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Abstract: Meta-analysis techniques allow researchers to aggregate effect sizes—like standardized
mean difference(s), correlation(s), or odds ratio(s)—of different studies. This leads to overall effect-size
estimates and their confidence intervals. Additionally, researchers can aim for theory development or
theory evaluation. That is, researchers may not only be interested in these overall estimates but also
in a specific ordering or size of them, which then reflects a theory. Researchers may have expectations
regarding the ordering of standardized mean differences or about the (ranges of) sizes of an odds
ratio or Hedges’ g. Such theory-based hypotheses most probably contain inequality constraints and
can be evaluated with the Akaike’s information criterion type (i.e., AIC-type) confirmatory model
selection criterion called generalized order-restricted information criterion (GORICA). This paper
introduces and illustrates how the GORICA can be applied to meta-analyzed estimates. Additionally,
it compares the use of the GORICA to that of classical null hypothesis testing and the AIC, that is, the
use of theory-based hypotheses versus null hypotheses. By using the GORICA, researchers from all
types of fields (e.g., psychology, sociology, political science, biomedical science, and medicine) can
quantify the support for theory-based hypotheses specified a priori. This leads to increased statistical
power, because of (i) the use of theory-based hypotheses (cf. one-sided vs. two-sided testing) and
(ii) the use of meta-analyzed results (that are based on multiple studies which increase the combined
sample size). The quantification of support and the power increase aid in, for instance, evaluating
and developing theories and, therewith, developing evidence-based treatments and policy.

Keywords: confirmatory research; inequality-constraints; information theoretic criteria; informative
hypothesis; meta-analysis; model selection; multiple studies; order-restricted hypothesis; theory-
based hypothesis

1. Introduction

To answer important societal questions, aggregation of results from multiple indepen-
dent studies investigating the same theoretical relationship is needed. If multiple studies
investigate the same theoretical relationship, the results of these studies together offer more
certainty about that relationship in the population than the result of any single study. One
often used method to systematically summarize quantitative results from multiple studies
is meta-analysis, a secondary data-analysis on estimates of primary studies. Meta-analysis
aims to aggregate effect-size estimates—like standardized mean difference(s), correlation(s),
odds ratio(s), or standardized regression parameters—from multiple studies to come to
an overall estimate of one or more population parameters with confidence intervals and
standard errors [1,2].

Typically, researchers use meta-analysis models to assess the population relationships
between pairs of variables through the estimation of parameters. Currently, meta-analyses
may lack theory development, but by offering a method that can evaluate a priori expecta-
tions directly, as done in this paper, meta-analytic researchers may shift their focus to theory
development. Therefore, I assume—in the remainder of this paper—that the primary aim
of a meta-analysis is to compare the size and/or sign of the effect size parameters For
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example, one may want to examine the relationship between the outcome buyer–seller
trust and the three predictors worth of previous transactions, the worth of expected future
transactions, and the size of the buyer’s network; which can be reflected by the population
(standardized) parameters θ1, θ2, and θ3, respectively. Then, one may expect beforehand an
ordering in the importance of predictors and possibly (also) of moderators; for instance,
one may hypothesize that θ1 < θ2 < θ3.

Many theories can be expressed by hypotheses with inequality constraints on the
population parameters (e.g., θ1 < θ2 < θ3 or even |θ1| < |θ2| < |θ3|, where |.| denotes
the absolute value), as illustrated in Appendices A.1.1–A.1.3. Nevertheless, statistical
hypotheses are often expressed in terms of hypotheses containing solely equality constraints
(e.g., θ1 = θ2 = θ3), because these hypotheses can be tested with null hypothesis tests or
evaluated with model selection using, for instance, the Akaike’s information criterion (AIC).

Even in combination with the sizes of the estimates, null hypothesis testing does not
properly address the theory-based hypotheses like θ1 < θ2 < θ3; nor does model selection
using the AIC. What if ‘θ1 = θ2 = θ3’ is rejected? Or what if ‘θ1 = θ2’ is rejected and ‘θ2 = θ3’
is not? What if ‘θ1, θ2, θ3’ is the best from the set of candidate models? What should be
concluded? Can the result(s) then be expressed in terms of support for or against the
hypothesis of interest? Often it cannot. Hence, one would want to evaluate the hypothesis
of interest (θ1 < θ2 < θ3) directly. Fortunately, it is possible to evaluate theory-based
hypotheses by using the AIC-type inequality-constrained model selection criterion called
generalized order-restricted information criterion approximation (GORICA) [3–5].

This paper will show how the GORICA can evaluate theory-based hypotheses (which
probably include inequality constraints) in a meta-analytic study. The GORICA will then
be applied to meta-analyzed estimates. These estimates can be effect size measures like
Cohen’s d or Hedges’ g but can also be standardized estimates from, for example, (multivari-
ate) regression models or logistic regression models and/or they can be the standardized
estimates of moderators (see Appendices A.1.1–A.1.3 for more details).

Next, I will give some background information on meta-analysis and on how one can
test or evaluate hypotheses using null hypothesis tests, the AIC, and the GORICA. This is
followed by a section regarding meta-analytic examples, where I will show input and output
for applying null hypothesis tests, the AIC, and the GORICA to meta-analyzed estimates in
R [6]. In addition, I will compare the usability of the output of the GORICA (evaluating
theory-based hypotheses) versus that of null hypothesis tests and the AIC (evaluating
null hypotheses). I will conclude with a discussion regarding the (dis)advantages of the
GORICA compared to some other methods.

2. Materials & Methods: Meta-Analysis

In this section, the core concepts of meta-analysis are briefly introduced. The remainder
of this paper focuses on illustrating how theory-based hypotheses, often containing inequal-
ity constraints, can be evaluated using null hypothesis testing, the AIC, and the GORICA.

Meta-analysis aims to aggregate evidence from several different studies, usually in
the form of a statistical parameter or set of parameters (e.g., an effect size measure or
standardized regression parameters) estimated from different samples, to come to an
overall estimate of one or more population parameters [1,2]. In principle, meta-analysis
combines evidence from different studies by taking a weighted average of the parameter
estimates, where the study weights reflect the amount of information or certainty in a given
estimate. This weighting procedure can be applied univariately (via weighted least squares;
using the inverse of the variance of one or more estimates); or multivariately (via generalized
least squares; using the inverse of the covariance matrix of the estimates) to take into
account dependencies between the parameters which are the target of the meta-analysis.
The latter is comparable to the method called parameter-based meta-analytic structural
equation modeling (MASEM) (cf. [7]). For a more in-depth treatment of these weighting
procedures, the reader is referred to Becker & Wu [2] and Demidenko and colleagues [8].
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Another distinction in meta-analytic techniques can be made based on the assumed
underlying population parameter model: Researchers can assume a single underlying
parameter, in a fixed-effect analysis (also referred to as common-effect or equal-effect model),
or a distribution of population parameters, in a random-effects model. The latter reduces
to the former if all variance in each of the parameter estimates is assumed to come from
sampling variance alone. Note that a random-effects model should be used to generalize
meta-analytic results beyond the primary studies included in the meta-analysis. For an
elaboration on meta-analytic techniques, see for instance Borenstein and colleagues [1] and
Becker & Wu [2].

Additionally, one can include moderators, that is, predictors on the study-level, in a
(multiple) meta-regression. Moderators can be used to explain some of the heterogeneity
variances in the meta-analysis (which may be due to differences in study designs or,
as another example, publication-year). Note that subgroup analysis is a special case,
since then the predictors are dummy/grouping/categorical variables. In this model, it is
assumed that not all studies stem from the same population (because of different study
characteristics) and that the true overall effects differ per subgroup (or vary with the
moderator values). Such a model is also referred to as moderator analysis or (multilevel)
fixed-effects plural model or (multilevel) mixed-effects model.

All these types of meta-analysis models are captured by the following equation:

θ̂s = θ + β xs + εs + ζs,

where θ̂s is the observed effect size(s) of Study s (which can consist of multiple elements),
xs is the moderator(s), εs is the sampling error (how much does the effect size deviate from
its true effect), and ζs is the random effect denoting between-study heterogeneity (implying
that the true effect size comes from an overarching distribution of effect sizes), which is
independent from the sampling error. In case there are no moderators, ‘β xs’ is left out in
the equation or, stated otherwise, β is assumed to be 0. In case there is no random effect (i.e.,
there is solely a fixed effect), ‘ζs’ is left out in the equation; stated otherwise, the variance of
ζs (often referred to as τ2) is assumed to be zero.

In principle, meta-analysis takes a weighted average of the effect-size estimates, where
the contribution of each study is weighted by the inverse of the variance of the estimate (or
the inverse of the covariance matrix of the estimates), that is, the amount of information
or certainty in the estimate(s). To be more precise, the study contribution is weighted by
the inverse of the sampling variance (matrix) in the case of a fixed-effect model and by the
inverse of the total variance (matrix) in the case of a random-effects model.

Software

There are several software programs to perform a meta-analysis. In this manuscript, I
will make use of the R package metafor [9].

Next, I will describe some currently used methods to test (null) hypotheses, the differ-
ences between these tested (null) hypotheses and the ones of interest, and how the GORICA
can help out.

3. Materials & Methods: Null Hypothesis Evaluation

In Appendix A, I describe and exemplify different types of hypotheses that may be
of interest in meta-analysis (based on four meta-analysis cases) and the ones that can be
addressed in null hypothesis evaluation methods. As an example (which was also used in
the introduction), one may be interested in θ1 < θ2 < θ3, while null hypothesis evaluation
methods will evaluate θ1 = θ2 = θ3 (and, possible, some or all pairwise combinations of
equality restrictions). Next, I describe two methods that evaluate null hypotheses: Null
hypothesis testing and the model selection criterion AIC. Subsequently, I describe some of
their downsides.
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3.1. Null Hypothesis Tests

Null hypotheses, like θ1 = θ2 = θ3, can be tested with null hypotheses tests: by using
a t test, an F test, or a (Wald-type) χ2 test—all leading to a p-value—and/or by inspecting
the (elliptical, that is, multivariate) confidence intervals. Unfortunately, a p-value and
(the width of) confidence intervals do not quantify the support for any hypothesis. Note
that under a severe testing view of the evidence, a p-value is interpreted in terms of
the probability of obtaining evidence as strong as the observed data provides purely by
chance (cf. [10]). Luckily, model selection can be used to not only evaluate restrictions on
parameters simultaneously but also to quantify the support of hypotheses, as discussed in
Section 3.2.

Software

The R package metafor renders output for null hypothesis testing. This will be
demonstrated in the Illustrations section (i.e., Section 5).

3.2. Model Selection Using the AIC

The evaluation of a hypothesis against one or more competing ones can be done
with model selection. One type of model selection is information-theoretical model se-
lection, which uses information criteria. Model selection techniques, like information
criteria, select the hypothesis that describes the data best (highest fit) with the smallest
(least complex) hypothesis in terms of the number of distinct parameters, out of a set of
candidate hypotheses.

An often-used information criterion is the Akaike Information Criterion (AIC) [11].
The AIC is an estimate of the Kullback–Leibler discrepancy [12], the distance between a
candidate hypothesis and the true unknown hypothesis. Therefore, the hypothesis with
the smallest AIC value is the preferred one in the set of candidate hypotheses. The AIC
quantifies the trade-off between the fit (likelihood) and the complexity (penalty) of the
candidate hypotheses in the following way:

AIC = −2 {maximum log likelihood− penalty},

where the penalty equals the number of distinct model parameters: e.g., the number of
distinct regression parameters, including the intercept, and the distinct error (co)variance(s).

The AIC can evaluate null hypotheses, like θ1 = θ2 = θ3 and θ1 = θ2, θ3. Moreover, it
can compare multiple hypotheses (containing equality restrictions). For instance, one can
compare the following three hypotheses:

H01 : θ1 = θ2 = θ3,

H02 : θ1, θ2 = θ3,

Hu : θ1, θ2, θ3,

where H01 restricts all parameters to be the same; H02 restricts only the last two parameters
to be equal and does not restrict θ1, that is, it freely estimates θ1; and Hu freely estimates all
three parameters. The hypothesis with the smallest AIC is then the preferred one.

Software

While meta-analysis results can be accompanied with an AIC value, most meta-analytic
software cannot constrain estimates (within a model). Note that the AIC in the R package
metafor is only helpful (1) when comparing different random effects structures; (2) when
comparing a random-effects meta-analytic model with a fixed-effect model; or (3) when
comparing models with different sets of fixed effects (in case all studies have observed data
for all the fixed effects, otherwise the data sets differ per model). In these cases, one has to
specify and run the models/hypotheses of interest separately and ask for the AIC values
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for those models. To learn more about how well information criteria (like the AIC) perform
in model selection in meta-analysis, the interested reader is referred to [13].

Since meta-analytic software cannot restrict meta-analyzed estimates, not all types
of models/hypotheses can be compared with the rendered AIC. One can, for instance,
not evaluate whether the parameters for multiple outcomes are zero or any other value
(as evaluated in the Illustrations section, that is, Section 5). To evaluate such equality-
restricted restrictions, the so-called GORICA weights (as discussed in the next section) will
be calculated as a proxy to the Akaike weights and referred to as AIC weights.

3.3. Gap and Bridging the Gap

Equality-restricted hypotheses evaluated in null hypothesis evaluation often differ
from the theory-based hypotheses (which often contain inequality restrictions), as can
be seen when comparing Appendix A.1 to Appendix A.2. Even in combination with the
sizes of the estimates, null hypothesis testing does not properly address the theory-based
hypotheses; nor does model selection (on equality-constrained hypotheses) using the AIC.
Fortunately, it is possible to evaluate theory-based hypotheses by using the AIC-type
inequality-constrained model selection criterion called GORICA.

Next, I give some background information on the GORICA. This is followed by a
section regarding meta-analytic examples. There, I will show R input and output for doing
null hypothesis tests, the AIC, and the GORICA and compare their usability.

4. Materials & Methods: GORICA

By using the generalized order-restricted information Criterion (GORIC) [4,5] or its
approximation (GORICA) [3], researchers’ theories can directly be examined by evaluating
theory-based hypotheses, like θ1 = θ2 > θ3 or θ1 > θ2 > θ3. Thus, the GORIC and GORICA
can evaluate theory-based hypotheses containing order restrictions on the parameters
(“<” and/or “>”) besides equality restrictions (“=”). They can evaluate hypotheses with
restrictions on linear combinations of parameters (notably, a restriction regarding the square
of say θ1 is not possible, but this is oftentimes also not of interest).

The GORIC is an extension of the AIC (and, thus, also an estimate of the Kullback–
Leibler discrepancy) and is of the form

GORIC = −2 {maximum order-restricted log likelihood− penalty}.

This expression is based on the order-restricted maximum likelihood (i.e., the maximum
likelihood under the order restrictions in the hypothesis) and has a more general penalty
expression (using so-called chi-bar-square weights) such that the order restrictions are
properly accounted for (for more details, see Appendix C). The penalty equates, loosely
speaking, the expected number of distinct parameters. For example, θ1 < θ2 represents
1.5 distinct regression parameters and not 2, as would be the case in the AIC (which would
evaluate θ1, θ2). If there are solely equality constraints (“=”) and/or no constraints (“,”)
and, thus, no order restrictions, the GORIC reduces to the AIC.

The GORICA is an approximation method which eases the calculation of the GORIC
for a broad range of models. It uses the fact that maximum likelihood estimates are
asymptotically normally distributed:

GORICA = −2 {LLMLE − penalty},

where LLMLE is the (order-restricted) fit part (different from that of the GORIC) and where
‘penalty’ is the (order-restricted) complexity part which has the same expression as that
of the GORIC; where both parts account for the order restrictions in the hypothesis. The
fit part of the GORICA, LLMLE, is (besides the order restrictions) based on the maximum
likelihood estimates (MLEs) and their covariance matrix (which are a summary of the data)
instead of the data themselves. Using the central limit theory, the fit part of the GORICA
is always based on the normal distribution for the MLEs even if the data do not follow
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one (like in a logistic regression). The fit part is the maximum of this distribution given
the restrictions in the theory-based hypotheses (i.e., it is an order-restricted maximum).
The interested reader is referred to Appendix C for details about the log likelihood and
penalty parts of the GORIC and GORICA.

Because of the different fit expressions, the fit values of the GORIC and GORICA
differ in an absolute sense but asymptotically not in the relative sense when comparing
candidate hypotheses (cf. [3] and Appendix C). Therefore, the GORICA asymptotically
selects the hypothesis with the smallest distance to the truth (while the GORICA value
itself is not an estimate of the Kullback–Leibler discrepancy). The GORICA, like the AIC
and GORIC, orders the hypothesis in the set, where the hypothesis with the smallest value
is the preferred one.

Note that the GORICA only needs the estimates of the (unconstrained) parameters of
interest and their covariance matrix. To be more precise, the estimates and their covariance
matrix are only needed for the parameters included in the set of hypotheses, which often
do not include variance components (for more details, see Appendix C). Therefore, it can
easily be applied to all types of meta-analyzed estimates (like effect-size measure estimates
or standardized regression estimates), as long as their covariance matrix is also known
(which is often, if not always, part of meta-analytic software).

4.1. GORICA Weights

To improve the interpretation of information criteria values, one should transform
them into weights. The GORICA weight for Hypothesis Hm is calculated by:

wm =
exp

(
− 1

2 GORICAm

)
∑M

m′=1 exp
(
− 1

2 GORICAm′
)

for i = 1, . . . , M, with M the total number of hypotheses in the set and ∑M
m=1 wm = 1.

Notably, the GORICA weights and the GORIC weights are asymptotically the same. In the
case of no order restrictions, the GORIC weights equal the Akaike weights (cf. [14]) and,
thus, the GORICA weights asymptotically equal Akaike weights (and can thus be used
a proxy).

Bear in mind that an information criterion (IC) can be written as

IC = −2 {LL− penalty}.

Consequently,

exp{−1
2

IC} = exp{LL− penalty} = exp{LL}/exp{penalty} = likelihood/exp{penalty}.

Hence, the IC weights are comparable to likelihood ratios, only now the complexity of the
hypotheses/models are also taken into account.

The IC weights reflect the strength/likelihood/support of a hypothesis given the
data and the set of hypotheses [4,14–16]. That is, wm denotes the weight of evidence that
Hypothesis Hm/Model m is the best hypothesis for the data at hand given the M candidate
hypotheses. Thus, when inspecting another set of hypotheses, the weights for the same
hypotheses may change.

For the comparison of two hypotheses, one can use the ratio of their weights, denoting
the relative support of one hypothesis versus the other. For instance, GORICA weights for
Hypothesis Hm and a competing hypothesis Hc of wm = 0.875 and wc = 0.125 mean that
Hm has wm/wc = 0.875/0.125 = 7 times more support than the competing hypothesis Hc.
Stated otherwise, Hm is 7 times more likely than the competing hypothesis Hc. For readers
who are familiar with Bayesian statistics, the information criterion weights (e.g., GORICA
weights) are comparable to posterior model probabilities and the relative support (i.e., ratio
of weights) to Bayes factors. Note that the relative support (i.e., ratio of weights) does not
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depend on the full set of candidate models, it is the support for one hypothesis relative
to one other hypothesis. For example, when researchers would include an additional
hypothesis in the set, they may find weights of 0.7, 0.1, and 0.2, but the relative support of
Hm vs. Hc still equals 7, namely 0.7/0.1 = 7.

4.2. Software

There are two R functions that can calculate GORICA values and weights: the goric
function [17] in the restriktor package [18] and the gorica function in the gorica pack-
age [19]. These functions render the same results of course, but there are some differences
in functionality (cf. [20]). The goric function of the restriktor package is used in this paper.

The next section demonstrates, among other things, how the GORICA can be applied
to meta-analyzed parameter estimates and gives insight into the (dis)advantages of using
the GORICA. It also contains remarks for specific types of hypotheses, which are explicitly
and more elaborately addressed in Appendix B.

5. Results: Illustrations

I will make use of empirical meta-analytic studies, by using datasets provided by the
site of Wolfgang Viechtbauer (accessed on 1 June 2022). For several data sets, I run a meta-
analysis including null hypothesis testing in R [6] and I applied both the AIC and GORICA
to the meta-analyzed estimates. An R script containing annotated R code is available on
my GitHub page (accessed on 1 June 2022). These include meta-analyses regarding effect
size measures and model parameters, both with and without moderators (i.e., examples
for each of the four cases discussed in Appendix A). For brevity, I will next show (a part
of) one of the meta-analyses (including R code). Based on that, I will give insight in the
comparison of evaluating null hypothesis in meta-analysis (using null hypothesis testing
and the AIC) with the proposed theory-based hypothesis evaluation using the GORICA.

In this section, the meta-analytic study of Berkey and colleagues [21] is used, where
surgical and non-surgical treatments for medium-severity periodontal disease is compared
in five trials for two outcomes: attachment level (AL) and probing depth (PD) one year
after the treatment. In this meta-analysis, the effect size to be aggregated is the (raw)
mean difference, where non-surgical treatment is the reference category. This means that
a positive value indicates that surgery was more effective than non-surgical treatment.
Note that the outcomes are negatively related: a positive estimate indicates effectiveness of
surgery in either increasing the attachment level or decreasing the probing depth.

Meta-analysis is used to obtain an estimate of the population mean differences, where
the latter will be denoted by the population parameters θAL and θPD. From theory, it
might be expected that the first parameter is negative and the latter positive, leading to the
following hypothesis of interest:

H1.1 : θAL < 0, θPD > 0.

In the case that there might also be reason to believe that θPD could be negative, there is a
competing hypothesis of interest:

H1.2 : θAL < 0, θPD < 0.

Alternatively, it can be the case that there is theory regarding the size of the effect size,
or one wants to compare it to a cut-off value for that specific effect size type (e.g., when
using Cohen’s d or Hedges’ g). In this example, there might be theory regarding the size of
the mean difference stating:

H2 : |θAL| > 0.2, |θPD| > 0.2,

where |x| denotes the absolute value of x.

http://www.metafor-project.org/doku.php
http://www.metafor-project.org/doku.php
https://github.com/rebeccakuiper/GORICA_on_MetaAn
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As another example, it might be expected from theory that the absolute size of θAL is
smaller than that of θPD:

H3 : |θAL| < |θPD|.

Note that, for a fair comparison of parameters, both outcomes should be on the same scale
(as is the case here). Comparing sizes can be meaningful in the case of multiple outcomes,
like here, or in the case of multiple (aggregated) standardized regression estimates (where
one then compares the importance of the corresponding predictors).

Next, the input and (part of the) output for the meta-analysis is given. Subsequently,
one can find the results and conclusions regarding hypotheses H1.1 to H3 when perform-
ing null hypothesis testing, model selection using the AIC, and model selection using
the GORICA.

5.1. Meta-Analysis

The R code to (multivariately) aggregate the estimates of the five trials with a meta-
analysis using the metafor package:

# data
data <-~dat.berkey1998

# Covariance matrix, needed for multivariate meta-analysis
V <- bldiag(lapply(split(data[,c("v1i", "v2i")], data$trial), as.matrix))

# meta-analysis
metaan <- rma.mv(yi, V, mods = ~ outcome - 1, random = ~ outcome | trial,

struct="UN", data=data, method="ML")
print(metaan, digits=3)

Note that the function rma.mv() uses restricted maximum likelihood (REML) estimation by
default. Hence, method = “ML” must be explicitly requested, which is used to mimic [21].

This renders output. The, for this paper, relevant part of the output is:

Model Results:
estimate se zval pval ci.lb ci.ub

outcomeAL -0.338 0.080 -4.237 <.001 -0.494 -0.182 ***
outcomePD 0.345 0.049 6.972 <.001 0.248 0.442 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Be aware that the theory-based hypotheses are (and should be) formulated before
inspecting this.

5.2. Null Hypothesis Testing

In the example where H1.1 : θAL < 0, θPD > 0 (and possible H1.2 : θAL < 0, θPD < 0)
is of interest, there are two null hypotheses, namely surgery was equally effective as non-
surgical treatment in increasing the attachment level and in decreasing the probing depth.
This can be represented by the following two statistical hypotheses:

H0a : θAL = 0

H0b : θPD = 0.

Classical null hypothesis tests are part of the meta-analysis output, as can be seen in the
previous subsection. From this, it can be concluded that both hypotheses can be rejected
(p < 0.001). Thus, there is a significant difference in the effectiveness of the treatments
for both outcomes. When inspecting the sign of the meta-analyzed estimates, it can be
concluded that, on average, surgery is more effective in decreasing probing depth (i.e.,
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0.35 > 0) and less effective in increasing the attachment level (i.e., −0.34 < 0) than non-
surgery (i.e., non-surgery is more effective in increasing the attachment level). Note that
one can also do a one-tailed test to test, for instance, θAL > 0 (by dividing the p-value
by two, when the sign is in agreement with the expectation; otherwise, one should use
1− p/2).

In the above, the two null hypotheses are not tested simultaneously. One may like to
test them simultaneously by testing the following null hypothesis:

H0 : θAL = 0, θPD = 0.

This null can be tested by inspecting elliptical/multivariate confidence intervals (which are
based on the covariance matrix of the meta-analyzed estimates), but only the univariate
confidence intervals are reported when using metafor. Alternatively, one can use a chi-
square test. When using metafor, one can test H0 with the (Wald-type) chi-square test:

# R code
anova(metaan)

# Output:
Test of Moderators (coefficients 1:2):
QM(df = 2) = 155.7728, p-val < 0.0001

This omnibus test renders a p-value smaller than 0.001, indicating that H0 is rejected. If of
interest, one can test a null hypothesis for a specific set of parameters via the btt argument
in the anova function (e.g., ‘anova(metaan, btt = 1:2)’ for the first two parameters). Note
that one cannot test H1.1 : θAL < 0, θPD > 0, since there is no such one-tailed test.

Thus, even when testing the null hypotheses simultaneously (by testing H0 directly),
this cannot address the hypotheses of interest (especially when there are more than two
parameters). In this analysis with two parameters, it does give some insight into H1.1
and perhaps H1.2 : θAL < 0, θPD < 0, when also inspecting the meta-analyzed estimates.
Namely, H1.1 seems to be supported by the results, while H1.2 is not or only partly. However,
it is not clear how large their support is. Additionally, one cannot compare (the support
for) these two hypotheses.

When inspecting H2 : |θAL| > 0.2, |θPD| > 0.2 and H3 : |θAL| < |θPD|, one can
test ‘θAL = 0.2, θPD = 0.2’ and ‘θAL = θPD’, respectively. One again has to additionally
inspect the meta-analyzed estimates to obtain more insight into the hypotheses of interest.
Additionally, one still cannot quantity the support for the hypotheses of interest: In general,
a p-value and (the width of) elliptical confidence intervals do not quantify the support for
any hypothesis.

As will be demonstrated next, model selection can be used to evaluate restrictions on
parameters simultaneously and quantify the (relative) support of the hypotheses included
in the set.

5.3. Null Hypothesis Selection (Using the AIC)

To evaluate and compare null hypotheses, one can conduct model selection using
the AIC value. Because metafor cannot render the AIC values for the null hypotheses of
interest in this example, I will use the GORICA weights as a proxy to the Akaike weights
and refer to them as AIC weights. Note that this way I can still compare model selection
evaluation of null hypotheses versus that of theory-based hypotheses.

To apply the GORICA to meta-analyzed estimates in R, these estimates and their
covariance matrix should be extracted:

#Substract estimates from meta-an, to~be used in goric function
est <- coef(metaan)
names(est) <- c("theta_AL", "theta_PD")
VCOV_est <- vcov(metaan)



Entropy 2022, 24, 1525 10 of 27

In this analysis with two parameters, the number of possible equality hypotheses is
not that large. Therefore, all possibilities will be inspected here. To prevent choosing the
best from a set of weak/bad hypotheses (i.e., from a set of hypotheses not supported by
the data), the unconstrained hypothesis (which does not restrict parameters) is included
in the set as a fail-safe. Stated otherwise, when the equality-restricted hypotheses are
not supported by the data, the unconstrained hypothesis will be the best of the set. See
Appendix B.2 for more information.

Notably, in the case of more than two parameters, one may want to reduce the number
of hypotheses, like Burnham & Anderson [14] also recommend. This should then be based
on theory. As a side note, in case there is theory, I expect a researcher to have expectations
which will most probably include order restrictions as is the case in hypotheses H1.1 to H3
above (e.g., H1.1 : θAL < 0, θPD > 0). In such a case, one should evaluate these directly
with GORICA, as will become clear later.

Based on the three example sets of hypotheses specified, the following three hypothesis
sets are used. The first set compares each of the two parameters to zero:

H01 : θAL = 0, θPD = 0

H02 : θAL, θPD = 0

H03 : θAL = 0, θPD

Hunc : θAL, θPD.

The second set compares each of the two parameters to 0.2 (in absolute sense):

H04 : |θAL| = 0.2, |θPD| = 0.2

Hunc : θAL, θPD.

Note that, when using the GORICA, one can also evaluate restrictions regarding absolute
values of parameters. The third set compares the parameters to each other (in abso-
lute sense):

H0 : |θAL| = |θPD|
Hunc : θAL, θPD.

In R, using the goric function in the restriktor package, these three hypotheses sets are
formulated as follows:

# Set 1
H01 <- "theta_AL == 0; theta_PD == 0"
H02 <- "theta_PD == 0" # i.e.,~theta_AL, theta_PD == 0
H03 <- "theta_AL == 0" # i.e.,~theta_AL == 0, theta_PD
# Note: By default, the~unconstrained hypothesis is added to the~set.

# Set 2
H04 <- "abs(theta_AL) == 0.2; abs(theta_PD) == 0.2"
# Note: This can be compared to its complement, but~because of the equality,
# the complement equals the unconstrained~hypothesis.

# Set 3
H05 <- "abs(theta_AL) == abs(theta_PD)"
# Note: This can be compared to its complement, but~because of the equality,
# the complement equals the unconstrained~hypothesis.

The following R code should be used to evaluate these sets with the GORICA:

# Apply GORICA to obtain AIC~weights
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# Set 1
results_AIC_Set1 <- goric(est, VCOV = VCOV_est, H01, H02, H03,

type = "gorica")
results_AIC_Set1

# Set 2
results_AIC_Set2 <- goric(est, VCOV = VCOV_est, H04,

comparison = "complement", type = "gorica")
results_AIC_Set2

# Set 3
results_AIC_Set3 <- goric(est, VCOV = VCOV_est, H05,

comparison = "complement", type = "gorica")
results_AIC_Set3

The output next shows the AIC weights (‘gorica.weights’) for the first set of hypotheses
without order restrictions. Note that the reported log likelihood (loglik) and penalty are
based on the structural parameters, that is, the parameters included in the set of hypotheses.
For more details, see Appendix C.

Results:
model loglik penalty gorica gorica.weights

1 H01 -73.975 0.000 147.950 0.000
2 H02 -20.393 1.000 42.787 0.000
3 H03 -5.063 1.000 12.127 0.000
4 unconstrained 3.912 2.000 -3.824 1.000
---

From this, it is concluded that the unconstrained hypothesis is the best hypothesis, since it
has the smallest IC value and the largest IC weight. It even has full support, reflected by an
IC weight of 1. This implies that the other three hypotheses are weak hypotheses, that is,
hypotheses not supported by the data. Note that these three hypotheses (i.e., H01 to H03) do
not reflect any of the mentioned possible hypotheses of interest (i.e., H1.1 : θAL < 0, θPD > 0
and H3 : |θAL| < |θPD|) which are included in the unconstrained. Based on the results,
one can conclude that there is overwhelming support that both estimates are not zero.
When inspecting the signs of the meta-analyzed estimates, something can be said about
H1.1 : θAL < 0, θPD > 0 and H1.2 : θAL < 0, θPD < 0, but one cannot quantify the support
for these hypotheses or the support relative to each other.

The output next shows the AIC weights (‘gorica.weights’) for the second set of hy-
potheses without order restrictions:

Results:
model loglik penalty gorica gorica.weights

1 H04 -9.560 0.000 19.120 0.000
2 complement 3.912 2.000 -3.824 1.000
---
The order-restricted hypothesis ‘H04’ has 0.000 times more support
than its complement.

From this, it is concluded that there is no support for H04 : |θAL| = 0.2, |θPD| = 0.2. Thus,
there is full support for the unconstrained, the complement of H04. However, the uncon-
strained contains both values above and below 0.2. Thus, one should perhaps inspect
the size of the meta-analyzed estimates. Although this renders more insight, it still lacks
support for the hypothesis of interest H2 : |θAL| > 0.2, |θPD| > 0.2.

The output next shows the AIC weights (‘gorica.weights’) for the third set of hypothe-
ses without order restrictions:
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Results:
model loglik penalty gorica gorica.weights

1 H05 3.910 1.000 -5.820 0.731
2 complement 3.912 2.000 -3.824 0.269
---
The order-restricted hypothesis ‘H05’ has 2.713 times more support
than its complement.

From this, it is concluded that H05 : |θAL| = |θPD| has 0.731/0.269 ≈ 2.7 times more
support than the unconstrained hypothesis (which includes H05). This may not seem to
be convincing evidence, but it is. This has to do with evaluating an equality which is
almost true in the data (judged by the two almost equal log likelihood (loglik) values),
as discussed in Appendix B.4. As was the case in null hypothesis testing, inspecting the
meta-analyzed estimates renders more insight, but it still lacks support for the hypothesis
of interest H3 : |θAL| < |θPD|.

The examples above show that the AIC can quantify the support of the hypotheses
in the set, where multiple parameters can be constrained simultaneously. Nevertheless,
the hypotheses in the set are not per se the hypotheses a researcher is interested in. In such
a case, a researcher can still not quantity the support for the hypotheses of interest and/or
compare their support. As will be shown next, this is possible when evaluating order-
restricted hypotheses with the GORICA.

5.4. GORICA

The GORICA can evaluate hypotheses with (and without) order restrictions. Hence, it
can directly evaluate Hypotheses H1.1 to H3 mentioned above (e.g., H1.1 : θAL < 0, θPD > 0).
To apply the GORICA to meta-analyzed estimates in R, these estimates and their covariance
matrix should be extracted:

#Substract estimates from meta-an, to~be used in goric function
est <- coef(metaan)
names(est) <- c("theta_AL", "theta_PD")
VCOV_est <- vcov(metaan)

Next, different sets of theory-based hypotheses are evaluated.
Hypothesis H1.1 : θAL < 0, θPD > 0 can be evaluated against its complement (see

Appendix B.2 for more information) with the following R code:

# Hypothesis of interest
H1.1 <- "theta_AL < 0; theta_PD > 0"

# Apply GORICA
set.seed(123) # set seed: to obtain the same results when you re-run it
results_H1.1 <- goric(est, VCOV = VCOV_est, H1.1,

comparison = "complement", type = "gorica")
results_H1.1

The corresponding output is:

Results:
model loglik penalty gorica gorica.weights

1 H1.1 3.912 0.799 -6.226 1.000
2 complement -5.063 1.701 13.529 0.000
---
The order-restricted hypothesis ‘H1.1’ has 19482.703 times more support
than its complement.

From this, it can be concluded that the hypothesis of interest H1.1 has full support (when
compared to any other ordering/theory). Thus, there is overwhelming support for the
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hypothesis of interest stating that surgery is less effective in increasing the attachment level
than non-surgery and more effective in decreases in probing depth.

Now, assume a researcher is not only interested in H1.1 : θAL < 0, θPD > 0 but also in
the competing hypothesis H1.2 : θAL < 0, θPD < 0. Since the two hypotheses do not cover
the whole space/do not cover all possible orderings of parameters, one should include the
unconstrained hypothesis to prevent choosing a weak/bad hypothesis (see Appendix B.2
for more information). This can be done using the following code:

# Hypothesis of interest
H1.1 <- "theta_AL < 0; theta_PD > 0"
H1.2 <- "theta_AL < 0; theta_PD < 0"
# Note: By default, the~unconstrained hypothesis is added to the~set.

# Apply GORICA
set.seed(123) # set seed: to obtain the same results when you re-run it
results_H1 <- goric(est, VCOV = VCOV_est, H1.1, H1.2,

type = "gorica")
results_H1
round(results_H1$ratio.gw, digits = 2)

This results in the following output:

Results:
model loglik penalty gorica gorica.weights

1 H1.1 3.912 0.799 -6.226 0.769
2 H1.2 -20.393 1.201 43.189 0.000
3 unconstrained 3.912 2.000 -3.824~0.231

> round(results_H1$ratio.gw, digits = 2)
vs. H1.1 vs. H1.2 vs. unconstrained

H1.1 1.0 53728634328 3.32
H1.2 0.0 1 0.00
unconstrained 0.3 16165185252 1.00

From this, one can conclude that H1.1 is not a weak hypothesis since it is (3.3 > 1 times)
more supported than the unconstrained hypothesis; and that H1.2 is weak (since it is 0 or,
to be more precise, 6× 10−11 << 1 times more supported than the unconstrained), that
is, H1.2 is not supported by the data. Because at least one of the hypotheses of interest
is not weak, these hypotheses can be meaningfully compared to each other, which is the
interest in this example. It can be concluded that H1.1 is many more (nl. 53,728,634,328)
times supported than H1.2.

Note that the unconstrained hypothesis includes all possible hypotheses and, thus,
also H1.1 : θAL < 0, θPD > 0. Therefore, the support for the unconstrained includes support
for H1.1. If one would leave out the unconstrained (which is only included as a safeguard),
H1.1 would have full support (i.e., an IC weight of 1) here, which is also reflected by the
relative GORICA weights (i.e., 53,728,634,328). Thus, the results for the set excluding the
unconstrained can be inferred from the one including the unconstrained (for this, one could
also use the R function IC.weights [22] when necessary).

In conclusion, there is overwhelming support for the hypothesis of interest stating
that surgery is less effective in increasing the attachment level than non-surgery and more
effective in decreases in probing depth, compared to stating that surgery is less effective
in increasing the attachment level than non-surgery and less effective in decreases in
probing depth.

In case H2 : |θAL| > 0.2, |θPD| > 0.2 would be the hypothesis of interest, the following
R code should be used:

# Hypothesis of interest
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H2 <- "abs(theta_AL) > 0.2; abs(theta_PD) > 0.2"

# Apply GORICA
set.seed(123) # set seed: to obtain the same results when you re-run it
results_H2 <- goric(est, VCOV = VCOV_est, H2,

comparison = "complement", type = "gorica")
results_H2

This renders the following output:

Results:
model loglik penalty gorica gorica.weights

1 H2 3.912 0.799 -6.226 0.917
2 complement 2.417 1.701 -1.431 0.083
---
The order-restricted hypothesis ‘H2’ has 10.996 times more support
than its complement.

From this, it can be concluded that H2 is 11 times more supported than its complement
(i.e., any other hypothesis/ordering). Thus, there is convincing support for the hypothesis
of interest, which states that the mean difference between surgery and non-surgery is in
absolute values larger than 0.2 for both outcomes.

In case H3 : |θAL| < |θPD| would be the hypothesis of interest, the following code
should be used:

# Hypothesis of interest
H3 <- "abs(theta_AL) < abs(theta_PD)"

# Apply GORICA
set.seed(123) # set seed: to obtain the same results when you re-run it
results_H3 <- goric(est, VCOV = VCOV_est, H3,

comparison = "complement", type = "gorica")
results_H3

This renders the following output:

Results:
model loglik penalty gorica gorica.weights

1 H3 3.912 1.500 -4.824 0.500
2 complement 3.910 1.500 -4.820 0.500
---
The order-restricted hypothesis ‘H3’ has 1.002 times more support
than its complement.

From the output above, it can be concluded that both hypotheses, H3 : |θAL| < |θPD| and
its complement |θAL| > |θPD|, are equally likely, that is, they have the same support. The
maximum log likelihood values are nearly the same and, consequently, the weights largely
depend on the penalty values. In that case, the GORICA weights resemble or even equal
the penalty weights, the weights based on solely the penalty parts:

library(devtools)
install_github("rebeccakuiper/ICweights")
library(ICweights)
#?IC.weights
#citation("ICweights")

# Weights based on penalty values
IC.weights(2*results_H3$result[,3])$IC.weights
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# Note that the penalty is 2*‘penalty’ is 2*results_H3$result[,3]
# This renders penalty weights of:
[1] 0.5 0.5
# which equal the ‘gorica.weights’ above.

Since both hypotheses are of the same size (i.e., have the same penalty), the GORICA
weights for the two hypotheses (with approximately the same fit) are also the same. Notably,
if the penalty values differed across the hypotheses, the GORICA weights would differ
across the hypotheses as well, but the GORICA weights would still equal the penalty
weights. When the GORICA weights equal the penalty weights, like here, one can conclude
that there is support for the overlap (here, border) of these two hypotheses: |θAL| = |θPD|,
reflecting equal ‘absolute’ strength. Consequently, there is no support for H3 : |θAL| < |θPD|.
We do find evidence for ‘|θAL| = |θPD|’, which can be evaluated in future research.

Hence, the GORICA can evaluate a hypothesis of interest directly and quantify its
support (or the lack there of) in comparison with one or more competing hypotheses. This
aids in either confirming an a priori theory or in developing a new or competing theory for
future research.

6. Discussion

This paper demonstrated how theories regarding relationships based on multiple
studies can be evaluated using current methods (i.e., null hypothesis testing and AIC)
and GORICA. Current methods to test or evaluate hypotheses in meta-analysis can only
address equality restrictions and, therefore, do often not address the hypothesis of interest
let alone quantify the support for the hypothesis of interest. Fortunately, this is possible,
when using the GORICA. Notably, if the goal of the meta-analysis is prediction and not
the evaluation of one or more theories/hypotheses, the researcher should not use model
selection as I propose in this paper.

I only inspected ‘regular’ meta-analysis accompanied by null hypotheses tests and
model selection using the AIC. An increasingly popular meta-analytic method is meta-
analytic structural equation modeling (MASEM [23]). This method additionally provides
measures of the overall fit of a model, that is, goodness-of-fit indices, which include the
AIC. When using MASEM, meta-analyzed estimates can be restricted and, thus, the AIC
values of MASEM can be used to evaluate equality-restricted hypotheses regarding effect
size parameters. Note that MASEM cannot evaluate restrictions regarding absolute values,
like |θAL| and |θPD| in Sets 2 and 3 in the illustrations section (i.e., Section 5). In that case,
one should use θAL and θPD (or better, −θPD) instead. When using MASEM, one has
to specify and run each of the models separately (including the unconstrained model).
MASEM then provides the AIC value for each model, and one then selects the model with
the smallest AIC value. To inspect and compare the relative support for these equality-
restricted models, one should also inspect the AIC weights, which are not part of MASEM
but can be calculated using the ICweights package [22]. MASEM is, thus, like the other
current methods only fit for equality restrictions and was therefore not included in the
comparison. In case one wants to know more about the similarity of MASEM and the
GORICA and/or how the GORICA can be of added value to MASEM, see Appendix D.

To apply the GORICA, a researcher only needs the meta-analyzed estimates of interest
and their covariance matrix, which is output in most meta-analytic software. Notably,
in the case of a single study where this information is not given (and, thus, not a meta-
analysis as discussed in the paper), one should use the original data to apply the GORICA.
Alternatively, one can create multiple covariance matrices (based on expertise and previous
research) and do a sensitivity/robustness check. By using the GORICA, researchers can
quantify the support for their hypothesis/-es of interest. One can, for instance, make claims
like: The hypothesis of interest is 10 times more likely than any other theory (i.e., any other
expectation about the ordering of parameters); or: The hypothesis of interest Hm is 10 times
more likely than the competing hypothesis of interest Hc.
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A disadvantage of the GORICA is that it is an asymptotic method: It assumes that
the parameters of interest (i.e., the ones used in the hypotheses of interest) are normally
distributed (as more methods assume). This may be an unrealistic assumption for some
type of parameters and/or for small samples. Nevertheless, simulations thus-far do show
that the performance of the GORICA is good (cf. the simulation in Altınışık et al. [3]). An
advantage of the GORICA is that—since it only needs the (unconstrained) parameters
of interest and their covariance matrix—it can easily be applied to parameters from all
types of statistical models. The GORICA can thus also easily be applied to all types of
meta-analyzed effect-size estimates, as long as their covariance matrix is also known.

The GORICA is not the only method which can address theory-based hypotheses.
There are multiple confirmatory methods: e.g., F-Bar test ([24], pp. 25–4), the Bayes
factor (a.o., [25]), and the GORIC [4,5]. The most practical ones, when having secondary
data, are the Bayes factor in the R package bain [26] and the GORICA in the R function
goric [17] of the restriktor package [18]. The latter is used in this paper, the other methods
have, as far as I know, not been applied to meta-analyzed estimates to evaluate theory-
based hypotheses. Readers who are more in favor of the Bayesian framework instead of
the information-theoretical one are referred to the use of bain. Note that most, if not all,
described in this paper also applies to bain. One important difference between the GORICA
and Bayesian approaches is that the latter use a prior and, therefore, the results may depend
on the choice of the prior, especially when there is one or more equality constraints in one
of the hypotheses of interest.

By evaluating theory-based hypotheses using the GORICA, researchers from all types
of fields (e.g., psychology, sociology, political science, biomedical science, and medicine)
can quantify the support for their hypothesis/-es of interest. Evaluating theory-based
hypotheses also increases the statistical power of selecting the correct hypothesis, com-
parable to one- versus two-sided testing in null-hypothesis testing (cf. [27,28] who show
that confirmatory methods evaluating theory-based hypotheses have more power than
exploratory ones). Hence, meta-analyses could contribute to theory confirmation and/or
development by evaluating a priori specified, theory-based hypotheses. Furthermore,
the use of meta-analyzed estimates leads to an increased (combined) sample size, which
increases the statistical power as well. The quantification of support and the power increase
bolster, for instance, developing evidence-based treatments and policy.

As a final remark, meta-analysis heavily depends on equal or quite similar study de-
signs across the primary studies. If there are differences in designs, either incomparable esti-
mates are aggregated, or one aggregates (via meta-regression) only the estimates of subsets
of studies which designs are equal (since the moderator selects studies that are comparable;
see Appendix A.1.3 for more details). Instead of aggregating estimates, like in meta-analysis,
one could aggregate the support for the hypothesis of interest, as Kuiper et al. [29] do for
Bayesian model selection. The next step is to develop such a method for the GORICA.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike’s information criterion
GORIC generalized order-restricted information criterion
GORICA generalized order-restricted information criterion approximation
IC information criterion
MASEM meta-analytic structural equation modeling
MLE maximum likelihood estimate

Appendix A. Hypotheses in Meta-Analysis

Next, I will describe different types of hypotheses that may be of interest in meta-
analysis. These hypotheses are often referred to as informative hypotheses [25], inequality-
constrained hypotheses, order-restricted hypotheses, or theory-based hypotheses. Such
hypotheses are ones that could (or even, should) be of interest (unless one does exploratory
research and wants to generate such hypotheses). Subsequently, I describe the hypotheses
tested with null hypothesis evaluation, which often, if not always, differ from the theory-
based ones.

Appendix A.1. Hypotheses of Interest in Meta-Analysis

In the next three subsections, I will distinguish four meta-analysis cases based on
type of effect size (an effect size measure or model parameter(s)) and type of meta-analysis
(meta-analysis or meta-regression). I will exemplify these cases based on hypothetical
examples in the context of the empirical studies of Batenburg et al. [30] and Buskens and
Raub [31] who study the relationship between buyer–seller trust (ratio measurement level)
and past experience between buyer and seller (where the measurement level varies in the
cases discussed next). For each of these four cases, I will end with one or more examples of
hypotheses that could be of interest to the researcher.

Appendix A.1.1. Meta-Analyze an Effect Size Measure

Let us investigate the relationship between the outcome buyer–seller trust (measured
at a ratio measurement level) and the predictor past experience between buyer and seller.
Let us assume that the predictor past experience is measured by a dummy variable denoting
the existence of the buyer–seller relationship, that is, whether they did transactions before.
Then, probably, the interest lies in the difference of the mean level of trust between buyer–
sellers who have a relationship and those who do not, which can be represented by a
Cohen’s d. Furthermore, let us assume that there are no differences in the designs of
the primary studies: e.g., they all measure the outcome and (grouping) predictor in the
same way and they do not include other variables in the model. This case represents
the situation where there is an effect size measure (not one or more model parameters)
which is aggregated by a meta-analysis (as opposed to aggregation via meta-regression,
which would include predictors called moderators to correct for, for instance, study-design
differences). Notably, in this type of case, there is often only one estimate that will be
aggregated over all primary studies.

The hypotheses of interest often address comparing effect size measures to cut-off/pre-
specified values. For instance, in case of Cohen’s d, hypotheses of interest can be:

Hs : 0.2 < d < 0.5

Hm : 0.5 < d < 0.8 (A1)

Hl : d > 0.8,

hypothesizing a small and/or medium and/or large effect [32], respectively. In an ex-
ploratory setting, one would want to evaluate this set simultaneously; while, in a confir-
matory setting, one may only be interested in one of these hypotheses. Note that these
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cut-off values are arbitrary benchmarks, suggested to be used in the absence of any other
information about the size of effects within a particular research field (cf. [33]).

Appendix A.1.2. Meta-Analyze Model Parameters

Let us now assume that the predictor past experience is measured by a categorical
(ordinal) variable denoting the range of years of existence of the buyer–seller relationship,
where for ease three ranges are assumed. Again, assume that there are no differences in the
designs of the primary studies. In this situation, there will be three means of trust, namely
one for each year-range, that will be aggregated over all primary studies.

As another example, let us assume that the predictor past experience is measured by
the worth (in euros) of previous transactions between the buyer and seller. Hence, past
experience is now a continuous predictor. Assume that there are two other continuous
predictors as well: the worth of expected future transactions and the size of the buyer’s
network (measured by the total number of sellers). In this situation, there will be three
regression parameters (and an intercept).

These examples reflect the case where (standardized) parameter estimates are aggre-
gated (and not an effect size measure). In such a case, there are often multiple estimates
that will be summarized over all primary studies (which may also include estimates of
interaction effects). This then results in the (standardized) estimates of the population
parameters, for instance, of the population parameters θ1, θ2, and θ3.

The hypotheses of interest often address comparing the (standardized) parameter
estimate to each other (see Appendix B.1 for more details on standardizing). In the second
example above, one may hypothesize that past experience is a more important predictor for
trust than expected future transactions is and that they both have more predictive strength
than the network size, which is reflected by θ1 > θ2 > θ3. Two other possible hypotheses of
interest are:

θ1 < θ2 < θ3 (A2)

θ1 > θ2 < θ3,

where the first hypothesis states that the third predictor has the highest predictive strength
followed by the second predictor and then the first one; and the second hypothesis hypoth-
esizes that the second variable has the smallest predictive strength (without hypothesizing
on the relationship between the first and third predictor). One could be interested in only
one hypothesis, but one can also be interested in multiple, competing hypotheses (based
on various theories/findings from previous literature).

Appendix A.1.3. Meta-Regression

In the previous two cases, equal study designs were assumed, which rarely occur
because oftentimes there are differences in designs across primary studies such that the
resulting (standardized) parameter estimates are not comparable and can thus not be mean-
ingfully summarized. This brings us to the other type of meta-analysis: meta-regression.

Like in the first case (discussed in Appendix A.1.1), let us assume that the predictor
past experience is a dummy variable and that the interest lies in Cohen’s d. Now, let
us additionally assume that there are differences in the designs of the primary studies:
e.g., some of the primary studies did correct for transaction characteristics while other
did not (or did for only some of them). Then, one may want to condition on this by
including (categorical and/or continuous) moderators (i.e., predictors on a study-level)
in the meta-analysis model (the third case). Including moderators aids in explaining and
reducing the heterogeneity variance in the meta-analysis. Such a model is referred to as
meta-regression or (when including a random effect) a mixed-effects meta-analysis, where
subgroup analysis is a special case.

Similarly for the second case (discussed in Appendix A.1.2), where, for example, the strength
of three (standardized) predictors is compared, there can be differences in study designs:
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e.g., differences in controlling variables and/or different questionnaires were use to mea-
sure the level of trust. Then, one also needs to correct for this by using a meta-regression
(the fourth case).

Note that, now, there is not only an estimate for the effect size measure or estimates for
the (standardized) parameter estimates, but also one for each moderator. A meta-regression
thus also renders (standardized) estimates of the population parameters for the moderators
denoted by β; e.g., in case of three moderators: β1, β2, and β3.

The hypotheses of interest can be the same as in the first two cases; but, in the meta-
regression cases, one can (also) have expectations regarding the strength/importance of the
moderators; e.g.:

β1 > β2 > β3.

One can also have expectations regarding a (linear) mix of θs and βs, especially when
the moderators are grouping variables. Notably, when the characteristics of the different
studies are the focus of the analysis, the meta-analysis is referred to as an exploratory
meta-analysis (cf. Anello and Fleiss [34]); see Barker et al. [35] for an example.

Next, I will discuss what types of hypotheses are tested in meta-analysis using classical
hypothesis evaluation methods. Unfortunately, they differ from the hypotheses of interest
mentioned in this section (i.e., Appendix A.1), but I also tell how one can overcome
this problem.

Appendix A.2. Null Hypotheses

When doing a meta-analysis, one can test or evaluate null hypotheses in which an
element of θ or β is set to 0 or a specific value. As an example for meta-analyzing effect size
measures, one can test whether the measure equals a specific (cut-off) value:

H0 : Cohen’s d = 0.2,

Hu : not H0;

or

H0 : Cohen’s d = 0.5,

Hu : not H0.

Instead, one can perform a one-sided test; e.g.:

H0 : Cohen’s d ≤ 0.2,

Hu : Cohen’s d > 0.2;

As an example for meta-analyzing model parameters, one can test, for each parameter,
whether it is zero:

H0 : θ1 = 0,

Hu : not H0;

or whether all (or a selection of them) are zero:

H0 : θ1 = θ2 = θ3 = 0,

Hu : not H0;

or whether all are equal:

H0 : θ1 = θ2 = θ3,

Hu : not H0.
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In case of meta-regression, one can (additionally) perform tests on the (standardized)
moderators, for instance, whether they have equal importance:

H0 : β1 = β2 = β3,

Hu : not H0.

These equality-restricted hypotheses differ from the theory-based hypotheses (exem-
plified by the hypotheses in Equations (A1) and (A2). In the main text, I describe how one
can evaluate theory-based hypotheses directly using the AIC-type inequality-constrained
model selection criterion called GORICA.

Appendix B. Remarks on Specifying Hypotheses

Appendix B.1. Same Scale

It is important to note that comparing parameters (e.g., θ1 < θ2) is only meaningful if
these parameters are measured on the same scale. Therefore, it is sometimes needed to use
standardized parameters. Bear in mind that the estimates to be aggregated (θ) already have
to be on the same scale because meta-analysis can only meaningfully average comparable
estimates. When comparing the predictive strength of continuous moderators (β), one has
to standardize these first.

Appendix B.2. Safeguard Hypothesis

The set of hypotheses of interest should consist of at least two hypotheses. When there
are multiple theories, these can be included as competing hypotheses. Let us assume that
two competing hypotheses can be found in the literature: θ1 > θ2, θ3 > θ4 and θ1 < θ2,
θ3 < θ4. These hypotheses do not cover all possible theories (namely, θ1 < θ2, θ3 > θ4 and
θ1 > θ2, θ3 < θ4 are not included). Consequently, when both hypotheses are weak (i.e.,
when both hypotheses are not supported by the data), GORICA selects the best out of a set
of weak hypotheses. Therefore, in case the hypotheses do not cover the whole parameter
space (as is also the case when there is only one hypothesis of interest), a safeguard
hypothesis should be included [4]. Notably, in the case of, for instance, the hypotheses
θ1 > θ2 and θ1 < θ2, they together cover the whole parameter space, then no fail-safe
hypothesis is needed.

There are two possible fail-safe hypotheses: (i) the unconstrained hypothesis Hu,
where none of the parameters are restricted, which, therefore, represents all possible
theories including the one(s) of interest, and (ii) the complement of the hypothesis/-es
of interest, representing all other theories, thus, excluding the one(s) of interest. The
unconstrained hypothesis should be used to investigate whether the hypotheses of interest
are weak or not, that is, whether they are supported by the data or not. Bear in mind that
Hm is not weak if wm > wu, that is, if wm/wu > 1. When at least one hypothesis is not
weak, the relative support for the hypotheses of interest can be inspected. For instance,
if Hm is not weak, one can check the relative support of Hm and Hm′ via wm/wm′ . Using
the complement can be more powerful [36] and acts like another hypothesis of interest.
Moreover, when evaluating Hm versus its complement Hc, the interest even lies in wm/wc.
Notably, in software, the addition of the complement as safeguard is currently only available
for one theory-based hypothesis (and, thus, not yet for a set of hypotheses).

Appendix B.3. Range Restrictions

In the case of range restrictions, there is an upper and lower bound placed on the
parameter; e.g., −0.5 < θ1 < 0.5. Such restrictions can be of interest when comparing effect
size measures, like Cohen’s d or Hedges’ g, to pre-defined cut-off values. For example,
researchers may hypothesize, based on previous research and/or expertise, that Hegdes’
g is medium (0.5) to large (0.8), that is, 0.5 < g < 0.8, where the bounds in the range
restrictions on Hedges’ g are based on Cohen [32].
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For hypotheses with range restrictions, the fit part of the GORIC and GORICA can
be uniquely calculated. The challenge is determining the penalty/complexity part, since
the complexity of a hypothesis is only uniquely defined for so-called closed convex cones
(and range restrictions are not). When choosing a different scaling of the covariance
matrix of the estimates (or using another mean in the null distribution), the penalty value
changes. Note that, when using Bayesian model selection, the support for range restrictions
depends on the choice of prior. Thus, this range restriction problem applies to both
the information-theoretical and Bayesian model selection. Notably, in Bayesian model
selection, the results also vary across prior choices when at least one hypothesis has at
least one equality restriction, while in information-theoretical model selection (e.g., using
GORICA) the results are unique. By using the default calculation in current GORICA
software, the penalty for a range restriction comes down to setting the parameters equal
to a constant (e.g., θ1 = 0.5), leading to a penalty of zero, since there is no parameter only
a constant (which also holds true then for all choices of scaling of the covariance matrix
of the estimates). The logic is that, when looking at the whole space, which is very large,
the range restriction is almost a line (hence, an equality) within the whole space. Bear in
mind that the log likelihood is calculated under the range restriction, only the penalty is
based on the equality then.

Appendix B.4. Equalities and/or Overlapping Hypotheses of Interest

One should be careful with specifying equality restrictions and/or hypotheses that are
subsets or have overlap (as exemplified in Kuiper [20]). Note that equalities are subsets of
competing hypotheses where the equalities are replaced by order restrictions (e.g., θ1 = θ2
is a subset of θ1 < θ2, since evaluating the latter is the same as evaluating θ1 ≤ θ2 because
the probability of finding θ1 = θ2 is 0 (cf. [24])) and that all hypotheses are subsets of the
unconstrained hypothesis.

The third set of the Berkey example in Section 5 illustrates the problems one can run
into. In that example, it is concluded that H05 : |θAL| = |θPD| has 0.731/0.269 ≈ 2.7 times
more support than the unconstrained hypothesis (which includes H05). This may not seem
to be convincing evidence, but it is. This has to do with evaluating an equality which is
almost true in the data, as will be elaborated upon next.

Appendix B.4.1. Equalities

In the case of equality restrictions, there is the problem that equalities are hardly ever
exactly true. In that case, the data will almost be in agreement with the equality. Then,
the maximum log likelihood (fit) value is just a bit lower than the maximum value (i.e.,
the maximum log likelihood value obtained for the unconstrained hypothesis).

One can circumvent this by stating range restrictions, that is, about-equality restric-
tions. For instance, θ = 0 can be replaced by −0.01 < θ < 0.01. When looking at a range
restriction instead of an equality, the fit will (asymptotically) take on the maximum value
when the equality is true. The penalty stays the same as for the equality. So, this improves
the performance. However, one needs to carefully think about specifying the (data-driven)
ranges. It should not be set too wide, because, then, you obtain maximum fit even when
the equality is not true, that is, you may overestimate the fit then.

As an illustration, I will next specify about-equality restrictions for the third set of the
Berkey example. Note that such a hypothesis needs to be evaluated with the GORICA,
since the AIC can only evaluate equality restrictions. In the R code below, I specified a
(data-driven) range based on the standard error of θPD. I want a small interval around the
estimate θPD: I choose to use −0.1 and 0.1, which reflects a 0.8% confidence interval.

# Set 3
# Specify a (data-driven) range based on the standard error of theta_PD:
# sqrt(diag(VCOV_est)) # se(theta_PD) = 0.04945984
H0_range <- "abs(theta_AL) > abs(theta_PD) - 0.1*0.04945984;
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abs(theta_AL) < abs(theta_PD) + 0.1*0.04945984"

# Apply GORICA
set.seed(123) # set seed: to obtain the same results when you re-run it
results_range <- goric(est, VCOV = VCOV_est, H0_range,

type = "gorica")
results_range

# output:
Results:

model loglik penalty gorica gorica.weights
1 H0_range 3.912 1.000 -5.823 0.731
2 complement 3.912 2.000 -3.824 0.269
---
The order-restricted hypothesis ‘H0_range’ has 2.718 times more support
than its complement.

In case of evaluating about-equality restrictions which are correct, the log likelihood
of that hypothesis will equal the maximum value (here, 3.912), while an equality restriction
would lead to a value just lower than the maximum value (here, 3.910, as can be seen
in the main text). In this case, the complement also receives (near) maximum fit. Then,
the GORICA weights will be solely based on the penalty values (as was also seen in the
exampl ein th emain text). This situation is discussed in the next subsection. If the interval
was taken wider, then the fit for the complement would be lower, leading to more support
for ‘H0_range’.

Appendix B.4.2. Overlapping Hypotheses of Interest

In case hypotheses are subsets or when they are not subsets but do overlap, it is
possible that some or all hypotheses have the same maximum log likelihood value. In that
case, the (ratios of) GORICA weights are solely based on the penalty values. This means
that the overlap of the hypotheses for which the maximum log likelihood values are the
highest is the best one (which is the smallest subset in the case of subsets). Bear in mind
that the support will now be divided among the hypotheses with equal maximum log
likelihood values. In case one wants to select the best hypothesis of the set, this is sufficient
information. If one wants to (also) obtain the support for the overlap, one should specify a
hypothesis denoting the overlap and evaluate that against its complement. Note that the
overlap can also be the border of two hypotheses. For example, assume a set comprising
the two hypotheses: θ1 > θ2, θ3 and θ1 < θ2, θ3, where, “θ3” means that θ3 is not restricted,
that is, θ3 is freely estimated. If they have the same maximum log likelihood (which leads
in this example to equal support because the penalty is also the same in this example), this
implies support for the border: θ1 = θ2, θ3.

Even though the best hypothesis can be selected, there will be a maximum support
based solely on the penalty values of the hypotheses [36]. Namely, when the sample size
is large enough, the maximum log likelihood will be the same for both hypotheses which
will remain to be the same for increasing sample size (even thought the maximum log
likelihood value itself does change). Additionally, the penalty values do not change with
sample size (when the sample size is large enough). Thus, the difference in fit remains
zero and the difference in penalty remains the same. Consequently, the GORICA weights
are then solely based on the sample-size independent penalty values and will, thus, be
sample-size independent as well (when the sample size is large enough), leading to a
maximum support. Consequently, interpreting the relative support may then not be that
meaningful (when not taking this into account).

When evaluating a hypothesis against its complement, it is also possible to obtain
nearly equal maximum log likelihood values. In that case, the GORICA weights are based
mainly on the penalty values. In that case, the same logic applies: There is support for the
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overlap of a hypothesis and its complement, hence, their border. The border is reflected by
the equality version of the hypothesis of interest. For example, the border of θ1 > θ2 and
its complement (i.e., θ1 < θ2) is θ1 = θ2 and that of θ1 > θ2, θ3 > θ4 and its complement
(consisting of three possible orderings) is θ1 = θ2, θ3 = θ4. Similarly, the overlap of H0 and
its complement (i.e., the unconstrained), is H0 itself.

One can detect support for the overlap/border by inspecting the maximum log likeli-
hood (fit) values. If there are multiple hypotheses with the highest fit value, then there is
support for the overlap of these hypotheses. Then, the relative support (ratios of weights)
of those hypotheses are based on solely the penalty values (since the fit values are the
same). Therefore, it can be insightful to inspect the weights based on the penalties of these
hypotheses as well. These can be easily calculated using the R function IC.weights from the
package ICweights [22]. This function can transform information criteria values (AIC, BIC,
GORIC, GORICA) into information criteria weights but can also be used to determine the
weights based on the penalty values (where twice the penalty value should be used, since
an information criterion does as well). You can obtain access to the function as follows:

library(devtools) # Make sure you have Rtools
install_github("rebeccakuiper/ICweights")
library(ICweights)
?IC.weights # This also contains examples of how to use the function
citation("ICweights") # In case you use this function, please cite it
#results <- goric(est, VCOV = VCOV_est, H1,
# comparison = "complement", type = "gorica")
#IC.weights(2*results$result[,3])$IC.weights # Make sure you use ‘2*’

Below one can find the code to calculate the penalty weights for the about-equality
restrictions set of the Berkey example discussed at the end of Appendix B.4.1.

# Weights based on penalty values (rounded using 3 decimals)
round(IC.weights(2*results_range$result[,3])$IC.weights, 3)
# Note that the penalty is 2*‘penalty’ (i.e., 2*results_range$result[,3])
# This renders (rounded) penalty weights of:

H1 H2
0.731 0.269
# which equal the ‘gorica.weights’ above,
# because the ’loglik’ are the same.

In this example, the weights indeed equal the penalty weights. Hence, it can be said
that there is support for the boundary of these hypotheses, which is in this case H0 itself.

Appendix C. GORIC and GORICA

This appendix provides more detail, for those interested, about the log likelihood and
penalty parts of the GORIC and GORICA. Most, if not all, information comes from [3].

For ease, assume a univariate normal linear model:

y = Xβ + ε,

where y = (y1, y2, . . . , yN)
T denotes the outcome, X = (x0, x1, . . . , xp, . . . , xP−1) with xp =

(xp1, xp2, . . . , xpN)
T for p = 0, 1, . . . , P− 1 contains the predictors, β = (β0, β1, . . . , βP−1)

T

are the regression coefficients, and ε ∼ N(0, σ2 IN) represents the vector of residuals
with mean vector 0 and covariance matrix σ2 IN , where σ2 is the variance term and IN
denotes the N × N identity matrix. For such a model and for hypothesis Hm, the GORIC is
defined as:

GORICm = −2 L(β̃
m, σ̃m|y, X) + 2 [PTm(β) + PTm(σ)],

where, β̃
m and σ̃m maximize the log likelihood, L(β, σ|y, X), subject to the restrictions in

hypothesis Hm.
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Let us now define the parameters included in the set of hypotheses as structural
parameters, denoted by θ (which will contain many if not all βs), and the other parameters
as nuisance parameters, denoted by ξ (which will contain many if not all variance terms,
here σ2, and perhaps some βs). As will become clear later, this notation helps in comparing
the expressions of the GORIC and the GORICA. Using this notation, the GORIC for
hypothesis Hm is defined as:

GORICm = −2 L(θ̃m, ξ̃
m|y, X) + 2 [PTm(θ) + PTm(ξ)],

where θ̃
m and ξ̃

m maximize the log likelihood, L(θ, ξ|y, X), subject to the restrictions in
hypothesis Hm. The order-restricted maximum log likelihood for a univariate normal linear
model is:

L(θ̃m, ξ̃
m|y, X) =− N

2
log(2π)− 1

2
log|ξ̃m IN | −

1
2
[(y− X θ̃

m
)T(ξ̃

m IN)−1(y− X θ̃
m
)]. (A3)

In the case of solely equality restrictions, the GORIC reduces to the AIC. Thus, in that case,
the order-restricted maximum log likelihood equals the maximum log likelihood of the AIC
and the penalty of the GORIC equals the number of distinct parameters (as in the penalty
of the AIC).

Using the same notation as above, the expression of the GORICA for hypothesis Hm is:

GORICAm = −2 L(θ̃m|θ̂, Σ̂θ̂) + 2 PTm(θ),

where θ̃
m is the order-restricted MLE of θ, as we saw before, and θ̂ and Σ̂θ̂ denote the

maximum likelihood estimates of the structural parameters and their covariance matrix,
respectively, that are used to construct a normal approximation of the likelihood:

L(θ̃m|θ̂, Σ̂θ̂) = −
K
2

log(2π)− 1
2

log|Σ̂θ̂| −
1
2
(θ̂− θ̃

m
)T(Σ̂θ̂)

−1(θ̂− θ̃
m
).

Notably, when the likelihood of the data is unimodal, roughly symmetric and twice dif-
ferentiable, one can usually accurately approximate it by a normal distribution centered
at the MLE (cf. Appendix A in [3]). Therefore, the GORICA uses the order-restricted
likelihood of the MLEs (which is a normal) instead of the order-restricted likelihood of data
(which does not need to be normal distribution, as is the case, for instance, in a logistic
regression model). The unconstrained MLEs are used as a summary for the data, and the
log likelihood of the structural MLEs is then maximized under the order restrictions in Hm.
Thus, in the GORICA, L(θ|θ̂, Σ̂θ̂) is maximized under the restrictions, which then leads to
the order-restricted MLE θ̃

m and the order-restricted maximum likelihood L(θ̃m|θ̂, Σ̂θ̂).
The expression of the penalty of the GORICA is:

PTm(θ) =
K

∑
l=1

wl(K, Σ̂θ̂, Hm) l,

with K the number of structural parameters. The penalty is a function of level probabilities
(i.e., wl, that is, χ̄2 weights; for more details, see [24]) and the number of levels (l) which
is related to the number of active constraints in a hypothesis. Although there exist closed
form expressions for some hypotheses, for many there are none. Therefore, in the goric
function [17] of the restriktor package [18], the penalty is (or better, the level probabilities
are) calculated using sampling. More information about the calculation of the penalty of
the GORICA can be found in Appendix B of [3].

Because sampling is involved, it is wise to specify a seed value, as is done in the
main text and in supplementary R files (shared via my GitHub page, accessed on 1 June
2022). When using a seed, the code will render the same results every time it is run (which
makes the results reproducible). Moreover, when using a different seed value, one can
check the sensitivity of the results to the number of sampling iterations used (if the results

https://github.com/rebeccakuiper/GORICA_on_MetaAn


Entropy 2022, 24, 1525 25 of 27

are sensitive, then the number of iterations should be increased). Notably, in the case of
equality restrictions (e.g., β1 = β2 = β3) or when the restrictions depend on at max one
other parameter (e.g., β1 > β2 or β1 > β2, β3 or β1 > 0 or β1 > 0, β2 > 0), the penalty will
not vary for different seed values. Thus, for many (if not all) examples in the main text,
there is no sensitivity in the penalty. On the other hand, for restrictions that depend on at
least two other parameters (e.g., β1 > β2 > β3), there can be some sensitivity. Therefore,
it is good practice to specify a seed value, irrespective of the type of hypotheses. Luckily,
the default penalty calculation in the goric() R function is quite robust.

As can be seen from the GORICA expression, one can leave out all the parts related to
the nuisance parameters in the GORICA. This is because these parts are constant across
hypotheses. Therefore, these parts will cancel out when comparing hypotheses (cf. Ap-
pendix A in [3]). Hence, one only needs the estimates of the structural parameters and
their covariance matrix. In a meta-analysis, this means that often one only needs this for
the fixed effects and not the variance components (e.g., the amount of heterogeneity in a
random-effects model).

Asymptotically, the GORIC and GORICA weights will be the same, but the GORIC
and GORICA values will not. First, they can differ in penalty term because of the nuisance
parameters. Second, they use a different (order-restricted) log likelihood value. Bear in
mind that the log likelihood part of the GORICA will not equal the log likelihood of the
data, also not in case of solely equality restrictions. Because of both reasons, the GORICA
does not reduce to the AIC in case of solely equality restrictions. Nevertheless, the GORICA
weights will asymptotically equal the AIC weights. Consequently, when using the GORICA
weighs as a proxy for the AIC weights, as done in the illustrations given in the main
text, the log likelihood part of the GORICA does not equal the log likelihood of the data;
and the penalty of the GORICA also differs from that of the AIC because of the nuisance
parameters (which are the variances in the illustrations). As an example, in the main
text, for the unconstrained model: (1) The log likelihood based on the structural MLEs is
3.912 (rendered by the GORICA), while the log likelihood of the data is 5.841 (rendered by
‘logLik(metaan)’); and (2) The penalty of the GORICA is 2 because of the two structural
parameters, that is, the two fixed effects (i.e., θAL and θPD), while the penalty of the AIC
equals 5 (cf. ‘logLik(metaan)’) because of the 3 (error and sampling) variances.

Appendix D. GORICA vs. AIC in MASEM

MASEM is in a way comparable to the GORICA. MASEM can, for example, use the
meta-analyzed effect-size estimates and their covariance matrix to build a SEM model.
On this SEM model, one can impose equality restrictions. This then leads to model-fit
indices, like the AIC. Similarly, one can evaluate the equality restrictions with the GORICA,
which uses the meta-analyzed effect-size estimates and their covariance matrix. Bear in
mind that the GORICA can also evaluate hypotheses containing inequality constraints.

MASEM can also use the study-specific effect-size estimates and their covariance
matrix to build study-specific SEM models (possibly with equality constraints) and, then,
combine the SEM parameters as effect sizes in a meta-analysis. Note that, in this MASEM
approach, any equality restriction will already be imposed on the study level. Likewise,
the GORICA can be applied to each of the study-specific effect-size estimates and their
covariance matrix, which then leads to study-specific GORICA values. Since GORICA
values are not effect size estimates and not normally distributed, one cannot meta-analyze
them. One should probably take an approach like proposed in Kuiper et al. [29]. How to
combine GORICA values is a topic for future research.

Although MASEM is in a way comparable to the GORICA, the GORICA can be an
addition to MASEM, like the AIC is. Namely, the GORICA can be applied to the MASEM
parameters of interest, (cf. [20], a tutorial that shows how the GORICA can be applied to
SEM models). Bear in mind that if MASEM already imposed equality restrictions (say,
θ1 = θ2, θ3), these have to be part of the hypotheses to be evaluated with the GORICA
(say, θ1 = θ2 > θ3). Thus, it may make more sense to apply the GORICA to unconstrained
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MASEM parameters estimates. Bear in mind that it is also applied to the unconstrained
meta-analyzed effect-size estimates. The GORICA can, then, evaluate the hypotheses of
interest containing equality and/or inequality constraints; as opposed to the AIC which
can only evaluate equality restrictions.
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