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Abstract
Automatic text processing is now a mature discipline in computer science, and so
attempts at advancements using quantum computation have emerged as the new fron-
tier, often under the termof quantumnatural language processing. Themain challenges
consist in finding the most adequate ways of encoding words and their interactions on
a quantum computer, considering hardware constraints, as well as building algorithms
that take advantage of quantum architectures, so as to show improvement on the per-
formance of natural language tasks. In this paper, we introduce a new framework that
starts from a grammar that can be interpreted by means of tensor contraction, to build
word representations as quantum states that serve as input to a quantum algorithm.We
start by introducing an operator measurement to contract the representations of words,
resulting in the representation of larger fragments of text. We then go on to develop
pipelines for the tasks of sentence meaning disambiguation and question answering
that take advantage of quantum features. For the first task, we show that our contrac-
tion scheme deals with syntactically ambiguous phrases storing the various different
meanings in quantum superposition, a solution not available on a classical setting. For
the second task, we obtain a question representation that contains all possible answers
in equal quantum superposition, and we implement Grover’s quantum search algo-
rithm to find the correct answer, agnostic to the specific question, an implementation
with the potential of delivering a result with quadratic speedup.
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1 Introduction

Recent developments in quantum computation have given rise to new and exciting
applications in the field of natural language processing (NLP). Pioneering work in this
direction is the DisCoCat framework [1, 2], which introduces a compositional map-
ping between types and derivations of Lambek’s type-logical grammars [3, 4] and a
distributional semantics [5] based on vector spaces, linear maps, and tensor products.
In this framework, the interpretations of large text fragments are obtained by perform-
ing a tensor contraction between the tensor interpretations of individual words. To
interpret text fragments taking into account their grammatical features, while staying
in the vector space semantics, the dimension of the representation quickly scales, as it
depends on the complexity of the syntactic type, which has been a limiting feature in
vector-based semantics implementations [6]. This motivates a representation of words
as quantum states, counting on the potential of quantum computers to outperform the
limitations of classical computation both in terms of memory use [7] and in terms of
processing efficiency [8]. In this setting, words are represented asmultipartite quantum
states, with the theory predicting that, when contracted with one another, the meaning
of larger text fragments is encoded in the resulting quantum states.

The challenge is now in implementing these contractions on quantum circuits.
Circumventing this issue, DisCoCirc [9] introduces a different way of representing
the meaning of a sentence, where certain words are seen as quantum gates that act
as operators on input states representing other words. The DisCoCirc approach uses
quantummachine learning algorithms [10] for NLP [11, 12] where circuit parameters,
related to word representations, are then learned by classical optimization and used
to predict different binary labels statistically, such as the answers to yes-no questions
[13], topics of phrases, or the distinction between subject and object relative clauses
[14].

Although these implementations can play an important role in speeding up NLP
tasks based on current machine-learning ideas and techniques, they do not go beyond
the current paradigm in terms of classification tasks. Furthermore, a number of the-
oretical advances using the tensor contractions from DisCoCat cannot be directly
reproduced, since the mapping from a phrase to a circuit requires extra steps that
deviate from the original grammatical foundation, not treating every word as an input
at the same level. We refer here to the work done in expanding the toolbox of word
representations with density matrices [15], so as to achieve good results on discerning
different word and phrase senses [16–18], and in entertaining simultaneously different
possible interpretations of texts, either by looking at an incremental interpretation of
the parsing process [19], or by considering a single representation for the multiple
readings of syntactic ambiguities [20, 21]. This presents a strong incentive to find
an alternative quantum circuit implementation that sticks to the original grammatical
formulation, preserving the previous achievements, where all words are taken as input
on an equal footing. In addition, it is our belief that a quantum framework can con-
tribute a great deal to the reestablishment of rule-based NLP, as a desirable alternative
to large-scale statistical approaches [22], since certain computations become more
efficient if we use the appropriate quantum algorithms, as we will illustrate in the case
of question answering where quadratic quantum speedup can be achieved.
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The paper is structured as follows. In Sect. 2, we develop the grammatical frame-
work and quantum state interpretation thereof, setting the stage for the types of
linguistic problems we will deal with here. Here, we introduce the idea that words are
represented as vectors, matrices, and higher-rank tensors, depending on their gram-
matical function, that contract with each other following grammatical rules, explaining
how we can arrive at the interpretations of larger fragments of text. In Sect. 3, we put
forward an approach where the words are interpreted as quantum states, and we show
how the contractions between word representations can be implemented on a quantum
computer as the measurement of a permutation operator. We elaborate on how this
setting permits the simultaneous treatment of ambiguous phrases in English. In Sect. 4,
we apply Grover’s algorithm to question answering, using the framework developed
in the previous section to turn the representation of the question and answers into the
input of the algorithm, together with an oracle that identifies that correct answers.
Finally, in Sect. 5 we give an overview of the developments introduced and discuss
further work.

2 Syntax–semantics interface

In this section, we introduce the grammatical framework that we will be working
with. It consists of a categorial grammar as the syntactic front end, together with a
compositional mapping that sends the types and derivations of the syntax to a vector-
based distributional interpretation. This is necessary to understand the type of linguistic
problems that we can address and how they can be solved using a quantum circuit.

2.1 Type logic as syntax

The key idea of categorial grammar formalisms is to replace the parts of speech of
traditional grammars (nouns, adjectives, (in)transitive verbs, etc.) by logical formulas
or types; a deductive system for these type formulas then determines their valid com-
binations. The idea can be traced back to Ajdukiewicz [23], but Lambek’s syntactic
calculus [3] is the first full-fledged formulation of a categorial-type logic that provides
an algorithm to effectively decide whether a phrase is syntactically well formed or
not.

Let us briefly discuss types and their combinatorics. We start from a small set of
primitive types, for example s for declarative sentences, n for noun phrases, w for
open-ended interrogative sentences, etc. From these primitive types, compound types
are then built with the aid of three operations: multiplication •, left division \, and
right division /. Intuitively, a type A • B stands for the concatenation of a phrase of
type A and a phrase of type B (“A and then B”). Concatenation is not commutative
(“A and then B” �= “B and then A”). Hence, we have left vs right division matching
the multiplication: A\B can be read as “give me a phrase A to the left, and I’ll return
a phrase B”; B/A is to be interpreted as “give me a phrase A to the right, and I’ll
return a phrase B.”We can codify this informal interpretation in the rules below, where
A1 • · · · • An � B means that from the concatenation of phrases of type A1, . . . , An

one can derive a phrase of type B. Hence,
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B/A • A � B, (1)

A • A\B � B. (2)

As examples of simple declarative sentences, consider Alice talks, or Bob listens. In
the former case, we assign the type n to Alice and the type n\s to the intransitive verb
talks. We start by multiplying the word types in the order by which the words appear,
forming n • n\s. Then, it suffices to apply rule (2), with A = n and B = s, to show
that n • n\s derives s, i.e., constitutes a well-formed sentence. Conversely, the lack
of a derivation of s from n\s • n (talks Alice) allows us to conclude that this is not a
well-formed sentence. These, and the later examples, illustrate only the simplest ways
of combining types, but these will suffice for the purposes of this paper. To obtain a
deductive system that is sound and complete with respect to the intended interpretation
of the type-forming operations, Lambek’s syntactic calculus also includes rules that
allow one to infer A � C/B and B � A\C from A • B � C . Moreover, to deal
with linguistic phenomena that go beyond simple concatenation, Lambek’s type logic
has been extended in a number of ways that keep the basic mathematical structure
intact but provide extra type-forming operations for a finer control over the process
of grammatical composition. See Ref. [24] for a survey and Ref. [21] for a quantum
interpretation of such structural control operations.

2.1.1 Syntactic ambiguities

To see rule (1) in action, consider adjectives in English. An adjective is expecting a
noun to its right, and, once it is composed with a noun, it must derive something that
can be used, for instance, as the argument of an intransitive verb, which, as we have
seen, is of type n. Thus, an adjective must be of type n/n, and we can use rule (1) to
prove that, as an example, rigorous mathematicians is a well-formed phrase of type n.

For certain phrases, there is more than one way of deriving the target type, with
each derivation corresponding to a distinct interpretation. As an example, consider the
noun phrase rigorous mathematicians and physicists, an ambiguous structure that has
already been studied in the context of vector representations in Ref. [20]. Here, the
conjunction and gets the type (n\n)/n; for the complete phrase, we want to show that
the following judgment holds:

n/n • n • (n\n)/n • n � n. (3)

There are two possible interpretations: a first one, where the adjective rigorous has
scope over mathematicians and physicists, and a second one, where it only has scope
over mathematicians. Each of these interpretations is connected to a different way of
deriving the goal formula n. The first reading is obtained by applying the rules in the
following order:
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n/n • n • (n\n)/n • n
︸ ︷︷ ︸

(1)�n\n
︸ ︷︷ ︸

(2)�n
︸ ︷︷ ︸

(1)�n

, (4)

while for the second reading the rules apply in a different order as

n/n • n
︸ ︷︷ ︸

(1)�n
• (n\n)/n • n
︸ ︷︷ ︸

(1)�n\n
︸ ︷︷ ︸

(2)�n

. (5)

Our goal is to treat both readings simultaneously until further information allows us
to clarify which of the readings is the intended one.

2.1.2 Question answering

Question answering (Q&A) is one of the most common tasks in NLP [25]. Questions
can be close-ended, having “yes” or “no” for an answer, or open-ended, starting by
“who,” “why,” or “what,” also referred to as wh-questions. For P possible answers, it
is always possible to turn wh-questions into close-ended questions. If we know that
either Alice, Bob, Carol, or Dave is talking, we can turn “Who talks?” into a series
of four questions “Does [name] talk?”. Thus, for P possible answers, there are P
closed-ended questions that we need to check.1 We would like to find the answer to
the open-ended questions directly, without this mapping. Syntactically, wh-questions
are open-ended interrogative sentences, and as such are assigned their own type w.
For a subject question, the type of the word who is thus w/(n\s), since, when applied
to an intransitive verb using rule (2), it derives the interrogative type w.

2.2 Vectors as semantics

In the context of automatic processing of text, the most widely used form of represent-
ing a word is by a unique array of values, referred to as a “word embedding.” Seen as
vectors, we can cluster or compare them using varied geometric tools [26–28]. Repre-
senting the meanings of words as such is widely known as “distributional semantics”
[29]. In earlier work, vector entries were related to how often awordwould appear next
to otherwords [30], following the “distributional hypothesis” that states that words that
appear in similar contexts are themselves similar [31]. Nowadays, word embeddings
are extracted using language models, targeted on the prediction of the most likely next

1 This is a common way of turning Q&A into a classification problem, where each close-ended question
gets a binary label, depending on whether the answer is true or false. Binary classification problems are
some of the most well-established applications of machine learning. After finding a way of representing
the question statements, usually as single vectors, a number of these labeled statements is used to predict
the labels of the holdout statements.
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word [32, 33]. This presents a problem for the representation of larger fragments, since
they are less likely to appear in a text, making their distributional array rather sparse
and thus not particularly meaningful. Larger fragments can nevertheless receive an
embedding, but a direct connection with grammatical composition is lost.

To tackle this problem, the authors in Ref. [1] propose that the arrays represent-
ing different words depend on their syntactic types, namely having a dimensionality
that mirrors their type complexity. This introduces a way of composing the meanings
of the individual words that is homomorphic to the syntactic derivations, generat-
ing a representation of larger fragments from the representation of smaller ones. For
completeness, the mapping between the syntax and the semantics is done using the
formalism of vector spaces. Each syntactic type A is mapped to its semantic type via
�A�. Each semantic type is then interpreted as a vector space, where the particular
words are represented. Let there be three basic semantic spaces {S, N , I }. The simple
syntactic types n and s are mapped, respectively, to �n� = N and �s� = S. Each
individual word is an element of the semantic space that interprets its syntactic type.
For instance, the interpretation of the word physicists is now seen as a vector in N ,
this being the vector space where the distributional information of nouns is stored.
Similarly, Alice talks is represented by a vector in S, that has as basis elements two
orthogonal states corresponding to “true” and “false.” The interrogative type w is
mapped to �w� = I ⊗ N ⊗ I ⊗ S. The vector space I (“index”) has basis elements
that are in one-to-one correspondence to the nouns that can be used as answers to the
interrogative sentence, providing an enumeration of the noun vectors of N . This will
be useful later when we need to index the quantum states associated with each possible
answer.

The vector spaces that translate the directional andmultiplicative types are obtained
recursively as

�A\B� = �A/B� = �A • B� = �A� ⊗ �B�, (6)

where ⊗ forms a tensor product space, inductively starting from A, B,C ∈ {n, s, w}.
Note that the tensor is commutative, such that �A� ⊗ �B� ∼= �B� ⊗ �A�. We perform
tensor contractions as the interpretations of the rules in Eqs. (1) and (2). Thus, an
intransitive verb is represented as a matrix in N ⊗ S, that when acting on a vector of
type N returns a vector in S. Using the notation �.� to represent the tensor interpretation
of a word, and assuming an orthogonal basis {n̂i } of N and an orthogonal basis {ŝi }
of S, the composition of the vectorial interpretations of Alice and talks leads to the
interpretation of the entire sentence as a vector in S. The word meanings for this
sentence are represented as

�Alice� =
∑

p

Ap n̂ p (7)

�talks� =
∑

qr

tqr n̂q ⊗ ŝr , (8)
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and the full sentence meaning as

�Alice talks� = �Alice� · �talks� =
∑

pr

Aptpr ŝr . (9)

A more refined treatment of the translation from the Lambek types to tensor spaces
has been given in Ref. [20].

Similarly, the semantic space for an adjective can be seen as amatrix in N⊗N . Note
that here the analogy between a matrix modifying a vector and the adjective as a noun
modifier is the clearest. Let us look at the meanings of rigorous and mathematicians,
which can be represented as

�rigorous� =
∑

i j

ri j n̂i ⊗ n̂ j (10)

�mathematicians� =
∑

k

mk n̂k . (11)

The meaning of rigorous mathematicians will be given by the application of the
translation of rule (1) to tensors. At the components level, it is thematrixmultiplication
between the rigorousmatrix and themathematicians vector, which gives, consistently
with n being the syntactic type of this fragment, a vector in N , as

�rigorous mathematicians�

= �rigorous�.�mathematicians� =
∑

i j

ri j m j n̂i . (12)

The different order of application of Lambek rules in Eqs. (4) and (5) translates into
different vectors that represent the two readings of rigorousmathematicians and physi-
cists. The words and and physicists are given the vector representations

�and� =
∑

lmn

almn n̂l ⊗ n̂m ⊗ n̂n, (13)

�physicists� =
∑

o

po n̂o. (14)

The reading from Eq. (4) is represented by the vector

�rigorous mathematicians and physicists�1 =
∑

i jln

ri j ml al jn pn n̂i , (15)

whereas the reading from Eq. (5) is encoded in the vector

�rigorous mathematicians and physicists�2 =
∑

jlmn

rl j m j almn pn n̂m, (16)
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which are of the same form as the results in Ref. [20].
For interrogative sentences, the word who will have the semantic function of “lift-

ing” an intransitive verb with representation in space N ⊗ S to a representation in
I ⊗ N ⊗ I ⊗ S, since

�w/(n\s)� = I ⊗ N ⊗ I ⊗ S ⊗ N ⊗ S
∼= I ⊗ N ⊗ I ⊗ S ⊗ S ⊗ N . (17)

An element of this space contracts with an element of the representation space of
intransitive verbs, N ⊗ S, associating the index of every possible answer, in I , with
both its representation in N and its truth value in S.

3 Implementation

In this section, we motivate a passage from vectors to quantum states and we intro-
duce them as inputs of quantum circuits that calculate contractions between word
representations.

3.1 Quantum states as inputs of a quantum circuit

We now switch to a representation of word embeddings as vectors in complex-valued
inner product vector spaces, i.e., Hilbert spaces. Our atomic semantic spaces N , S, and
I will now be replaced by their quantum counterparts as the interpretation spaces. We
thus have the Hilbert spaces HN , HS , and H⊗p, respectively, with H⊗p the p-qubit
Hilbert space corresponding to the complex-valued realization of the semantic type
I , where we assume that P = 2p. For instance, with {|ni 〉} the basis of HN , we now
have

�Alice� = |Alice〉 =
∑

p

Ap |n p〉. (18)

Note that this space allows us to expand our representations with complex-valued
entries, and a proper contraction between the words will require the conjugation of
some of the components, i.e.,

�Alice�∗ = 〈Alice| =
∑

p

A∗
p 〈n p|. (19)

Let the input of a circuit be the product of the states that interpret each word in
the language fragment in question. Our running example of a noun subject and an
intransitive verb Alice talks is now represented as the input

|Alice〉|talks〉 ∈ HN ⊗ HN ⊗ HS .
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Fig. 1 Quantum circuit with
intransitive sentence input

Fig. 2 Quantum circuit with
syntactically ambiguous input

The basis of HS , {|si 〉}, is the single-qubit spin states |0〉 and |1〉, where the former
represents a sentence that is false and the latter one that is true. In this setting, it is also
possible to establish a probability distribution over the truthfulness of a sentence.

Each of the elements of the interpreting spaces will be represented by a labeled
quantum wire, thus rewriting the input state as

|Alice〉|talks〉 ∈ H1
N ⊗ H2

N ⊗ H3
S, (20)

used as the input of a quantum circuit, as shown in Fig. 1.
The ambiguous fragment rigorous mathematicians and physicists will be initially
represented as a unique state in the tensor space, formed by numbered copies of the
HN space as

|rigorous〉|physicists〉|and〉|mathematicians〉
∈ HN

1 ⊗ HN
2 ⊗ HN

3 ⊗ HN
4 ⊗ HN

5 ⊗ HN
6 ⊗ HN

7 ,

forming the input of a quantum circuit as in Fig. 2.
From here, different contractions, corresponding to the two possible readings, will be
represented by different circuits acting on this same input, as we show in detail below.

3.2 Contraction as measurement of permutation operator

To compute the desired contraction using the quantum circuit, we calculate the expec-
tation value of the permutation operator ̂Pi j on the input states/wires indexed by i, j .
These correspond to the spaces with elements that we want to contract, following the
syntactic rules. For two states |φ1〉i and |φ2〉 j belonging to two numbered copies of a

Hilbert space, respectively, H�A�
i and H�A�

j , we refer to the following quantity as the
measurement of the expectation value of the permutation operator:
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〈φ1|i 〈φ2| j ̂Pi j |φ1〉i |φ2〉 j =
= 〈φ1〉φ2i 〈φ2〉φ1 j ≡ |〈φ1〉φ2|2 . (21)

In general, to obtain this quantity on a quantum circuit, one must perform repeated
measurements of the input states |φ1〉i and |φ2〉 j , on a basis that diagonalizes the
permutation operator, summing the frequency of outcomes, using the respective oper-
ator’s eigenvalues as weights. We introduce the following circuit notation to indicate
the measurement of the permutation operator:

i

̂Pi jj

.

If the measuring device is only capable of performing measurements in the standard
basis, then we must additionally apply to the input states the inverse of the trans-
formation that diagonalizes the permutation operator, before performing the repeated
measurements. In Appendix 1, we show how this can be achieved using the inverse
transformation to the Bell basis in the case of two-qubit inputs. In this case, the mea-
surement of the expectation value can be understood as the map between the SWAP
operator that represents the permutation operator in that case, and the projection oper-
ator on the maximally entangled state |β00〉, which, although not a homomorphism,
will be diagonal in the same basis, since both operators share an algebra.

We now show in two ways that the final representation of a simple sentence such as
Alice talks is stored as an effective state |ψ〉 inHS

3 , aftermeasuring ̂P12 not normalizing
for clarity, with input as given in Eq. (20).
Using operators Assume that an operator ̂O3 is being measured in space HS

3 . Its
expectation value is given by 〈ψ |̂O3|ψ〉, after measuring ̂P12, with

〈Alice|〈talks|̂P12 ⊗ ̂O3|Alice〉|talks〉
≡ 〈ψ |̂O3|ψ〉. (22)

The left-hand side unfolds as follows:

〈Alice|〈talks| ̂P12 ⊗ ̂O3 |Alice〉|talks〉 =
=

∑

pqr ,p′q ′r ′
A∗
pt

∗
qr 〈n pnqsr | ̂P12 ⊗ ̂O3

= Ap′ tq ′r ′ |n p′nq ′sr ′ 〉
=

∑

pqr ,p′q ′r ′
A∗
pt

∗
qr 〈n pnqsr | ̂O3 Ap′ tq ′r ′ |nq ′n p′sr ′ 〉

=
∑

pqr ,p′q ′r ′
A∗
pt

∗
qr 〈sr | ̂O3 Ap′ tq ′r ′ |sr ′ 〉δpq ′δqp′

=
∑

qr ,q ′r ′
Aqt

∗
qr 〈sr | ̂O3 A∗

q ′ tq ′r ′ |sr ′ 〉. (23)
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To uniquely determine |ψ〉, we need to solvem = d(d − 1)/2 independent equations,
where d is the dimension of H3 of the form below:

∑

qr ,q ′r ′
Aqt

∗
qr 〈sr | ̂O3 A∗

q ′ tq ′r ′ |sr ′ 〉 = 〈ψ |̂O3|ψ〉. (24)

Any operator ̂O3 can be decomposed as a sum of m linearly independent operators
̂Oa
3 , with 1 < a < m. Since Eq. (24) holds for any operator, it holds for each ̂Oa

3 ,
thus generating m independent equations, necessary and sufficient to solve for |ψ〉.
In particular, if |ψ〉 is expressed in the basis |sr ′ 〉, the components of |ψ〉 are given
precisely by the respective components of the left-hand side of Eq. (24), from which
we can immediately conclude that the effective state in H3

S is

|ψ〉 =
∑

q ′r ′
A∗
q ′ tq ′r ′ |sr ′ 〉 ≡ �Alice talks�. � (25)

Similarly, density matrices can be used to confirm not only that the state in HS
3

corresponds to Eq. (25) after the measurement, using partial tracing, but also that the
outcome of this operation is a pure state.
Using density matrices Assume that the sentence Alice talks is being represented by
the pure state density matrix

ρ̂ = |Alice〉|talks〉〈Alice|〈talks|. (26)

We want to show that the density matrix ρ̂3 that we obtain in space HS
3 after the

measurement of ̂P12 is in fact a pure state. We do that by taking the partial trace in
spaces 1 and 2 of ̂P12ρ̂:

ρ̂3 = Tr12
(

̂P12ρ̂
) =

=
∑

ab

∑

pqr ,p′q ′r ′
〈nanb|̂P12Ap′ tq ′r ′ |n p′nq ′sr ′ 〉〈n pnqsr |A∗

pt
∗
qr |nanb〉

=
∑

ab

∑

pqr ,p′q ′r ′
〈nanb|Ap′ tq ′r ′ |nq ′n p′sr ′ 〉〈n pnqsr |A∗

pt
∗
qr |nanb〉

=
∑

r ,p′q ′r ′
Ap′ tq ′r ′ |sr ′ 〉〈sr |A∗

q ′ t∗p′r

=
∑

q ′r ′
A∗
q ′ tq ′r ′ |sr ′ 〉

∑

p′r
〈sr |Ap′ t∗p′r = |ψ〉〈ψ |. (27)

This thus proves that the resulting state in spaceHS
3 is pure and equal to Eq. 25. It also

proves that 〈ψ〉 = 〈̂P12〉, as expected from 〈ψ |̂O|ψ〉 = 〈̂O〉〈̂P12〉. �
Note that here the index contraction is equivalent to that of Eq. (9), enhanced with

the conjugation of some components, which remain as an informative feature from the
directionality of language, which would be lost otherwise. The circuit that calculates
Eq. (25) is shown in Fig. 3.
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Fig. 3 Quantum circuit that
measures the permutation
operator ̂P12 on an intransitive
sentence input

|Alice〉 1

P̂122

3

⎧⎪⎪⎨
⎪⎪⎩|talks〉

An alternative way of contracting the two-qubit spaces has been proposed in Ref.
[12], where the Bell effect 〈β00| ≡ (〈00| + 〈11|) /

√
2 ∈ H1

N ⊗ H2
N is measured

instead as

�Alice talks� = 〈β00||Alice〉|talks〉
= 1√

2

∑

p′q ′r ′
(〈00| + 〈11|) Ap′ tq ′r ′ |n p′nq ′sr ′ 〉

= 1√
2

∑

r ′
(A0t0r ′ + A1t1r ′) |sr ′ 〉. (28)

Measuring the permutation operator as we do in Eq. (23) is manifestly a more general
way of contracting the representations of words than what is done in Eq. (28). On the
one hand, it allows each interpretation space to have more than two basis states, that is,
each quantumwire can represent something more general than one qubit. On the other
hand, it accommodates correctly the existence of complex numbers in the quantum
mechanical representations. Importantly, it has also onemore important feature thatwe
will make use of now: It allows us to integrate a quantum superposition of conflicting
readings.

3.3 Ambiguous readings on a quantum circuit

The quantum states of the two readings in Eqs. (15) and (16), that result from con-
tracting the individual word states, can be written as

�rigorous mathematicians and physicists�1 =
∑

i jln

ri j ml a
∗
l jn p∗

n |ni 〉 (29)

and

�rigorous mathematicians and physicists�2 =
∑

jlmn

r∗
l j m j almn p∗

n |nm〉. (30)

These can be represented by the two different circuits in Figs. 4 and 5, respectively,
coming from the two different contraction schemes, as obtained in Ref. [20]. Also in
this reference, an analysis of how to express the two readings syntactic ambiguities
simultaneously is developed, which we here implement. We can go from the first
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Fig. 4 Quantum circuit for the
first interpretation of the
syntactically ambiguous phrase

1

2

P̂25

⎧⎪⎪⎨
⎪⎪⎩|rigorous〉

|maths.〉 3

P̂344

5

6

P̂67

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|and〉

|physicists〉 7

Fig. 5 Quantum circuit for the
second reading of the syntactically
ambiguous phrase

1

P̂14

2

P̂23

⎧⎪⎪⎨
⎪⎪⎩|rigorous〉

|maths.〉 3

4

5

6

P̂67

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|and〉

|physicists〉 7

reading to the second by applying two wire swappings. First, we swap wires 3 and
5 on the second reading, which turns the measurement of ̂P23 into the measurement
of ̂P25. Next, by swapping wires 5 (which now contains the information from wire 3)
and 1, we effectively turn the measurement of ̂P14 into the measurement of ̂P34. In
this way, the circuit in Fig. 6 is equivalent to that of the first reading. If we control the
application of this set of swap gates on an extra qubit |c〉 = c1|1〉+ c2|0〉, we entangle
the states of this qubit with the two possible readings. The first reading is stored in
the quantum wire 5 with probability |c1|2, while the second reading is stored in that
same quantum wire with probability |c2|2. In total, we have what is represented in the
circuit of Fig. 7.

The innovation that this implementation brings is that we are now able to deal with
both interpretations simultaneously, that later contractions, with the representations
of other words, have the potential to disambiguate.
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Fig. 6 Quantum circuit that
computes the first reading from
the contractions of the second
and is therefore equivalent to
Fig. 4

1 ×

P̂14

2

P̂23

⎧⎪⎪⎨
⎪⎪⎩|rigorous〉

|maths.〉 3 ×

4

5 × ×

6

P̂67

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|and〉

|physicists〉 7

Fig. 7 Quantum circuit that
computes simultaneously the
two readings from the
ambiguous input

1 ×

P̂14

2

P̂23

⎧⎪⎪⎨
⎪⎪⎩|rigorous〉

|maths.〉 3 ×

4

5 × ×

6

P̂67

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|and〉

|physicists〉 7

|c〉 • •

4 Application

In this section, we apply Grover’s quantum search algorithm to obtain the answer
to a wh-question with quantum speedup, using the quantum circuits for sentence
representation developed in the previous section.

4.1 Grover’s quantum search algorithm

Grover’s quantum search algorithm aims at finding the correct answer to a query,
by taking a state with an equal superposition of orthogonal states representing the
answers as the input, and outputting a state in which the only basis states that have any
probability of being measured correspond to correct answers. For P = 2p possible
solutions, the first step is to generate a linear superposition of P unique states, with its
index x corresponding to one of the possible solutions. In the original proposal [34],
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this input state is obtained by acting on |0〉⊗p qubit states with the H⊗p gate, where
H is the one-qubit Hadamard gate, which generates

|�〉 = 1√
P

P−1
∑

x=0

|x〉. (31)

Then, a sequence of gates, the Grover iteration, is repeatedly applied to this input
state, until a correct answer is the guaranteed outcome of themeasurement of the initial
qubits. ForQ correct solutions, onlyO(

√
P/Q) iterations are necessary, representing a

quadratic speedup compared to a classical search algorithm, which requires checking
all P possible answers. Each Grover iteration G has two main components: first,
an oracle operation O , and then an inversion about the mean operation, formed by
applying the unitary transformation that generates |�〉 to 2|0〉〈0| − 1, in this case

H⊗p(2|0〉〈0| − 1)H⊗p ≡ 2|�〉〈�| − 1, (32)

which can easily be shown to be unitary. The heart of the algorithm is the oracle, as it
is able to distinguish the answers that are correct from those that are not. It is a unitary
operation that works by flipping the sign of the answer state if |x〉 is correct, that is,

{

O(|x〉) = −|x〉 if|x〉is a correct answer,
O(|x〉) = |x〉 otherwise.

To achieve this, more qubits might be necessary, and those constitute the “oracle
workspace.” In the original setup, it is the oracle that depends on the query at hand,
as well as the form of the inputs, while the inverse operation has a universal form. By
representing our wh-question query as quantum states and contractions therein, we
will see that we can use Grover’s algorithm with the problem dependence of its parts
reversed: Instead, it is the oracle that is universal, and the rotation is query-dependent,
obtained from a unitary transformation on |0〉.

4.2 Input-state preparation for question answering

The question statement and possible answers hold the key for the search algorithm to
identify the correct answers in our application. This will happen as a consequence of
the contractions of the possible solutions with the question predicate. We will use our
previous construction as the input of the first Grover iteration. To this end, suppose that
we want to know the answer to the question Who talks? and that we have P possible
answers, of which Q are absolutely correct and P − Q are, on the contrary, definitely
wrong. For the oracle to identify the correct answers, they must be produced from the
contraction with the verb and they must be in a superposition equivalent to Eq. (31).

The more complex mapping of w to the semantics, when compared with the syn-
tactic types s and n, can be attributed to the particular semantics of questions and our
application. In standard terms, the meaning of a question is taken as the map that sends
answers, which belong to the interpretation space of nouns, to truth values, which are
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elements of the interpretation space of declarative sentences. We want to keep track
of which word provides a correct answer in our quantum circuit, and a map like the
latter, upon performing contractions, would only give us a count of how many correct
and wrong answers there are. To see this, suppose that the word who is represented in
the space

�w/(n\s)� = HN
1 ⊗ HS

2 ⊗ HS
3 ⊗ HN

4 ,

and semantic representation as

|who〉 =
∑

ab,i j,kl

|ni 〉1|s j 〉2|sk〉3|nl〉4δilδ jk

=
∑

i,l

|ni 〉1|s j 〉2|s j 〉3|ni 〉4. (33)

and the intransitive verb talks

|talks〉 =
∑

mn

tmn |nm〉5|sn〉6. (34)

Following the contraction schemes presented in Sect. 3.2, the contraction between
these two words states results in the state

|who〉|talks〉 =
∑

i j

ti j |ni 〉1|s j 〉2, (35)

and representing the answers as

|answers〉 =
∑

p

Wp|n p〉7, (36)

their final contraction results in

|who〉|talks〉|answers〉 =
∑

i j

W ∗
i t

∗
i j |s j 〉2. (37)

This shows that a contraction just on the S and N spaces gives only a count of how
many correct or incorrect answers there are, but not which ones are which.

As such, the map of the wh-word needs to be furthermore tensored with elements
of H⊗p, of which each of the basis elements corresponds to the unique indexing of
the possible answers. This provides an entanglement between the distributional rep-
resentation of a noun, its corresponding truth value and an enumerable representation
in the quantum circuit. The word who thus belongs to the following semantic space,
in the image of Eq. (17),

�w/(n\s)� = H⊗p
1 ⊗ HN

2 ⊗ H⊗p
3 ⊗ HS

4 ⊗ HS
5 ⊗ HN

6 ,
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with semantic representation given as

|who〉 =
∑

ab,i j,kl

|a〉1|ni 〉2|b〉3|s j 〉4|sk〉5|nl〉6δabδilδ jk

=
∑

a,i,l

|a〉1|ni 〉2|a〉3|s j 〉4|s j 〉5|ni 〉6. (38)

The intransitive verb talks has the same representation as before, nowwith the adapted
labeling of wires

|talks〉 =
∑

mn

tmn |nm〉7|sn〉8. (39)

For clarity, we flesh out the computation of the contractions that involve the extra
index space. The semantic contraction of who with talks, following the interpretation
of the syntactic contraction, results in

〈who|〈talks| ̂P67 ⊗ ̂P58 ⊗ ̂O1234 |who〉|talks〉
=

∑

a′i ′ j ′m′n′
〈a′|1〈ni ′ |2〈a′|3〈s j ′ |4〈s j ′ |5〈ni ′ |6t∗m′n′ 〈nm′ |7〈sn′ |8

· ̂O1234

∑

ai jmn

|a〉1|ni 〉2|a〉3|s j 〉4|sn〉5|nm〉6tmn|ni 〉7|s j 〉8

=
∑

a′i ′ j ′m′n′
〈a′|1〈ni ′ |2〈a′|3〈s j ′ |4t∗m′n′ ̂O1234 |a〉1|nm′ 〉2|a〉3|sn′ 〉4ti ′ j ′

=
∑

a′i ′ j ′
ti ′ j ′ 〈a′|1〈ni ′ |2〈a′|3〈s j ′ |4 ̂O1234

∑

ail

t∗i j |a〉1|ni 〉2|a〉3|s j 〉4. (40)

From this, we read off the question representation, rewriting the indices:

�who talks� =
∑

ai j

t∗i j |a〉1|ni 〉2|a〉3|s j 〉4. (41)

To be the input of the quantum search algorithm, the full input needs to correspond
to an equal superposition of all possible answers. This can be achieved by entangling
the distributional representation of the answers with the corresponding index

|answers〉 =
∑

bp

Wb
p |n p〉9|b〉10, (42)

followed by a contraction with the question representation, which happens strictly at
the semantic level. Hence,
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Fig. 8 Quantum circuit that
generates the input of the first
Grover iteration for question-
answering

〈who talks|〈answers|̂P29 ⊗ ̂P1,10 ⊗ ̂O34|who talks〉|answers〉 =
∑

a′i ′l ′
ti ′ j ′ 〈a′|1〈ni ′ |2〈a′|3〈s j ′ |4

∑

b′ p′
W ∗b′

p′ 〈n p′ |9〈b′|10

· ̂O34

∑

ail

t∗i j |b〉1|n p〉2|a〉3|s j 〉4
∑

bp

Wb
p |ni 〉9|a〉10

=
∑

a′i ′ j ′
Wa′

i ′ ti ′ j ′ 〈a′|3〈s j ′ |4 ̂O34

∑

amn

W ∗a
i t∗i j |a〉3|s j 〉4, (43)

such that the effective input state to the Grover’s algorithm is

|�ini tial〉 =
∑

ai j

W ∗a
i t∗i j |a〉3|s j 〉4, (44)

which represents an entanglement between the indices of possible answers and truth
values. This process is represented by the circuit in Fig. 8.

4.3 Oracle and inversion

Grover’s algorithm requires a normalized state as initial input. Since the amplitudes
in the state in Eq. (44) have information about whether a certain answer is correct,
they uniquely associate each word indexed by a with one of the basis states |s j 〉, in
such a way that

∑

i W
∗a
i t∗i j is null if the combination between word index a and truth

value j is not correct, and otherwise equal to one. Since every word should be either
true or false, that leaves us with precisely P independent and equally summed states.
Therefore, if the indices aj are abbreviated by one index x , the normalized state is
given as

123



Quantum computations for disambiguation and question answering Page 19 of 25 126

Fig. 9 Oracle for
question-answering

|�ini tial〉 = 1√
P

P−1
∑

x=0

|x〉, (45)

with

|x〉 =
∑

i

W ∗a
i t∗i j |a〉3|s j 〉4. (46)

The oracle applied to this input state takes the form of the circuit in Fig. 9.
The states |a〉 on the first p qubits, being in one-to-one correspondence with each

of the possible solutions, are the complete set of states that build up the equal super-
position |�〉 = H⊗p|0〉⊗p, as in Eq. (31). In terms of the states that correspond to
words that are correct or incorrect, we can rewrite |�〉 as

|�〉 = cos

(

θ

2

)

|α〉3 + sin

(

θ

2

)

|β〉3, (47)

with |α〉 the normalized sumof all states that correspond towords that are not solutions,
and |β〉 to the normalized sum of those that correspond to words that are solutions.
Using this notation, the |�ini tial〉 state that we obtain using the contractions can be
expressed as

|�ini tial〉 = cos

(

θ

2

)

|α〉3|0〉4 + sin

(

θ

2

)

|β〉3|1〉4. (48)

Though there is entanglement between the first p qubits and the last one, this is
a pure state in the p + 1 qubit space, as it results from the measurement of the
permutation operators, as shown in Sect. 3.2. As such, there is a unitary transformation
that generates it from |0〉⊗p+1 as

|�ini tial〉 = U |0〉p+1. (49)

Using this, we can construct the rotation part of the Grover algorithm as

U (2|0〉〈0| − 1)U † = 2|�ini tial〉〈�ini tial | − 1. (50)

It follows that the Grover iteration applied on the input state in Eq. (48) using the
oracle and the rotation in Eq. (50) gives the desired outcome of
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(2|�ini tial〉〈�ini tial | − 1)O(|�ini tial〉) =
cos(

3θ

2
)|α〉3|0〉4 + sin(

3θ

2
)|β〉3|1〉4. (51)

This is precisely what we expect to obtain. For the second iteration, the oracle acts as
desired, and so does the rotation.After a number of iterations, only the states associated
with |1〉4 have positive amplitude,whichmeans thatwe are certain tomeasure the index
of a word that corresponds to a correct answer when we make a measurement on the
first p qubits. Thus, we have obtained a correct answer with quadratic speedup due to
the quantum search algorithm.

5 Conclusion and outlook

In this paper,we introduced twomaindevelopments in the application of quantumcom-
putation to natural language processing. The first one is a tensor contraction scheme
on quantum circuits. Taking quantum states as the representations of all input words,
contractions are then identified with the expectation value of an appropriate permuta-
tion operator. Doing this, we are not only able to reproduce previous analytical results,
but we also allow for complex values and create quantum circuits that are equipped
to deal with the syntactic ambiguities in Ref. [20]. With this setup, each reading of
an ambiguous phrase corresponds to a particular circuit, and different readings are
interchangeable upon the application of a number of swap gates. Controlling on these
swap gates, we can obtain a true quantum superposition of the multiple readings. This
covers the problem of how to deal with multiple readings in real time, without the
need to assume any contextualization. While this addresses the question of syntactic
ambiguities by making use of the quantum superposition principle, ambiguities at the
word level can be immediately accommodated for by using density matrices [15–17,
35], instead of the pure states we use here for simplicity. A generalization to other
sentence-level ambiguities constitutes further work, in the expectation that the use of
different controls allows for different readings simultaneously in the output state. Note
that, in terms of a concrete implementation, the permutation between two qubits used
to generate an equal superposition of readings from an ambiguous input takes the form
of a Fredkin gate, or a CSWAP gate, which might add considerable circuit complex-
ity, but this is expected to be compensated by the fact that the number of two-qubit
operations only scales linearly with an increasing number of readings, since for these
types of ambiguities all permutations can be generated via sets of SWAP operations.
We leave a more robust exploration of these technical constraints to future work.

The second development builds on this quantum framework and consists of a quan-
tum search algorithm that is able to find the answer to a wh-question with quantum
speedup. As input, the algorithm takes a multipartite state in quantum superposition,
representing a wh-question and its possible answers, and performs a series of tensor
contractions as established previously. A series of gates then acts repeatedly on the
post-contraction state, guaranteeing that a correct answer to the question is obtained
upon a single final measurement. Our algorithm takes advantage of intrinsic quantum
features to identify and deliver a correct answer with quantum speedup of quadratic
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order, when compared to the classical alternative of checking every possible answer.
We are thus able to provide a correct answer using information given directly by the
tensor contractions of representations of words as proposed by DisCoCat, and with-
out needing to hand-feed any labels nor to learn the answers to other questions. Our
approach thus shows how quantum circuit implementations can break with the widely
accepted “learning paradigm” of current NLP approaches to question answering and
other tasks used in Ref. [13], providing a scalable approach to open-ended questions.
Our approach differs from that of Ref. [9] also in the sense that we keep all words as
input states, instead of representing words from complex types as gates that modify
circuit inputs, remaining closer to the compositional spirit of the syntax and there-
fore being more easily extensible to larger language fragments. Further work includes
finding an effective implementation of the measurement of the permutation operator
for an arbitrary number of qubits, possibly making use of the Hadamard test [36], and
understanding how to find a universal form of the inversion operator that does not
depend on |α〉 and |β〉 separately. An extension of the present formalism can further-
more account for a better understanding of the temporal evolution of the meanings of
sentences.
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Appendix A

Measuring the permutation operator on two qubits

In this appendix,we show that for themeasurement of the permutation operator applied
to two qubits it suffices to measure the input states in the Bell basis. The two input
qubits have the four possible joint states in the standard basis, given by

|00〉 =

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

, |10〉 =

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

, |01〉 =

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

, |11〉 =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

. (52)
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The permutation operator applied to two qubits is equivalent to the SWAP gate S. In
this basis, this operator has the matrix representation

S =

⎛

⎜

⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟

⎟

⎠

. (53)

The eigenstates of this operator are the well-known singlet and triplet states that
represent the joint spin of two spin-1/2 particles. With eigenvalue −1, we have the
singlet state

|0, 0〉 = 1√
2

⎛

⎜

⎜

⎝

0
−1
1
0

⎞

⎟

⎟

⎠

, (54)

and with eigenvalue 1 we have the three triplet states

|1,−1〉 =

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

, |1, 0〉 = 1√
2

⎛

⎜

⎜

⎝

0
1
1
0

⎞

⎟

⎟

⎠

, and |1, 1〉 =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

, (55)

expressed in the standard basis as

|0, 0〉 = 1√
2
(|01〉 − |10〉), (56)

|1,−1〉 = |00〉, (57)

|1, 0〉 = 1√
2
(|01〉 + |10〉), (58)

|1, 1〉 = |11〉. (59)

In its turn, theBell basis can be expressed in terms of the standard basis in the following
way:

|β00〉 = 1√
2
(|00〉 + |11〉), (60)

|β01〉 = 1√
2
(|01〉 + |10〉), (61)

|β10〉 = 1√
2
(|00〉 − |11〉), (62)

|β11〉 = 1√
2
(|01〉 − |10〉). (63)
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The Bell states can thus be rewritten using the total spin eigenstates of S, given in (56)
to (59), as:

|β00〉 = 1√
2
(|1,−1〉 + |1, 1〉) (64)

|β01〉 = |1, 0〉 (65)

|β10〉 = 1√
2
(|1,−1〉 − |1, 1〉) (66)

|β11〉 = |0, 0〉. (67)

Because any linear combination of degenerate eigenstates is also an eigenstate of that
operator with the same eigenvalue [proof: Av = λv, Aw = λw ⇒ A(av + bw) =
λ(av+bw)], we see that |β00〉, |β01〉, and |β10〉 are eigenstates of S with eigenvalue 1,
and |β11〉 is an eigenstate with eigenvalue−1. Therefore, we can conclude that the Bell
basis also diagonalizes the permutation operator, and as such repeated measurements
of the qubits in this basis allow us to directly compute the expectation value of the
operator in the input states. So, for a two-qubit input state

|�〉 =
∑

i j

ai b j |i j〉, (68)

with i, j ∈ {0, 1}, the expectation value of the S operator is given by

〈S〉� = |〈β00||�〉|2 + |〈β01||�〉|2 + |〈β10||�〉|2 − |〈β11||�〉|2 . (69)

If we are in the possession of a measuring device that can only measure in the standard
basis, wemust transform our input stateswith the inverse transformation that generates
the Bell states. This serves to guarantee that an outcome |i j〉 is in fact as likely as the
measurement of |βi j 〉 if the input states were measured directly in the Bell basis.
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