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Hydrodynamics of charged two-dimensional Dirac systems. I. Thermoelectric transport
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In this paper we study thermoelectric transport in interacting two-dimensional Dirac-type systems using
a phenomenological Boltzmann approach. We consider a setup that can accommodate electrons, holes, and
collective modes. In the first part of the paper we consider the electron-hole hydrodynamics, a model that is
popular in the context of graphene, and its transport properties. In a second part, we propose a unique type
of hydrodynamics. In that setup, the “fluid” consists of electrons, holes, and plasmons. We study its transport
properties, especially the thermoelectric behavior. The results of this part can also be adapted to the study of a
fluid consisting of electrons and phonons. This paper is accompanied by a technical paper [K. Pongsangangan
et al., Phys. Rev. B 106, 205127 (2022)], in which we give a detailed derivation of the Boltzmann equations and
the encoded conservation laws.
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I. INTRODUCTION

Hydrodynamic behavior of interacting electrons in solid-
state systems has received a renewal of interest in recent
years. This came from theorists and experimentalists alike, but
was mostly driven by an increasing number of experimental
observations on a broad range of materials [1–3]. The prime
representative in terms of materials has been graphene and
to a lesser extent bilayer graphene [4]. Although the physical
conditions required for observing hydrodynamic behavior of
electrons are demanding, the advancement in synthesizing
nearly clean graphene sheets encapsulated in boron nitride
[5] allowed the community to explore several electron hydro-
dynamic phenomena over the past few years [6–11]. Aside
from being superclean with very little disorder scattering, the
concentration of phonons is also suppressed in those devices.
Consequently, the usual momentum relaxation of electrons by
means of collisions with impurities and phonons becomes less
frequent. As a result, electron-electron collisions which con-
serve total charge density, total momentum density, and total
energy density can become the dominant relaxational process
[12–16]. If that is the case, the dynamics of the electrons can
be described by the hydrodynamic transport theory of a typical
fluid [17–21].

There is a different set of systems, that has been discussed
recently. It uses phonons to its advantage: instead of destroy-
ing the hydrodynamic behavior, it is proposed that, when the
electron-phonon collision is the dominant scattering process
and phonons cannot relax momentum in the lattice or from
higher-order scattering, electrons and phonons transfer their
momentum between each other and form a single strongly
coupled fluid that can again be described by a hydrodynamic
theory. This electron-phonon hydrodynamics reveals unique
transport properties which are different from the electron hy-
drodynamics; for example, in the temperature dependence of
thermoelectric conductivities [22–24].

Collective oscillations of particles about their equilibrium
position, like phonons, are ubiquitous phenomena in solid-
state systems [25]. In addition to phonons that arise from
lattice oscillations, there are also emergent collective excita-
tions in interacting-electron systems, for example, plasmons
and/or magnons. This naturally leads to a question: Can ex-
otic hydrodynamics arise also from a combined system of
electrons and their collective modes? These excitations are
bosonic in nature. So, in thermal equilibrium, they obey the
Bose-Einstein distribution. Furthermore, they have no obvious
innate relaxation mechanism, unlike phonons, which have the
lattice. The interplay between the collective modes and the
electrons may give rise to rich effects in transport phenomena.
One such example is the interplay between magnons and
itinerant electrons in metallic magnetic heterostructures that
have been studied in the context of spintronics [26]. Here, we
focus on plasmons.

The problem of interactions between electrons and plas-
mons was put forth by a series of seminal works by Bohm
and Pines in the 1960s [27–31]. Recently, some of us revisited
this problem; we presented and solved the kinetic theory for a
coupled system of electrons and plasmons in two-dimensional
interacting Dirac electrons. In particular, it was shown that
in heat-transport probes, plasmons make a direct contribution
that can potentially be of the same order of magnitude as the
electronic contributions [32].

In this paper, we theoretically investigate the full ther-
moelectric transport properties of an interacting system of
electrons and a collective mode that are coupled via per-
fect drag in the hydrodynamic limit. We use an approach
based on a Boltzmann transport equation with a relaxation-
time approximation. We treat electrons and bosons on an
equal footing and discuss the hydrodynamic behavior of
the combined system. While being particularly interested
in the hydrodynamics of the coupled system of electrons
and plasmons, we develop a theory that can be applied

2469-9950/2022/106(20)/205126(22) 205126-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3619-6706
https://orcid.org/0000-0003-3678-0785
https://orcid.org/0000-0002-2444-084X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205126&domain=pdf&date_stamp=2022-11-15
https://doi.org/10.1103/PhysRevB.106.205127
https://doi.org/10.1103/PhysRevB.106.205126


PONGSANGANGAN, LUDWIG, STOOF, AND FRITZ PHYSICAL REVIEW B 106, 205126 (2022)

straightforwardly to any hybrid system of electrons, holes, and
bosons.

The organization of the paper is as follows. In Sec. II we
introduce the general framework that allows us to treat both an
electron-hole system and a system of electrons and holes that
are drag coupled to a bosonic mode. The approach is based
on a Boltzmann equation and we discuss all the conservation
laws of the underlying system. We also introduce a suitable
relaxation-time approximation which allows to “fake” a full
numerical solution of the Boltzmann equations by virtue of
respecting all the underlying conservation laws. In Sec. III A
we discuss the electron-hole plasma. This section is particu-
larly important for the study of weakly interacting graphene
close to the Dirac point. We study its thermoelectric response
in Sec. III A 1 with a special eye on the Wiedemann-Franz
ratio [33]. We proceed to study the collective excitation of the
charged electron-hole plasma taking into account the coupling
to the classical Coulomb interaction in Sec. III B. In particu-
lar, we recover the plasmon dispersion that can be obtained
from a more formal approach, the random-phase approxima-
tion (RPA). There is a second part of the paper, in which
we discuss a scenario for hydrodynamics, which consists of
electrons, holes, and plasmons. This scenario is particularly
relevant to graphene but in principle also extends to other
superclean two-dimensional electronic systems. We first dis-
cuss the theoretical setup in Sec. III C 1 and then proceed to
study the thermoelectric response of the drag-coupled fluid in
Sec. III C 2. This part constitutes the main result of this paper.
It can be easily adapted; for example, to describe the thermo-
electric response of a strongly drag-coupled electron-phonon
liquid, which has recently been discussed in the literature
[22–24]. We finish the paper with a conclusion and an outlook
in Sec. IV.

II. FORMALISM

Throughout this work, we use a phenomenological version
of the Boltzmann-equation approach. We use it to calculate
the thermoelectric response within two scenarios: (i) a two-
band system with electrons and holes interacting with each
other and (ii) an interacting system of electrons and holes in
combination with a collective mode.

We consider an electronic two-band system consisting of
conduction and valence electrons with their bands touching at
isolated points in the Brillouin zone, as depicted schematically
in Fig. 1. We assume that the valence band is completely
filled and the conduction band is completely empty when the
system is undoped. In that case, the Fermi energy is located at
the touching point. Hereafter, we refer to this as the charge-
neutrality point and the chemical potential at this point is set
to zero for convenience, i.e., μ = 0. Furthermore, we assume
particle-hole symmetry and rotational invariance around this
point, i.e., ε+(�k) = −ε−(�k). An excitation of the type ε+(�k) is
henceforth referred to as “electron” whereas ε−(�k) is called a
“hole,” as will become more clear below.

In addition, we have a bosonic mode associated with
collective oscillations with a dispersion relation ω(�k). The
collective mode can be a lattice excitation like a phonon or an

excitation of the underlying electronic system, for instance, a
plasmon and/or a spin wave. We assume that both the electron
and boson are long lived, meaning their distribution func-
tions are well defined. The central objects in the Boltzmann
theory are these distribution functions. In equilibrium, the
distribution functions for the original electrons reduce to the
Fermi-Dirac distribution

f 0(ε±(�k)) = 1

e
[ε± (�k)−μ]

kBT + 1
, (1)

where kB is the Boltzmann constant and μ is the chemical
potential. The boson distribution function assumes the form
of the Planck or Bose-Einstein distribution

b0(ω(�k)) = 1

e
ω(�k)
kBT − 1

(2)

in equilibrium. A subtle point for the analysis of our model
is that the two-band system is unbounded from below. This
implies that the number of particles in the filled band is in-
finite, which would lead to a divergence in any calculations
of physical observables. In order to circumvent this difficulty,
we subtract “1” from the hole distribution function which
amounts to subtracting the filled lower band and ensures that
we can refrain from using a cutoff. We introduce the notation
f+(�k) = f (ε+(�k)) for the electrons, f−(�k) = f (ε−(�k)) − 1 for
the holes. In turn, in thermal equilibrium, we find

f 0
±(�k) = ± 1

e
±[ε± (�k)−μ]

kBT + 1
. (3)

In general, the distribution functions, denoted by f±(�x, �k, t )
and b(�x, �k, t ), vary in space and time. They give the probabil-
ity density that a particle is found in a phase-space volume
element around the phase-space point (�x, �k) at time t . The
time evolution of the distribution functions is governed by

FIG. 1. Generic two-band system. We assume that there is an
electron band (+) and a hole band (−) that touch in isolated points
in the Brilllouin zone. Additionally, in our analysis we allow for a
chemical potential μ that can be tuned into either band.
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a coupled system of Boltzmann equations:

∂t f+(�x, �k, t ) + ∂�kε+(�x, �k, t ) · ∂�x f+(�x, �k, t ) − ∂�xε+(�x, �k, t ) · ∂�k f+(�x, �k, t ) = Cee
+ + Ceh

+ + Cb
+ + Cdis

+ ,

∂t f−(�x, �k, t ) + ∂�kε−(�x, �k, t ) · ∂�x f−(�x, �k, t ) − ∂�xε−(�x, �k, t ) · ∂�k f−(�x, �k, t ) = Chh
− + Che

− + Cb
− + Cdis

− ,

∂t b(�x, �k, t ) + ∂�kω(�x, �k, t ) · ∂�xb(�x, �k, t ) − ∂�xω(�x, �k, t ) · ∂�kb(�x, �k, t ) = Cee
b + Chh

b + Ceh
b + Cb

b . (4)

We use h̄ = kB = 1 here and throughout the remainder of
the paper unless stated otherwise. The left-hand sides are
the so-called streaming terms resulting from forces, inhomo-
geneities, and temporal changes. We assume that the energies
of the particles can be space and time dependent. This allows
us to account for external applied forces (for example, an ex-
ternal electric field) as well as for internal forces (for example,
the Hartree potential between the electrons themselves). It is
worthwhile pointing out that in a two-band system, we also
encounter Berry phase terms that we disregard here. They
mostly matter for transverse response coefficients which we
do not consider here. The right-hand sides in Eq. (4) describe
the collisions, encoded in the collision integrals C+, C−, and
Cb, that enable the system to relax towards local thermal
equilibrium.

The collision terms have very different physical origin.
There are inelastic processes between electrons Cee

+ , between
holes Chh

− , and those mixing electrons and holes Ceh
+ and

Che
− . Furthermore, electrons and holes undergo elastic disor-

der scattering Cdis
+ and Cdis

− . Additionally, electrons and holes
interact with bosons Cb

+ and Cb
− and vice versa according to

Cee
b , Chh

b , and Ceh
b . The collision integrals can be derived, for

example, by using Fermi’s golden rule. Instead of specifying a
concrete scattering integral, our discussion is centered around
the conservation laws of the system. There are a number of
important assumptions here:

(1) To lowest order, disorder couples to electrons and
holes only. It breaks translational symmetry and thereby mo-
mentum conservation but respects particle number and energy
conservation.

(2) Interactions between like particles, electron-electron
or hole-hole respect total charge, individual particle number,
momentum, and energy conservation.

(3) Interactions between electrons and holes can transfer
(“drag”) momentum and energy from the electron sector to
the hole sector and vice versa. Meanwhile, the total mo-
mentum and total energy within the combined electron-hole
system are conserved. Equivalently, the number of electrons
and holes, individually, is not necessarily conserved, only the
total charge is.

(4) The interaction between electrons, holes, and bosons
can transfer momentum and energy between all the three
sectors, again representing drag.

These statements relate to collisional invariants of the
scattering integrals [34]. These collisional invariants are
obtained via momentum integrations over the collision
integral and the corresponding conserved quantity. The cor-
responding integrals are of the type

∫
dd k

(2π )d (1, �k, ε+(�k))Cee
+ =

(Nee
+ , Kee

+ , Eee
+ ). The first integral refers to particle number

(N), the second to momentum (K), and the last one to

energy (E ). Table I shows the most generic form of these
collisional invariants. We use this in Sec. II 3 to construct
a relaxation-time approximation that respects these proper-
ties.

Conservation laws can be derived by also integrating the
left-hand sides of the Boltzmann equation over the collisional
invariants, which are 1, �k, and the corresponding dispersion
relation. The terms that appear from the streaming terms are
densities, generalized currents, and forces and heating. Instead
of considering these quantities only for electrons, holes, and
bosons, it is useful to also consider the total charge and the
charge imbalance, as they play a role later. All these quanti-
ties are summarized in Table II for densities and forces, and
Table III for currents for generic dispersions.

1. Conservation laws

The Boltzmann equations provide a convenient starting
point for the derivation of the equations of hydrodynamics.
As mentioned before, the basis of the whole discussion are
the conservation laws. They do not only constitute a set of hy-
drodynamic equations, they also allow for an identification of
physical quantities such as charge-current and energy-current
densities. The conservation laws are straightforward to derive
from the contents of Tables I–III. The conservation laws are
independent of the dispersion and can be written in full gen-
erality. This is not true for the Navier-Stokes equation. It has
to be derived on a case-by-case basis and its concrete form
depends on the dispersion relation of the underlying system,
as explained below.

By integrating the Boltzmann equations for electrons and
holes over all momenta �k, multiplying by −e, and adding them
up, we obtain the conservation law of charge:

∂t nc + ∂�x · �jc = 0. (5)

Next, we multiply all three Boltzmann equations of Eq. (4)
with their respective energy, integrate the resulting equa-
tion over all states, and then add them together. In the end,
we obtain the conservation law of the total energy

∂t n
ε
tot + ∂�x · �jεtot = 0. (6)

Next, by multiplying Eq. (4) with momentum �k, integrating,
and then summing all up, we obtain the conservation law of
momentum according to

∂t �n�k
tot + ∂�x · ���tot = �Fc + �Fb + �Kdis

+ + �Kdis
− . (7)

The total momentum density is not locally conserved but
changes by the internal electric forces on the right-hand side
of the equation. However, it is required that the internal forces
cancel each other when they are integrated over the whole
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TABLE I. Collisional invariants.

Particle number Momentum Energy

Electron Nee
+ , Ndis

+ = 0 Kee
+ = 0 Eee

+ , E dis
+ = 0

Nb
+, Neh

+ �= 0 Kee
+ , Keh

+ , Kb
+, Kdis

+ �= 0 Eee
+ , Eeh

+ , Eb
+ �= 0

Hole Nhh
− , Ndis

− = 0 Khh
− = 0 Ehh

− , E dis
− = 0

Nb
−, Nhe

− �= 0 Khh
− , Khe

− , Kb
−, Kdis

− �= 0 Ehh
− , Ehe

− , Eb
− �= 0

Boson Nee
b , Nhh

b , Neh
b , Nb

b �= 0 Kee
b , Khh

b , Keh
b , Kb

b �= 0 Eee
b , Ehh

b , Eeh
b , Eb

b �= 0

space �x. This implies that∫
�x
( �Fc + �Fb) = 0. (8)

Furthermore, the collision of electrons and holes with impuri-
ties relaxes the total momentum density towards equilibrium.
This effect is encoded in the collision terms �Kdis

+ + �Kdis
− . The

definition of densities, forces, and currents are summarized in
Tables II and III.

2. Thermoelectric transport and hydrodynamics

The theory of hydrodynamics describes the slow relaxation
of conserved quantities to thermal equilibrium. So, the under-
lying assumption is that there are some conserved quantities:
charge, momentum, and energy (and possibly more). Further-
more, there is a fast relaxation process that equilibrates the
system without relaxing one of those conserved quantities.
This has an immediate consequence: to leading order, there
are no momentum-relaxing processes. Consequently, when
momentum is excited in the system, it cannot decay. This is
problematic in the description of a standard bulk transport
experiment: if an electric field accelerates charges but their
momentum cannot decay, the conductivity becomes infinite.
So, to describe transport phenomena, relaxation processes
have to be included. In the framework of hydrodynamics this
happens by including first-order corrections to the constitutive
relations, which introduces conductivities as free parameters
[19,35,36]. There is an alternative: Starting from the Boltz-
mann equations and specifying the collision integrals, one
has to solve the resulting integrodifferential equations, while
including the applied field as a perturbation [14,15,34,37].
This alternative approach gives direct access to conductivities
and does not leave them unspecified. In this paper, we take the
approach based on Boltzmann equations. However, instead of
solving the Boltzmann equation explicitly, which usually re-
quires sophisticated numerics, we introduce relaxation times
in the scattering integral. This corresponds to a one-mode

approximation of the scattering integral. It is well known
that the relaxation-time approximation can violate conserva-
tion laws. So, we carefully construct the approximation to
ensure that all conservation laws discussed in the preceding
section are always obeyed. This still leaves a number of
unspecified parameters. We find that there is an additional
constraint that we can use to restrict the number of free pa-
rameters further: it is the Onsager reciprocal relation [38].
The set of conservation laws and Onsager relation allows to
mimic a much more sophisticated numerical solution of the
Boltzmann equation with surprising precision. This has one
major advantage over a full numerical solution (aside from
being much less demanding): it has very few free parameters
that can be easily compared to experiments.

3. Relaxation-time approximation

In the subsequent section, we “solve” the Boltzmann
equations in order to determine the thermoelectric transport
coefficients of the hybrid system of electrons, holes, and
bosons in the presence of an external electric field �E and
a temperature gradient ∂�xT within linear-response theory.
The Boltzmann equation is too complicated to be solved ex-
actly. The reason is that the collisional terms are integrals
involving the distribution functions themselves. Usually, there
is no analytical solution, apart from the equilibrium ones.
In the subsequent discussion, we consider near-equilibrium
transport phenomena. This allows to linearize the distribu-
tion functions according to f± ≈ f 0

± + δ f± and b ≈ b0 + δb
around their equilibrium forms, where the deviation of the
distribution function δ f± and δb are of linear order in the ex-
ternal fields. The solution of the linearized coupled Boltzmann
equations is a standard but still technical exercise that eventu-
ally has to resort to mode-expansion and numerics [39]. Going
through those technical steps is beyond the scope of this paper
and also obscures the physics a bit. Instead, we perform the
relaxation-time approximation [34]. In this approximation,
all the collisional processes are summarized in one quantity,

TABLE II. Densities and forces.

Density Momentum density Energy density “Force”

Electron n+ = ∫
�k f+ �n�k

+ = ∫
�k �k f+ nε

+ = ∫
�k ε+(�x, �k, t ) f+ �F+ = − ∫

�k ∂�xε+(�x, �k, t ) f+
Hole n− = ∫

�k f− �n�k
− = ∫

�k �k f− nε
− = ∫

�k ε−(�x, �k, t ) f− �F− = − ∫
�k ∂�xε−(�x, �k, t ) f−

Charge nc = −e(n+ + n−) �n�k
c = �n�k

+ + �n�k
− nε

c = nε
+ + nε

− �Fc = �F+ + �F−
Imbalance nimb = −e(n+ − n−) �n�k

imb = �n�k
+ − �n�k

− nε
imb = nε

+ − nε
− �Fimb = �F+ − �F−

Boson nb = ∫
�k b �n�k

b = ∫
�k �k b nε

b = ∫
�k ω(�x, �k, t )b �Fb = − ∫

�k ∂�xω(�x, �k, t ) b
Total �n�k

tot = �n�k
c + �n�k

b nε
tot = nε

c + nε
b
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TABLE III. Currents.

Particle current Momentum flux Energy current

Electron �j+ = ∫
�k ∂�kε+(�x, �k, t ) f+ ���+ = ∫

�k �k∂�kε+(�x, �k, t ) f+ �jε+ = ∫
�k ∂�kε+(�x, �k, t )ε+(�x, �k, t ) f+

Hole �j− = ∫
�k ∂�kε−(�x, �k, t ) f− ���− = ∫

�k �k∂�kε−(�x, �k, t ) f− �jε− = ∫
�k ∂�kε−(�x, �k, t )ε−(�x, �k, t ) f−

Charge �jc = −e(�j+ + �j−) ���c = ���+ + ���− �jεc = �jε+ + �jε−
Imbalance �jimb = −e(�j+ − �j−) ���imb = ���+ − ���− �jεc = �jε+ − �jε−
Boson �jb = ∫

�k ∂�kω(�x, �k, t ) b ���b = ∫
�k �k∂�kω(�x, �k, t ) b �jεb = ∫

�k ∂�kω(�x, �k, t )ω(�x, �k, t ) b

Total ���tot = ���c + ���b �jεtot = �jεc + �jεb

the relaxation time τ . This approach usually has a problem
that it does not necessarily respect conservation laws. The
way we set up the relaxation-time approximation, however,
is such that it does respect the conservation laws, a de-
tailed derivation is provided in Appendix A. Furthermore, we

checked that it reproduces the qualitative features of the actual
numerical solutions. More systematic approaches have been
presented across several places in the literature. The linearized
Boltzmann equations in the relaxation-time approximation
read as

∂tδ f+ − ε+ − μ

T
∂�xT · ∂�k f 0

+ − e �E · ∂�k f 0
+ = −δ f+

τ+
+ δ f−

τ−
− δ f+

τ dis+
− δ f+

τ+b
+ δb

τb+
,

∂tδ f− − ε− − μ

T
∂�xT · ∂�k f 0

− − e �E · ∂�k f 0
− = −δ f−

τ−
+ δ f+

τ+
− δ f−

τ dis−
− δ f−

τ−b
+ δb

τb−
,

∂tδb − ω

T
∂�xT · ∂�kb0 = − δb

τb+
+ δ f+

τ+b
− δb

τb−
+ δ f−

τ−b
. (9)

We have introduced a set of relaxation times which all play
different physical roles. The relaxation times 1/τ+ and 1/τ−
refer to electron-hole drag, mediated by interactions, 1/τ dis

±
refers to disorder scattering for electrons and holes, respec-
tively, whereas 1/τb+, 1/τb−, 1/τ+b, and 1/τ−b refer to drag
between electrons, holes, and bosons, and vice versa. For
simplicity, we henceforth assume 1/τ dis

+ = 1/τ dis
− = 1/τ dis,

which is justified for near charge-neutral systems.

III. RESULTS AND DISCUSSIONS

A. Part A: Electron-hole plasmas

We have set up the coupled system of Boltzmann equa-
tions of electrons, holes, and bosons within the relaxation-
time approximation. Let us adopt this approach in analyzing
the thermoelectric response of a weakly interacting charged
Dirac electron-hole plasma. The prime representative of
the class of electron-hole plasmas is graphene close to its
charge-neutrality point. However, all Dirac-type systems, bi-
layer graphene [4], and even semiconductors at elevated
temperatures fall into this category [3], albeit with minor
modifications.

Graphene is a two-dimensional system of carbon atoms on
a honeycomb lattice. In its undoped state, it is neither a metal
nor an insulator, but a semimetal [40,41]. As such, it has a
vanishing density of states at zero energy, but it is linear in
energy everywhere else. This originates from the low-energy
band structure, shown in Fig. 2(a). Two bands touch in isolated
points in the Brillouin zone. In the vicinity of these points,
the system can effectively be described by the massless Dirac

equation. Consequently, the spectrum is linear in momentum
according to ε± = ±vF |�k|, where + refers to electrons, −
to holes, and vF is the Fermi velocity. More details about
graphene can be found in the literature [40,41] but are not
necessary here.

The key insight concerning the plasma character of charge-
neutral graphene came in a paper by Sheehy and Schmalian
in 2007 [42]. The essence is summarized in Fig. 2(b). It
shows the “phase diagram” of graphene as a function of the
chemical potential μ (x axis) and temperature T (y axis).
The chemical potential controls the filling of the Dirac cones:
the charge density nc ∝ μ2. Consequently, at μ = 0 we have
nc = 0. However, there are still excitations at nonzero temper-
ature T . This is captured by the imbalance density nimb ∝ T 2

FIG. 2. (a) Schematic of the dispersion relation of graphene near
its Dirac point. (b) “Phase diagram” of clean graphene at finite tem-
perature. The region above μ = 0 is referred to as the Dirac liquid.
At |μ| ≈ T it crosses over to a Fermi liquid.
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introduced in Table II. The physics behind this density is
that there is a thermal cloud of electrons and one of holes,
both of equal density, which ensures nc = 0. The nonzero-
temperature region above μ has been dubbed the “Dirac
liquid” and it has thermodynamic properties that are very
different from Fermi liquids. The crossover region is defined
by the condition |μ| ≈ T (up to renormalizations due to in-
teractions). For |μ| � T , the system behaves like a Fermi
liquid of electron or hole type. This discussion is not only
valid in graphene, but in any Dirac-type two-band system,
including bilayer graphene. If the temperature is larger than
the respective gap, it even applies to semiconductors.

1. Thermoelectric response and Onsager relation

One of the hallmarks of hydrodynamic behavior in a Dirac
plasma is the bulk thermoelectric response. We find two key
features experimentally observed in graphene: an interaction
dominated electrical conductivity and a strong violation of the
Wiedemann-Franz law [43].

The thermoelectric response of a system is the combined
response of the system to an applied electric field �E and a

temperature gradient ∂�xT across the system. For us, it assumes
the form [43] ( �jc

�jQ

)
=

(
σ α

T ᾱ κ

)( �E
−∂�xT

)
. (10)

Here σ , α, κ̄ are longitudinal conductivities, as the currents
are in the direction parallel to the perturbations. The ther-
moelectric coefficient α is used to determine the Seebeck
coefficient S, σ is the electrical conductivity, and κ̄ is the
thermal conductivity. Typically, the thermal conductivity κ

is defined such that �jQ = −κ∂�xT under the condition of no
electric current flow, i.e., �jc = 0. Using straightforward alge-
bra, one can show that κ = κ̄ − T ασ−1α. Moreover, provided
that the system respects time-reversal symmetry, the Onsager
reciprocal relation [38] requires that

α = ᾱ. (11)

Later, we use this relation to establish the relationship between
the relaxation times associated with the drag effect in Eq. (12).
The Boltzmann transport equations for electrons and holes are
given by

∂tδ f+ − ε+ − μ

T
∂�xT · ∂�k f 0

+ − e �E · ∂�k f 0
+ = −δ f+

τ+
+ δ f−

τ−
− δ f+

τ dis
,

∂tδ f− − ε− − μ

T
∂�xT · ∂�k f 0

− − e �E · ∂�k f 0
− = −δ f−

τ−
+ δ f+

τ+
− δ f−

τ dis
. (12)

We may determine the transport coefficients from the equa-
tions of motion for charge and heat current densities. The
equation for electron and hole currents is obtained by in-
tegrating each Boltzmann equation over the corresponding
group velocity �v± = ∂�kε±(�k). In a straightforward way this
leads to

∂t �j± − ∂�xT

T
· ��T± − e �E · ��E± = − �j±

τ±
− �j∓

τ∓
− �j±

τ dis
, (13)

where

��E± =
∫

�k
�v±(�k) ∂�k f 0

±(�k),

��T± =
∫

�k
�v±(�k)(ε± − μ)∂�k f 0

±(�k). (14)

The equation of motion for the thermal currents of the
electrons and holes can be obtained by integrating the Boltz-
mann equations over the corresponding product of the group
velocities and the energies, �v±(ε± − μ). This leads to

∂t �jQ
± − ∂�xT

T
· ��S± − e �E · ��T± = − �jQ

±
τ±

+ �jQ
∓ + 2μ�j∓

τ∓
− �jQ

±
τ dis

,

(15)

where the thermal current is defined as

�jQ
± =

∫
�k
�v±(�k)(ε±(�k) − μ)δ f±, (16)

whereas we have

��S± =
∫

�k
�v±(�k)(ε± − μ)2∂�k f 0

±(�k). (17)

The total charge and thermal current densities are given by

�jc = −e(�j+ + �j−) (18)

and

�jQ = �jQ
+ + �jQ

−, (19)

respectively. We are interested in the steady-state situation,
i.e., ∂t �j± = 0 and ∂t �jQ

± = 0. For that, it is convenient to cast
Eqs. (13) and (15) in a matrix form according to

⎛
⎜⎜⎜⎝

1
τ+

+ 1
τ dis

1
τ−

0 0
1
τ+

1
τ−

+ 1
τ dis 0 0

0 −2μ 1
τ−

1
τ+

+ 1
τ dis − 1

τ−
−2μ 1

τ+
0 − 1

τ+
1
τ−

+ 1
τ dis

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

�j+
�j−
�jQ
+
�jQ
−

⎞
⎟⎟⎠ = ∂�xT

T
·

⎛
⎜⎜⎜⎜⎝

��T+
��T−
��S+
��S−

⎞
⎟⎟⎟⎟⎠ + e �E ·

⎛
⎜⎜⎜⎜⎝

��E+
��E−
��T+
��T−

⎞
⎟⎟⎟⎟⎠. (20)
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It is straightforward to solve this matrix equation for electrical
and heat currents. By substituting the result into Eqs. (18) and
(19), we find that the longitudinal coefficients take the form

σ = −e2

[
E+

(
1

τ dis + 1
τ−

− 1
τ+

) + E−
(

1
τ dis + 1

τ+
− 1

τ−

)]
1

τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) , (21)

κ̄ = − 1

T

(S+ + S−)
(

1
τ dis + 1

τ−
+ 1

τ+

) − 2μ
(T+

τ+
+ T−

τ−

)
1

τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) , (22)

α = e

T

T+
(

1
τ dis + 1

τ−
− 1

τ+

) + T−
(

1
τ dis + 1

τ+
− 1

τ−

)
1

τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) , (23)

ᾱ = e

T

(T+ + T−)
(

1
τ dis + 1

τ+
+ 1

τ−

) − 2μ
(E+

τ+
+ E−

τ−

)
1

τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) . (24)

Here, E±, T±, and S± are the main diagonal elements of

the second-rank tensors, so ��E± = E±��1, ��T± = T±��1, and ��S± =
S±��1. They are evaluated from Eqs. (14) and (17). For Dirac
fermions with a linear energy dispersion, we find that

E± = NT

4π
Li1(−e±μ/T ),

T± = ±NT 2

2π
Li2(−e±μ/T ) − NT μ

4π
Li1(−e±μ/T ),

S± = −NT

4π

[ − 3T 2Li3(−e±μ/T ) ± 4T μ Li2(−e±μ/T )

−μ2Li1(−e±μ/T )
]
, (25)

where Lin is the polylogarithmic function of order n and N de-
notes the number of Dirac fermion flavors (N = 4 in the case
of graphene, accounting from spin and valley degeneracy).
It can be verified that, for the Onsager reciprocal relation in
Eq. (11) to hold, the relaxation time for the electron-hole drag
must satisfy the relation

1

τ−
(T− + μE−) = − 1

τ+
(T+ + μE+). (26)

Therefore, we can choose

1

τ+
= 1

τ0

T− + μE−
(T− + μE−) − (T+ + μE+)

,

1

τ−
= − 1

τ0

T+ + μE+
(T− + μE−) − (T+ + μE+)

, (27)

where τ0 is a relaxation time that has to be determined from
a Boltzmann equation. All the quantities in Eqs. (26) and
(27) depend strongly on μ/T , including τ0. Since the system
at charge neutrality is a quantum critical system, the relax-
ation time there is of order 1/T , saturating at the Planckian
limit. This fixes 1/τ0 ∝ T . Upon moving away from charge
neutrality, all drag effects are strongly suppressed. We demon-
strate this explicitly in Appendix B. For practical calculations
using the relaxation-time approximation, we used the inter-
polation function 1/τ0 = 0.6T exp(−|μ|/T ). This function
shows good qualitative agreement with the actual functions
calculated in Appendix B. An important consequence of this
is that at large |μ|/T , everything is disorder dominated. In
Fig. 3, we show the relaxation time for the electron-hole drag.
Since clean graphene near the Dirac point is a quantum critical

FIG. 3. The relaxation time for the electron-hole drag near the
charge-neutrality point μ = 0 calculated from Eq. (27). The chemi-
cal potential and the relaxation time are scaled in units of T . We use
1/τ0 = 0.6T exp(−|μ|/T ) here for illustrative purposes.

system, this implies that the relaxation time for the drag effect
is of order 1/T , saturating at the Planckian limit.

2. Electrical conductivity

In the upper panel of Fig. 4, we plot the electrical conduc-
tivity as a function of the chemical potential near the neutrality
point. A key signature of the electron-hole plasmas sits in their
electrical conductivity and becomes most apparent at charge
neutrality μ = 0. It revolves around a somewhat paradoxically
looking situation. The system has a total charge zero, nc = 0.
Nevertheless, the dc conductivity in the clean limit is finite.
From Eq. (21), we find that the electrical conductivity at
charge neutrality is given by

σ (μ = 0) = −e2 E+ + E−
1

τ dis + 2
τ+

, (28)

where, as depicted in Fig. 3, the inverse drag scattering
times for electron and hole are identical at charge neutrality,
i.e., 1/τ− = 1/τ+, and, according to Eq. (25), E+ + E− �= 0.
This implies that the electrical conductivity is finite, even
in the absence of disorder, i.e., for 1/τ dis = 0. The key to
understanding it is that while the charge density nc = 0, the
imbalance density nimb �= 0. This is in stark contrast to a
conventional Fermi liquid in which there is essentially no
distinction between the two densities. Importantly, at nonzero
temperature, there are two thermal clouds of equal density,
one of electrons and one of holes. An applied electric field
will pull the different types of charge carriers into opposite
directions. One consequence of this is that while electrons
and holes are pulled apart, the total momentum of the system
remains zero. This is different in a Fermi liquid, in which an
applied field automatically excites momentum. Since there is
no net momentum induced, it is also no issue that there are
no impurities to relax the momentum. However, there still is
a mechanism which “glues” the electrons and holes, namely,
drag. This is sufficient to establish a finite electric current,
even in the absence of disorder. A graphical illustration of this
situation in shown in Fig. 5.
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FIG. 4. The upper plot shows the electrical conductivity calcu-
lated from Eq. (21) versus chemical potential. The value of μ is
plotted in units of T . In this plot, we use 1/τ0 = 0.6T exp(−|μ|/T )
and τ dis = 8/T . The lower plot shows the electrical conductiv-
ity versus temperature in units of μ. In this plot, we use 1/τ0 =
0.6T exp(−|μ|/T ) and τ dis = 8/μ.

With a bit of algebra, one can show that Eq. (21) takes the
form

σ = σ (μ = 0) +
e2(E− − E+)

(
1
τ−

− 1
τ+

)
1

τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) . (29)

FIG. 5. (a) In a Fermi liquid, an applied electric field as well as a
temperature gradient excite nonzero momentum. In the Dirac liquid,
a temperature gradient excites a nonzero momentum, whereas an
electric field does not. (b) In the Dirac liquid, momentum and current
decouple. One can relax current without relaxing momentum.

FIG. 6. The upper plot shows the Seebeck coefficient as a func-
tion of chemical potential in units of T and the lower plot shows the
Seebeck coefficient as a function of temperature in units of μ. The
values of τ0 and τ dis are the same as in Fig. 4.

The second part becomes singular in the limit of zero dis-
order: upon tuning away from charge neutrality, μ �= 0, both
E− − E+ and 1/τ− − 1/τ+ are nonzero. This implies that the
electrical conductivity is not finite in the absence of disorder
(1/τ dis → 0), but diverges, as one would expect. This situa-
tion is qualitatively discussed in Fig. 5.

3. Thermoelectric coefficient

In the upper panel of Fig. 6, we plot the Seebeck coeffi-
cient, which is the ratio of the thermoelectric cofficient α to
the electrical conductivity σ , as a function of the chemical
potential near the neutrality point. A main signature of the
electron-hole plasmas is that at the charge neutrality, the See-
beck coefficient vanishes because

α(μ = 0) = e

T

T+ + T−
1

τ dis + 2
τ+

= 0. (30)

The key to understanding it is that when the Dirac plasma
is exposed to a temperature gradient, both thermal clouds of
electrons and holes of equal concentration move in the same
direction. As a result, �jc = 0, which implies α = 0.

4. Heat conductivity

Here, we consider the response �jQ = −κ∂�xT , which is the
heat conductivity in the absence of current flow, where the
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FIG. 7. The upper plot shows the thermal conductivity calculated
from κ = κ̄ − T α2/σ versus the chemical potential. The lower plot
shows the thermal conductivity versus temperature in units of μ. The
values of τ0 and τ dis are the same as in Fig. 4.

longitudinal thermal conductivity κ = κ̄ − T α2/σ . In Fig. 7,
we plot the thermal conductivity of two-dimensional Dirac
electrons close to the neutrality point. At the charge-neutrality
point, we find that

κ (μ = 0) = − 1

T
(S+ + S−)τ dis. (31)

Contrary to the electrical conductivity, the thermal conduc-
tivity decays from disorder and cannot relax via drag at the
charge-neutrality point. The reason is simple: the two thermal
clouds, electrons and holes, are both dragged into the same
direction. Consequently, a net momentum is induced. This im-
plies that momentum has to be relaxed to establish a stationary
state with a finite conductivity. This can only be achieved by
scattering from impurities, meaning that the heat conductivity
diverges in the clean system. This is again explained in Fig. 5.

5. Wiedemann-Franz ratio

An important quantity in the study of metals is the
Wiedemann-Franz ratio. This was already established in 1853
[33], based upon the observation that for a variety of metals,
the ratio κ/(T σ ) tends to a constant, universal value at low
temperatures, called the Lorenz number [43]. It was experi-
mentally found that the Lorenz number is given by

L = κ

T σ
= L0 = π2

3

(
kB

e

)2

. (32)

Whether a system tends to this value or not is still often taken
as an empirical evidence of whether the system is a Fermi
liquid or not. The standard understanding is that both heat
and electrical currents are transported by the same type of

FIG. 8. The upper plot shows the Lorenz ratio versus the chemi-
cal potential μ in units of T . The lower plot shows the Lorenz ratio
versus temperature in units of μ. The values of τ0 and τ dis are the
same as in Fig. 4.

(quasi)particle. Additionally, both heat and electrical current
undergo the same relaxational mechanism. In the case of a
standard metal this means that both heat and electrical current
are limited by the same scattering time τ dis. In Fig. 8, we plot
the Lorenz number for the two-dimensional Dirac fluid around
the charge-neutrality point. At the charge-neutrality point, we
find

L/L0 = S+ + S−
E+ + E−

(
1 + τdis

τ+ + τ−
τ+τ−

)
. (33)

Not only does this ratio diverge for a clean system, it is also,
in general, not a universal quantity: one should expect a pos-
sibly strong violation of the Wiedemann-Franz law close to
charge neutrality as well as a strong variation across different
samples. However, it is an excellent measure to determine
the relative strength of elastic and inelastic scattering in the
system. It is important to note that one cannot extend Eq. (33)
towards the Fermi-liquid regime; it is only valid at charge
neutrality.

B. Internal electric field and plasmons

It is well known that interacting electronic systems host a
variety of collective excitations. A particularly important exci-
tation of that type is the plasmon, or charge oscillation [27,28].
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A standard derivation of the plasmon spectrum is based on
many-body techniques that employ the so-called random-
phase approximation (RPA) [43]. Alternatively, one can derive
plasmons from the Boltzmann equations or continuity equa-
tions if they are supplemented by the Poisson equation. In
the case of two-dimensional systems, most notably graphene,
there is a discrepancy between the hydrodynamic version
of plasmons and the plasmons from RPA. This difference
becomes particularly visible in the vicinity of the charge-
neutrality point when temperature dominates the chemical
potential and T � μ. In the extreme limit of zero charge den-
sity μ = 0, the hydrodynamic theory predicts the absence of
plasmons [19], whereas RPA predicts the existence of thermal
plasmons [44] with a dispersion that follows:

ω(�k) ∝
√

T k. (34)

In this section we show that the inclusion of drag effects
via Ceh/he

± allows to describe both limits, the RPA and the
hydrodynamic limit, as well as the crossover between the two
limits. The process which mediates between the two limits is
the electron-hole momentum drag, which is also responsible
for the finite conductivity at charge neutrality, even in the
clean limit [see Eq. (28)]. This observation constitutes the
main result of this section.

1. Coulomb interaction

Coulomb interactions not only play an important role in the
equilibration via electron-electron scatterings, they are also
responsible for the internal classical Coulomb force between
electrons in the system. The internal Coulomb force is self-
consistently determined from the Poisson equation. Projected
into two dimensions, it reads as

√
−∂2

�x V = δnc

2ε
, (35)

with V being the Coulomb potential [43]. It has the well-
known solution

V (�x) =
∫

d2�x′ −e

4πε

[n+(�x′) − n0
+(�x′)] + [n−(�x′) − n0

−(�x′)]
|�x − �x′|

=
∫

d2�x′ −e

4πε

δn+(�x′) + δn−(�x′)
|�x − �x′| , (36)

where n0
+(�x) and n0

−(�x) are the equilibrium densities of elec-
trons and holes, respectively; furthermore, we introduced the
deviations from the equilibrium densities δn±(�x) = n±(�x) −
n0

±(�x). The resulting electric field, after Fourier transforma-
tion, reads as

�E = − iδnc�k
2εk

, (37)

where the particular momentum dependence is special to two
dimensions.

2. Linearized hydrodynamic equations

Our starting point is the linearized equations for charge
densities and current densities:

∂tδnc + ∂�x · �jc = 0,

∂t �jc + e2 �E · ( ��E+ + ��E−) = − �jc
τc

− �jimb

τimb
,

∂t �jimb + e2 �E · ( ��E+ − ��E−) = 0, (38)

where the charge and imbalance densities and currents are
defined in Tables II and III. Here 1/τc = 1/τ+ + 1/τ− and
1/τimb = 1/τ+ − 1/τ− We can cast this into an eigenvalue
problem according to

(−iω1 + Deff )(δnc, �jc, �jimb)T = 0, (39)

with

Deff =
⎛
⎝ 0 i�k 0

−ie2(E+ + E−)�k/(2εk) 1/τc 1/τimb

−ie2(E+ − E−)�k/(2εk) 0 0

⎞
⎠ (40)

and ω being the eigenvalue (note that E± < 0). This can be
solved in general, however, the solutions are lengthy. In the
following, we consequently discuss two special cases. (i) At
the charge-neutrality point where things simplify significantly.
At this point, we have 1/τimb = 0 and E+ − E− = 0. The
characteristic equation reduces to

−iω(−iω + 1/τc) + e2

2ε
|E+ + E−|k = 0. (41)

The solutions of this equation read as

ω± = − i

2τc
±

√
e2

2ε
|E+ + E−|k −

(
1

2τc

)2

. (42)

We observe that the plasmon modes are damped by
fermionic drag. It is important to note that this mode exists
even if nc = 0 (in analogy with the finite conductivity at the
charge-neutrality point) since E+ + E− �= 0. For small mo-
menta, i.e.,

e2

2ε
|E+ + E−|)k <

(
1

2τc

)2

, (43)

they turn into relaxational modes with a purely imaginary
frequency. (ii) Further away from the charge-neutrality point,
both 1/τc and 1/τimb vanish. In this case, a true hydrodynamic
plasmon emerges with the dispersion given by

ω± =
√

e2

2ε
|E+ + E−|k ≈

√
e2

8πεvF

n2
c

nε
c + P

k , (44)

where nε
c is the total energy defined in Table II and P = nε

c/2
is the pressure.

Figure 9 shows the plasmon dispersion in the two phys-
ically distinct situations: (i) at the charge-neutrality point
where nc = 0 and (ii) away from the charge-neutrality point
where nc �= 0.

Note that the true hydrodynamic limit of the plasmons is
obtained in the limit where τc and τimb are small. In that
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FIG. 9. The plasmon energy dispersion in Eq. (42) at two differ-
ent chemical potentials: (a) at the charge-neutrality point μ/T = 0
and (b) at μ/T = 10. The plots show the plasmon dispersion in the
physically distinct situations of nc = 0 and nc �= 0. In the former
case, only a thermal plasmon exists, whereas in the latter a true
hydrodynamic plasmon emerges. The frequency that separates the
two regimes is related to the inverse drag timescale.

limit, the two components act as one fluid with the effec-
tive charge density nc, and the individual components do not
play a role. The corresponding plasmon frequency is shown
in Fig. 9(b). The important feature of Eq. (44) is that the
plasmons cease to be excitations at the charge-neutrality point
where nc = 0, in agreement with hydrodynamic theory ex-
plained in Refs. [19,21] [see Fig. 9(a)]. The RPA limit is
obtained when the two components, electrons and holes, act
independently. They conserve momentum, even on the indi-
vidual level. An important feature of this expression is that
there remains a plasmon even at the charge-neutrality point
nc = 0 [see Fig. 9(a) and Eq. (42)]. It remains nonzero at the
charge-neutrality point if T > 0.

3. Discussion

In this section we have discussed some of the properties of
two-component hydrodynamics of a fluid composed of elec-
trons and holes which stem from two bands in an electronic
lattice system. This situation has been considered before in
multiple settings, including graphene or, more generically,
Dirac systems and bilayer graphene. We have given special

attention to drag terms coming from the collision integral that
couples electrons and holes in the setup. From a methodolog-
ical perspective, this is beyond pure hydrodynamics, which
would be completely collision free. These effects are known
to be required to determine the conductivity of such a system
at the charge-neutrality point, as demonstrated in graphene
and bilayer graphene. We also set up the full thermoelectric
response in this setup and recovered well-known literature
results. In a last part we investigated the role of collective
modes. We especially considered the plasmon spectrum and
establish a different result. Namely, we find that the same
drag effects that are required to ensure a finite conductivity
at charge neutrality govern a crossover from an RPA-type
plasmon (that allows for a thermal plasmon) to the pure hy-
drodynamic plasmon that is not thermal.

C. Part B: Electron-hole-plasmon theory

It is known that in a Coulomb-interacting electronic system
there exists a collective mode associated with plasma oscilla-
tions, called the plasmon [28]. In typical three-dimensional
metals, however, plasmons have a massive excitation gap.
The size of the gap is typically larger than the Fermi
energy EF of the underlying electronic system [25,31]. Con-
sequently, for many practical questions, they only make
negligible contributions to thermodynamic and transport
properties. In contrast, plasmons in two dimensions are
massless with a square-root type dispersion relation, i.e.,
ωpl(�q) ∝ √

q [45–47]. We showed above that this result
can be reproduced from the hydrodynamic approach. One
immediate consequence of the dispersion relation is that
plasmons can easily be excited at experimentally accessi-
ble temperatures and therefore make a direct contribution
to their transport properties, especially heat transport [32].
Another important feature is that the plasmons are re-
markably stable [44]. To summarize, it has been shown
that two-dimensional electronic systems host stable plas-
mons that are bona fide quasiparticles on the quantum
level. For a more technical discussion see our parallel
paper.

1. Setup

In this part of the paper we discuss the phenomenological
set of coupled Boltzmann equations introduced in Eq. (4).
This describes a system that consists of electrons, holes,
and plasmons and treats them on equal footing. With minor
modifications, this formalism can also account for other col-
lective modes like phonons with perfect drag, spin waves,
or similar degrees of freedom by modifying the dispersion
relation.

In a companion paper [48], we present a formal deriva-
tion of the Boltzmann equations. It starts from an effective
field theory for plasmons emerging from underlying two-
dimensional Coulomb-interacting Dirac electrons. That work
is based on real-time quantum field theory along a closed-time
contour, typically referred to as Keldysh quantum field theory.
From a technical point of view, the key insight of that paper
is a formal derivation of the Boltzmann equations, where we
show explicitly that all conservation laws hold which here we
just assume.
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The coupled Boltzmann equations read as

∂t f+ + ∂�kε+(�k, �x, t ) · ∂�x f+ − ∂�xε+(�k, �x, t ) · ∂�k f+ = I+[ f+, f−, b],

∂t f− + ∂�kε−(�k, �x, t ) · ∂�x f− − ∂�xε−(�k, �x, t ) · ∂�k f− = I−[ f−, f+, b],

∂t b + ∂�kω(�k, �x, t ) · ∂�xb − ∂�xω(�k, �x, t ) · ∂�kb = Ib[b, f+, f−], (45)

where I+[ f+, f−, b], I−[ f−, f+, b], and Ib[b, f+, f−] contain all the terms introduced in Eq. (4).
In order to make progress, we again set up a set of three linearized coupled Boltzmann equations within the relaxation-time

approximation. We make one important assumption here which is that the plasmon sector cannot equilibrate by itself. Instead,
it is coupled to the fermion sector via perfect drag and all the total momentum relaxation happens in the fermionic sector. In
that sense this scenario is very similar to a scenario with perfect electron-phonon drag. We showed in the previous section that
the plasmon energy dispersion depends on fermion density [see Eqs. (44) and (42)], which in turn is space and time dependent.
As a result, there is a density-gradient force −∂�xω(�k, �x, t ) exerted on the plasmons due to a difference in fermion density
across a volume element. In addition, here the fermion energy assumes space dependence leading to a conservative force term
−∂�xε±(�k, �x, t ) in the Boltzmann equations. This is the collective force due to the other particles in the system, for example, the
local Hartree and Fock potentials.

2. Thermoelectric response

In order to make progress, we again set up a set of three linearized coupled Boltzmann equations within the relaxation-time
approximation:

∂tδ f+ − ε+ − μ

T
∂�xT · ∂�k f 0

+ − e �E · ∂�k f 0
+ = − δ f+

τ+−
+ δ f−

τ−+
− δ f+

τ dis+
− δ f+

τ+b
+ δb

τb+
,

∂tδ f− − ε− − μ

T
∂�xT · ∂�k f 0

− − e �E · ∂�k f 0
− = − δ f−

τ−+
+ δ f+

τ+−
− δ f−

τ dis−
− δ f−

τ−b
+ δb

τb−
,

∂tδb − ω

T
∂�xT · ∂�kb0 = −δb

(
1

τb+
+ 1

τb−

)
+ δ f+

τ+b
+ δ f−

τ−b
. (46)

As in the previous discussion, we choose the relaxation times such that they obey the conservation laws of charge, momentum
(this is broken in presence of disorder), and energy. The equations can be solved for any given realization of the scattering times
but generally lead to bulky expressions. The charge and heat currents read as

�jc = −e
∫

�k
∂�kε+(δ f+ − δ f−) and �jQ =

∫
�k
∂�kε+[(ε+ − μ)δ f+ + (ε+ + μ)δ f−] +

∫
�k
∂�kω ω δb, (47)

where we again used ε+ = −ε−. In the following we only discuss the dc properties (∂tδ f+ = ∂tδ f− = ∂tδb = 0) at the charge-
neutrality point μ = 0, which leads to a number of simplifications. The first one concerns the relaxation times. At charge
neutrality, we have τ+− = τ−+, τ dis

+ = τ dis
− , τ+b = τ−b, and τb+ = τb−. It is furthermore straightforward to show that under those

conditions there is no drag on the plasmon sector from an applied electric field, meaning δb = 0. The reason is very simple: an
electric field only couples to the electrons and holes. They are accelerated into different directions leading to a zero-momentum
state. Consequently, there is no momentum transfer into the plasmon sector, meaning the plasmons remain in equilibrium.
This argument can also be generalized to the off diagonals of the conductivity tensor, which was also true in the case without
plasmons. In the hydrodynamic limit, we are interested in the limit 1/τ dis

+ � 1/τ+b, valid for very clean systems. Consequently,
we find

σ = e2 τ+bτ
dis
+

2τ+b + τ dis+

∫
�k
∂�kε+ · ∂�k ( f 0

+ − f 0
−) ≈ e2τ+b

∫
�k
∂�kε+ · ∂�k ( f 0

+ − f 0
−) (48)

for the electrical conductivity and

κ = τ dis
+
T

∫
�k
[ε+∂�k ( f 0

+ − f 0
−) + ω∂�kb0] ·

(
ε+∂�kε+ + 1

2

τb+
τ+b

ω∂�kω
)

+ τb+
2T

∫
�k
∂�kω · ∂�kb0ω2

≈ τ dis
+
T

∫
�k
[ε+∂�k ( f 0

+ − f 0
−) + ω∂�kb0] ·

(
ε+∂�kε+ + 1

2

τb+
τ+b

ω∂�kω
)

(49)

for the thermal conductivity. It is important to point out that, again, the charge conductivity is finite through drag scattering with
the plasmon sector, even in the clean limit. The heat conductivity, on the other hand, diverges, as we expect. Furthermore, we
find that the heat conductivity receives a contribution from the plasmon sector which is, a priori, on the same order of magnitude
as the electronic contribution.
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FIG. 10. Upper panel: The conductivity calculated within the
pure electron-hole theory and within the electron-hole-plasmon the-
ory. Lower panel: The same comparison for the Seebeck coefficient.

Away from the charge-neutrality point, there will again be
a Drude peak that signals diverging electrical conductivity in
the absence of disorder. Since the corresponding expressions
are very bulky, we refrain from showing their explicit form.
However, we present a plot of the most important thermo-
electric coefficients in Figs. 10 and 11. In Fig. 10, we show
the electrical conductivity, as well as the Seebeck coefficient.
Importantly, we find excellent agreement between the theory
of only electrons discussed in Sec. III A 1 and Fig. 4, and the
one of electrons, holes, and plasmons drag coupled. However,
looking at Fig. 11, we find a strong enhancement of the ther-
mal conductivity, that grows upon tuning away from charge
neutrality. For this plot, we have used the same parameters
as for Fig. 10. This is in agreement with a more sophisti-
cated solution of the transport equations that was presented
in Ref. [32] by some of the authors.

IV. CONCLUSION AND OUTLOOK

In this paper, we investigated the full thermoelectric trans-
port properties of an interacting fluid of electrons, holes, and
a collective mode from a theoretical point of view. In the hy-
drodynamic limit we used an approach based on a Boltzmann
transport equation within a relaxation-time approximation that
mimics a full numerical solution of the set of equations.
We treated electrons, holes, and plasmons on equal footing
and discussed the hydrodynamic behavior of the combined
system. This includes conservation laws but, in particular,

FIG. 11. Upper panel: The heat conductivity without and with
the plasmon contribution. Lower panel: The same comparison for
the Lorenz ratio.

we discussed the thermoelectric behavior in the very clean
system. One of our findings is that in that situation the plas-
mons make a sizable contribution to transport properties and,
therefore, cannot be neglected. We hypothesize that this also
applies to other quantities sensitive to the energy-momentum
tensor, such as the viscosity. The approach we develop can
also be applied in a straightforward manner to any hybrid
system of electrons, holes, and bosons. In a parallel paper
we show the technical underpinnings of our theory based on
the Schwinger-Keldysh approach. Not only do we derive the
set of coupled Boltzmann equations there, we also establish
explicitly all the conservation laws that we use here.
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APPENDIX A: CONSERVATION LAWS

Conservation laws of momentum, energy, and charge den-
sities can be derived from a Boltzmann equation by integrating
it weighted by single-particle momentum, energy, and charge,
respectively. One can show that our model respects all the
conservation laws. But for simplicity, below we show how it
works for the two-fluid model. The conservation laws for the
three-fluid model of electron-hole-plasmon can be derived by
the similar fashion. To this end, let us consider the two-fluid
model given by

∂t f+ + �v+ · ∂�x f+ + �F · ∂�k f+ = C+[ f ] + Cdis
+ [ f ],

∂t f− + �v− · ∂�x f− + �F · ∂�k f− = C−[ f ] + Cdis
− [ f ], (A1)

where �v+ denotes Fermi velocity of an electron and �v− de-
notes Fermi velocity of a hole under an external force �F . Here
C+[ f ] and C−[ f ] are collision terms given by Eq. (12) of the
main text:

C+[ f ] = −δ f+
τ+

+ δ f−
τ−

,

C−[ f ] = −δ f−
τ−

+ δ f+
τ+

. (A2)

Within linear-response theory, δ f± is a solution of Eq. (12) of
the main text given by(

δ f+
δ f−

)
= 1

1
τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

)
×

(− 1
τ−

(D f 0
+ + D f 0

−) − 1
τ dis D f 0

+
− 1

τ+
(D f 0

+ + D f 0
−) − 1

τ dis D f 0
−

)
, (A3)

where we define a shorthand D f 0
± = (− ε±−μ

T ∂�xT − e �E ) ·
∂�k f 0

±.
The conservation laws of momentum and charge are rela-

tively easy to show. They require that∫
d�k

(2π )2
�k(C+[ f ] + C−[ f ]) = 0 (A4)

and ∫
d�k

(2π )2
C+[ f ] + C−[ f ] = 0. (A5)

These two conditions are trivially fulfilled by C±[ f ] given in
Eq. (7) provided that τ± are constant.

The conservation law of energy, on the other hand, is more
involved. One can show that energy is conserved as long as
the following equation is satisfied:∫

d�k
(2π )2

ε+(�k)C+[ f ] + ε−(�k)C−[ f ] = 0. (A6)

Here single-particle energy dispersion ε±(�k) = ±vF k, and,
because of particle-hole symmetry, ε+(�k) = −ε−(�k) = ε.
Substitute Eq. (7) into (9), we find that

1

τ+

∫
d�k

(2π )2
εδ f+ = 1

τ−

∫
d�k

(2π )2
εδ f−, (A7)

which in turn reduces to

1

τ+

∫
d�k

(2π )2
ε∂�k f 0

+ = 1

τ−

∫
d�k

(2π )2
ε∂�k f 0

− (A8)

upon a substitution of δ f± from Eq. (8). This equa-
tion is always true since both sides vanish upon an angular
integration.

APPENDIX B: NUMERICAL EVALUATION OF THE
SCATTERING TIME FOR ELECTRON-HOLE DRAG

In this Appendix, we discuss how to perform the
relaxation-time approximation for electron-hole drag on a
systematic level. To this end, we consider a set of coupled
Boltzmann equations for a two-dimensional Dirac electron-
hole plasma. In the companion paper [48], we derive these
equations from a Keldysh quantum field theory within a per-
turbation theory up to second order. The equations read as

∂t fλ(�x, t, �k) + λvF k̂ · ∂�x fλ(�x, t, �k) − e �E · ∂�k fλ(�x, t, �k)

= −
∫

d�k1

(2π )2

d �q
(2π )2

2πδ[ελ(�k) − ελ1 (�k − �q) − ελ2 (�k1 + �q) + ελ3 (�k1)]Rλλ1λ3λ2 (�k, �k1, �q)

× [ fλ(�k) fλ3 (�k1)[1 − fλ1 (�k − �q)][1 − fλ2 (�k1 + �q)] − [1 − fλ(�k)][1 − fλ3 (�k1)] fλ1 (�k − �q) fλ2 (�k1 + �q)]. (B1)

We introduce the shorthand notation for the transition proba-
bility that is

Rλλ1λ3λ2 (�k, �k1, �q) = 2[|Tλλ1λ3λ2 − Tλλ2λ1λ3 |2

+ (N − 1)(|Tλλ1λ3λ2 |2 + |Tλλ2λ1λ3 |2)],

(B2)

where

Tλλ1λ2λ3 (�k, �k1, �q) = V (�q)

2
Mλλ1

�k,�k−�qMλ2λ3

�k1,�k1+�q (B3)

with N being the number of flavors. The Coulomb inter-
action in Fourier space is V (�q) = 2πα/q, where α is the
fine-structure constant characterizing the strength of the in-
teraction. The coherence factor coming from the overlap of
the wave function is defined according to

Mλλ1

�k,�k1
= (

U†
�k U�k1

)
λλ1

(B4)

and

U�k = 1√
2

(− exp(−iθ�k ) exp(−iθ�k )
1 1

)
. (B5)
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Here tan(θ�k ) = ky/kx and k denotes the magnitude of the
momentum �k. Moreover, λ, λ1, λ2, λ3 = ± are energy-band
indices, + for the conduction band and − for the valence band.
The collision integral on the right-hand side describes a pro-
cess that an electron in the energy band λ and the momentum
state �k is scattered into the energy band λ1 and momentum
state �k + �q by a collision with another electron in band λ3

and state �k1, which is itself scattered into the energy band λ2

and state �k1 − �q. The initial states �k and �k1 have to be filled and
the final states �k − �q and �k1 + �q must be empty for this event
to take place. The factors fλ(�k) and fλ3 (�k1) are the occupation
numbers of these states. 1 − fλ1 (�k − �q) and 1 − fλ2 (�k1 + �q)
describe the probability that the final states are unoccupied.
The conservation of energy is taken into account by the delta
function. The transition probability of this event is Rλλ1λ3λ2 .

Next, we consider the electron-hole drag part of the
collision integral that is when λ = λ1 and λ2 = λ3 = −λ.
Moreover, we are interested in a steady state and homoge-
neous solution, so the time-derivative and space-derivative
terms on the left-hand side of the Boltzmann equations are

zero. In the linear-response regime, we may solve the Boltz-
mann equations to linear order using the ansatz fλ(�k) =
f 0
λ (�k) + δ fλ(�k), where

δ fλ(�k) = gλ(�k)e �E · ∂�k f 0
λ (�k)

= gλ(�k)e �E · λvF

�k
k

f 0
λ (�k)[1 − f 0

λ (�k)]. (B6)

The unknown function gλ(k) is determined by solving the
Boltzmann equations. It is usually expanded in terms of an
appropriate set of basis functions

gλ(�k) =
∑
n,p

τ
(n,p)
λ φ

(n,p)
λ (k), (B7)

where τ
(n,p)
λ can be interpreted as a relaxation time for the

corresponding mode. Here, we use

φ
(n,p)
λ (k) = λpkn. (B8)

After linearizing the Boltzmann equations, we obtain

∂�k f 0
λ (�k) = −

∫
d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
λ (�k) f 0

−λ(�k1)
[
1 − f 0

λ (�k − �q)
][

1 − f 0
−λ(�k1 + �q)

]]

×
[
λvF

�k
k

gλ(k) − λvF

�k1

k1
g−λ(k1) − λvF

�k − �q
|�k − �q|gλ(|�k − �q|) + λvF

�k1 + �q
|�k1 + �q|g−λ(|�k1 + �q|)

]
. (B9)

Here we introduce a shorthand notation

P (�k, �k1, �q) = 2πδ
(
ελ(�k) − ελ1 (�k − �q) − ελ2 (�k1 + �q) + ελ3 (�k1)

)
Rλλ1λ3λ2 (�k, �k1, �q).

We are particularly interested in current relaxation, so we look at the current mode φ
(0,1)
λ (k) = λ and assume that the other modes

are not excited. By projecting the Boltzmann equation onto this mode, we find

∫
d�k

(2π )2
φ

(0,1)
λ (k)

�k
k

· ∂�k f 0
λ (�k) = −

∫
d�k

(2π )2

d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
λ (�k) f 0

−λ(�k1)
[
1 − f 0

λ (�k − �q)
][

1 − f 0
−λ(�k1 + �q)

]]

× φ
(0,1)
λ (k)

�k
k

·
[
λvF

�k
k
τ

(0,1)
λ φ

(0,1)
λ (k) − λvF

�k1

k1
τ

(0,1)
−λ φ

(0,1)
−λ (k1)

− λvF

�k − �q
|�k − �q|τ

(0,1)
λ φ

(0,1)
λ (|�k − �q|) + λvF

�k1 + �q
|�k1 + �q|τ

(0,1)
−λ φ

(0,1)
−λ (|�k1 + �q|)

]
. (B10)

To evaluate the current relaxation time τ
(0,1)
λ , we again assume that the mode corresponding to φ

(0,1)
−λ is not excited, this gives

1

τ
(0,1)
λ

(∫
d�k

(2π )2
φ

(0,1)
λ (k)

�k
k

· ∂�k f 0
λ (�k)

)
= −

∫
d�k

(2π )2

d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
λ (�k) f 0

−λ(�k1)
[
1 − f 0

λ (�k − �q)
][

1 − f 0
−λ(�k1 + �q)

]]

× φ
(0,1)
λ (k)

�k
k

·
[
λvF

�k
k
φ

(0,1)
λ (k) − λvF

�k − �q
|�k − �q|φ

(0,1)
λ (|�k − �q|)

]
, (B11)

and similarly τ
(0,1)
−λ is determined from

1

τ
(0,1)
−λ

(∫
d�k

(2π )2
φ

(0,1)
λ (k)

�k
k

· ∂�k f 0
λ (�k)

)
= −

∫
d�k

(2π )2

d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
λ (�k) f 0

−λ(�k1)
[
1 − f 0

λ (�k − �q)
][

1 − f 0
−λ(�k1 + �q)

]]

× φ
(0,1)
λ (k)

�k
k

·
[

− λvF

�k1

k1
φ

(0,1)
−λ (k1) + λvF

�k1 + �q
|�k1 + �q|φ

(0,1)
−λ (|�k1 + �q|)

]
. (B12)
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FIG. 12. Numerical solution of the relaxation time for electron-hole drag as a function of chemical potential μ.

These integrals can be evaluated numerically. In Fig. 12, we plot the relaxation time for electron-hole drag 1/τ±, which we
defined from the discussion above according to

1

τ+
= −

∫
d�k

(2π )2

d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
+(�k) f 0

−(�k1)[1 − f 0
+(�k − �q)][1 − f 0

−(�k1 + �q)]
]

× φ
(0,1)
+ (k)

�k
k

·
[
vF

�k
k
φ

(0,1)
+ (k) − vF

�k − �q
|�k − �q|φ

(0,1)
+ (|�k − �q|)

]
,

1

τ−
= −

∫
d�k

(2π )2

d�k1

(2π )2

d �q
(2π )2

P (�k, �k1, �q)
[

f 0
+(�k) f 0

−(�k1)[1 − f 0
+(�k − �q)][1 − f 0

−(�k1 + �q)]
]

× φ
(0,1)
+ (k)

�k
k

·
[

− vF

�k1

k1
φ

(0,1)
− (k1) + vF

�k1 + �q
|�k1 + �q|φ

(0,1)
− (|�k1 + �q|)

]
. (B13)

We find that the relaxation time decays exponentially in the
large-μ limit which is the Fermi-liquid regime. One may
understand this by observing that the relaxation time takes the
form

1

τ±
=

∫
f 0
+(�k) f 0

−(�k1)[1 − f 0
+(�k − �q)][1 − f 0

−(�k1 + �q)][. . . ]

=
∫

1

e
k−μ

T + 1

1

e
−k1−μ

T + 1

1

e
−|�k−�q|+μ

T + 1

1

e
|�k1+�q|+μ

T + 1
[. . . ].

(B14)

In the large-μ limit, these become

1

τ±
≈

∫
�(μ − k)�(|�k − �q| − μ) exp(−μ/T )

[
. . .

]
.

(B15)

APPENDIX C: COMPARISON WITH OTHER
RELATED WORKS

In this Appendix, we compare our results to the other
related works, both theoretical and experimental, especially
the admittedly disputed measurement of the breakdown of
the Wiedemann-Franz law by Crossno et al. [6]. These works

argued that, close to the charge-neutrality point, electrons in
graphene are strongly correlated which leads to the breakdown
of the quasiparticle concept and invalidating the kinetic-theory
description of transport phenomena. As such, the other the-
oretical frameworks, which model interacting electrons in
graphene as a quantum liquid without quasiparticle excita-
tions, are chosen to analyze the transport measurements by
Crossno et al. [6]; relativistic hydrodynamics was used by
Lucas and collaborations while the AdS/CFT correspondence
was employed, for instance, by Rogatko et al. and Seo, Song,
Kim, Sachdev, and Sin [49–51].

In our paper, however, we insist upon using a kinetic-
theory approach. We find it manifests as same salient features
of thermoelectric transport coefficients as studied within
the relativistic hydrodynamic and AdS/CFT correspondence.
Moreover, it can be used to fit the experimental results pro-
vided that the collision integral is constructed in such a
way that momentum, energy, and charge are conserved in a
disorder-free limit. One can also derive hydrodynamic equa-
tions from the kinetic theory. In fact, the quantum critical
conductivity σQ, one of the important parameters of rela-
tivistic hydrodynamics, was theoretically calculated using a
Boltzmann equation.

We compare in Figs. 13 and 14 the results of our two-fluid
model to the experimental results. We are able to choose
the parameters τ0 and τ dis of our model that nicely fit the
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FIG. 13. A comparison of our two-fluid model with the experimental results of Crossno et al. [6] at the charge-neutrality point. We use
τ dis = 1.63 ps and 1/τ0 = 0.26 kBT

h̄ min(1,
kBT
|μ| ).

measurements close to the charge-neutrality point, while it
mismatches at high density. This does not, however, imply that
our model is wrong. In fact, the same problem has been found
in the previous approaches as well. Relativistic hydrodynam-
ics with a constant momentum relaxation time is not sufficient
to fit the measurements for the entire range of densities. Lucas
and collaborations solved this problem by carefully modeling
the momentum relaxation time due to electron-charge puddle

scatterings. So we believe that our model can be used to fit
the experiments as well if τ dis is modeled more carefully. We
leave this to be studied in the future.

Furthermore, there is another related work by Gallagher
et al. [10]. measuring optical conductivity of graphene at
charge neutrality. While, in the main text, we focus on dc
conductivity, our model is versatile enough to be solved for
σ (ω). We find that

σ (ω) = −e2
E+

(
1

τdis
+ 1

τ−
− 1

τ+

) + E−
(

1
τdis

− 1
τ−

+ 1
τ+

) − iω(E+ + E−)
1

τdis

(
1

τdis
+ 1

τ−
− 1

τ+

) − ω2 − iω
(

2
τdis

− 1
τ−

+ 1
τ+

) . (C1)

In Fig. 15, we show that our result matches nicely with the
experiment.

APPENDIX D: PLASMON MODE WITHIN THE RPA
APPROXIMATION

In this Appendix, we derive the energy dispersion re-
lation as well as the Landau damping for plasmon in a
two-dimensional Dirac system within the RPA approximation.
Here, we use units in which vF = 1. To this end, let us con-
sider the RPA dielectric function

εRPA(�q, ω) = 1 − V (�q)�(�q, ω). (D1)

The polarization function �(�k, ω) is given by the Lindhard
formula

�(�q, ω) = N
∑

λλ′=±1

∫
d �p

(2π )2
Fλλ′ ( �p, �q)

× f 0
λ ( �p) − f 0

λ′ (�q + �p)

ω + i0+ + ελ( �p) − ελ′ (�q + �p)
, (D2)

where λ, λ′ = ± denote the energy band, + denotes the con-
duction band, and − denotes the valence band. The coherence
factor is defined according to

Fλλ′ ( �p, �q) = 1
2 [1 + λλ′ cos(θ �p+�q − θ�q)]. (D3)

FIG. 14. A comparison of our two-fluid model with the experimental results of Crossno et al. [6] at T = 75 K. We use τ dis = 1.63 ps and
1/τ0 = 0.26 kBT

h̄ min(1,
kBT
|μ| ).
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FIG. 15. A comparison of our two-fluid model with the exper-
imental results of Gallagher et al. [10]. We use τ dis = 1.5 ps and
1/τ0 = 0.21 kBT

h̄ min(1,
kBT
|μ| ).

The Fermi-Dirac distribution function is

f 0
±( �p) = 1

e
ε± ( �p)−μ

T + 1
. (D4)

FIG. 16. Polarization function, in the unit of temperature T , at
a nonzero temperature and a chemical potential μ/T = 1 in the
momentum-frequency plane. The above plot shows the real part and
the lower plot shows the imaginary part.

Note that here we use a different notation from the main
text and work in terms of electrons only instead of elec-
trons and holes. The plasmon frequency (ω = ωp − iγp) is
obtained from zero of the RPA dielectric function. Let us note
that by defining it in this way the decay rate γp is positive.
If the damping is sufficiently weak (γp � ωp), we can ex-
pand the polarization function to leading order in γp. This
gives

�(�q, ωp − iγp) ≈ Re�(�q, ωp) − iγp∂ωRe�(�q, ω)|ω=ωp

+ i Im�(�q, ωp). (D5)

By substituting this expansion into Eq. (D1), one finds that
the energy of the plasmon is determined from the real part
according to

1 − V (�q)Re�(�q, ωp) = 0, (D6)

whereas the decay rate is a solution of the imaginary part
which is given by

γp = Im�(�q, ω)

∂ωRe�(�q, ω)

∣∣∣∣∣
ω=ωp

. (D7)

A solution to Eq. (D6) exists only when Re� > 0. In the
upper panel of Fig. 16, we show the real part of the polariza-
tion in the momentum-frequency plane. We observe that Re�
is positive when ω > q. Furthermore, considering Eq. (D7),
we find that a stable plasmon solution requires Im� = 0.
In the lower panel of Fig. 16, we plot the imaginary part
of the polarization function. We observe that although it is
not identically zero, it is still negligibly small in the low-
momentum limit and ω > q. Consequently, we may expect
a long-wavelength underdamped plasmon mode with almost
infinitely long lifetime.

Having made this observation, we expand the polariza-
tion function up to first order in q/ω by making use of the
following expressions:

F±±( �p, �q) = 1
2 [1 + cos (θ �p+�q − θ�q)] ≈ 1,

F±∓( �p, �q) = 1
2 [1 − cos (θ �p+�q − θ�q)] ≈ 1

4 ( �p · ∂�qθ�q)2,

f 0
λ ( �p + �q) ≈ f 0

λ (�q) + �p · ∂�q f 0
λ (�q),

ελ( �p + �q) ≈ ελ(�q) + �p · ∂�qελ(�q). (D8)

Let us first calculate the real part of the polarization
in Eq. (D2). The intraband contribution, when λ = λ′,
gives
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Re�(�q, ω) ≈ N
∑
λ=±1

∫
d �p

(2π )2

−�q · ∂ �p f 0
λ ( �p)

ω

[
1 + �q · ∂ �pελ( �p)

ω

]

= N

ω2

∫
d �p

(2π )2
[ f 0

+( �p)(�q · ∂ �p)2ε+( �p) − [1 − f 0
−( �p)](�q · ∂ �p)2ε−( �p)]

= Nq2

ω2

∫
p d p dθ

(2π )2
[ f 0

+( �p) + [1 − f 0
−( �p)]]

sin2 θ

p

= Nq2

4πω2

∫
d p[ f 0

+( �p) + [1 − f 0
−( �p)]]

= − Nq2

4πω2
T [Li1(−eμ/T ) + Li1(−e−μ/T )]

= Nq2

4πω2
T [log(1 + eμ/T ) + log(1 + e−μ/T )]

= Nq2

4πω2
T [log (2 + 2 cosh μ/T )]. (D9)

In contrast, the interband contribution, when λ = −λ′, gives a logarithmic correction which will be neglected in evaluating
the plasmon energy dispersion. For the case of nonzero dopings, at zero temperature, this interband contribution reads as
N p2

16πω
log(|ω−2μ

ω+2μ
|). By substituting Eq. (D9) into (D6), we can derive the dispersion relation for plasmon. It reads as

ωp(�q) = ±
√

N

2
αT q log [2 + 2 cosh(μ/T )]. (D10)

Note that this is the same result as we obtained from the Boltzmann approach in the main text.
Next, we consider the imaginary part of the polarization function. The main contribution to the imaginary part is from the

interband transition, when λ = −λ′. This gives

Im�(�q, ω) ≈ −Nπ
∑
λ=±1

∫
d �p

(2π )2

1

4
(�q · ∂ �pθ �p)2[ f 0

λ ( �p) − f 0
−λ( �p)

]
δ(ω + ελ( �p) − ε−λ( �p))

= −Nπ

∫
d �p

(2π )2

1

4

q2

p2
sin2(θ )[( f 0

+( �p) − f 0
−( �p))δ(ω + ε+( �p) − ε−( �p)) + ( f 0

−( �p) − f 0
+( �p))δ(ω + ε−( �p) − ε+( �p))].

Notice that since f 0
±( �p) depends only on the magnitude of the momentum �p, let us now denote it by f 0

±(p). The angular integral
can be performed, giving

Im�(�q, ω) ≈ − N

16
q2

∫ ∞

0

d p

p
[( f 0

+(p) − f 0
−(p))δ(ω + 2p) + ( f 0

−(p) − f 0
+(p))δ(ω − 2p)]

= − N

16
q2

∫ ∞

0

d p

p
( f 0

+(p) − f 0
−(p))(δ(ω + 2p) − δ(ω − 2p))

= − N

16
q2

∫ ∞

0

d p

p
( f 0

+(p) − f 0
−(p))

1

2
(δ(p + ω/2) − δ(p − ω/2)),

= N

16

q2

ω

(
1

e
|ω|/2−μ

T + 1
− 1

e
−|ω|/2−μ

T + 1

)
. (D11)

In the limit of zero temperature, this becomes

Im�R(�q, ω) ≈ − N

16

q2

ω
�(|ω| − 2|μ|), (D12)

which was found previously in Ref. [46]. It vanishes when
|ω| < 2|μ|, consequently, the long-lived plasmon mode exists
in this region. By substituting the real part in Eq. (D9) and the

imaginary part in Eq. (D11) into Eq. (D7), we find the decay
rate of plasmon. It reads as

γp(�q) = − πωp(�q)2

8T log(2 + 2 cosh μ/T )

×
(

1

e
|ωp(�q)|/2−μ

T + 1
− 1

e
−|ωp(�q)|/2−μ

T + 1

)
. (D13)
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FIG. 17. The plot shows the ratio of the plasmon decay rate eval-
uated in Eq. (D13) to the energy dispersion evaluated in Eq. (D10) for
small momenta. It can be observed that, within the low-momentum
approximation, the ratio is small. As a result, the plasmon is a well-
defined excitation. Here we use μ/T = 3, but it should be noted that
this feature is generic for any μ/T .

In Fig. 17, we show the ratio of the decay rate to the
energy evaluated above in Eqs. (D13) and (D10). We find
that γp/ωp � 1, so, within the low-momentum approxima-
tion, the plasmon is a well-defined excitation. However, as
we show in Fig. 18, the square-root q energy dispersion
enters the region ω < q where the plasmon becomes an over-
damped mode. This defined a momentum cutoff above which
the plasmon is an unstable mode. The momentum cutoff
satisfies

ωp(qc)/qc = 1, (D14)

which translates to

qc = N

2
αT log[2 + 2 cosh(μ/T )]. (D15)

FIG. 18. The plot shows the energy dispersion of plasmon. Here
we use μ/T = 3.

APPENDIX E: RELAXATION TIME OF PLASMON

In this Appendix, we are going to derive the relaxation time
τb for the plasmon used in the main text. In the companion
paper [48], we derive the Boltzmann equation for plasmons.
It reads as

∂t b(�x, �p, t ) + �vb · ∂�xb(�x, �p, t )

= −2απ2Nωp( �p)

p

∫
d �q

(2π )2
Fλλ′ ( �p + �q, �q)δ

(
ωp( �p)

+ ελ(�q) − ελ′ ( �p + �q)
)
[ fλ(�q)(1 − fλ′ ( �p

+ �q))b( �p) − (1 − fλ(�q)) fλ′ ( �p + �q)(1 + b( �p))]. (E1)

By substituting f = f 0 and b = b0 + δb to the Boltzmann
equation above, the left-hand side becomes

∂tδb(�x, �p, t ) + �vb · ∂�xT ∂T b0( �p), (E2)

and the collision integral becomes

− 2απ2Nωp( �p)

p

∫
d �q

(2π )2
Fλλ′ ( �p + �q, �q)δ(ωp( �p)

+ ελ(�q) − ελ′ ( �p + �q))
(

f 0
λ (�q) − f 0

λ′ ( �p + �q)
)
δb( �p)

= 2απωp( �p)

p
Im�δb

= −2γpδb, (E3)

where γp is the decay rate for plasmon in Eq. (D13). To obtain
the result above, we approximate the imaginary part of the po-
larization function at the same level as we did in the previous
section. Let us note that in principle there are contributions
of the form −δ f+/τ+b and −δ f−/τ−b to the collision integral
above. However, an evaluation of the 1/τ±b is equivalent to
solving the Boltzmann equation. This is beyond the scope of
this paper. For this approach, we refer the reader to Ref. [32].

APPENDIX F: THERMOELECTRIC RESPONSES OF A
HYBRID SYSTEM OF ELECTRONS, HOLES, AND

PLASMONS

In this Appendix, we discuss the role of the internal electric
potential in thermoelectric transport phenomena. One interest-
ing effect of this force term is the nonlocal transport response
which has been investigated, for example, in Refs. [36,52]. In
this paper, we focus on local thermoelectric transport. In this
case, the Hartree potential has a direct contribution to thermo-
electric transport phenomena via the collective charge-density
oscillations or plasmons. Plasmons do not contribute directly
to charge transport because they are electrically neutral. How-
ever, they give an extra contribution to the heat current which
is given by

�jQ
b =

∫
d �p

(2π )2 �vb( �p)ω( �p)δb, (F1)

where δb is deviation of the distribution function for plasmons
from the equilibrium solution. The deviation δb is a solution of
the linearized coupled Boltzmann equations. Here ω( �p) is the
energy dispersion of the plasmon given by Eq. (D10) [46,47].

We obtain the coupled system of Boltzmann equations for
a hybrid system of the electrons, holes, and plasmons and it

205126-20



HYDRODYNAMICS OF CHARGED TWO-DIMENSIONAL … PHYSICAL REVIEW B 106, 205126 (2022)

takes the form

(∂t + �vλ( �p) · �∇ ) fλ(�x, �p, t ) = Cλ[ f+, f−, b]( �p),

(∂t + �vb( �p) · �∇ )b(�x, �p, t ) = Cb[ f+, f−, b]( �p), (F2)

where b(�x, �p, t ) is the distribution function for the plasmons
which the velocity �vb( �p). To obtain the qualitative feature of
the thermoelectric responses, we can resort to the relaxation-
time approximation and use

Cλ[ f+, f−, b]( �p) = −δ fλ
τλ

+ δ f−λ

τ−λ

− δ fλ
τ dis

+ δb

τb
(F3)

and

Cb[ f+, f−, b]( �p) = − δb

τb/2
, (F4)

where τb is the Landau damping of a plasmon into an electron-
hole pair. Note that we use the relaxation-time approximation
discussed in the main text which respects the required conser-
vation laws. Within linear-response theory, in the presence of
an external electric field �E and a temperature gradient �∇T , we
linearize the Boltzmann equations to linear order in external
fields. The deviation of the distribution functions to linear
order in the external disturbances can be solved from these
Boltzmann equations. This solution is used to determine the
charge and heat currents and, consequently, the thermoelectric
coefficients. We find that the expression for the electric con-
ductivity remains the same as in Eq. (21) since plasmons do
not have a direct contribution to the charge current. However,
they can relax electrons, and thus modify the relaxation time
for electron-hole drag according to

1

τ+
=

1
τ ′

0
[K− + 2(T− + μE−)]

[K− + 2(T− + μE−)] − [K+ + 2(T+ + μE+)]
,

1

τ−
=

− 1
τ ′

0
[K+ + 2(T+ + μE+)]

[K− + 2(T− + μE−)] − [K+ + 2(T+ + μE+)]
,

(F5)

where we defined here second-rank tensors

��K+ =
∫

�k
∂�kb0�v+ω(k),

��K− =
∫

�k
∂�kb0�v−ω(�k), (F6)

and ��K± = K±��1. Note that in calculating K± above, the in-
tegrations have the momentum cutoff given by Eq. (D15).
Beyond this value, the quasiparticle becomes overdamped
(see Appendix B) and thus its corresponding distribution
function is not well defined. We further use τ ′

0 = τb since
the electron-hole drag results effectively from the Landau
damping.

The thermoelectric coefficient has an additional contribu-
tion from the drag. It is given by

α = αe + αdrag, (F7)

where

αdrag = e

T

(
1

τ dis + 2
τ−

)
K+ + (

1
τ dis + 2

τ+

)
K−

2
τ dis

(
1

τ dis + 1
τ+

+ 1
τ−

) (F8)

and αe is given by Eq. (23). We observe that αdrag = 0 at
charge neutrality. Similarly, there are three contributions to
the thermal conductivity according to

κ = κe + κb + κdrag. (F9)

Here κe is from electrons and holes, which is given by
Eq. (22), and κb is a direct contribution from plasmons, which
is given by

κb = −τb/2

T

∫
�k
(ω(�k))2�vb · ∂�kb0. (F10)

In addition, there is a contribution due to plasmon drag ac-
cording to

κdrag = − 1

T

1
2

τ dis

(
1

τ dis + 1
τ−

+ 1
τ+

)
×

∫
�k
ω(�k)

(
�v−(ε− − μ)

1
τ dis + 2

τ+

+ �v+(ε+ − μ)
1

τ dis + 2
τ−

)
· ∂�kb0.

(F11)

Recall that the momentum integrals in κb and κdrag above
have an upper bound set by the momentum cutoff given by
Eq. (D15). Figures 10 and 11 show the thermoelectric coeffi-
cients of the hybrid system of electrons, holes, and plasmons.
We observe the enhancement of the Weidemann-Franz ratio
not only at the charge-neutrality point, but also at high doping
due to the extra contribution from the plasmons to the heat
transport.
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