies [38]. In contrast, almost half 
of the identified model studies reported no information regarding 
missing data. 

One explanation for the lack of compliance might be the failure of 
disseminating the appraisal tools. The publications that described the 
successful external validation cannot prove the success of dissemination, 
as the potential model developers who do not understand an appraisal 
tool would never use it or describe their confusion in their own 
modelling study. Alternatively, the lack of compliance may be attributed 
by the lack of feasibility to apply the tools. For example, although all the 
above-mentioned tools discouraged the use of complete case analysis for 
addressing missing data, the complete case analysis might not lead to 
biases. In certain conditions, it achieved precision similar to or better 
than multiple imputation, and high statistical coverage [67]. If this was 
true, the existing tools might need to be adapted to approve the use of 
complete case analysis in some scenarios. Hence, further research may 
be needed to analyze whether the model developers have understood the 
existing tools, and how they have used them. We expect that future 
research could contribute to improved appraisal tools and the relevant 
dissemination strategies. 

Additionally, it seems that most developers of risk prediction models 
did not fully understand the needs for the HTA purpose, so the potential 
of these models was not fully explored. For example, health economics 
models in the diabetes field, especially for those with a Markov struc-
ture, often need empirical data or risk prediction models for predicting 
the CHD risk, with an aim to accurately calculate the overall costs and 
effectiveness of a cohort. Compared to aggregate data, risk prediction 
models could enable the estimation of cost-effectiveness at individual 
level, and they are a good alternative to empirical patient data from real- 
world databases [68,69]. However, to apply risk prediction models to 
health economics modelling, the original mathematical equations 
should be provided and called repeatedly. Our results showed that, some 
studies only provided an online user interface without an equation, 
which could not satisfy the relevant needs [48,58,64]. Also, it is worth 
noting that, Cox models are a popular type of risk prediction models for 
the HTA purpose, as they could predict time to an event and an event 
risk within a time interval of any length. In particular, Cox models are 
suitable to discrete-event simulation models, an increasingly popular 
health economics model featured by great flexibility to handle time-to- 
event data [69]. However, most of our identified Cox models (n = 17) 
were not applicable, because they only provided a cumulative hazard 
function with fixed model coefficients, for estimating the CHD-related 
risk for 3,5,or 10 years. They did not provide the original hazard func-
tion, which enabled estimation of an instantaneous risk. These models 
could satisfy the needs for clinical decision-making, as information on a 
5- or 10-year event risk, could help health-care providers or patients 
decide on which treatment to receive. However, these models could not 
be incorporated into a health economics model, unless assumptions are 
made on the instantaneous event risk (e.g. constant overtime), which 
would increase RoB. Therefore, we highly recommend developers of risk 
prediction models not to develop, but to improve their existing models, 

by reporting their mathematical equations more transparently, or by at 
least providing a cumulative function that could predict an annual event 
risk. Although the models with relatively wide HTA applicability (e.g. 
the UKPDS model [39]) have shortcomings in terms of RoB, developers 
may refer to these models for information on how to improve model 
applicability for the purpose of HTA. 

Another finding regarding model applicability for HTA was that, 
although all the models included some CHD risk factors as model 
covariates, they were not in full agreement on which risk factors should 
be included. For example, while all the models included age, sex, and 
smoking as covariates, they differed in whether to include diet, physical 
activity, or mental health. The appropriate inclusion of CHD risk factors 
as model covariates has been considered by HTA agencies as evidence of 
wide model applicability. For example, the Dental and Pharmaceutical 
Benefits Agency in Sweden and the Dutch Healthcare Insurance Board in 
the Netherlands commented on the absence of any cholesterol measure 
as a covariate in a cardiovascular risk prediction model called REACH. 
[15] However, we identified no clear statement from HTA agencies, or 
even from clinical guidelines, on what risk factors should at least be 
included as model covariates. Indeed, many studies have investigated 
the issue by providing a list of major CHD risk factors [70–73], but their 
recommendations vary. Consequently, the lack of agreement on CHD 
risk factors to be included in a risk prediction model would confuse 
model developers, and ultimately reduce model applicability. Hence, we 
suggest developing a generic framework which summarizes clinical risk 
factors as model covariates in the diabetes field. The framework may not 
only address risk factors of CHD, but also those of other major DM 
complications. 

We found that the concerns regarding model applicability for HTA 
cannot be simply addressed by the assessment of generic applicability. 
As mentioned by PROBAST, the generic applicability considers the 
extent to which the population, outcome, and definition and assessment 
of predictors match a review question. However, the generic applica-
bility doesn’t imply much regarding how to develop a model with wide 
applicability, as the PROBAST could not expect what review questions 
can be imposed by the HTA stakeholders. Consequently, the model users 
might only select and apply the least unsatisfactory model, while losing 
the opportunity of acquiring a perfect one. One solution for this appli-
cability concern is to account for needs of HTA stakeholders in appraisal 
tools. This could be achieved by adapting existing appraisal tools or 
developing new tools. However, given the various needs of model users, 
innovating an one-size-fits-all appraisal tool which defines an one-size- 
fits-all risk prediction model may not be feasible. Therefore, to ac-
count for various needs, we recommend closer collaboration among 
model developers, tool developers, and HTA stakeholders, and suggest 
the involvement of all stakeholders in development and implementation 
of appraisal tools. 

4.2. Comparison of ML and statistical models 

Since the numbers of ML and statistical models we identified are 
small, we could not compare quality of the two. However, we, as re-
viewers, feel that it is harder to assess quality of ML models than sta-
tistical models. One obvious reason is that ML models include unique 
features that could not be highlighted by generic quality appraisal tools. 
For example, ML models might have built-in capabilities for handling 
missing data [51]. To address this concern, several tools specifically 
designed for ML models are being developed, such as the PROBAST-AI 
and STROBE-AI [74]. Another reason for the difficult quality assess-
ment is that ML models normally adopt a black box approach that pre-
vent users from interpreting the reasoning behind a models’ prediction 
[75]. To address this concern, a research topic – Explainable AI – has 
emerged, and novel approaches for improved interpretability are being 
developed [76]. However, as model users often need to compare quality 
of models developed with various techniques, we suggest exploring 
methods to compare quality of statistical and ML models while taking 
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into account their particularities. 

5. Limitations 

Our study still has limitations. One limitation is that we might have 
missed models, as only one reviewer scanned all titles and abstracts, 
while another scanned a random set of 20 %. However, tracking refer-
ences of included studies did not yield additional references. Our find-
ings regarding overall model quality were supported by other studies 
and will not be disturbed by the potentially missing models. Another 
limitation is that our results regarding model applicability for the pur-
pose of HTA is explorative, and the evaluation criteria were from a single 
review (i.e. Betts et al [15]) and authors’ opinions. While our results 
cover key concerns of HTA stakeholders, some concerns may not be 
covered. Hence, extra efforts are needed if HTA stakeholders apply the 
models based on our results. 

6. Conclusion 

Both models based on machine learning and statistical techniques 
have been developed to predict the CHD risk in DM patients, but the 
quality, in terms of risk of bias and model applicability for the purpose of 
HTA, is relatively low. Model developers do not fully understand the 
needs from HTA stakeholders, and we recommend further research to 
explore the reasons. In addition, novel tools are needed, as the existing 
tools which only address generic model applicability could not satisfy 
the needs of HTA stakeholders. To achieve this, model developers, tool 
developers, and HTA stakeholders may need closer collaboration. 
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